1,801 research outputs found

    Dual-frequency-comb two-photon spectroscopy

    Get PDF
    This thesis reports on experimental demonstrations of a novel direct frequency-comb spectroscopic technique for the measurement of one- and two-photon excitation spectra. An optical-frequency-comb generator emits a multitude of highly coherent laser modes whose oscillation frequencies are evenly spaced and uniquely determined by only two measurable and adjustable radio-frequency parameters and the integer-valued mode number. Direct frequency-comb spectroscopy can traditionally be performed by scanning the comb lines of the frequency comb across the transitions of interest and measuring a signal that is proportional to the excitation by all comb lines in concert. Since the modes that contribute to the excitation cannot be singled out, transition frequencies can only be measured modulo the comb-line spacing with this scheme. The so arising limitations are overcome by the technique presented here, where the first frequency comb is spatially overlapped with a second frequency comb. Both combs of this so-called dual-comb setup are ideally identical except for having different carrier-envelope frequencies and slightly different repetition rates. The interference between the two combs leads to beat notes between adjacent comb lines, forming pairs (with one line from each comb) with an effectively modulated excitation amplitudes. Consequently the probability of excitation by any given comb-line pair is also modulated at the respective beat-note frequency. These beat-note frequencies are spaced by the repetition-rate difference and uniquely encode for individual comb-line pairs, thus enabling the identification of the comb lines causing an observed excitation. In a first demonstration, Doppler-limited one-photon excitation spectra of the transitions 5S_{1/2}-5P_{3/2} (at 384 Thz/780 nm), 5P_{3/2}-5D_{3/2}, and 5P_{3/2}-5D_{5/2} (both at 386 Thz/776 nm), and two-photon spectra of the 5S_{1/2}-5D_{5/2} (at 2x385 Thz/2x778 nm) transition, agreeing well with simulated spectra, are simultaneously measured for both stable Rb isotopes. Within an 18-s measurement time, a spectral range of more than 10 THz (20 nm) is covered at a signal-to-noise ratio (SNR) of up to 550. To my knowledge, this is the first demonstration of both dual-comb-based two-photon spectroscopy and fluorescence-based dual-comb spectroscopy. In a follow-up experiment probing the same sample and two-photon transitions, the Doppler-resolution limit is overcome by implementation of an anti-resonant ring configuration. Cancellation of the first-order Doppler effect makes it possible to resolve 33 hyperfine two-photon transitions. The highly resolved (1 MHz point spacing), narrow transition-linewidth (5 MHz), accurate (systematic uncertainty of ~340 kHz), high-SNR (10^4) spectra are shown to be consistent with basic simulation-based predictions. As the spectral span is, in principle, only limited by the bandwidths of the excitation sources, the acquisition of Doppler-free two-photon spectra spanning 10s of THz appears to be in reach. To my knowledge, this is the first demonstration of Doppler-free Fourier-transform spectroscopy. Lastly, the possibility of extending the technique's scope to applications in the field of biochemistry, such as two-photon microscopy, are explored. To that end, first high-speed, low-resolution (>>1 GHz) experiments are carried out identifying comb-stabilization requirements and measurement constraints due to the limited dynamic range of the presented highly multiplexed spectroscopic technique

    Versatile optical frequency combs based on multi-seeded femtosecond optical parametric generation

    Get PDF
    This study proposes and demonstrates a versatile method for near- and mid-infrared optical frequency comb generation using multi-seeded femtosecond optical parametric generation. The method allows one to divide the repetition rate by an arbitrarily large integer factor, freely tune the offset frequency, and adjust the common phase offset of the comb modes. Since all possible degrees of freedom are adjustable, the proposed method manifests itself as versatile optical frequency synthesis. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing AgreementPeer reviewe

    Ultrafast pulse dynamics in low noise Tm/Ho doped mode-locked fiber lasers

    Full text link
    Mode-locked fiber lasers have attracted significant scientific and commercial interest since they offer a compact and highly stable platform with straightforward operation for exploiting ultrafast and nonlinear phenomena. They have enabled a vast range of applications that span from distinct disciplines such as medical diagnostics, molecular spectroscopy, and high-power precise mechanical cutting, to optical metrology. Various gain media have been utilized to achieve laser emission at different wavelengths. We have developed unique thulium/holmium (Tm/Ho) doped mode-locked fiber laser systems to address the needs of low-noise ultrafast optical sources in the wavelength vicinity of 2 μm at higher repetition rates. Since the 2 μm wavelength regime has recently attracted more attention with the emergence of thulium gain fibers, the rich underlying cavity dynamics, novel pulse operation regimes and nonlinear phenomena in compact fiber configurations have not been fully explored yet. In this thesis, research is conducted on novel Tm fiber laser cavity configurations and on the formation of unique, polarization-based pulsing regimes. Particularly, this research is focused on the exploration of novel ultrafast and nonlinear phenomena, and the development of optical sources emitting unprecedented ultrafast pulse trains beyond conventional equal-intensity distribution using Tm/Ho doped gain media. The research presented features four main results: 1) development of a high repetition rate and low-noise Tm/Ho doped mode-locked fiber laser platform as an attractive optical source for a wide variety of applications 2) investigation of a novel mode-locked state in which the ultrafast pulse train is composed of co-generated, consecutive, equal intensity and orthogonally polarized pulses in order to achieve dual RF comb generation for dual-comb spectroscopy applications, 3) exploration of controllable ultrafast waveform generation utilizing vector soliton and harmonic mode-locking mechanisms for optical telecommunication applications, and 4) demonstration of unique transitional mode-locked states showing exceptional features such as powerful irregular bursts of ultrafast pulses and rogue wave behavior without damaging the laser elements. The aim of these projects has been to explore the novel optical properties of Tm/Ho co-doped fiber lasers in order to achieve advanced functionalities in commonly practiced applications such as telecommunication, metrology and spectroscopic applications.2019-10-22T00:00:00

    Bidirectional frequency-shifting loop for dual-comb spectroscopy

    Get PDF
    We present a bidirectional recirculating frequency-shifting loop, seeded by a continuous-wave (cw) laser, to perform multi-heterodyne interferometry. This fiber-optic system generates two counter-propagating “acousto-optic” frequency combs with a controllable line spacing. Apart from its simple architecture, coherent averaging allows us to reach acquisition times up to the second scale without resorting to any active stabilization mechanism. We also show that the relative phase between the combs is quadratic and can be easily controlled by adjusting the parameters of the loop. The capability of our scheme to perform molecular spectroscopy is proven by dual-comb measurements of a transition of hydrogen cyanide in the near-infrared region (1550 nm)

    Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb

    Get PDF
    THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (≈560 GHz) wave with a low phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other photonic THz oscillators (>300 GHz)
    corecore