244 research outputs found

    Digital control for automating feed distribution in feedlots

    Get PDF
    An investigation was conducted to determine the feasibility of automatic controls to automate feed distribution in feedlots. The control approach was restricted to compatibility with conventional feeding equipment. Input control signals were taken to originate from commonly available mechanical and electronic sensors. The control system was implemented with standard digital logic components;The proposed digital control system is based on a railguided, self-propelled automatic vehicle capable of delivering feed sequentially to 255 pens located on both sides of a single feeding path. A manual, closed-loop control system consisting of the following functions was developed: (1) pen identification, (2) initialization control, (3) feeding mode, (4) exit from feeding mode, (5) re-entry into feeding mode, (6) end of feeding cycle, (7) ground drive and conveyor control, (8) interface and auto/manual mode, (9) monitoring of automated system and (10) data and failure display and alarm. The control system allows either automatic or manual operation of the feeding vehicle. Digital electronic circuits capable of implementing the desired control functions were designed;The feeding cycle is manually initiated and automatically terminated when feed has been delivered to all pens requiring feed. It can be partially programmed to enable feed delivery to sections of the feedlot. Two feed rations can be delivered. The feeding status of each pen is recorded. The pen feed rations are stored in reprogrammable memories;The operation of the automated feeding system is based on the automatic identification of the feedlot pens. The number assigned to a pen is coded, using binary pulse-code modulation. Frequency-shift keying is used to transmit the coded number. The received coded number is recovered by specialized communication circuits and then validated;The control system monitors the vehicle components and the major electronic circuits to detect failures, prevent damage and produce a safe operation. Furthermore, it incorporates safety sensors and logic circuitry to meet the basic safety requirements pertaining to automated vehicles;The proposed automated feed distribution system for feedlots is expected to: (1) reduce management requirements through automatic distribution of feed to cattle raised in pens, (2) increase efficiency of feeding operation by eliminating time losses associated with secondary feed transfer, (3) eliminate damage to feedbunks through positive guidance of the vehicle by rails, and (4) save energy by eliminating secondary feed transfer

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Programming of a led matrix with a digital vu meter application

    Full text link
    [EN] In this project I want to develop an application for a 16*16 LED Matrix. It’s composed of 256 RGB 5050 programmable LEDs, in concrete the ws2812b LED. The idea is to use an Arduino board (microcontroller) to control the LED Matrix with a programming code and create, as a principal application, a digital equalizer and use two additional buttons for other modes.[ES] Se trata de la automatización de un cubo de leds en todas sus aristas y diagonales, controlado mediante PLCAlbujer Rodriguez, N. (2015). Programming of a led matrix with a digital vu meter application. http://hdl.handle.net/10251/54532.TFG

    DESIGN AND EVALUATION OF PORTABLE PSYCHOACOUSTIC TESTING SYSTEMS

    Get PDF
    There is an increasing demand for developing portable psychoacoustic testing systems to evaluate the hearing abilities of people. In this thesis, the design, development, and evaluation of portable, flexible, and versatile wired and wireless psychoacoustic testing systems will be presented. The design of the wired system utilizes a USB audio I/O controller chip for communicating with the application software on the host through a USB cable. The wireless system includes two units: a transmitter and a receiver. 2.4GHz RF transceiver chips are employed for wireless communication. Double-side PCBs populated with 0603 SMD were designed and fabricated. To go along with the hardware, software was developed on a handheld device to control and execute several psychoacoustic tests and to log subjective data. Objective measurements and small scale clinical trials were undertaken to test the efficiency of the proposed portable systems

    Development of a customised, self powered data logger for monitoring farm fence energizers

    Get PDF
    For gathering information on the performance of energizer products in the field, Gallagher Group Limited had a well out-dated data-logger which periodically monitored the voltage of the fence and transmitted the data back to base over a GSM network. However the existing data-logger had very limited capability and a new one was needed that could monitor the environment inside and around the energizer, and hopefully provide some information on why an energiser might be failing. The ideal data-logger was self powered, could last years in the field without needing to be serviced, and could collect data on the energizer without affecting it in any way. It would also collect data on as many environmental parameters as possible, such as temperature, humidity, ambient light level, lightening strikes and pressure. Ideally it would also be able to monitor the energizer voltage using a contactless measuring system. The data-logger was designed for Gallagher Animal Management Systems, the part of Gallagher Group Limited that specialises in farming equipment. The design project arose from the need for a data-logger that could monitor both the fence voltage and the environment around the fence, so that a critical explanation of why an energizer failed in the field could be found, leading to better product design in the future. It was jointly funded by Gallagher Group Limited and the Foundation of Research Science and Technology (FoRST)

    A hardware and software platform for characterization and prototyping of a low-power energy-harvesting SoC

    Get PDF
    Energy consumption is an important performance indicator for wireless devices. Developing ICs that address this issue for IoT applications is a complex task, which relies not only on design, but also on testing and characterization as a large part of the process. This thesis develops a framework for testing, characterizing and prototyping of an ultra-low power IC developed at Aalto. The framework consists of both hardware and software components. The hardware involves a large four-layer PCB, various components that support the IC’s functions and a smaller PCB which interfaces with a one-bit display, both implemented with Altium Designer, together with a UWBfilter and an impedance matching network. The software part consists of a flexible IC programming and configuration interface written in Python, two LabVIEW VIs for wireless data transmission and reception and a set of measurement automation libraries written in Python. The framework is successfully tested with the one-bit display driver and is used by the researchers for evaluating their IC blocks

    Microprocessor-controlled inverter-fed synchronous motor

    Get PDF
    Imperial Users onl
    corecore