
A hardware and software platform
for characterization and
prototyping of a low-power
energy-harvesting SoC

Doru-Stefan Irimescu

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 31.8.2018

Supervisor

Prof. Kari Halonen

Advisor

Tuomas Haapala

Copyright c⃝ 2020 Doru-Stefan Irimescu

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Doru-Stefan Irimescu
Title A hardware and software platform for characterization and prototyping of a

low-power energy-harvesting SoC
Degree programme Automation and Electrical Engineering
Major Control, Robotics and Autonomous Systems Code of major ELEC3025
Supervisor Prof. Kari Halonen
Advisor Tuomas Haapala
Date 31.8.2018 Number of pages 75 Language English
Abstract
Energy consumption is an important performance indicator for wireless devices.
Developing ICs that address this issue for IoT applications is a complex task, which
relies not only on design, but also on testing and characterization as a large part of
the process.

This thesis develops a framework for testing, characterizing and prototyping of
an ultra-low power IC developed at Aalto. The framework consists of both hardware
and software components. The hardware involves a large four-layer PCB, various
components that support the IC’s functions and a smaller PCB which interfaces with
a one-bit display, both implemented with Altium Designer, together with a UWB
filter and an impedance matching network.

The software part consists of a flexible IC programming and configuration interface
written in Python, two LabVIEW VIs for wireless data transmission and reception
and a set of measurement automation libraries written in Python. The framework is
successfully tested with the one-bit display driver and is used by the researchers for
evaluating their IC blocks.
Keywords IC programming interface, Python, PCB design, IC characterization,

low-power, energy harvester, measurement automation

iv

Preface
I want to thank Prof. Kari Halonen for offering me this unique opportunity for
working and growing within a team of experts. Without his wise coordination and
managerial flexibility, this project would not have been possible. I would like to thank
my advisor Tuomas Haapala for his extensive guidance and feedback, which have
taught me new skills and good practices related to research and electronics. He has
been committed to offering his expertise throughout my entire stay at the research
group. I would also like to express my gratitude towards my research colleagues at
the ECD group: Mika Pulkkinen, Jarno Salomaa and Mohammad Mehdi Moayer for
their collaborative assistance.

Last, but not least, I thank my parents and girlfriend for their support.

Otaniemi, 31.8.2020

Doru-Stefan Irimescu

v

Contents

Abstract iii

Preface iv

Contents v

Symbols and abbreviations viii

1 Introduction 1

2 Universal sensor interface 3
2.1 Block description . 3
2.2 Sensor emulation . 4

2.2.1 Inter-integrated circuit protocol 4
2.2.2 NCD2400M . 5
2.2.3 MAX5419 . 6

2.3 Arduino libraries . 8

3 Printed circuit board development 9
3.1 Printed circuit board . 9
3.2 IC footprint . 9
3.3 Layer stackup . 11
3.4 Controlled impedance . 12
3.5 Decoupling capacitance . 14
3.6 Auxiliary components . 15
3.7 Results . 17

4 Narrowband receiver impedance matching 19
4.1 Narrowband receiver . 19
4.2 Impedance matching . 19

4.2.1 Vector network analyzer . 20
4.2.2 Impedance matching specification 20
4.2.3 Impedance matching implementation 22

5 UWB filter design 25
5.1 Scattering parameters . 25
5.2 Analog filters . 25
5.3 Passive component model . 27
5.4 Filter design . 28

5.4.1 Filter specification . 28
5.4.2 Filter implementation . 29

vi

6 Wireless communication setup 31
6.1 USRP . 31
6.2 LabVIEW environment . 32
6.3 Cyclic redundancy check . 34
6.4 On-off keying . 34
6.5 Manchester code . 35
6.6 Differential pulse position modulation 36
6.7 Manchester transmitter . 37
6.8 DPPM receiver . 38

6.8.1 Transmitter simulator . 38
6.8.2 Receiver . 40

7 Python programming interface 43
7.1 The Python programming language 43
7.2 Object-oriented software engineering 43

7.2.1 Software qualities . 44
7.2.2 Software design principles . 44

7.3 Programming interface . 44
7.3.1 Requirements . 46
7.3.2 Communication protocol . 46
7.3.3 Interface architecture . 47

7.3.3.1 Registers . 47
7.3.3.2 Register commands 47
7.3.3.3 Tune commands . 49
7.3.3.4 Command wrappers 49
7.3.3.5 Slow memory . 49
7.3.3.6 Blocks . 50
7.3.3.7 Integrated circuits 50

7.4 IC Communication . 50
7.4.1 Command parsing and IC-communication software 51

7.5 Project structure . 56
7.6 Testing and validation . 57

7.6.1 Testing . 57
7.6.2 Validation . 58

7.7 Documentation . 58
7.8 Summary . 59

8 Measurement automation 60
8.1 Communication with measurement equipment 60
8.2 Programming environment . 60
8.3 Virtual instrument software architecture 61
8.4 Standard commands for programmable instruments 61
8.5 Automation commands . 61
8.6 Instrument drivers . 62
8.7 Remote measurement setup . 63

vii

9 Display driver 64
9.1 Electrophoretic display . 64
9.2 Driver description . 65
9.3 Test PCB . 66
9.4 Measurement setup . 67
9.5 Measurement results . 69

10 Conclusions 71

References 71

viii

Symbols and abbreviations

Symbols
εR Relative permittivity
γ Propagation constant
ΓL Reflection coefficient measured at load
λ Wavelength
ϕ(w) Phase response
Ω Ohm
Amax Maximum passband ripple
Amin Minimum stopband attenuation
Cout Output capacitance
Cp Parasitic capacitance
Cx Capacitor nr. x
D Delta samples
D(w) Group delay
Ecap Energy stored in a capacitor
G Gap between the signal line and coplanar ground layer
H Dielectric height between the signal and ground plane
I Current
Ibias Bias current
Idisp Display current
Iref Reference current
k Index of sample sk

Lp Parasitic inductance
Lx Inductor nr. x
N Filter order
P Power, peak sample set
P (w) Phase delay
p Percentage expressed in decimal points
pk Peak sample nr. k
Q Electric charge
Rp Parasitic resistance
Rsense Sense resistor
S Sample set
sk Value of sample nr. k
Sij Scattering parameter from port j to port i
T Copper layer thickness
Tsymbol Time duration of a symbol in samples
Ttimeslot Time duration of a time slot in samples
t Time
tan δe Dielectric loss tangent
V Voltage
VA Voltage at node A
VL Voltage across inductor
Vout Output voltage
Vs Supply voltage
V −

i Reflected voltage at port i
V +

i Incident voltage at port i

ix

ws1 Stopband lower angular frequency limit
ws2 Stopband upper angular frequency limit
wp1 Passband lower angular frequency limit
wp2 Passband upper angular frequency limit
W Signal line width
z Spatial distance from load towards generator
Zic Integrated circuit input impedance
Zin Input impedance
Zox Characteristic impedance nr. x

x

Abbreviations
ADC Analog to Digital Converter
ADS Advanced Design System
AMOLED Active Matrix Organic Light Emitting Diode
API Application Programming Interface
ASK Amplitude Shift Keying
BPF Bandpass Filter
CAD Computer-Aided Design
CMOS Complementary Metal-Oxide-Semiconductor
COM Component Object Model
CPHA Clock Phase
CPOL Clock Polarity
CPWG Coplanar Waveguide With Ground
CRC Cyclid Redundancy Check
DAC Digital to Analog Converter
DC Direct Current
DNL Differential Nonlinearity
DPPM Differential Pulse-Position Modulation
DSO Digital Storage Oscilloscope
EDA Electronic Design Automation
EH Energy Harvester
ESL Equivalent Series Inductance
ESR Equivalent Series Resistance
FIR Finite Impulse Response
FPC Flexible Printed Circuit
FPGA Field Programmable Gate Array
GNU GNU’s Not Unix !
GPIB General Purpose Interface Bus
I2C Inter-Integrated Circuit
IC Integrated Circuit
IF Intermediate Frequency
INV Inverter
IoT Internet of Things
LAN Local Area Network
LCD Liquid Crystal Display
LCR Inductance, Capacitance, Resistance
LNA Low Noise Amplifier
LO Local Oscillator
LOC Lines Of Code
LS Level Shifter
LSB Least Significant Bit
LXI Local area network eXtensions
MISO Master Input Slave Output
MOSI Master Output Slave Input
MSB Most Significant Bit
NB Narrow Band
NI National Instruments
NMOS N-Channel Metal-Oxide-Semiconductor
NOC Non Overlapping Clock
OOK On-Off Keying

xi

OOP Object-Oriented Programming
OTA Operational Transconductance Amplifier
PCB Printed Circuit Board
PID Proportional-Integral-Derivative
PMOS P-Channel Metal-Oxide-Semiconductor
PPM Pulse-Position Modulation
QFN Quad-Flat No-leads
REGU Regulator
RF Radio Frequency
RLC Resistor, Inductor, Capacitor
SCL Serial Clock Line
SCLK Serial Clock
SCPI Standard Commands for Programmable Instruments
SDA Serial Data
SDR Software Defined Radio
SM Surface Mounted
SMA SubMiniature version A
SMB SubMiniature version B
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
SS Slave Select
SoC System on Chip
TDD Test-Driven Development
T&M Testing and Measurement
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
USI Universal Sensor Interface
USRP Universal Software Radio Peripheral
UWB Ultra-Wide Band
VI Virtual Instrument
VISA Virtual Instrument Software Architecture
VNA Vector Network Analyzer

1

1 Introduction
In recent years, the energy efficiency requirements for electronic devices has dramat-
ically increased, as manufacturers have to upgrade their design methodologies in
order to conform with the latest standards for mitigating the accelerating impacts of
global warming [1].

Lately, there has been a rise in demand for wireless devices that can seamlessly
embed sensorial, computational and communicational capabilities into current tech-
nologies, or even into our everyday life in the form of the Internet of Things (IoT)
[2]. Due to their small form factor, often hard-to-reach location and large scale
deployment, IoT devices require stable, long-term power sources, typically in the
form of a battery. Thus, full energy autonomy is becoming a highly sought-after
characteristic for the next generation of IoT devices [3].

In order to address the problem of energy consumption in wireless devices, a low-
power energy-harvesting System on Chip (SoC) was developed by Aalto University’s
Department of Electronics and Nanoengineering. A SoC is a complex integrated
circuit (IC) that performs multiple different functions, typically integrating at least a
processing unit, volatile and/or non-volatile memory, power regulation, timing sources
and analog interfaces to name a few [4]. Developed as part of the department’s prior
research on ultra-low power circuits, Aalto’s SoC design (Figure 1) consists of the
following subsystems: an energy harvester (EH) and a voltage regulator (REGU) [5]-
[6], a general-purpose sensor interface [7], a gesture sensor interface [8], a narrowband
(NB) radio transceiver [9], an ultra-wideband (UWB) radio transmitter [10]-[11], a
Serial Peripheral Interface (SPI) [12] and a one-bit display driver, all these features
being integrated into an ultra-low power consumption solution.

Power conversion
and management

General purpose
sensor interface

Radio
transceiver

SoC gen1

Super-cap
acitors

Sensor
elements

Antennas

Energy
harvesters

One-bit display
driver

Display

ON/OFF

Figure 1: System on chip block diagram.

2

A representative IC design process (Figure 2) starts with the computer-aided
design (CAD) of the integrated circuit based on some theoretical results, with the
purpose of producing a functional IC that meets a set of specifications, forming a
basis for submitting a new research paper. Next, the design is sent to a manufacturing
company. In the case of the project in hand, the fabrication process is a 180-nm
complementary metal-oxide-semiconductor (CMOS). Once the physical chips have
been delivered, the testing and characterization process begins. The testing phase is
particularly important in determining if there are any design or manufacturing flaws
and if the chip functions as it was intended to, while the characterization process
establishes and documents the operating parameters of the chip, which are then
compared to the simulated results.

Design okComputer-aided
design Fabrication

Unsatisfactory results

Results according
to simulation

Testing &
Characterization Functional IC

Figure 2: Typical IC design process.

The aim of this thesis is to construct a platform (software and hardware) that
enables the research team to carry out the required testing and characterization,
perform tests and evaluations on various IC blocks and build the foundation for a
prototype that showcases the main features of the device. To accomplish this, the
thesis first constructs a four-layer printed circuit board (PCB). Components that
support the correct functioning of the IC are selected, with a focus on the universal
sensor interface (USI), the UWB transmitter and NB receiver. Then, wireless
communication between the IC and a computer is established. A programming
interface that enables configuration and communication with the IC is developed.
The measurement automation setup which puts together the characterization PCB,
programming software and measurement devices is presented. Finally, the developed
platform is put to the test by automating the measurements for the one-bit display
driver.

Since this thesis is confined to designing the necessary hardware and software for
accomplishing the aforementioned aim, the design of any of the IC blocks presented
in the following chapters will remain beyond the scope of the thesis, as it constitutes
the work performed by the group of researchers.

The remainder of this work is structured as follows: Chapter 2 reports the work
for the USI, Chapter 3 presents the characterization PCB, Chapter 4 summarizes
the work carried out for the NB receiver, Chapter 5 describes a UWB filter design,
Chapter 6 presents the wireless communication framework, Chapter 7 introduces the
Python interface for programming the device, Chapter 8 explains the measurement
automation setup, Chapter 9 describes the evaluation of the one-bit display driver
and, finally, Chapter 10 discusses the conclusions.

3

2 Universal sensor interface
This chapter describes the work that was carried out for enabling the measurements
of the USI block. Section 2.1 introduces the USI and its common characteristics.
Section 2.2 shows how sensors are emulated for prototyping the USI interface: the
communication protocol is described, along with the tunable capacitor and digitally
programmable potentiometer. Finally, Section 2.3 presents the Arduino libraries
which were developed for interfacing the aforementioned devices.

2.1 Block description
The USI (Figure 3) is an ultra-low power, wide dynamic-range circuit which interfaces
capacitive and resistive sensors. It is detailed in [13]. The USI can interface with
capacitances ranging from 0.6 pF to 550 pF and resistances ranging from 3.7 kΩ
to 5100 kΩ. The power consumption is situated in the range of 0.39 µW-3.56 µW,
while the circuit is supplied with 1.2 V.

The capacitance and resistance values are converted to a voltage output. A
switched-capacitor capacitance-to-voltage converter is used for interfacing capacitors.
For measuring resistance, a voltage amplifier is used to measure a voltage drop
produced by a reference current flowing through the sense resistor. An operational
transconductance amplifier (OTA) is shared for realizing the switched-capacitor
capacitance to voltage converter and the voltage amplifier. It is biased by a pro-
grammable bias generator circuit. A non-overlapping clock (NOC) phase generator is
used for running the switched-capacitor circuits. Memory registers are implemented
for configuring the front end’s operation mode and range for the sensors. On the
topical IC, a current reference is implemented for the resistive sensor reading.

Figure 3: USI conceptual block diagram. Adapted from [13].

4

2.2 Sensor emulation
In order to demonstrate the capabilities of the IC, a means of emulating the resistive
and capacitive sensor outputs under any conditions had to be found. It would be
impractical to have a prototype that showcases the capabilities of the USI with, for
example, a temperature and humidity sensor in a demonstrative scenario where the
temperature and humidity cannot be controlled. Therefore, two components were
chosen, a NCD2400M for emulating a capacitive sensor and a MAX5419 for emulating
a resistive sensor. Finding a tunable capacitor within the required operating range
was cumbersome and another candidate circuit, PE64102 from pSemi, had been
considered and disregarded. The reason for disregarding the PE64102 was the low
output capacitance range and high frequency operating range.

The selected ICs can be digitally programmed to output different values within
their range of operation. Both components use the inter-integrated circuit (I2C)
protocol. The components had to be chosen and tested prior to the making of the
characterization PCB.

2.2.1 Inter-integrated circuit protocol

The I2C protocol was developed by Philips Semiconductors (now NXP Semicon-
ductors) in 1982, with the purpose of offering a simple protocol that allows a small
number of devices to communicate on a single card. The protocol is described in [14].
Over the years, it has become an industry standard, being used by virtually all major
IC manufacturers. It is a synchronous, multi-master multi-slave serial communication
protocol. Only two lines are required for communication, the serial data (SDA) and
the serial clock (SCL) line. Every device connected to the bus must have an unique
address. Depending on the mode, bitrates from 0.1 Mbit/s up to 3.4 Mbit/s can be
achieved. The master has to provide the clock signal and initiate the communication.
In order to send data over the bus, a series of 9 steps has to be performed as follows.
First, the master has to wait until the bus is free: both the SDA and SCL have to
be high. Second, the master signals that it has control of the bus and all the other
devices listen for the incoming address. Third, the master provides the clock signal
on the SCL line. During the fourth step, the master sends the unique address of
the slave on the SDA line. In the fifth step, an additional bit is sent, signifying
that the master is either sending or requesting data. Sixth, the master waits for an
acknowledge bit. During the seventh step, the slave sends the acknowledge bit. In
the eight step, the master sends or receives 8-bit data words, each followed by an
acknowledge bit from the receiver (either slave or master, depending on which is
sending the data). Finally, in the ninth step, the master sends a stop message and
frees the bus.

In this project, the NCD2400M and MAX5419 chips are configured as slaves,
receiving commands and replying to the Arduino Due microcontroller board which
is acting as the bus master.

5

2.2.2 NCD2400M

NCD2400M from IXYS Integrated Circuits is a wide capacitance range, non-volatile
digitally programmable capacitor. It was chosen for this project due to its suitable
features, such as: 1.7 pF to 194 pF programmable output capacitance, in 512 steps
of 376 fF each; 0 MHz to 150 MHz operating frequency; I2C programming interface;
2.5 V to 5.5V power supply; and, finally, non-volatile and volatile memory operation
modes. It comes with a pre-programmed I2C bus address that cannot be changed.
However, this does not constitute an issue, since only one such device is used in this
project. The device accepts read and write commands and can operate in either
volatile or non-volatile mode. The non-volatile operation makes it useful for scenarios
when the prototype should retain its programmed value between power-up cycles,
while in the volatile mode the programmed value is lost between power cycles. The
output capacitance is measured between two pins, CP and CN. Depending on how
these pins are configured, the device operates in two modes: shunt, when CN is
connected to ground, or series otherwise. In the shunt mode, the parasitic capacitance
of the CP pin to ground adds to the total equivalent output capacitance. For this
project, the series mode of operation was used. According to the datasheet [15], the
output capacitance Cout as a function of the programmed code (0 to 512) in the
series mode can be calculated using:

Cout = code ∗ 193.84 − 1.7
511 + 1.7 pF. (1)

0 50 100 150 200 250 300 350 400 450 500
Code [LSB]

0

20

40

60

80

100

120

140

160

180

200

C
a
p

a
c
it

a
n

c
e
 [

p
F
]

Calculated capacitance
Measured capacitance

7 pF

Figure 4: Measured output capacitance of the NCD2400M.

The correct operation of the device was tested using a Smart-Tweezers LCR
(inductance, capacitance, resistance) meter from Ideal-tek and a vector network

6

analyzer (VNA). The Smart-Tweezers device was used to measure the capacitance
for the 472 code (180 pF) and then a VNA was used to compensate for the electrical
delay of the fixture at a chosen frequency of 100 MHz, matching the measured
impedance to the impedance measured by the Smart-Tweezers. Then, different codes
were tried with the VNA and the outputs were plotted in Figure 4.

The reason why the Smart-Tweezers could not be used alone is the lack of precision
at lower capacitance values. Measuring such low capacitance values turned out to be
particularly problematic due to the instrument’s lack of accuracy and possible leakage
of the component’s pads. However, the measurements show that the instrument
responds to the programmed codes and there are strong reasons to believe that the
offset arose due to the measurement procedure.

2.2.3 MAX5419

MAX5419 from Maxim Integrated is a 256-tap digital potentiometer. It covers a
range of 325 Ω to 200 kΩ and operates with a power supply range from 2.7 V to 5.25
V, which makes it ideal for demonstrating the resistive sensor interface. Due to the
differential nonlinearity (DNL) error and the wiper resistance that varies with the tap
position, along with the fact that the actual end-to-end resistance can vary between
150 kΩ and 250 kΩ, it is better to characterize the device and store the mappings
between each tap position and output resistance. The DNL error means that the
slope of the resistance output is not constant and the wiper resistance variation
means that the starting output resistance is a few hundreds of ohms, instead of 0Ω
and varies throughout the operation range with the tap position. The typical wiper
resistance is 325 Ω, up to a maximal value of 675 Ω.

Measurements of the output resistance were taken with an HP 34401A digital
multimeter. The maximum DNL error was found to be at the tap point 64, with
an output resistance step of 903.1 Ω, the mean value of a step being 864 Ω. The
maximum differential nonlinearity error expressed in least significant bits (LSB) is
0.046 LSB, which falls within the datasheet specification of 0.05 LSB [16]. The
complete plot of the differential nonlinearity error can be seen in Figure 5. The
integral nonlinearity (INL) error shows the deviation of the output resistance from a
straight line and is plotted in Figure 6. It stays within the 0.05 LSB boundary and
corresponds overall to the graph specified in the datasheet.

7

Figure 5: Differential nonlinearity error vs tap position.

Figure 6: Integral nonlinearity error vs tap position.

8

2.3 Arduino libraries
Arduino libraries are used for encapsulating extra functionalities and extending the
Arduino environment. The libraries consist of classes which are written in C++. Two
classes were developed for communicating and operating with the devices that were
previously described. These classes are used in the final prototype and integrated
with the Python interface that is described in Chapter 7. Figures 7 and 8 present
the class declarations for the MAX5419 and NCD2400M devices, respectively.

Figure 7: Class declaration for MAX5419 device.

Figure 8: Class declaration for NCD2400M device.

9

3 Printed circuit board development
This chapter describes the development of the PCB that enables the characterization
and prototyping of the IC. Section 3.1 introduces PCBs. Next, the IC footprint is
discussed in Section 3.2. The layer stack is presented in Section 3.3. In Section 3.4
the controlled impedance trace design is explained. In Section 3.5 the concept of
decoupling capacitance is elaborated. Section 3.6 summarizes the auxiliary compo-
nents which were used for supporting the IC. Finally, the results of the PCB design
are presented in Section 3.7.

3.1 Printed circuit board
A PCB is a board which offers mechanical support and electrical connections for
electronic components, such as ICs and other discrete components that are mounted
onto it by soldering. The main purpose of the PCB in this project is to offer
an operational setting in which different blocks of the IC could be measured and
connected to other devices for demonstrating the chip’s capabilities. PCBs are
typically composed of alternating layers of laminated copper and dielectric material,
also known as substrate. In most applications, a solder resist layer is applied to
the top and the bottom of the board, for protecting the PCB against oxidation
and preventing unintentional solder bridges during the soldering process. Altium
Designer was used as the electronic design automation (EDA) software for capturing
the schematics and laying out the circuits.

A total of 8 schematic sheets contain the circuit schematics that describe the
following circuits: the main chip, electrochromic display driver, energy harvester,
voltage regulator, gesture sensor, narrowband transceiver, SPI communication, uni-
versal sensor interface and ADC. The final PCB consists of 232 components, having
a size of 145 mm by 158 mm.

3.2 IC footprint
A footprint and custom schematic symbol were developed for the IC (Figure 9). The
symbol has 109 pins, one for each of the signals that are connected to the IC die’s
pads. However, the footprint follows the standard QFN-100 package and therefore
has only 100 pins. In order to achieve a correct mapping that allows bonding the
IC die to the package, some of the ground pins were connected to the cavity of the
package and the cavity was connected to only two package ground pins. Figure 9
presents this mapping in the following manner: the symbol pin numbers, which refer
to the pad numbers of the IC die are positioned externally on the footprint pads,
while the footprint pin numbers are positioned internally on the pads.

Because of the parasitic inductance that is associated with the leads and bonding
wires of the packaged IC, the UWB transmitter block was not bonded to the package
and was, therefore, left outside the scope of this thesis.

10

*
*

*

*
*

13/07/2020
10
45
57

T
itle

Size:
N
um
ber:

D

R
evision:

S
h

f
T
i

A
4

V
D
D
_M
E
A
S
_N
B
R
X
F
E

1

ext_ibias_in_drain_nbrxfe
2

m
eas_nbrxv2fe_out

3

vdd_nbrxv2fe
4

vdd_padring_nbrx_1V
8

5

G
N
D

6

rf_in
7

G
N
D

8

vdd_nbrxv2fe_1V
8

9

R
O
_O
U
T
_M
E
A
S

10

V
D
D
_T
C
R
O

11

V
D
D
_R
IN
G
_E
H

12

vbias_E
H

13

M
PPT

14

IN
T
_E
H

15

V
D
D
_E
H

16

G
N
D

17

E
H
_IN

18

C
M
IN
U
S

19

C
PL
U
S

20

E
H
_O
U
T

21

G
N
D

22

V
D
D
_conf_sw

_E
H

23

V
D
D
_D
C
O
_E
H

24

V
D
D
_D
IG
I_1V

8
25

V
D
D
R
IN
G
_V
D
D
_D
IG
I_1V

8
26

G
N
D

27

C
_S
E
N
S
_L
E
FT

28

GND
29

VDD_GRO
30

VDD_RING_GRO
31

C_SENS_RIGHT
32

GND
33

VDDRING_BMISC_1V2
34

VDD_DIGI_GESTSENSALGO
35

RESETN_FROM_PAD
36

SEL0_from_PAD
37

SEL1_from_PAD
38

SEL2_from_PAD
39

DIGI_DATA0_OUT
40

DIGI_DATA1_OUT
41

DISA_MCU_SPI
42

EXT_CLK_IN
43

VDD_DIGI_COMMON
44

VDD_DIGI_PRECISE
45

VDD_ANALOG_PRECISE
46

VDDRING_VDDP_1V2
47

GND
48

VDD_CORE_NBTX_OSC
49

VP
50

VN
51

VDD_CORE_NBTX_OSC
52

G
N
D

53
V
D
D
_R
IN
G
_N
B
T
X

54
V
_D
R
A
IN
_PA

55

V
D
D
_D
C
O
_R
E
G
U

57
V
D
D
_conf_sw

_regu
58

G
N
D

59
R
E
G
U
_O
U
T
1

60
R
E
G
U
_O
U
T
2

61
R
E
G
U
_O
U
T
3

62
R
E
G
U
_IN

63
G
N
D

64
V
D
D
_R
E
G
U

65
IN
T
_R
E
G
U

66
R
E
G
U
_O
U
T
4

67
vbias_R

E
G
U

68
V
D
D
_R
IN
G
_R
E
G
U

69
V
D
D
R
IN
G
_D
IG
I_SPI

70
G
N
D

71
S
S

72
SC
K

73
M
O
SI

74
M
ISO

75
E
X
T
_IM

PT
R
IG
_IN

76
V
D
D
_M
E
A
S
_A
L
L

77
trig_m

eas_out
78

G
N
D

79
utx_out

80
G
N
D

81
vdd_padring_uw

b_1V
8

82
V
D
D
_U
W
B
_1V

8
83

V
D
D
_U
W
B
_1V

2
84

VDD_LO_DISP
85

VDD_HI_DISP
86

disp_out<0>
87

disp_out<1>
88

GND
89

RING_DISP
90

VDD_USI
91

GND
92

CS_TOP_USI
93

GND
94

CS_BOT_USI
95

GND
96

VDDRING_USI
97

RS_USI
98

VREF_USI
99

vref_out
100

EXT_INPUT_56N_IN_USI
101

MEAS_OUT_USI
102

PAD_VDD_MEAS_USI
103

ADC_in
104

VSS_USI_DIGITAL
105

VDD_USI_DIGITAL
106

ADC_OUT
107

VDD_USI
108

GND
109

G
N
D

56

*?
N
akuPackaged

IC
 sy

m
b

o
l

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

1
92
0

2
1

2
3

2
4

2
5

2
6

2
8

81
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52

49
8
27
7

7
57
4

7
3

7
2

7
1

7
0

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

6
05
9

5
8

5
7

5
6

5
5

5
4

5
3

109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89

87
86
85

88

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
81
9

2
0

2
1

2
2

2
3

2
4

2
5

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49
50

47
7
47
3

7
27
1

7
0

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

6
0

5
9

5
8

5
75
6

5
5

5
4

5
3

5
2

5
1

7
5

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80

78
77
76

79

Footp
rin

t p
in

 n
u
m

b
er

S
ym

b
ol p

in
 n

u
m

b
er

IC
 fo

o
tp

rin
t

Figure 9: IC symbol and footprint.

11

3.3 Layer stackup

Figure 10: Layer stackup of the characterization PCB.

The layer stackup of the PCB is shown in Figure 10. Four copper layers can be
observed: two signal layers (Top and Bottom), a power layer (Power) and ground
(Ground). In between the copper layers, there are three dielectric layers, the prepreg
being located in the middle. While the copper layers are used for transmitting the
signals, the dielectric’s role is to create electrical isolation between the conducting
layers and thus its fabrication material is important in establishing the character-
istics of the resulting transmission lines. The prepreg acts as a "skeleton", offering
mechanical support to the thin layers that are above and below, in order to prevent
bending. The type of the dielectric’s material was chosen to be FR4, as the operating
frequencies of the radio signal circuits were not high enough to demand a lower loss
tangent dielectric. The thickness of the copper, dielectric and prepreg layers is 0.035
mm, 0.14 mm and 1.2 mm respectively. The total thickness of the board is 1.6 mm,
ensuring that the PCB is robust enough to withstand both mechanical stress and
thermal expansion.

12

3.4 Controlled impedance
Some of the traces that were layed out for this project need special consideration: at
434 MHz they act as transmission lines and their characteristic impedance needs to
be matched to 50 Ω. Controlled impedance refers to the design of PCB traces with a
predetermined characteristic impedance.

As the complex layout of the PCB requires 4 layers (Figure 10), precautions
needed to be taken when designing the radio frequency (RF) transmission lines, in
order not to radiate noise to other signal traces below. According to [17], placing the
signal trace on the top layer and having a ground plane right below it ensures that
the other two layers are electrically shielded from interferences. This arrangement is
called a coplanar waveguide with ground (CPWG), also known as a grounded coplanar
waveguide. A CPWG (Figure 11) is a transmission line model that comprises of a
signal line which is coplanar with a ground plane on both sides, as well as another
ground plane below it. The upper and lower ground planes are held at the same
potential with via fences.

Ground plane

W

T

G

Vias

G

H

Dielectric ε
R

Ground plane

Signal

Ground plane

Figure 11: Coplanar waveguide with ground.

By varying certain geometrical parameters, a desired transmission line character-
istic impedance can be achieved. Its most important parameters are:

• T, the thickness of the copper layers

• W, the width of the signal line

• G, the gap between the signal line and the coplanar ground layer

• H, the height between the signal (or coplanar ground layer) and the ground
plane below

13

In addition to the geometric parameters, the dielectric constant εR and the
dielectric loss tangent tan δe must be known at the desired operating frequency. The
dielectric which was used for this PCB is a standard FR4, ISOLA Duraver DE104.
The dielectric loss tangent is a critical parameter in high frequency applications, as
it contributes to the insertion loss of the transmission line. FR4 is known for having
inferior dielectric loss characteristics compared to other high frequency dielectrics
[18]. However, at the intended operating frequency of 434 MHz, the additional cost
of using a superior dielectric is not justified.

The LineCalc tool of Advanced Design System (ADS) from Keysight was used
to find a suitable combination of the W and G parameters, in order to achieve a
characteristic impedance close to 50 Ω. Table 1 summarizes the transmission line
parameters.

Table 1: Controlled impedance trace parameters.

Parameter Value
T 35 µm
W 270 µm
G 300 µm
H 140 µm
εR 4.4
tan δe 0.002

In its CPWG model, LineCalc assumes that the top and bottom ground planes are
held at the same potential. However, in practice, a via fence is used for connecting the
two planes. The impact of via placement on CPWG transmission lines is presented in
[17]. The study found that the distance between the signal trace and the vias which
construct the fence has to be kept below one fourth of the wavelength corresponding
to the transmission line’s highest frequency of operation. At 434 MHz, the wavelength
is approximately 82 mm. However, the distance between the vias is below 3 mm,
thus ensuring correct behavior over the specified frequency range. LineCalc assumes
that the electric field between the signal line and the coplanar ground planes is
formed through the air. Using a solder resist over the signal and ground lines alters
the effective dielectric constant of the waveguide [19]. Therefore, the portion of the
PCB traces that form the transmission line was left uncovered, as suggested by the
research group’s past experience (Figure 12).

Vias Ground Signal

2.3 mm

Figure 12: 50 Ω characteristic impedance trace layout.

14

3.5 Decoupling capacitance
The capacitance provided by the power plane, dielectric and ground ensemble is not
enough to ensure a stable voltage rail, especially since the power plane is split into
0.9 V, 1.2 V, 1.8 V and 3.3 V rails. Additional decoupling capacitors are needed to
ensure that the different IC blocks have enough power during switching times. The
capacitors which are placed close to the IC prevent the droop in the power supply
voltage for a given amount of time. The voltage droop occurs in the following way:
due to the parasitic inductance of the interconnects between the power supply and
the IC, when there is a change in the supplied current (caused by the switching of a
logic gate, for example), according to Faraday’s law, an induced voltage VL will be
dropped across the interconnect, causing a rail droop. This scenario is presented in
Figure 13.

Vs

VL(t) Vs-VL(t)

Switching IC block

Power supply

Interconnect inductance

Figure 13: Voltage droop caused by interconnect inductance.

If the power supply rail collapse is to be held within a p percent of the supply
voltage during a given period of time t, an expression for the required decoupling
capacitance C can be derived as an adaptation from [19]. In [19] the amount of
decoupling capacitance is derived as a function of absolute voltage levels, while here
we examine the allowed relative voltage drop p.

The energy Ecap stored in a capacitor with capacitance C can be derived from

Ecap = Pt =
∫︂ T2

T1
V I dt =

∫︂ T2

T1
V

dQ

dt
dt =

∫︂ Q2

Q1
V dQ, (2)

where P is the power, t is the time during which the capacitor is charged, T1 and
T2 are the initial and final times of the charging process, V is the voltage across
the capacitor’s terminals, I is the current flowing through the capacitor, Q is the
time-dependent charge stored on the capacitor’s plate, Q1 and Q2 are the initial and
final charges stored on the capacitor’s plate.

15

The voltage across a capacitor is given by the well-known equation

V = Q

C
. (3)

Allowing a maximum droop percentage p of the supply voltage Vs, the initial
Vinitial and final Vfinal voltages that appear at the input of the switching IC block
can be modeled as

Vinitial = Vs(1 − p) → Q1 = VsC(1 − p)
Vfinal = Vs → Q2 = VsC. (4)

Replacing 3 and 4 in 2 results in

Pt =
∫︂ Q2

Q1
V dQ =

∫︂ Q2

Q1

Q

C
dQ = 1

C

[︄
Q2

2

]︄Q2

Q1

= 1
2C

{︂
(VsC)2 − [VsC(1 − p)]2

}︂
= 1

2C
(VsC)2

[︂
1 − (1 − p)2

]︂
. (5)

Finally, the required capacitance can be expressed in terms of the average power
dissipation of the chip (Watts), the time during which the voltage droop occurs
(seconds), supply voltage (Volts) and droop percentage by using

C = Pt

V 2
s [1 − (1 − p)2] . (6)

According to [19], the decoupling capacitors have to be placed as close as possible
to the IC, in order to minimize the additional interconnect inductance. Vias should be
kept short and the distance between the power (and ground) plane and the decoupling
capacitor should be minimized. In this project, the most critical decoupling capacitors
were placed on the bottom layer, as the distance to the power layer is 0.14 mm,
compared to 1.34 mm if the IC was placed on the top layer. The size of the
capacitors’ bodies should be small, in order to minimize their parasitic inductance.
It is recommended to use multiple parallel capacitors, in order to attenuate the
parasitic inductance’s effects at high frequencies.

3.6 Auxiliary components
Some electronic components were selected together with the research team for
supporting the operation, measurement and programming of the IC. Buffering
amplifiers were needed, as some of the signals that needed to be measured were
supplied by drivers that could support the measurement instruments’ input impedance.
For this purpose, AD8655 (single) and AD8656 (dual) precision CMOS operational
amplifiers from Analog Devices were employed. One of their main applications was
to buffer ADC signals, which requires the ability to operate with rail-to-rail input

16

and output voltages. The amplifiers have a bandwidth of 28 MHz which makes them
suitable for measuring the higher frequency clock signals on the board, that can go
up to 10 MHz.

The IC uses 1.2 V signals and the Arduino Due board which was used for pro-
gramming it uses 3.3 V signals. Level shifters are therefore needed for communicating
via SPI with the chip. In addition, the 1-bit ADC output is also shifted to 3.3V,
for measurement purposes. Texas Instruments’ SN74AVC4T774 was chosen for
fulfilling these requirements. It is a 4-bit level shifter specially designed for digital
communication, supporting 1.2 V to 3.3 V bi-directional translation, with data rates
up 100 Mbps.

For slave selection, a SN74HC164D from Texas Instruments serial in parallel
out shift register was used as in previous designs: three parallel slave select signals
(representing a 3-bit demultiplexer select) are outputted from a serial data line and
a clock signal.

Figure 14 shows how slave selection is achieved at a high level. The Slave select,
Serial data and Serial clock signals are provided by the device used for programming
the IC. Previously, this device was an Aardvark I2C/SPI Host Adapter. In this
thesis, the Arduino Due board was used for the SPI programming, as discussed in
Chapter 7. The Slave select signal is routed to one specific SPI slave.

0

1

SEL0

2

3

SEL1

4

5

6

7

SEL2

A

QA

QB

QC

QD

QE

QF

QG

QH

Data

CLK

Serial data

Serial clock

Slave select

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

SIPO
shift register

Demux

On chip

Figure 14: Slave selection.

17

3.7 Results

Figure 15: Top view of the characterization PCB.

Figure 15 presents a 3D rendering of the top view of the characterization PCB:
the IC package can be seen, along with the supporting components and connectors.
Three SubMiniature version A (SMA) connectors, located at the left and right edges
of the board are used for connecting the NB receiver input, NB transmitter output,
as well as for measuring the output of a temperature-compensated ring oscillator.
Johnson SMA connectors from Chinch Connectivity Solutions were used for high
frequency signals and SubMiniature version B (SMB) connectors from Molex were
used for powering the different blocks of the IC. Although both are designed for

18

coaxial cable connections, SMA offers a more robust connection covering a wider
frequency range from DC to 18 GHz, while SMB is more compact, less robust and
covers lower frequencies. Nevertheless, it is the optimal choice for supplying DC and
signals with frequencies up to 4 GHz.

Figure 16: Bottom view of the characterization PCB.

Figure 16 presents a 3D rendering of the bottom view of the characterization
PCB: next to the bottom of the IC package footprint, 10 decoupling capacitors can
be observed. These capacitors can supply power to sensitive blocks demanding fast
bursts of energy during signal level switching. If the placement of these components
was further from the IC, the parasitic inductance would become large, preventing
the supply current from rising in the required time, as discussed in Section 3.5.

19

4 Narrowband receiver impedance matching
This chapter documents the realization of an impedance matching network for
the NB receiver, that matches the antenna to the input of the receiver front end.
Section 4.1 briefly introduces the NB receiver. Section 4.2 describes the impedance
matching process, discussing the VNA, the specification for the matching network,
its implementation and results.

4.1 Narrowband receiver
The NB receiver is a functional block built on the chip, which implements a radio
receiver that operates in the 434 MHz band. Its supported modulation schemes
are on-off keying (OOK), pulse-position modulation (PPM) and differential pulse-
position modulation (DPPM) with Manchester line code. A typical architecture
of a microwave receiver is illustrated in Figure 17. The low noise amplifier (LNA)
amplifies the signal received by the antenna, which is then fed into the bandpass
filter (BPF) that rejects all the other frequencies outside the spectrum of interest.
The radio frequency (RF) signal outputted by the BPF is sent into a mixer block
which multiplies it with the signal from a local oscillator (LO) and thus subtracts the
frequency of the LO from the frequency of the radio signal. The resulting signal is
then amplified and filtered. The output signal is called intermediate frequency (IF).

RFLNA

Antenna
BPF

IFAmp

LO

BPFMixer

Figure 17: Typical radio receiver architecture.

4.2 Impedance matching
When power is being transmitted from a source to a load, the load’s impedance has
to be equal to the complex conjugate of the source’s impedance in order to ensure a
maximum power transfer. As this is often not the case, special matching networks
have to be designed in this respect. It is crucial that the network consists only of
reactive components, so that all the transmitted power is actually consumed by the
load’s resistive impedance. Matching networks can be achieved with either lumped

20

components or transmission lines. In this section, a lumped-component matching
network is presented.

4.2.1 Vector network analyzer

The VNA is an important measurement device in the industry of RF electronics.
Its name suggests that it can measure simultaneously both the magnitude and the
phase of a signal, in order to characterize an electrical network. By taking advantage
of bespoke calibration standards, the VNA can compensate for systematic errors
that arise from the cables, fixtures or the VNA itself, in order to give very accurate
measurements, such as:

• S parameters

• Impedance

• Standing wave ratio

• Electrical length and delay.

The simplified principle of the VNA’s operation is that an incident signal produced
by the VNA is compared to either the reflected or the transmitted signal from the
device under test [20]. The device used for designing the matching network is an
Agilent 8722ES S-parameter Vector Network Analyzer.

4.2.2 Impedance matching specification

The impedance matching network has to match a 50 Ω RF input to the on-chip
radio receiver at a frequency of 434 MHz. The matching is considered appropriate if
the input return loss −20log10(|S11|) is above 10 dB at the target frequency. This
scenario is represented in Figure 18, where the chip and the RF input can be observed,
accompanied by the L matching network in the middle.

The L matching network architecture is comprised of the two black passive
components, one in series and one in shunt connection (C1 and L1 in Figure 19),
together with a third gray passive component (C2 in Figure 19) that creates an AC
ground for the matching network, decoupling the amplifier biasing line from the rest
of the network. The trace which provides the biasing DC voltage to the amplifier
input (Zo2 in Figure 19) is the one parallel to the main trace in Figure 18. If C2 was
not used, the biasing trace would act as a transmission line between the L network
and the ground, severely modifying the response of the matching network.

21

Figure 18: Antenna matching network.

C1

L1

C2

IC input

Antenna Zo1=50 Zo3=50

Zo2=50

 Zic

 Zin

Figure 19: Schematic representation of the matching implementation.

22

4.2.3 Impedance matching implementation

The implementation process begins by measuring the input impedance looking
towards the IC input at the precise point where the filter is located on the PCB.
Normally, this would not be an easy task to achieve, since the only point for connecting
a measurement device to the trace is located at the antenna input. With the aid of
the VNA, the electrical length between the antenna connection and the point where
the filter is located (Zo1 in Figure 19) can be removed.

The reflection coefficient S11 can be expressed as a function of the distance z
from the load, as [21]:

S11(z) = ΓLe2γz, (7)

where ΓL is the reflection coefficient measured at the load and γ = j
2π

λ
. It is trivial

to observe that, for a given frequency and real ΓL, the phase shift of the reflection
coefficient is:

arg[S11(z)] = 4π

λ
z. (8)

Moreover, the S11 parameter’s phase shift at the load (z = 0) is 0 degrees and its
magnitude remains unchanged at any distance away from the load.

Removing the electrical length of Zo2 was achieved in practice by creating an
open at the point where the filter was placed (opening C1 and L1) and measuring the
phase of the S11 parameter while adjusting the electrical delay of the measurement.
The electrical delay was adjusted so that at 434 MHz there was a zero-degrees phase
shift. Once this calibration had been established, C1 was replaced with a short and
the measured input impedance was measured to be Zin = 6 − j105 Ω. The location
of Zin is shown in Figure 19.

The input impedance is plotted on a Smith chart, seen as the yellow dot (Zin) in
Figure 20. A suitable value for L1 was chosen such that the impedance reached the
50 Ω constant resistance circle, seen as the green dot (Zmid) in Figure 20. Finally,
an appropriate value for C1 was chosen such that the impedance reached 50 Ω, seen
as the red dot in Figure 20. At this point, a reference value for the inductance and
capacitance was achieved. However, due to the non-ideal component characteristics,
the actual impedance is never the same as in the simulations. Therefore, the C1
capacitor was first replaced with a short and several values for the L1 inductor were
tried on the PCB, while measuring the input impedance with the VNA. Then, starting
from the reference value that had been theoretically obtained for the capacitor, several
capacitors were tried on the PCB in order to reach 50 Ω.

23

0,
1

0,
2

0,
3

0,
4

0,
5

0,
6

0,
7

0,
8

0,
9

1,
0

1,
2

1,
4

1,
6

1,
8

2,
0

3,
0

4,
0

5,
0

10 20

0,1

0,2

0,3

0,4

0,5

0,1

0,2

0,3

0,4

0,5

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,2

0,4

0,6

0,8

1,0
1,2

1,4

1,6

1,8

2,0

3,0

4,0

5,0

10

20
0,1

0,2

0,3

0,
4

0,
5

0,
6

0,
7

0,
8

0,
9

1,
0

0,2

0,4

0,6

0,
8

1,
0

1,
2

1,
4

1,
6

1,
8

2,
0

3,0

4,0

5,0

10

20

Zin

Zmid

50 Ω

D
ec

re
as

e
 t

h
e
 s

iz
e
 o

f
L 1

D
ec

re
as

e
th

e si
ze of C1

Figure 20: Smith chart plot of the impedance matching process.

24

The end result is an impedance matching of 18 dB at 434 MHz, making possible
the wireless communication described in Chapter 6.

START .050 000 000 GHz STOP 2.000 000 000 GHz

37.809 pF

CH1 S11 LOG 5 dB/ Ref 10 dB 1:-18.001 dB .434 000 000 GHz

1

S 11 1 U FS 1: 58.611 Ω -9.6992 Ω .434 000 000 GHzCH 1

Figure 21: Impedance matching measurement.

25

5 UWB filter design
This chapter describes the necessary theory and the implementation of a BPF, used to
match the ultra-wideband impulse radio amplifier output to the transmitter antenna.
The filter is a two-port matching network, which ensures that the maximum power is
delivered from the amplifier to the antenna in the passband with an acceptable group
delay, while reflecting power in the stopband spectrum. Section 5.1 introduces the
scattering parameters. Section 5.2 describes the analog filters, with an emphasis on
BPF specifications. Section 5.3 presents the non-ideal model of passive components
used for developing the filter. Finally, Section 5.4 reports the design of the filter,
elaborating the specifications, the implementation and its results.

5.1 Scattering parameters
The scattering parameters, or the S-parameters characterize linear circuits, being
particularly useful in RF applications. Measuring directly the z or y parameters
requires the ports of the network to be alternatively shorted and opened [22]. In many
practical cases, this is infeasible and the S-parameters come as a viable alternative for
describing the operation of two-port networks, such as filters and matching networks.

The S-parameters describe electrical networks in terms of incident and reflected
voltages for a port,

Sij = V −
i

V +
j

⃓⃓⃓⃓
V +

k
=0, k ̸=j

(9)

where V −
i denotes the reflected voltage at port i, V +

j represents the incident voltage
at port j and V +

k = 0 indicates that all the incident voltages at the other ports
are 0. Thus, Sii denotes the reflection coefficient of port i and Sij represents the
transmission coefficient from port j to port i.

In this thesis, the focus is only on two-port networks. A two-port network is
called symmetric, if S11 = S22 and reciprocal if S21 = S12. The S parameters do not
depend only on the properties of the electrical network, but also on the reference
impedance, which is commonly chosen as 50 Ω in RF applications, this also being
the case for this thesis.

As the S parameters are calculated for the same reference impedance, it is common
to express them in decibels and postulate the descriptive names [22]: return loss
= −20log10|S11| and insertion loss = −20log10|S21|.

5.2 Analog filters
Analog filters are passive or active electrical networks that are used for changing the
shape of signals in the frequency domain. Ideally, a filter should have a unity gain
in the pass band, that is, the range of frequencies that characterize voltages which
should not be attenuated by the filter. Consequently, a filter should have a zero gain
inside the stopband, that is, at all the other frequencies that are not in the passband.

For a practical filter, we need to define the passband ripple Amax, which is the
maximum gain variation of the filter’s amplitude response in the passband, as well

26

as minimum stopband attenuation Amin, that specifies a desired upper bound on
the attenuation in the stopband. The steepness of the filter, called "roll-off", which
describes how fast the response transitions between passband and stopband is defined
as the order of the filter, N. For a BPF, the stopband is typically defined in terms of
ws1 and ws2 and the passband is defined in terms of wp1 and wp2. Consequently, a
lowpass or highpass filter stopband and passband would only be defined in terms of
ws, wp respectively. Figure 22 presents these general BPF specifications.

w, rad/s

S21, dB

wp2wp1ws1 ws2

0

Amax

Amin

Figure 22: BPF specification.

As of this point, only the amplitude specifications of the filter have been discussed.
Nevertheless, as the signal passes through the filter, a phase shift occurs. For an
ideal filter, the phase shift is linear throughout the whole frequency spectrum, while
in practice the phase response is a function of frequency

ϕ(w) = arg{S21(jw)}. (10)
Thus, if a sine wave which completes 2π radians in T seconds is subjected to

a phase shift of ϕ(w) rad/s, it is being delayed by P (w) seconds, which can be
expressed as:

−ϕ(w)
2π

= P (w)
T

→ P (w) = −ϕ(w)T
2π

= −ϕ(w)
2πf

→ P (w) = −ϕ(w)
w

. (11)

P (w) is called the phase delay, showing how much a sine wave passing through the
filter is delayed.

Another measure of the filter’s phase response is the group delay, which is a
measure of phase nonlinearity: [25]

D(w) = − d

dw
ϕ(w). (12)

When the phase shift is linear, the group delay and phase delay give the same result.
Once the specifications of the filter are clarified, the next step is to find a transfer

function named the filter approximation which fulfills the given requirements. It is

27

customary to either derive the filter approximation from tables, or use specialized
software for the task.[24]

The most common filter approximation methods are:
• Bessel : maximally flat phase response, gentle roll-off.

• Butterworth: steepest roll-off, without passband ripple. Worse phase response
than Bessel.

• Chebyshev: superior roll-off to Butterworth, with a proportionally large pass-
band (or stopband) ripple. Requires less components for realization than the
Elliptic filter.

• Elliptic (Cauer): steepest roll-off, with ripple present in both passband and
stopband. Highest phase nonlinearity among the four alternatives.

5.3 Passive component model
A non-ideal capacitor exhibits, besides its capacitance, an equivalent series resistance
(ESR), as well as an equivalent series inductance (ESL), mainly because of the com-
ponent’s leads. These characteristics start becoming problematic at high frequencies,
as the capacitor becomes a series RLC resonant circuit.

RpLp C

Figure 23: RF model of a surface-mounted (SM) capacitor C including the effect of
parasitic inductance Lp and resistance Rp.

A non-ideal inductor exhibits, similar to the capacitor, an equivalent series
resistance and a parallel capacitance, mainly because of its leads and windings.

Cp

RpL

Figure 24: RF model of an SM inductor L including the effect of parasitic capacitance
Cp and resistance Rp.

Thus, the designer needs to ensure that the component is modeled accordingly and
the self-resonant frequency is accounted for in the simulation. At high frequencies,
the parasitic resistances become frequency-dependent and are harder to be properly
simulated. Component manufacturers provide S-parameter files that accurately
describe their components’ behavior for a specified frequency range and can be
incorporated in EDA software tools such as the Advanced Design System (ADS)
from Keysight.

28

5.4 Filter design
5.4.1 Filter specification

The purpose of the UWB filter under design is:

• To couple a DC biasing signal to the RF amplifier

• To match the RF amplifier’s output to a transmitting antenna.

The inputs to the filter and the quality of their signals are presented in Figure 25.

Filter
RF+DC

DC

Filtered RF

Figure 25: Filter inputs and outputs.

The filter is designed for the European generic UWB mask and it needs to have
a passband of 2.5 GHz, starting from 6 GHz up to 8.5 GHz [26]. The maximum
passband ripple should be no larger than 5 dB. The stopband frequency specifications
are 2 GHz and 12.5 GHz, at which the minimum attenuation should be 25 dB. The
group delay of the filter should not be larger than 150 ps. The reference impedance
is 50 Ω for both of the filter ports.

f GHz

S21 dB

8.562 12.5

0

-5

-25

Figure 26: Filter specification.

In addition to these specifications, due to the limited PCB space and for decreasing
costs, the filter should use a minimum amount of components and have a minimal
area.

29

5.4.2 Filter implementation

The filter implementation began by designing a second-order Chebyshev filter, using
the ADS. Then, a suitable family of components was selected and their S-parameter
files (achieved from the manufacturer’s website) were used for accurately simulating
the real component behavior. For the filter inductors and capacitors, the AVX Accu-L
series and AVX Accu-P series were used, respectively. The size of the components
which realize the Chebyshev approximation was chosen to be 0603 (in metric units).
A special component was selected for realizing the AC ground that decouples the DC
signal from the rest of the filter, namely ATC 560L, an ultrabroadband DC-blocking
capacitor, which has a size of 1005 (in metric units). Figure 27 shows the schematic
of the filter: J1 and J2 are the input and output ports of the filter and J3 is the DC
biasing port, which is decoupled by C3. The four components C1, L1, C2 and L2
together make up the Chebyshev filter.

L10.68 nH

J1

0.2 pF C1
L2

1.8 nH
0.1 pF

C2

J2

100 nFC3
J3

Figure 27: Schematic of the filter implementation.

As the operating frequency of the filter is in the order of gigahertz, the PCB
design can have a dramatic effect on the performance of the filter, due to parasitic
reactance and large electrical lengths. Altium Designer was used for laying out the
PCB and the Momentum 3D EM simulator was used for improving the design to
match the specifications (Figure 28).

30

Figure 28: Layout of the filter implementation.

Figure 29 presents the simulated results of the BPF implementation. The reflection
coefficient is below -5 dB between 6 GHz and 9.5 GHz, peaking at -14 dB at 7.9
GHz. The transmission coefficient is above -4 dB between 6 GHz and 9 Ghz, with
a stopband attenuation below 30 dB, thus satisfying the given specifications. A
maximum group delay of 140 ps was achieved in the passband, below the required
upper limit of 150 ps.

Figure 29: Filter implementation simulated results.

31

6 Wireless communication setup
For testing and demonstrating the wireless communication capabilities of the IC,
a setup comprising of a computer, an universal sofware radio peripheral (USRP)
and a PCB supporting the integrated circuit is assembled. The USRP device is
presented in Section 6.1. A computer which is running National Instruments’ (NI)
LabVIEW (discussed in Section 6.2)-based software is communicating via a gigabit
ethernet connection with the software radio peripheral. Cyclic redundancy check
(CRC, presented in Section 6.3) codes are used to ensure that the integrity of the
messages is not compromised. The USRP is an Ettus Research USRP N210 model,
streaming Manchester (Section 6.5) OOK (Section 6.4) data to the IC and receiving
differential pulse position modulated (DPPM, discussed in Section 6.6) OOK data
from the IC.

Ethernet

Manchester OOK

DPPM OOK

Computer USRP device PCB with IC

Figure 30: Wireless communication setup.

The LabVIEW design of the Manchester transmitter is reported in Section 6.7.
Section 6.8 describes the development of the DPPM receiver, which comprises two
parts: implementing a DPPM transmitter simulator, which eases the design process
and the actual receiver.

6.1 USRP
USRPs are sofware-defined radio (SDR) hardware peripherals, used in various RF
applications for transceiving radio signals. Signal processing software such as Lab-
VIEW or GNU Radio is commonly used in order to stream signals to and from the
peripheral.

A typical USRP block diagram is presented in Figure 31. The radio device used
in this thesis is an USRP N210 by Ettus Research, which offers a frequency range
of DC - 6 GHz, a 14-bit analog to digital converter (ADC) at 100 MS/s, a 16-bit
digital to analog converter (DAC) at 400 MS/s and a 25MHz RF bandwidth with 16
samples [28].

32

Figure 31: USRP block diagram. From [28].

6.2 LabVIEW environment
LabVIEW is a software development environment for fast development of engineering
applications that require testing, measurement or control. Some of its main features
are the enhanced hardware integration with software defined radios, measurement
equipment or FPGA-based embedded computer hardware, to name a few. Programs
are designed in a visual manner, the programmer having to connect blocks with
wires which represent data rather than writing code in a traditional way. This
programming paradigm is referred to as dataflow programming. Some advantages
of the development environment in question include rapid software design, built-in
special functions such as FIR filters or PID algorithms, built-in data visualization
tools and a graphical approach to parallel programming [29].

A LabVIEW application implements a virtual instrument (VI) that comprises
a front panel and a block diagram. The front panel includes various interactive
user interface elements, through which the engineer can visualize and modify the
desired operational parameters of the instrument. A block diagram describes the
required technical behavior of the application, by making use of dataflow programming
methods. LabVIEW applications are cross-platform, as they can be deployed on
operating systems such as Windows, Linux Solaris, NT embedded or Mac [30].

As an example, the front panel of a cyclic redundancy code (CRC) generator
which was designed for the DPPM receiver is presented in Figure 32. Consequently,
the block diagram of the same virtual instrument is presented in Figure 33.

Figure 32: CRC VI front panel.

33

Figure 33: CRC vi block diagram.

One handy advantage that LabVIEW offers is that it allows hierarchical design,
through the use of sub VIs. As a result, the CRC generator can be included in later
designs (such as the DPPM receiver) as a stand-alone block called a sub-VI.

34

6.3 Cyclic redundancy check
When a message is being sent over a communication channel, it is practical for the
receiver to know if the integrity of the data has been altered or not. By using an error
detecting code, the transmitter and receiver can ensure that the data is correctly
communicated over the channel. Parity bit is the simplest error detecting code, where
the parity of the data’s binary representation is appended to the end of the message.
The receiver calculates the parity of the data, compares it to the parity bit sent by
the transmitter and requests another transfer, if the data is corrupted. However,
parity bits fail to catch many types of errors that may occur during transmission
(for example, if two bits are being inverted).

CRC is an error-detecting code which is commonly used in digital communications,
particularly suitable for applications which involve detecting noise-induced errors.
Its name comes from three facts: (i) it is based on cyclic codes; (ii) it is redundant in
the sense that it does not add any new information to the payload; (iii) it is intended
for checking the integrity of the data [31]. Being based on polynomial division,
CRC makes use of a generator polynomial, which is commonly agreed between the
transmitter and receiver. The degree of the generator polynomial, denoted by n,
sets the type of the CRC-n code, some common values for n being: 4, 8, 16 and 32.
Parity bits are a special case of CRC, where the degree of the generator polynomial
is 1. When choosing the degree of the generator polynomial, it is important to note
three factors [32]. First, the computation time will increase with a higher degree
polynomial. Second, a CRC-n code will only output one of 2n unique values for
any given message, the size of the data word impacting the performance of a given
CRC-n. Third, the selection of the polynomial severely affects the performance of a
given CRC-n.

For the purpose of demonstrating the capabilities of the NB transmitter and
receiver, the data word size varies between 12 (one 6-bit time reference symbol and
one 6-bit command) to 48 bits (one 6-bit time reference and 7 commands comprising
42 data bits). A CRC-8 code was chosen for this project as it provides a good
performance for the given data size [32] range.

6.4 On-off keying
OOK is a digital passband modulation technique where the amplitude of the carrier
wave can take two values, typically a one (fully on) or a zero (fully off). It is
the simplest form of amplitude shift keying (ASK). ASK is a type of amplitude
modulation used for the transmission of digital data, where ones and zeros are encoded
by varying the carrier signal’s amplitude. Figure 34 represents the transmission
of a message consisting of "0101101001" using OOK. In this project, OOK is the
only digital bassband modulation which is used. A computer transmits data using
OOK-encoded Manchester modulation and the IC transmits data using OOK-encoded
DPPM.

35

Figure 34: On-off keying.

6.5 Manchester code
Manchester code is a baseband modulation technique, where each bit is encoded
as a signal transition either from high to low, or from low to high. The produced
signal is self-clocking and thus there is no need for synchronization between the
receiver and the transmitter. Moreover, the signal does not present a DC component.
Figure 35 represents the transmission of a message consisting of "01100" encoded
with Manchester code and transmitted via OOK. In Figure 35, a "0" is represented
as a low to high transition.

Figure 35: Manchester code with OOK.

36

6.6 Differential pulse position modulation
DPPM is a line coding technique (also called baseband modulation), where the data
to be transmitted is represented as time differences between a sequence of pulses.
Its main advantage over the more common pulse position modulation, where the
position of one pulse with respect to the beginning of the symbol defines the encoded
data, is that the transmitter and receiver do not need to be synchronized [27].

For example, "0" is encoded as "101", "1" is encoded as "1001", "2" is encoded
as "10001" and so forth. Figure 36 illustrates a scenario where a message "0 1 2" is
encoded as "1010010001" with DPPM and transmitted via OOK.

Figure 36: DPPM with OOK.

Each individual one or zero takes the same duration: one time slot. In Figure 36
the time slot length is one normalized time unit, for illustration purposes, whereas in
the actual implementation, the typical time slot length is 2.3 us. Clearly, by adding
more zeros, the total time duration between two consecutive pulses is increased
and more symbols can be represented. The data packet has to start with a time
reference symbol whose value is known by the receiver, so that the rest of the pulses
can be decoded with respect to it. In this project, this value was chosen to be 15,
corresponding to "100000000000000001".

37

6.7 Manchester transmitter
The USRP transmitter interface (Figure 37) design involves the modification of
a pre-existing virtual instrument made by M.Sc. Pulkkinen, in order to transmit
specific commands to the IC. The data packet which is being sent consists of a
16-bit header, a 14-bit address and a 16-bit data field. All the header bits are set
to the complement of the address’ most significant bit (MSB). The address is used
to identify the receiving IC and thus needs to correspond to the device id that is
programmed on chip. Due to an unforeseen chip design issue, it was found during the
testing phase that the data cannot be properly received, unless each bit is doubled.
Thus, only 8 bits of effective data can be transmitted without errors.

Figure 37: Manchester transmitter front panel.

For ensuring that the data format is appropriate, a list of six predefined commands
was implemented, where each command represents a specific action that the chip
will take, resulting in a reply from the IC. The commands represent the following
binary strings: "11", "1100", "1111", "110000", "110011", "111100", which correspond
to the well-known sequence "1", "10", "11", 100", "101", "110" where each bit has been
doubled.

38

6.8 DPPM receiver
6.8.1 Transmitter simulator

With the purpose of designing an USRP receiver interface for the on-chip trans-
mitter, a LabVIEW-based USRP DPPM transmitter simulator is implemented, for
development and testing purposes. Nine 6-bit data words (D1-D9 in Figure 38) are
transmitted, the first word (the time reference) always being a 15 and the last word
representing the 8-bit CRC of the message. The front panel is depicted in Figure 38.

Figure 38: DPPM transmitter simulator front panel.

For a successful transmission, it is crucial that both the DPPM transmitter and
receiver agree upon the number of bits per word, the value of the timing reference
word and the CRC polynomial.

39

The block diagram running behind the transmitter front panel is seen in Figure
39 and the DPPM modulator in Figure 40.

Figure 39: DPPM transmitter block diagram.

Figure 40: DPPM modulator.

40

6.8.2 Receiver

The front panel of the DPPM receiver is shown in Figure 41. The receiver is
continuously scanning for messages and once the signal level rises with a given
threshold above the noise floor, the scanning stops. The absolute values of the
demodulated in-phase and quadrature signals (shown on the "IQ Graph" plot in
Figure 41) are summed together into a single signal that represents the pulses better.
A finite impulse response (FIR) filter is used for implementing a moving average
that shapes the pulses in order to present more distinguishable peaks (shown on the
"Filtered" plot in Figure 41).

Then, the peaks are extracted and shown in the "Deltas" graph in Figure 41.
The peak extraction can be easily explained mathematically. Denote as S the set of
ordered pairs

S = {(sk , k)}, (13)

where sk is the sample’s value and k is the sample’s index. We can construct a set P
which selects only the peak samples pk from S using the rule

P = {(pk+1, k + 1) ∈ S | pk+1 > pk+2 and pk+1 > pk and pk+1 > c}, (14)

where c is an empirical constant used for preventing "false" peaks that arise due
to noise, which was found to be 0.05 in this project. As the exact value of the
peaks is not of primary interest, a set D (corresponding to "Deltas" in Figure 41) is
constructed

D(x) =

⎧⎨⎩(1, k) (x, k) ∈ P

(0, k) (x, k) /∈ P
, ∀x ∈ R , k ∈ N, 1 ≤ k ≤ |S|. (15)

Then, the indices of the peak samples are stored (shown on the "Indices" column,
bottom left in Figure 41). The indices are then converted to time differences (shown
on the "Tsymbol" column in Figure 41), by subtracting the previous index from the
current index, for all the peaks. These values correspond to the duration (in samples)
of the received symbols. For example, the first value from the "Tsymbol" column is
136 and corresponds to the difference between the second and the first indices from
the "Indices" column, namely 106239 and 106103.

41

Figure 41: DPPM receiver front panel.

Figure 6.8.2 shows how the samples are processed by applying the moving average
and then the peak detection to the data. In this example, the duration of a time
slot is 10 samples and the symbol being represented is "10001". After the peaks have
been detected, it is important to notice that 10 samples (one time slot) are missing.
Thus, if the symbol comprises 5 time slots, after the peak detection it consists of 4
time slots.

When converting an unprocessed DPPM symbol of Tsymbol samples to its numerical

42

value x,
x = Tsymbol − 3Ttimeslot

Ttimeslot

(16)

can be used if the Ttimeslot duration in samples of a timeslot is known. For the
example given in Figure 6.8.2, 50−30

10 = 2 corresponds to the code "10001". However,
since the peaks need to be used for calculating the Tsymbol, equation 16 needs to be
modified so that

x = Tsymbol − 2Ttimeslot

Ttimeslot

= Tsymbol

Ttimeslot

− 2, (17)

to account for the loss of one time slot duration. Knowing that the first received
symbol (from a series of nine received symbols) always represents a time reference
of 15 (17 time slots after peak detection), the duration of one time slot Ttimeslot

is found by dividing the Tsymbol of the first data message by 17. From Figure 41,
Tsymbol = 136

17 = 8 samples. With this information, all the other Tsymbol values can
be decoded: 24

8 − 2 = 1, 32
8 − 2 = 2,40

8 − 2 = 3,48
8 − 2 = 4, etc.

0 10 20 30 40 50 60 70
Samples

0

1

A
m
p
li
tu
d
e

0 10 20 30 40 50 60 70
Samples

0

1

A
m
p
li
tu
d
e

0 10 20 30 40 50 60 70
Samples

0

1

A
m
p
li
tu
d
e

50

40

Moving average

Peak detect

1 00 0 1

Ttimeslot

Tsymbol

Figure 42: Sample processing.

However, the data can be correctly decoded only if the time reference symbol is
received successfully. In order to achieve this, CRC-8 error detection codes are used.
The CRC-8 is calculated for the first eight received data words and compared to
the last data word, corresponding to the CRC-8 value calculated by the transmitter.
If the values do not match, the FIR window is increased and the peak detection
process starts again, until the data is correctly decoded, or the packet is declared as
erroneous. If the values match, the packet is regarded as correctly received, shown
by the "CRC OK?" indicator on the front panel from Figure 41.

43

7 Python programming interface
In this chapter, the Python programming interface for controlling and configuring
the IC is presented. A programming interface is a vital software component for both
the testing and characterizing, as well as for prototyping an application involving
the IC, as it allows users to automate and configure the operation of the IC. The
programming environment, the software architecture and testing methods, together
with the IC communication are discussed in this chapter. Section 7.1 gives the
motivation behind the choice of programming language. Section 7.2 describes object-
oriented software engineering, the principles that were used in this work and their
relationship with software qualities. Section 7.3 presents the programming interface:
first, the design requirements are stated; second, the communication protocol is
introduced, and; third, the interface architecture is presented, along with its main
components. Section 7.4 explains the IC communication and the software that
was developed for this purpose. Section 7.6 examines the testing and validation
methodology. Section 7.7 presents the software documentation process. Section 7.8
concludes the chapter with a summary.

7.1 The Python programming language
Python is a multi-paradigm interpreted programming language, which supports popu-
lar paradigms such as object-oriented, structured and functional programming. It is a
dynamically typed language, which makes it faster for development, as programmers
do not have to explicitly specify types, in contrast to languages that are statically
typed (Java, C/C++, etc). Some important core principles that constitute the
foundation of the Python programming language are beauty, explicitness, simplicity
and readability [33].

Python was chosen to replace the previous programming interfaces that had been
written using the proprietary programming languages MATLAB and LabVIEW. The
reason for this choice is the language’s high popularity [34], free of charge availability,
large community and ease of deployment.

7.2 Object-oriented software engineering
Object-oriented programming (OOP) is a programming paradigm that focuses on ob-
jects which are instantiations of classes. Classes are software bundles which combine
data and data processing methods into unitary modules, that act as "blueprints" for
creating objects. Four key concepts are central to object-oriented design: abstrac-
tion, encapsulation, inheritance and polymorphism. Abstraction promotes making
public only the relevant features of an object, while hiding unnecessary information.
Encapsulation means that the data together with the methods that act upon it are
wrapped into a single class and direct data access can be restricted outside of the class.
Inheritance is the ability of generating subclasses which acquire selected properties
and behavior from superclasses. Polymorphism means "many forms", referring to

44

the fact that a subclass can reimplement (or define) a different behavior from its
superclass.

7.2.1 Software qualities

The goal of a good object-oriented design is to achieve a high-quality software
product. A set of eight qualities were defined by the ISO/IEC 25010 standard, in
order to evaluate the quality of a software system: functional suitability, performance
efficiency, compatibility, usability, reliability, security, maintainability and portability
[35].

The most important qualities for this project are: functional suitability, as it
is crucial for the software to operate correctly; compatibility, as the software has
to be usable with other similar ICs and should not depend on a particular IC
implementation; usability, as the interface has to be uncomplicated and easy to use
by the IC designers; reliability, as the users should immediately be notified if an
operation cannot proceed, or did not proceed accordingly, and; maintainability, as
the program will be analyzed and updated by other researchers after the completion
of this project.

7.2.2 Software design principles

The three design principles which were prioritized in the development of the interface
are modularity, generality and single responsiblity. Modularity is typically achieved
by high cohesion and low coupling. Cohesion represents the degree of interaction
between components within a software module, while coupling represents the degree
of interaction between different modules. Generality refers to implementing a solution
for a class of problems that includes the problem at hand, in order to facilitate code
reuse. The single responsiblity principle states that every module must be responsible
for only one functionality implemented by the software and it should encapsulate it
completely.

7.3 Programming interface
The programming interface is the central part of a larger software system (Figure
43), that enables prototyping and characterization of the IC. The system consists of
the Python interface, the IC communication software running on Arduino Due and
the LabVIEW software discussed in Chapter 6, running on the USRP device and on
the computer that hosts the Python interface as well.

The programming interface controls the IC and the external devices previously
discussed in Chapter 2 via an Arduino Due microcontroller development board. The
interface sends commands to the Arduino board, which in turn parses the commands,
executes the commands and replies with data.

45

Ethernet

M
anchester O

O
K

D
PPM

 O
O

K

C
om

puter
U

SR
P device

PC
B

 w
ith IC

 and I2C
 devices

U
art

SPI

A
rduino D

ue

I2C

Figure 43: Prototyping and characterization software system.

46

7.3.1 Requirements

Four main requirements were set for the Python programming interface. First, the
interface must offer a set of libraries to the IC programmer, in order to facilitate
the IC programming and configuration. Second, the software must keep track of
the chip’s register contents at any time: data that was previously written to the
chip is read from the interface, as it takes less time than to read it from the IC.
A third requirement is that the interface must be easily adaptable for usage with
a different IC and should not depend upon a particular IC implementation. An
object-oriented design approach was selected for satisfying the given requirements.
In order to fulfill the second requirement, the interface was designed to keep an
identical representation of the register data of the IC. The last requirement is that
the interface should support commands that address systems which are external to
the IC, such as controlling the USI interface sensor emulators or resetting the IC.

7.3.2 Communication protocol

Commands are sent from PC to Arduino via universal asynchronous receiver-
transmitter (UART) communication. Two UART devices can transmit and receive
data in full duplex, by using a minimum of two data lines: Tx and Rx. A UART
packet consists of a start bit, a data frame containing 5 to 8 bits, or 9 bits if no parity
is used, an optional parity bit and 1 or 2 stop bits. The data rate is specified by the
baudrate parameter, that indicates how many bits per second are transmitted. Thus,
the communicating devices need to agree upon the baudrate, parity bit, stop bits
and data frame size. Pyserial is used for accessing the serial port of the computer
with the purpose of sending and receiving data to Arduino.

A command (Figure 44) can be, for example, a read or a write. In this case, it
consists of the command name, SPI slave number, the number of register addresses,
the register addresses and optionally the data fields, in case of a write command.
Every command must end with a newline control character.

Figure 44: Read/write command syntax.

If the type of command is "read", the Arduino Due board replies with the requested
data, if the communication was successful, otherwise it replies with a diagnostic
message. If the type of command is "write", the reply consists of an agreed-upon
message, indicating a successful or unsuccessful write operation. Other commands
refer to the NCD2400M and MAX5419 devices, or externally reset the IC.

47

7.3.3 Interface architecture

The programming interface (Figure 45) comprises four superclasses: ReadOnlyRegis-
ter, Command, CommandWrapper and TuneCommandWrapper. The ReadOnlyReg-
ister and its subclass, Register, mirror the data that is stored within the IC registers.
Command is a superclass that enables ReadOnlyRegisterCommand, RegisterCom-
mand and TuneCommand to access and alter the contents of the Register objects.
CommandWrapper is the superclass from which ReadOnlyRegisterCommandWrap-
per, TuneCommandWrapper and RegisterCommandWrapper inherit. These classes
act as a binder between the software data representation and the IC, offering the
programmer an application programming interface (API) for interacting with the chip.
CommandWrapper-type objects have three types of operations that allow the user to
write or read data either from the IC or from the internal memory representation. The
ReadOnlyRegisterCommandWrapper allows only reading data directly from the IC,
as it interfaces with a read-only register. The SlowMemoryTuneCommandWrapper is
a special type of TuneCommandWrapper, that allows interfacing with slow memory
blocks. The ArduinoCommunication object handles the command communication
between the interface and the IC. It implements two operations, for sending and
receiving commands to/from the IC.

7.3.3.1 Registers

Registers are classes that store data regarding the on-chip registers. ReadOnlyRegister
objects only store the address information, while Register objects store, additionally,
data and an interval for the valid data values. Each time a new data value is written
to a register, it is checked against the valid interval, otherwise the user is alerted.

7.3.3.2 Register commands

RegisterCommands are objects used for manipulating Register data at software
interface level. These commands have the following attributes: information, that best
describes the register command; SPI slave number, that identifies and validates the
SPI address of the IC block that has to be accessed; a Register object, upon which the
command acts; data to be written to the software register. In addition, a method for
reading the data stored in the Register and a method for writing the command data
to the Register are provided. The command data should be written to the software
Register only if the same data was successfully written to a physical register inside
the IC. ReadOnlyRegisterCommands are used for encapsulating ReadOnlyRegisters
and do not provide any means of altering data.

48

R
eadO

nlyR
egister

R
egister

C
om

m
and

R
egisterC

om
m
and

TuneC
om

m
and

B
itD

ata

U
se

R
egisterC

om
m
andW

rapper

TuneC
om

m
andW

rapper

C
om

m
andW

rapper
Extends

Extends

U
se

A
rduinoC

om
m
unication

B
lock

IntegratedC
ircuit

R
eadO

nlyR
egisterC

om
m
andW

rapper

Extends

R
eadO

nlyR
egisterC

om
m
and

Extends

1

1

11

1

1

Slow
M
em

oryTuneC
om

m
andW

rapper

Extends

ExternalW
rapper

R
esetW

rapper

U
se

1

Figure 45: Python programming interface class diagram.

49

7.3.3.3 Tune commands

TuneCommands are used for accessing multiple bits of one or more registers as a
single data value. For example (Figure 46), a 5-bit parameter value might be stored
as the sixth and fourth bits of one register "x" and the sixth, fourth and first bits of
another register "y". For achieving this purpose without any complications, these
commands create a list of RegisterCommands. Compared with the RegisterCom-
mands, TuneCommands are initialized with a list of registers instead of a single
register attribute and a list of lists of positions (one list for each register), that define
the bits which make up the data of interest.

B4 B3 B2 B1 B0

B7 B6 B5 B4 B3 B2 B1 B0B7 B6 B5 B4 B3 B2 B1 B0

Register x Register y

Tune
command

Figure 46: Tune command example.

7.3.3.4 Command wrappers

CommandWrapper objects are wrapping Command objects and are intended to be
used by the programmer who wishes to control the IC. These commands share an
ArduinoCommunication object and must ensure that the data was written properly
to the IC before updating the Register objects. CommandsWrappers store an interval
that specifies the valid range of the data to be written. They are also responsible
with informing the user regarding the status of the executed command.

7.3.3.5 Slow memory

Some of the registers of the IC cannot be accessed directly. These registers constitute a
"slow memory", due to the fact that they are accessed in an indirect, more complicated
(and time-consuming) fashion. First, the data that is to be written to the target
register has to be written to a special data register. Then, the address of the target
register has to be written to another special address register. Finally, a bit that
triggers the write process has to be set and cleared. For reading the data from a slow
memory register, only two special registers are needed: one that stores the address
which is to be read and another one that retrieves the requested data. A class called
SlowMemoryTuneCommandWrapper was developed, for aiding the developers in

50

programming the IC. Slow memory data can be read and written using the same
methods that the other wrappers provide.

7.3.3.6 Blocks

A Block is an abstract class, which is to be implemented by each IC block defined
by the IC programmer. Its attributes are a shared ArduinoCommunication object
which is common to all the other blocks of the IC and an information string that
describes the block. It should have multiple Register and CommandWrapper objects
that ressemble the architecture of the IC block and the operations that are to be
performed on its registers. Writing the Block classes which mirror the blocks of
the current IC took a considerable amount of work, accounting for one third of the
Python code written for the interface.

7.3.3.7 Integrated circuits

More than one integrated circuit can be defined and used in the same program,
with the IntegratedCircuit class. Assuming that each IC has its own ArduinoDue
connected to the PC, the IC programmer can automate the configuration and
operation of multiple ICs with the same piece of software. The IntegratedCircuit
class consists of programmer-defined blocks, a ResetWrapper and ExternalWrappers.
The ResetWrapper is used for externally resetting the IC, while the ExternalWrapper
enables communication with I2C devices such as the ones presented in 2.

7.4 IC Communication
Arduino Due establishes the communication between the PC and the IC, by forward-
ing incoming commands from the PC to the IC. On the IC side, the communication
protocol is the Serial Peripheral Interface (SPI), which is used for accessing individual
registers. The SPI is a synchronous serial communication interface, composed of four
bus lines: Serial Clock (SCLK), Master Output Slave Input (MOSI), Master Input
Slave Output (MISO) and Slave Select (SS).

SPI communication is established by the master selecting the slave through the
SS line (typically active low). A clock signal is provided by the master to the slave
via the SCK line. Then, data is transferred one bit per clock cycle, from the slave to
the master, via the MISO line and concurrently from the master to the slave via the
MOSI line.

Depending on the clock polarity (CPOL) and phase (CPHA), four different SPI
modes (0-3) can be distinguished. If the clock idle state is LOW, then CPOL equals
0, otherwise it is 1. CPHA determines the timing of the data bits with respect to
the clock signal. If CPHA is 0, the first half of the clock cycle is idle and the second
half of the clock cycle is asserted. When CPHA is 1, the contrary holds valid.

The description of the IC’s SPI interface is published in [12] and is presented in
Figure 47. The CPOL is 0 and CPHA is 0, therefore the SPI mode is 0. An SPI
command consists of 16 bits. The first 6 bits constitute the address of the register to
be accessed. The next bit represents the read or write quality of the command. An

51

odd parity bit follows, which checks the validity of the address and read/write bits.
The last 8 bits correspond to the data that is written to the selected register. While
receiving the current command, the slave replies with 16 bits regarding the previous
command. The first bit is a dummy zero, followed by two information bits. The first
information bit (I1) flags an error in the previous command, while the second bit (I0)
flags a supply voltage outage. The next 4 bits are a dummy sequence "0001", followed
by an odd parity bit for the data being sent. Finally, 8 data bits are transmitted.

Figure 47: SPI timing diagram. From [12].

Seven SPI slaves are accessible within the IC. In order to differentiate between
them, three additional signal lines are available for interfacing the chip communication.
These lines consist of the select signals of a demultiplexer, that routes the slave
select signal to the appropriate SPI slave within the IC. Therefore, in addition to
the four SPI lines, the Arduino Due board uses three slave select signals, totalling
seven communication lines. A custom FC-6P to FC-10P connector was created that
facilitates plug and play operation, reducing the time for wiring and debugging.

7.4.1 Command parsing and IC-communication software

An Arduino Due board was chosen to handle the IC communication and command
parsing. The board functions at a supply voltage of 3.3 V, making its input and
output voltage levels compatible with the characterization PCB without needing
additional level translation circuitry. The board is based on an Atmel SAM3X8E
ARM Cortex-M3, which is a powerful 32-bit microcontroller with 512 kBytes of
Flash and 100 kBytes of SRAM, operating at a maximum speed of 84 MHz. In later
development stages, the board should run a voltage regulation control loop, besides
handling commands, motivating the need for such a powerful microcontroller.

The communication and parsing software is written in C++. It consists of three
core classes, two libraries used for sensor emulation (described in Chapter 2) and
one main program. CommandParser is the class that is responsible for receiving and
handling serial commands. NakuSpi is the class which handles the SPI communication.
An ICReset class handles the resetting of the IC. Figure 48 presents the high-level
operation of the program. In advance of handling the incoming commands, the serial
and I2C communication is initialized, objects are instantiated and the I0 information
bits are cleared for each SPI slave. Then, the command parsing continues unless the
Arduino Due is reset.

52

Initialize UART
communication

[Reset]

[else]

Initialize I2C
communication

Instantiate parser, spi,
reset, NCD2400M,
MAX5419 objects

Reset Porst (I0) bits
of SPI slaves

Parse commands

Figure 48: Main program activity diagram.

53

[Command received]

[Command not received]

Get command
name

[Write command]

[else]

Parse write
command

[Read command]

[else]

Parse read
command

[Reset command]

[else]

Parse reset
command

[NCD2400M
read volatile command]

[else]

Parse read
volatile

command

Parse read non-
volatile

command
[NCD2400M

read non-volatile command]

[else]

[NCD2400M
set non-volatile command]

[else]

Parse set
non-volatile
command

[NCD2400M
get mode command]

[else]

Parse get mode
command

Parse write
volatile

command
[NCD2400M

write volatile command]

[else]
Parse write non-

volatile
command

[NCD2400M
write non- volatile command]

[else]

Parse write
command

[MAX5419
write command]

Figure 49: Command parser activity diagram.

54

The CommandParser is presented in Figure 49. Once an incoming command is
received, its name is extracted. Depending on the command’s name, the Command-
Parser invokes a suitable method that performs the requested actions. Command
names have to be agreed upon by both the Python interface and the Command Parser.
In order to facilitate consistency, commands are identified by identical constants,
which are defined in both interfaces.

The modular command parsing architecture ensures future maintainability, as
the parser can be easily extended with new commands and old commands can be
modified without affecting behaviors that are external to them. In further development
iterations, the commands could be encapsulated by dedicated classes.

Figure 50 presents how a write command is parsed. First, the SPI slave number,
number of addresses that will be written to, the list of addresses and the corresponding
list of data integers to be written to each address are parsed from the command.
Then, the SPI communication begins by selecting the SPI slave and writing the data
for each SPI address. An error status is collected after each write operation, for
debugging purposes. Once all the data was written, the program continues with a
check. For each address in the list, the data is read and compared to the target data.
In case of a mismatch, the process stops by sending a message that flags the insuccess
of the writing operation. When all data was successfully read, the program sends a
message which informs the interface that the write operation could be performed.
Both messages are agreed upon by the two pieces of software, using constants.

55

Get SPI slave
number

Get number of
addresses

Get list of
addresses

Select SPI slave

Get list of data
to be written

[else]

[All data written]

Write SPI data
for each
address

Append SPI
communication
error status to

status list

[else]

[All data read]
Read SPI data

for each
address

[Read data matches written data]

[else]

Send over UART
communication ok

Send over UART
communication not ok

Figure 50: Write command activity diagram.

56

7.5 Project structure
When working with a medium-sized project such as this, as the software is consisting
of multiple components and files, it is important to maintain an organized folder
hierarchy that emphasizes the project structure. There are two main components of
the interface: the IC communication software and the Python programming interface
software, each having its own file hierarchy.

Python
│ README.md
│ .gitignore
│ ic.py
|
└───blocks
│ │ __init__.py
│ │ block.py
| | beta.py
| | disp.py
| | eh.py
| | gs.py
| | napro5.py
| | nbtx.py
| | regu.py
| | usi.py
│ │ uwb.py
|
└───comm
| │ __init__.py
| │ arduinoCommunication.py
|
└───commands
| │ __init__.py
| │ bitdata.py
| | command.py
| | readOnlyRegisterCommand.py
| | registerCommand.py
| | tuneCommand.py
|
└───constants
| | __init__.py
| | Constants.py
| | External.py
|
└───demos
|
└───env
|
└───registers
| │ __init__.py
| │ readOnlyRegister.py
| | register.py
|
└───tests
| │ test_bitData.py
| | test_Command.py
| | test_ic.py
| | test_ReadOnlyRegister.py
| | test_Register.py
| | test_RegisterCommand.py
| | test_RegisterCommandWrapper.py
| | test_TuneCommand.py
| | test_TuneCommandWrapper.py
|
└───wrappers

│ __init__.py
│ commandWrapper.py
| externalWrapper.py
| readOnlyRegisterCommandWrapper.py
| registerCommandWrapper.py
| resetWrapper.py
| slowMemoryTuneCommandWrapper.py
| tuneCommandWrapper.py

Figure 51: Python interface structure.

command_parser
│ README.md
│ command_parser.ino
└───libraries

| Readme.txt
|
└───Constants
| | constants.h
|
└───ICReset
| | ICReset.cpp
| | ICReset.h
|
└───MAX5419
| | MAX5419.cpp
| | MAX5419.h
|
└───ncd2400m
| | ncd2400m.cpp
| | ncd2400m.h
└───Parser
|
| | commandParser.h
| | commandParser.cpp
└───SPIcomm

| nakuSPI.h
| nakuSPI.cpp

Figure 52: IC Communication soft-
ware structure.

57

7.6 Testing and validation
7.6.1 Testing

Software testing is a crucial part of the software development life cycle. Testing assures
that the software operates correctly and meets the necessary requirements, enabling
the developers to catch bugs at early stages of product development. Test-driven
development (TDD) is a common software engineering practice, where requirements
are formulated as test cases that have to be passed by the program. Unit tests
are written for each function of each module, testing both normal and abnormal
execution scenarios.

As the software project becomes more complex, it is harder for the developer to
keep track of all the changes and ensure that adding a new feature (or modifying a
pre-existing one) does not break the functionality of the software system as a whole.
Integration testing helps to avoid such situations by having a set of tests which use
multiple modules together, in order to evaluate the system as a whole.

Pytest was used for testing the interface. Pytest is a framework that enables
test-driven development with Python. Tests are written independent of the source
code, allowing an organized directory structure for the project. By executing a
simple command, developers can launch a series of complex tests. Pytest can also be
integrated into code editors such as Visual Studio Code, which was used for developing
this project. In case of a failure, the framework provides extensive information that
helps pinpointing the software fault. Figure 53 presents a unit test for the validation
of the register data.

Figure 53: Unit test written in Pytest.

58

7.6.2 Validation

The software validation takes place as the last step of the testing process, aiming to
ensure that the code meets its specifications before it is released. For this thesis, the
validation consisted of comparing the Python interface’s operation to the LabVIEW
interface which had been made and utilized previously by the research team. Various
commands were executed and checked with both interfaces for consistency. Figure
54 shows a validation test for the IC. A dedicated configuration file was written in
LabVIEW and the configuration data was uploaded to the IC. Then, a validation
test file was made using the Python interface, that checked that all the data was
being read correctly.

Figure 54: Validation test written in Pytest.

7.7 Documentation
Documenting the software is an important part of the development life cycle which is
often overlooked. Documentation consists of any artifact that has an explanatory role
and can typically regard the following: requirements, architecture design, technical
aspects and user instructions. The requirements document describes the desired
software operation, user characteristics, constraints, assumptions and dependencies.
The architecture design document supports the technical document at a higher level,
specifying how the design shall be achieved in broader terms. Architecture design
documents are typically used in large projects with multiple developers. Technical
documentation consists of source code documentation, that can either accompany

59

the software as separate files, or can be extracted directly from comments. User
documentation explains how the software shall be used by the intended users.

This project’s documentation focused on technical- and user-centered aspects. It
is far-reaching for two reasons: the software will be maintained in the research group
after this project has finished; the researchers, acting as end-users, will utilize the
code for creating their own IC programming interfaces.

Python provides docstrings for the technical documentation. Docstrings are
string literals that can be used in classes, modules or functions and can be accessed
as attributes of the documented objects, or by calling the built-in help() function.
Moreover, certain code editors can show the docstring of a piece of code that is
hovered over.

End user documentation was written for aiding the researchers in setting up the
interface, as well as building a custom interface for their specific needs. Users are
instructed how to set up the hardware connections. A comprehensive explanation of
the project structure is given. A step-by-step how-to that explains the creation of a
bespoke IC interface is provided.

The Git version-control system was used for keeping track of the software compo-
nents and their changes.

7.8 Summary
This chapter presented the development of the programming interface which is used
by researchers to configure and program their ICs. The whole software design process
was discussed, taking into consideration aspects such as the programming languages,
requirements, qualities, program architecture, project structure, testing, validation
and documentation. The interface can be customized for different ICs, is easily
expandable with other features and can be used for controlling and configuring
multiple ICs at the same time. Table 2 summarizes the software metrics which
describe the interface. In addition to the data presented in Table 2, two Markdown
Readme files of 157 and 97 lines of code (LOC) were written for the Python Interface
and IC communication software, respectively.

Table 2: Programming interface software metrics.

Metric Python code C++ code
Files 58 12
Code lines 3388 606
Comment lines 319 103
Blank lines 873 88
Total lines 4580 797

The interface is deployed in Chapter 9, where the testing and measurement of a
one-bit display driver are performed.

60

8 Measurement automation
This chapter discusses measurement automation: the process of automating electrical
measurements by means of controlling laboratory equipment with computer software,
instead of performing manual work. Testing and characterizing an IC requires
elaborate measurements, involving large amounts of data and repetitive procedures.
In Section 8.1 communication methods with measurement equipment are considered.
Section 8.2 gives the motivation behind the choice of programming environment. The
Virtual Instrument Software Architecture (VISA) is introduced in Section 8.3. In
Section 8.4 Standard Commands for Programmable Instruments (SCPI) are presented.
Automation commands for Wave Expert series oscilloscopes are discussed in Section
8.5. The instrument drivers written for this thesis are included in Section 8.6. Finally,
Section 8.7 unveils the complete remote measurement setup.

8.1 Communication with measurement equipment
The communication between a computer and electronic test equipment can be
achieved in several ways. A General Purpose Interface Bus (GPIB), also known as
IEEE-488 is the oldest and most common interface, designed especially for controlling
measurement instruments. The Universal Serial Bus (USB) is a newer standard
which is commonly used for connecting peripherals to computers. It is found in many
modern measurement devices, however, due to the noise sensitivity of the cables,
it is not always the most suitable choice. Local area network (LAN) eXtensions
for Instrumentation (LXI) is a standard that is used for measurement devices with
Ethernet capabilities. The high connection bandwidth, standardized port supported
by any computer and the fact that the instrument can be accessed remotely by any
machine operating inside the same LAN makes LXI a good choice for this project.
Instruments can be connected to a switch and then automation commands can
be sent from anywhere in the LAN. If remote connection to any computer in the
same LAN as the measurement equipment is possible, then measurements can be
performed remotely.

8.2 Programming environment
During the past, MATLAB and LabVIEW have been used for measurement au-
tomation by the research department. However, now the department is shifting the
programming environment towards Python. Therefore, Python 3 was used as the
programming language for the measurement automation software.

Many instruments come with readily-available automation drivers. While this
eases the work for MATLAB or LabVIEW developers, it is often not the case with
Python. Automation software therefore had to be written for the measurement
equipment by consulting the remote control/automation manual of each instrument.
Aside from this inconvenience, using Python for establishing the measurement setup
allows having an unitary programming and testing interface. It is more convenient

61

to control both the IC and the measurement instruments using one program that
imports the required APIs as modules.

8.3 Virtual instrument software architecture
VISA is a standard communication API used in the Test and Measurement (T&M)
industry. Its primary use is for communicating with various instruments from a
computer. VISA supports communication over multiple interfaces, such as the GPIB,
VXI USB and Ethernet, offering programmers a standard way of communicating
with T&M devices. VISA is sometimes called a communication driver, which is not
to be confused with an instrument driver.

For this project, the PyVISA library was used, as it implements VISA API as a
Python package. PyVISA is easy to utilize: once a resource (measurement device) is
available, the programmer can connect to it and start sending commands. However,
for making the resource available to the PC used for remote controling the device,
the Measurement & Automation Explorer by NI is needed.

8.4 Standard commands for programmable instruments
SCPI is a standard that defines commands for controlling measurement devices. The
standard (available in [36]) comprises of four volumes: "Syntax and style", "Command
Reference", "Data Interchange Format" and "Instrument Classes". SCPI commands
can perform two operations, called a set or a query. A set operation changes some
state of the instrument (for example, enables outputs), while a query operation
returns a value (for example, a current reading). There are two types of command
implemented by SCPI: common and subsystem. Common commands are defined in
the IEEE 488.2 standard and are used to perform functions that are independent of
the instrument, such as identify, status and reset. Subsystem commands perform
functions that are specific to the instrument and are defined in the second volume of
the SCPI standard.

8.5 Automation commands
Not all measurement devices necessarily use SCPI commands for remote control.
Teledyne LeCroy define their own automation protocol (defined in [37]) for remote
controlling their X-Stream digital storage oscilloscopes (DSOs). The commands used
for controlling the Wavesurfer 44xs oscilloscope which was used for this thesis can be
split into two types: remote control and automation commands. The remote control
commands are used for achieving simple functions regarding the oscilloscope’s state
offering the possibility to adjust parameters of subsystems such as status, display,
acquisition, as well as for sending automation commands. Automation is a separate
subsystem, that performs complex functionalities, having a dedicated programmer’s
manual. Automation commands are written in the Visual Basic programming
language, as the X-Stream instruments implement Microsoft’s Component Object
Model (COM) interface.

62

8.6 Instrument drivers
Instrument drivers are a set of software modules which enable the programmers to
easily acquire data and control a specific test instrument. During this thesis work,
drivers were written for Keysight N6705, Keysight B2961A and LeCroy Wavesurfer
44Xs-A instruments. A typical driver consists of a class that defines the instrument
object, which takes a PyVISA resource as a constructor argument. Figure 55 presents
a function that is acquiring a waveform from the LeCroy oscilloscope. Figure 56
shows a power supply initialization script.

Figure 55: Waveform acquisition.

Figure 56: Power supply initialization.

63

8.7 Remote measurement setup
The vast majority of the measurements were performed remotely. Figure 57 presents
the remote measurement setup. The PCB with an installed IC is connected to the
Ardunio Due board and to the T&M instruments. A local workstation which is in
the same LAN with the T&M instruments is running the measurement automation
software presented in Chapter 7 and sending commands to the instruments. A remote
workstation is connected via a remote desktop connection to the local workstation,
in order to launch the measurement sequences. Microsoft’s Remote Desktop for
Windows or KRDC for Linux operating systems can be used for establishing the
remote desktop connection.

Local Workstation PCB with IC

T&M instruments

Arduino Due

SPIUart

BNC, SMA, SMB connectors

LAN

Remote Workstation

Figure 57: Remote measurement setup.

64

9 Display driver
This chapter presents the display driver IC block. Section 9.1 introduces elec-
trophoretic displays and the particular device that was chosen for testing and demon-
strating the driver. Section 9.2 presents the conceptual mode of operation of the
driver and the charge pump that supplies the high voltage level. In Section 9.3 the
PCB which was designed for connecting the chosen display to the driver is presented.
Section 9.4 explores the measurement framework established for testing the display
driver. Finally, Section 9.5 presents and discusses the measurement results.

9.1 Electrophoretic display
Electrophoresis is a new technology based on the manipulation of charged, colored
submicron particles transitioning in a colloidal suspension. An electrophoretic display
cell is made of two transparent electrodes, each protected by a transparent plate,
enclosing in the middle a thin layer of died liquid. One of the electrodes is split into
multiple segments and each segment needs to be connected to an individual voltage
source. The other electrode is connected to a voltage source of opposite polarity.
When the charged particles are attracted to the front electrode, the so-formed colored
pattern becomes observable. In the opposite case, when the charged particles are
attracted to the bottom electrode, the incident light is absorbed and scattered by
the colloidal suspension, reavealing the color of the dye (the display’s background
color). [38]

Ultra-low-power displays are common peripheral devices for energy autonomous
sensor nodes, often used for interacting with the user [40]. A practical usage scenario
would be a cold chain monitoring system, where the product would have attached to
it an autonomous sensor node with temperature measurement capability, fitted with
a one-bit display. The white color of the display would indicate that the cold chain
has been properly maintained, while a black color would indicate that the cold chain
has been broken and the product cannot be safely consumed anymore.

Electrophoretic displays are suitable candidates for this purpose, as they do not
use a backlight, this feature reducing their power consumption drastically. This
means, however, that the environment where they operate needs to be well-lit.
Moreover, electrophoretic displays draw current only during image updates, being
able to retain the displayed image even after power is lost. They typically have
only two colors, black for the text and white for the background, which does not
pose a problem for a one-bit display. Refresh rates are considerably lower than in
other technologies such as LCD or AMOLED, which makes them unsuitable for
applications where the user feedback is expected to be fast. [39]

An E-ink SC009221 three-digit electrophoretic display was chosen for demonstrat-
ing the one-bit display driver. Its active area has a diameter of 22.65 mm. Therefore,
the active area is 4.03 cm2. The display requires no current to maintain a static
image, while the image update is 0.5 µA per cm2, thus 2.015 µA for this particular
display. The operating supply voltage is 5 V to 15 V. Nevertheless, proper display
operation has been previously reported with 3.3 V in [40].

65

9.2 Driver description
A driver circuit is implemented on-chip for enabling the IC to interface with low-
power electrophoretic displays. The IC cannot operate the display directly from the
available supplies, as their voltage is too low. Figure 58 presents the display driver
diagram: it consists of two identical circuits, each circuit controllable by two data
bits, programmable via the SPI interface provided by the IC. By choosing different
bit configurations, the driver’s output can be either set to VDD_HIGH_DISP, 0V
or in a high impedance mode. A CMOS push-pull output stage with independent
push and pull controls is used for driving each display pin. The PMOS transistor is
controlled by the signal coming from the DISP_BITS_P<1:0> bits. However, the
signal level is too low for driving the PMOS into cutoff, as the IC operates at 1.2
V levels and VDD_HIGH_DISP is 3.6 V. For addressing this issue, a level shifter
(LS) is used. An inverter (INV) is employed for buffering the 1.2V digital signal
coming from the IC and driving the level shifter. This ensures that the rising time
of the signal is well-defined regardless of the connection parasitics. Using an inverter
instead of a buffer saves area and power consumption, as the latter is accomplished by
cascading two inverters. The NMOS transistor is designed to be directly controlled
by the digital signals which are coming from the IC. The allowed values for the
control bits of the driver are described by the ordered pairs

(DISP_BITS_P<x>, DISP_BITS_N<x>) ∈ {(0, 0), (0, 1), (1, 0)}, (18)

where x is 1 or 0, DISP_BITS_P and DISP_BITS_N are shown in Figure 58.
If the ordered pair (1,1) was controlling the driver, then VDD_HIGH_DISP

would be shorted to ground, drawing a large amount of power and possibly damaging
the circuit.

LS

VDD_HIGH_DISP

Display

VDD_LOW_DISP

INV

DISP_BITS_N<1:0>

DISP_BITS_P<1:0> disp<1>

disp<0>

Figure 58: Display driver diagram.

66

The VDD_HIGH_DISP driver supply voltage is provided by a charge pump-
based DC-DC converter circuit, which consists of an NOL and a switched-capacitor
DC voltage tripler (CP). The VDD_LOW_DISP (1.2 V) is tripled by the charge
pumps and output to VDD_HIGH_DISP (3.6 V). Figure 59 presents the conceptual
diagram of the DC converter. During the testing of the driver, VDD_HIGH_DISP
can be connected to an external 3.3 V supply.

VDD_LOW_DISP

NOL
CLK

CLK
3x
CP

PD

PD
C1

C2

CLK

C1

C2

VDD_HIGH_DISP

Clock gating

PD = power down

Figure 59: Charge pump diagram.

9.3 Test PCB
A PCB was developed for testing the driver with the E-ink SC009221 display. The
PCB allows either individual control of the display pins, or wiring it as a one-bit
display (full white or full black image) via the provided headers. Soldering the FPC
cable pins for one-bit operation without the PCB would not be easily achievable.

Figure 60: Display test PCB.

67

Figure 61: Assembled display test PCB.

9.4 Measurement setup
The transient current consumption of the display (or the driver) during the image
update could not be measured directly. A special measurement setup had to be
prepared (Figure 62): The voltage drop across a 50 kΩ sense resistor was measured
between points A and B with an oscilloscope, from which the current can be calculated
using Ohm’s law:

Idisp = VA − VB

Rsense

, (19)

where Idisp, VA, VB, Rsense are defined in Figure 62.

Display driver

RSense

Display
Display driver

RSense

Display

disp<1>

disp<0> disp<0>

disp<1>

Idisp Idisp
VA

VB

VA

VB

VA

VB

t

V

VB

VA

t

V

Figure 62: Display current measurement setup.

68

Figure 62 presents also the idealized expected waveforms during the two possible
transitions: the two driver outputs are labeled disp<1> and disp<0>, as in Figure
58. When disp<1> is transitioning from high to low and disp<0> is transitioning
from low to high, the display switches color from white to black. The expected
measured waveforms are depicted at the center-bottom of the figure. At this point,
the potential difference between the two points A and B starts as being positive,
crosses zero and ends up being negative. When disp<1> is transitioning from low to
high and disp<0> is transitioning from high to low, the display switches color from
black to white. The expected measured waveforms are depicted at the center-top of
the figure. Now, the potential difference between the A and B measurement points
starts as being negative, crosses zero and ends up being positive.

At this stage, it is important to consider how the measurement will take place:
if an attempt is made to measure the voltage drop over the sense resistor with
one single-ended oscilloscope channel, then the probe’s signal reference terminal
will either be attached at point A or B. However, the signal reference terminal
is connected to protective earth, as a measure of precaution taken by oscilloscope
manufacturers. If another device (such as the Arduino Due) which has the ground
connected to protective earth is connected to the characterization PCB, the PCB’s
ground will also be connected to protective earth. Thus, either the point A or B
of the measurement will be connected to ground at all times, either shorting the
driver, the sense resistor or the display. In order to overcome this issue, a differential
measurement has to be taken: this could either be achieved with a differential probe,
or with a pseudo-differential measurement [41]. The pseudo-differential measurement
setup was chosen due to lack of differential probes, presented in Figure 63.

Display driver

RSense

Display

disp<1>

disp<0>

Idisp
VA

VB

Oscilloscope
Single

Help Next Zoom < > Return

Trig Ext Int

Line Video
Free
Run

Cal PW

Pattern Acquire

System Local Preset

Video
Save/
Recall

Seq

1 2 3 4

1 Math 2 3 Math 4

Cursor Trace V Line H line Return

On/Off

Figure 63: Display current pseudo-differential measurement setup.

69

9.5 Measurement results

-1 0 1 2 3 4 5 6

Time [ms]

C
u

rr
e
n

t
[uμ

A
]

Measured display current consumption

3.25 μA

Steady-state
disp<1>=0V
disp<0>=3.3V

Steady-state
disp<1>=3.3V
disp<0>=0V

0.12 0.2 0.28

2.87

2.92

2.96

3.5

3

2

1.5

1

0.5

0

-0.5

-1

2.5

3.5 4 4.5 5

0.065

0.085

0.105

VAVB

0.65 μA

-0.65 μA

VA

VB

Figure 64: Display current consumption with 3.3 V driver supply voltage during
black to white transition.

0 100 200 300 400
Time [ms]

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

V
o
lt

a
g

e
 [

V
]

Driver output voltage, black to white

0 100 200 300 400
Time [ms]

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

V
o
lt

a
g

e
 [

V
]

Driver output voltage, white to black

0 2 4 6 8 10
Time [ms]

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

V
o
lt

a
g

e
 [

V
]

Driver output voltage, white to black

0 2 4 6 8

2.4

2.5

2.6

2.7

2.8

2.9

3 3.1

2.4

3.0

2.9

2.8

2.7

2.6

2.5

3.0

2.9

2.8

2.7

2.6

2.5

2.4

0 2 4 6 8 0 42 6 108

Figure 65: Measured display driver output voltages, using charge pump.

Figure 64 presents the measured display current consumption during an image
update. The sense resistor which was used for the measurements has a value of 50
kΩ and the VDD_HIGH_DISP was connected to an external 3.3 V supply. The
display leakage current is in the range of 0.65 µA in steady-state. However, there is
no current draw when the display driver is set to high impedance mode.

Figure 65 presents the driver output voltage during two image updates, using
the internal charge pump supply. The switched capacitor circuit’s input clock signal
frequency is 300 kHz. Oscillations were repetitively observed during white to black

70

transitions, with a frequency of 50 Hz. This could be happening due to interferences
from the mains electricity system.

Figure 66 shows the measured current consumption of the display driver and
charge pump. The switched capacitor circuit’s input clock signal frequency is 300
kHz. The current draw peaks during the display update, at 0.127 µA for the black
to white and 0.125 µA for the white to black transitions.

0 100 200 300 400
Time [ms]

0.04

0.06

0.08

0.1

0.12

0.14

C
u

rr
e
n

t
[μ

A
]

Driver current, black to white

0 100 200 300 400
Time [ms]

0.04

0.06

0.08

0.1

0.12

0.14

C
u

rr
e
n

t
[μ

A
]

Driver current, white to black

Figure 66: Current draw of driver and charge pump.

Overall, the display driver was proven fully functional and can be used to showcase
the user interfacing capabilities of the IC. The PCB which was developed during
this thesis work enables further prototyping of the system in scenarios such as in
cold-chain management.

71

10 Conclusions
In this work, a platform used by the research team to test and characterize their
IC was developed together with the necessary building blocks for a prototype that
will showcase the main capabilities of the device. A four-layer PCB was designed
and assembled and the necessary components that support the operation of the IC
were selected. This included sensor emulation, impedance matching and filter design.
Wireless communication between the IC and a computer was established, by using an
USRP device and LabVIEW programming. A programming interface was written in
Python, which enables researchers to program and configure the IC. A novel, reusable
software architecture emerged, which can be used for future projects involving other
ICs. Adapting the programming interface to contain all the necessary configuration
parameters for the chip was a substantial part of the work. Measurement automation
was deployed and a remote measurement setup was developed, which incorporated
the hardware and software platform along with the measurement software to control
T&M devices. Finally, the one-bit display driver was tested and measured, in order
to validate the complete system.

The SPI communication interface of the IC was shown to work correctly, as the
success of this thesis depended on it. The narrowband receiver and transmitter were
proved to be functional. However, it was found that the transmitted data can use
only 8 out of 16 bits in order to be received correctly. The one-bit display driver was
tested and operated successfully.

This thesis showed the functionality of the programming interface and measure-
ment automation system with the display driver. However, the presented setup is
currently employed successfully for the evaluation of other IC blocks such as the
ADC, REGU, EH and UWB transmitter.

This work laid the foundation for the prototyping of a concrete application scenario
where the IC could address an industrial problem or could showcase its capabilities.
Some IC blocks still need to be tested and characterized by the researchers. A plan
that establishes which blocks to incorporate in the prototype needs to be developed.
Next, a minimized version of the current PCB which would support only the necessary
functions of the IC should be produced. Finally, using the software that was written,
the IC could be configured for a particular use case.

Currently, the programming interface software benefits from automated unit tests,
but as the codebase matures it will become more complex due to future iterations of
improvement. Implementing a continuous integration framework could benefit future
development, especially in the case where more IC programmers are customizing
their own interfaces. When building a custom programming interface for a particular
IC, most of the time will be spent with mapping the registers of the device to the
interface. This laborious work could be greatly reduced by automating the process
in the following way: a standardized file format should be planned by the researchers
and used by the department by convention for describing the memory layout; then,
a Python parser script could read a memory layout file and generate a bespoken
programming interface suited for that particular IC.

72

References
[1] Directive 2012/27/EU of the European Parliament and the Council of 25 October

2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU
and repealing Directives 2004/8/EC and 2006/32/EC, directive 2012/27/EU,
European Parliament and Council, Nov. 14, 2012.

[2] K. Routh and T. Pal, "A survey on technological, business and societal aspects
of Internet of Things by Q3, 2017", in Proc. 2018 3rd International Conference
On Internet of Things: Smart Innovation and Usages (IoT-SIU), Feb. 2018, pp.
1-4.

[3] O. B. Akan, O. Cetinkaya, C. Koca and M. Ozger, "Internet of Hybrid Energy
Harvesting Things", IEEE Internet of Things Journal, vol. 5, no. 2, pp. 736-746,
Apr. 2018.

[4] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, Sur-
viving the SOC Revolution: A Guide to Platform-Based Design, Boston:Kluwer
Academic Publishers, 2002, pp. 4.

[5] J. Salomaa, M. Pulkkinen, T. Haapala, M. Nurmi and K. Halonen, "Power
management system for ultra-low power energy harvesting applications," in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS), May 2015,
pp. 1086-1089.

[6] J. Salomaa, M. Pulkkinen, T. Haapala, S. S. Chouhan and K. Halonen,
"Energy harvesting ASIC for autonomous sensors," in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS), May 2016, pp. 2350-2353.

[7] M. M. Moayer, J. Salomaa, M. Pulkkinen and K. Halonen, "Ultra-Low Power
Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors,"
in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), May
2018, pp. 1-5.

[8] M. Pulkkinen, J. Salomaa, M. M. Moayer, T. Haapala and K. Halonen,
"462-nW 2-axis gesture sensor interface based on capacitively controlled ring
oscillators," in Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), May 2017, pp. 1-4.

[9] M. Pulkkinen, J. Salomaa and K. Halonen, "Low-Power Single-Stage Narrow-
band Transmitter Front-End for 433-MHz Band," in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1-4.

[10] T. Haapala, T. Rantataro and K. A. I. Halonen, "A Fully Integrated Pro-
grammable 6.0–8.5-GHz UWB IR Transmitter Front-End for Energy-Harvesting
Devices", IEEE Journal of Solid-State Circuits, vol. 55, no. 7, pp. 1922-1934,
Apr. 2020.

73

[11] M. Pulkkinen, T. Haapala, J. Salomaa and K. Halonen, "45.2% Energy
efficiency improvement of UWB IR Tx by use of differential PPM in 180nm
CMOS," in Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), May 2016, pp. 193-196.

[12] M. Pulkkinen, L. Aaltonen and K. Halonen, "SPI interface, mux-based
synchronizer and DSP unit for a MEMS-based accelerometer," in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS), May 2015, pp.
453-456.

[13] M. M. Moayer, J. Salomaa and K. A. I. Halonen, "A 0.39–3.56-µW
Wide-Dynamic-Range Universal Multi-Sensor Interface Circuit", IEEE Sensors
Journal.

[14] J.-M. Irazabal and S. Blozis, I2C Manual, document AN10216-01, Philips
Semiconductors, Mar. 24, 2003.

[15] IXYS, NCD2400M - Wide capacitance range, non-volatile digital programmable
capacitor, document DS-NCD2400M-R01, rev. 1, IXYS integrated circuits
division, Apr. 3, 2018.

[16] 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers, document 19-3185,
rev. 4, Maxim Integrated Products, Apr. 2010.

[17] A. Sain and K. L. Melde, "Impact of Ground via Placement in Grounded Copla-
nar Waveguide Interconnects", IEEE Transactions on Components, Packaging
and Manufacturing Technology, vol. 6, no. 1, pp. 136-144, Jan. 2016.

[18] J. Coonrod, “Understanding when to use FR-4 or high frequency laminates”,
OnBoard Technology, pp. 26–30, Sep. 2011.

[19] E. Bogatin, Signal and Power Integrity - SIMPLIFIED 2. edition. Prentice
Hall, 2010.

[20] Anritsu The Essentials of Vector Network Analysis 1. edition. The United
States, Anritsu Company, 2009.

[21] Wentworth, S. M. Applied Electromagnetics 1. edition. The United States of
America, John Wiley & Sons, Inc., 2007.

[22] Steer, M. Microwave and RF Design A Systems Approach 2. edition. Raleigh,
NC., SciTech Publishing, 2010.

[23] Zumbahlen, H. Basic linear design 1. edition. Analog Devices, Inc., 2007.

[24] Sedra, A. S., Smith, K. C. Microelectronic design 7. edition. New York Oxford,
Oxford University Press, 2015.

74

[25] Smith, J. O., "Phase and Group Delay" in Introduction to digital filters with audio
applications, Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University 2007. Accessed: Sep. 7, 2020. [Online]. Available:
https://ccrma.stanford.edu/~jos/filters/Group_Delay.html

[26] T. Haapala, T. Rantataro and K. A. I. Halonen, A Fully Integrated Pro-
grammable 6.0–8.5-GHz UWB IR Transmitter Front-End for Energy-Harvesting
Devices, IEEE Journal of Solid-State Circuits, vol. 55, no. 7, pp. 1922-1934,
Jul. 2020.

[27] Xiong, F. Digital modulation techniques 2. edition. Boston and London, Artech
House, 2006.

[28] National Instruments, "What Is NI USRP Hardware?", Mar. 3, 2019. Accessed:
Sep. 7, 2020. [Online]. Available: https://www.ni.com/fi-fi/innovations/
white-papers/11/what-is-ni-usrp-hardware-.html

[29] National Instruments, "What Is NI USRP LabVIEW?", Mar. 3, 2019. Accessed:
Sep. 7, 2020. [Online]. Available: https://www.ni.com/fi-fi/shop/labview.
html

[30] National Instruments, "Virtual instrumentation", Mar. 3, 2019. Accessed: Sep. 7,
2020. [Online]. Available: https://www.ni.com/fi-fi/shop/labview.html

[31] S. Sheng-Ju, "Implementation of Cyclic Redundancy Check in Data Communi-
cation," in Proc. International Conference on Computational Intelligence and
Communication Networks (CICN), Dec. 2015, pp. 529-531.

[32] P. Koopman and T. Chakravarty, "Cyclic redundancy code (CRC) polyno-
mial selection for embedded networks," in Proc. International Conference on
Dependable Systems and Networks, Jul. 2004, pp. 145-154.

[33] T. Peters, "The Zen of Python" Aug. 22, 2004. Accessed: Sep. 7, 2020. [Online].
Available: https://www.python.org/dev/peps/pep-0020/

[34] S. Cass, "The Top Programming Languages 2019", Sep. 6, 2019. Accessed: Sep.
7, 2020. [Online]. Available: https://www.python.org/dev/peps/pep-0020/

[35] ISO/IEC, ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models, International Organization for Standardization, Tech. Rep.,
2010.

[36] SCPI Consortium. Standard Commands for Programmable Instruments (SCPI).
(1999). Accessed: Sep. 7, 2020. [Online]. Available: https://www.
ivifoundation.org/docs/scpi-99.pdf

[37] LeCroy Corporation. Automation Manual For Wave Expert Series Oscil-
loscope. (2009). Accessed: Sep. 7, 2020. [Online]. Available: http:
//cdn.teledynelecroy.com/files/manuals/we-automation-manual-e.pdf

https://ccrma.stanford.edu/~jos/filters/Group_Delay.html
https://www.ni.com/fi-fi/innovations/white-papers/11/what-is-ni-usrp-hardware-.html
https://www.ni.com/fi-fi/innovations/white-papers/11/what-is-ni-usrp-hardware-.html
https://www.ni.com/fi-fi/shop/labview.html
https://www.ni.com/fi-fi/shop/labview.html
https://www.ni.com/fi-fi/shop/labview.html
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.ivifoundation.org/docs/scpi-99.pdf
https://www.ivifoundation.org/docs/scpi-99.pdf
http://cdn.teledynelecroy.com/files/manuals/we-automation-manual-e.pdf
http://cdn.teledynelecroy.com/files/manuals/we-automation-manual-e.pdf

75

[38] A. L. Dalisa, "Electrophoretic display technology," IEEE Transactions on
Electron Devices, vol. 24, no. 7, pp. 827-834, Jul. 1977.

[39] K. Bonheur, "Electrophoretic display: Advantages and disadvantages", Dec. 26,
2018. Accessed: Sep. 7, 2020. [Online]. Available: https://www.versiondaily.
com/advantages-disadvantages-electrophoretic-display/

[40] T. Haapala, "Low-power impulse radio transmitter in 180 nanometer CMOS",
M.S. thesis, School of Electrical Engineering, Aalto Univ., Espoo, Finland, Oct.
2015.

[41] Tektronix. Fundamentals of Floating Measurements and Isolated Input Os-
cilloscopes. (2011). Accessed: Sep. 7, 2020. [Online]. Available: https:
//download.tek.com/document/3AW_19134_2_MR_Letter.pdf

https://www.versiondaily.com/advantages-disadvantages-electrophoretic-display/
https://www.versiondaily.com/advantages-disadvantages-electrophoretic-display/
https://download.tek.com/document/3AW_19134_2_MR_Letter.pdf
https://download.tek.com/document/3AW_19134_2_MR_Letter.pdf

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	2 Universal sensor interface
	2.1 Block description
	2.2 Sensor emulation
	2.2.1 Inter-integrated circuit protocol
	2.2.2 NCD2400M
	2.2.3 MAX5419

	2.3 Arduino libraries

	3 Printed circuit board development
	3.1 Printed circuit board
	3.2 IC footprint
	3.3 Layer stackup
	3.4 Controlled impedance
	3.5 Decoupling capacitance
	3.6 Auxiliary components
	3.7 Results

	4 Narrowband receiver impedance matching
	4.1 Narrowband receiver
	4.2 Impedance matching
	4.2.1 Vector network analyzer
	4.2.2 Impedance matching specification
	4.2.3 Impedance matching implementation

	5 UWB filter design
	5.1 Scattering parameters
	5.2 Analog filters
	5.3 Passive component model
	5.4 Filter design
	5.4.1 Filter specification
	5.4.2 Filter implementation

	6 Wireless communication setup
	6.1 USRP
	6.2 LabVIEW environment
	6.3 Cyclic redundancy check
	6.4 On-off keying
	6.5 Manchester code
	6.6 Differential pulse position modulation
	6.7 Manchester transmitter
	6.8 DPPM receiver
	6.8.1 Transmitter simulator
	6.8.2 Receiver

	7 Python programming interface
	7.1 The Python programming language
	7.2 Object-oriented software engineering
	7.2.1 Software qualities
	7.2.2 Software design principles

	7.3 Programming interface
	7.3.1 Requirements
	7.3.2 Communication protocol
	7.3.3 Interface architecture
	7.3.3.1 Registers
	7.3.3.2 Register commands
	7.3.3.3 Tune commands
	7.3.3.4 Command wrappers
	7.3.3.5 Slow memory
	7.3.3.6 Blocks
	7.3.3.7 Integrated circuits

	7.4 IC Communication
	7.4.1 Command parsing and IC-communication software

	7.5 Project structure
	7.6 Testing and validation
	7.6.1 Testing
	7.6.2 Validation

	7.7 Documentation
	7.8 Summary

	8 Measurement automation
	8.1 Communication with measurement equipment
	8.2 Programming environment
	8.3 Virtual instrument software architecture
	8.4 Standard commands for programmable instruments
	8.5 Automation commands
	8.6 Instrument drivers
	8.7 Remote measurement setup

	9 Display driver
	9.1 Electrophoretic display
	9.2 Driver description
	9.3 Test PCB
	9.4 Measurement setup
	9.5 Measurement results

	10 Conclusions
	References

