2,868 research outputs found

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    A Distributed Model Predictive Control Framework for Road-Following Formation Control of Car-like Vehicles (Extended Version)

    Full text link
    This work presents a novel framework for the formation control of multiple autonomous ground vehicles in an on-road environment. Unique challenges of this problem lie in 1) the design of collision avoidance strategies with obstacles and with other vehicles in a highly structured environment, 2) dynamic reconfiguration of the formation to handle different task specifications. In this paper, we design a local MPC-based tracking controller for each individual vehicle to follow a reference trajectory while satisfying various constraints (kinematics and dynamics, collision avoidance, \textit{etc.}). The reference trajectory of a vehicle is computed from its leader's trajectory, based on a pre-defined formation tree. We use logic rules to organize the collision avoidance behaviors of member vehicles. Moreover, we propose a methodology to safely reconfigure the formation on-the-fly. The proposed framework has been validated using high-fidelity simulations.Comment: Extended version of the conference paper submission on ICARCV'1

    Model Predictive Control System Design of a passenger car for Valet Parking Scenario

    Get PDF
    A recent expansion of passenger cars’ automated functions has led to increasingly challenging design problems for the engineers. Among this the development of Automated Valet Parking is the latest addition. The system represents the next evolution of automated system giving the vehicle greater autonomy: the efforts of most automotive OEMs go towards achieving market deployment of such automated function. To this end the focus of each OEM is on taking part to this competitive endeavor and succeed by developing a proprietary solution with the support of hardware and software suppliers. Within this framework the present work aims at developing an effective control strategy for the considered scenarios. In order to reach this goal a Model Predictive Control approach is employed taking advantage of previous works within the automotive OEM in the automated driving field. The control algorithm is developed in a Simulink® simulation according to the requirements of the application and tested; results show the control strategy successfully drives the vehicle on the predefined path

    Cooperative lateral vehicle guidance control for automated vehicles with Steer-by-Wire systems

    Get PDF
    With the global trend towards automated driving, fault-tolerant onboard power supply systems are introduced into modern vehicles and the level of driving automation is continuously increasing. These advancements contribute to the applicability of Steer-by-Wire systems and the development of automated lateral vehicle guidance control functions. For the market acceptance of automated driving, the lateral vehicle guidance control function must hereby be cooperative, that is it must accept driver interventions. Existing approaches for automated lateral vehicle guidance commonly do not consider driver interventions. If unconsidered in the control loop, the driver intervention is interpreted as an external disturbance that is actively compensated by feedback. This thesis addresses the development of a cooperative lateral vehicle guidance control concept, which enables a true coexistence between manual steering control by the driver and automated steering control. To this end, the subordinate controls of the Steer-by-Wire system for the manual and automated driving mode are initially presented. These include the steering feel generation and steering torque control of the Steer-by-Wire Handwheel Actuator for the manual driving mode, which is structurally extended to a cascade steering position control for the automated driving mode. Subsequently, a superposition control is introduced, which fuses steering torque and position control. The resulting cooperative Handwheel Actuator control achieves precise tracking of the reference steering position in automated driving mode but accepts driver interventions. Thus, the driver can override the active control and experiences a natural steering feel. The transitions hereby are seamless as no blending, gain scheduling or controller output saturation is required. Subsequently, the superimposed lateral vehicle guidance controller for the automated driving mode is described, which computes the reference steering position for the respective Steer-by-Wire controls. In contrast to existing approaches, the plant model equations are rearranged to isolate the vehicle speed dependent dynamics. Thereafter, the concept of inverse nonlinearity control is employed, using a virtual control loop and feedback linearization for an online inversion of the nonlinear plant dynamics. The remaining plant is fully linear and independent of vehicle speed. Consequently, one controller can be synthesized that is valid for all vehicle speeds. The closed and open loop system thereby have the same dynamics independent of vehicle speed, which significantly simplifies control synthesis, analysis, and performance tuning in the vehicle. For considering the future reference path information and constraints on the maximum steering position within the control law, a linear Model Predictive Controller synthesis is selected. The combination of inverse nonlinearity control and linear Model Predictive Controller thus results in a Nonlinear Adaptive Model Predictive Control concept, which makes commonly applied gain scheduling fully obsolete. The controller is structurally extended by a cooperative dynamic feedforward control for considering driver interventions within the control loop. Consequently, the driver can override the active control and seamlessly modify the lateral vehicle motion. A variety of nonlinear simulation analyses and real vehicle tests demonstrate the effectiveness of the proposed control concept

    Design And Control Of An Autonomous Electrical Vehicle For Indoor Transport Applications

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016Günümüzde, sensörlerin ve işlem gücü yüksek cihazların kolay üretilebilir ve ulaşılabilir olması sayesinde, mekatronik ile ilgili birçok alanda, insanların hayatını kolaylaştıracak araştırmalar hızlanmıştır. Sürücüsüz araçlar da bu alanların en çok ilgi görenlerindendir. Sürücüsüz hava araçları, askeri faaliyetler, hafif eşyaların taşınması, afetlerde alan keşifleri vb. konularda görev almaktadır. Sürücüsüz kara araçları ise, gelecekte hem askeri alanda kullanılabilecek, hem de sivil düşünüldüğünde, insan faktöründen kaynaklanan kazaları sıfıra indirebilecek ve gerek insan, gerek yük ve eşya taşınmasını, ulaşımı oldukça kolaylaştıracaktır. Sürücüsüz araçlar arasında en yaygın araştırmaları bulunan çeşit, karayollarında ilerleyebilecek, trafik içinde hareket edebilecek, uzun mesafede insan taşıyabilecek araçlardır. Bu araçların geliştirilmesinde genellikle standart otomobiller modifiye edilerek kullanılmakta, bu otomobillere çeşitli mekatronik sistemler ve sensörler entegre edilerek, sürücüsüz hareket edebilecek hale getirilmektedir. Bunun yanında, son birkaç yılda, alışveriş merkezleri, havaalanları gibi geniş alanları kullanan insan sayısının artması sebebiyle, bu alanlarda insanların gidecekleri yerleri rahat bulabilmesi için kolay ulaşılabilir sanal haritalar, rehber robotlar gibi ürünler ortaya çıkmıştır. Dolayısıyla, bu konuya yönelik olan iç mekanda insan taşıyan otonom araç ilgili çalışmalar da önem kazanmıştır. Bu tezde, havaalanları, alışveriş merkezleri gibi yayaların yoğun olarak bulunduğu iç mekanlarda kullanılabilecek bir otonom aracın tasarımı anlatılmaktadır. Araç iç mekanda çalışacağı için, zararlı gazlar açığa çıkaran ve gürültü kirliliğine yol açan benzinli araçlar yerine, elektrikli bir araç tercih edilmiştir. Manevra kabiliyetinin yüksek olmasına gerek duyulduğundan, boyutları küçük bir golf aracı tercih edilmiştir. Öncelikle golf aracı, sürücüsüz hareket edebilmesi için modifiye edilmiş, direksiyon ve fren pedalına daha önce yerleştirilen ve bunları fiziksel olarak hareket ettiren çeşitli mekanik aktüatörleri kontrol edecek sürücüler yerleştirilmiştir. Aracı hızlandırmak için ise aracın motor kontrolünü yapan ECU ünitesine analog gerilim olarak sinyal verilmesi gerekmektedir. Daha sonra, bu sürücülere ve ECU'ya referans sinyali gönderecek olan ana kontrolcü yerleştirilmiştir. Ana kontrolcü olarak, kullanım kolaylığı ve güvenilirliği açısından, otonom araçlar önde gelmek üzere birçok mekatronik araştırmada yaygın olarak kullanılan, dSpace MABX2 tercih edilmiştir. Simulink ile, MABX2'nin simulink için geliştirdiği RTI blokları kullanılarak bir tümleşik model hazırlanıp, cihaza gömülmektedir. Cihaz çalışırken bu simulink modelini sürekli olarak koşturmakta, modeldeki bloklarla ilişkili giriş ve çıkış pinlerinden, gerçek dünya ile sinyal alışverişi yapmaktadır. Bu simulink modeli üzerinden kapalı çevrim kontrolcüler oluşturulup, sensörlerden gelen geri besleme sinyalleri ile sürücülere gidecek olan referans sinyallerini taşıyan kablolar, cihaza uygun şekilde bağlanarak kontrol sağlanmaktadır. Ayrıca, ana kontrolcüye ek olarak, fren sistemi için güvenlik amaçlı bir kontrolcü daha yerleştirilmiştir. Bu kontrolcü için Arduino kart kullanılmış, ana kontrolcüden sinyal gelmediği zamanlarda frene basacak şekilde ayarlanmıştır. Bunun yanında bir de kablosuz alıcı bağlanmış, acil bir durumda, uzaktan kumandadan ilgili düğmeye basıldığında, ana kontrolcüden bağımsız olarak fren pedalına tamamen basılmasını sağlamaktadır. İnsansız sürüş için kullanılan direksiyon, fren ve gaz sistemlerindeki kontrolcüler için PID kontrolcüler tercih edilmiştir. Kontrolcü katsayılarının ayarlanması için aracın ön ve arka akslarının altlarına destekler konularak yer ile teması kesilmiş ve denemeler yapılmıştır. Daha sonra ana kontrolcüye RC sinyal alıcı bağlanarak, bu sistemlerin kararlılığını ve kontrolcülerin uygunluğunu test etme amacıyla, laboratuvar içinde ve koridorda RC kumanda ile sürüş denemesi yapılmıştır. Bu testlerde aracın hızlanma ve yavaşlama kararlılığı, manevra kabiliyeti ölçülmüştür. Kontrolcülerin kararlı olduğu görüldükten sonra otonom sürüş için sensör entegrasyonu çalışmalarına başlanmıştır. İç mekana yönelik geliştirilen otonom araçlarda, sorun teşkil eden en önemli konulardan biri, aracın mekan içindeki konumunun bulunmasıdır. Dış mekanda çalışan otonom araçlarla GPS sensörü ile cm hassasiyetinde konum bilgisi alınabilirken, iç mekanda çalışan araçlarda GPS sensörü uydu sinyali alamadığından, bu mümkün olmamaktadır. Bu sorunu çözmek için çeşitli çalışmalar yapılmış, görüntü işleme tabanlı, kablosuz sinyal tabanlı(IPS) vb. çeşitli yöntemler denenmiştir. Bunlardan en stabil ve isabetli olanı, mekana kablosuz sinyal verici cihazlar, araç üzerine bir alıcı cihaz yerleştirip, bu cihazlardan alınan sinyaller kullanılarak triangulasyon yöntemi ile konumun hesaplanmasıdır. Ancak böyle bir sistemin kurulması sinyal noktası sayısına bağlı olarak maliyetli olmakla birlikte, kablosuz sinyaller duvarlardan geçerken zayıfladığından her alan için en iyi seçim değildir. Bu çalışmada konum hesaplanması için temel sensör olarak enkoder kullanılmıştır. Enkoder'dan alınan hız verisi, direksiyon açısı verisinden elde edilen araç doğrultusu verisi ile birlikte kinematik denklemlerden geçirilmekte ve aracın konumu bu şekilde sürekli olarak hesaplanmaktadır. Tekerlek kayması sebebiyle meydana çıkan hatanın oranı, aracın düz zeminde ve düşük hızda ilerlemesinden kaynaklı olarak çok düşüktür. Yine de uzun mesafeler kat edildiğinde, kümülatif hatadan dolayı, gerçek konumla ölçülen konum arasında farklar oluşabilmektedir. Bu sorunun çözümü için ise gelecek çalışmalarda, mekanın çeşitli yerlerine yerleştirilmiş veya mekanın kendisinden önceden elde edilmiş özgün görüntüler referans alınıp, araç üzerine yerleştirilecek bir kamera sisteminden alınan görüntü ile karşılaştırılarak aracın konum ölçümünün düzeltilmesi hedeflenmektedir. Aracın yayaların yoğun bulunduğu ortamlarda çalışması, hareket eden veya edemeyen engellerin ayırt edilmesi, dar hareket alanı ve insan davranışı gibi faktörlerden kaynaklanan problemleri de beraberinde getirmektedir. Bu konuda daha önceden küçük robotlarla birçok araştırma yapılmış, insanların davranışlarını önceden tahmin edebilen ve insanlardan mümkün olduğunca uzak durmaya yönelik kontrolcü ve teknikler geliştirilmiştir. Bu çalışmada engellerin algılanması için, kendi gönderdiği gözle görülmeyen ışınların yüzeylerden yansıma sürelerini hesaplayan bir LIDAR sensör kullanılmıştır. Bu sensör gerek hava, gerek kara için üretilen sürücüsüz araçlarda yaygın olarak kullanılmakta, ışınların geri dönüş sürelerinden, ışığın değdiği yüzeyin uzaklığını hesaplayabilmektedir. Bunun yanında 4 katmanlı tarama yaparak, gördüğü ortamı 4 düzlem bazında üç boyutlu nokta bulutu şeklinde sunabilmektedir. Aynı zamanda içindeki algoritma sayesinde, baktığı ortamdaki objeleri de boyutlarıyla ayırt edebilmekte, hareket hızlarını ölçebilmektedir. Bu sayede yayaları diğer engellerden ayırabilmek, dolayısıyla hareket edebileceklerini önceden tahmin etmek ve hareketlerini ölçmek kolaylaşmaktadır. Bu sensörün üzerine 1 düzlem ve daha geniş tarama açısına sahip bir LIDAR daha eklenmiştir. Bu sensör 4 düzlem LIDAR kadar ayrıntılı veri vermese de, geniş tarama açısı kör noktalar için kullanıldığında, daha kararlı ve güvenli engelden kaçma davranışı sağlamaktadır. Otonom sürüş için, sensörlerden alınan verilerin işlenerek, belirli karar ve planlama mekanizmalarından geçirilmesi gerekmektedir. Bu çalışmada, haritası bilinen bir mekanda aracın çeşitli durak noktaları arasında hareket etmesi planlanmıştır. Bu hareket için rota planlaması, aracın başlangıç konumundan istenilen durak noktasına kadar sıralı hedef noktalar belirlenmesi ile yapılmaktadır. Aracın bu noktalardan belirli bir uzaklık töleransı ile geçmesi ve hedef noktalar bitene kadar, noktadan geçtikçe bir sonraki noktayı hedef alması ile, araç son hedef noktaya ulaştığında, istenilen durak noktasına ulaşacaktır. Söz konusu hedef noktalar arasında hareket için, önce sadece nokta takibine yönelik bir algoritma denenmiş, daha sonra hem nokta takibini, hem engelden kaçma kabiliyetini içerek potansiyel alan methodu kullanılmıştır. Kullanılan ilk algoritmada aracın hedef noktaya yönelmesinin kontrolü, aracın doğrultusunun ve hedef noktanın sabit x ekseni ile yaptığı açının karşılaştırılmasıyla yapılmaktadır. Bu karşılaştırmanın sonucu hata olarak alınmakta ve direksiyon bu hataya göre kontrol edilerek, minimum dönüş miktarı ile hedef noktaya yönelecek şekilde manevra yapılmaktadır. Bunun yanında, hedef noktaya yönelmeden önce, bu noktanın aracın dönebileceği en küçük dönüş yarıçaplı çemberin içinde olup olmadığı kontrol edilmektedir. Eğer nokta bu çemberin içindeyse, araç tam bir dönüş hareketi yapsa da noktaya ulaşamayacağından, önce aksi yönde manevra yaparak noktayı bu çemberin dışına çıkarmakta, daha sonra noktaya doğru yönelmeye çalışmaktadır. İkinci ve son algoritmada ise potansiyel alan methodundan yola çıkarak, engellerin uzaklıklarıyla orantılı olarak itme kuvveti ve hedef noktasına olan uzaklıkla orantılı olarak çekme kuvveti hesaplanıp, bu kuvvetler kullanılarak aracın yönelmesi gereken doğrultu belirlenmektedir. Araç bu şekilde engellerin arasından manevra yaparak geçebilmekte ve hedef noktasına ulaşabilmektedir. İç mekana yönelik geliştirilen otonom araçlarda karşılaşılan bir diğer problem de, ortamdaki yayalar sebebiyle meydana gelen kaza veya hedef noktaya zamanında ulaşamama durumlarıdır. Yayaların davranışlarının tahmin edilebilmesi için çeşitli çalışmalar yapılmaktadır. Geliştirilen robotlar bu davranışları öngörerek hareketli yayaların gideceği yolu tahmin edebilmekte ve yoldan çekilebilmekte, duran yayaların ise etrafından dolanabilmektedir. Ancak sadece davranışları öngörmek ve yayalardan uzak durmak bazı durumlarda yeterli olmamaktadır. Bir alışveriş merkezinde ilerleyen bir otonom aracın yolunun, yolda duran bir grup insan tarafından kesilmesi ve aracın geçebileceği bir yer bulamaması, bu yetersiz durumlara bir örnek olarak verilebilir. Bu ve benzer durumların en efektif çözümü, aracın insanlarla iletişim kurmasıdır. Çalışmanın ilerleyen aşamalarında planlanan düzenlemelerle, araca insanlarla iletişim kurabileceği donanımlar entegre edilmesi ve buna yönelik yeni davranışlar tanımlanması mümkündür. Önceki örnek üzerinden gidilirse, bu iletişim, aracın topluluktan geçme izni isteyerek, yayaların kenara çekilmesi ile kendisine bir yol açması olarak düşünülebilir. Bu çalışmada, yayaların bulunduğu bir iç mekanda çalışması planlanan bir otonom aracın tasarımının çeşitli aşamalarının üzerinde durulmuştur. İnsansız hareket için kullanılan mekatronik sistemler ve sensörler sunulmuş, kontrol için kullanılan donanım ve yazılım açıklanmıştır. Bunun yanında aracın otonom şekilde seyahat etmesi için kullanılan algoritmalar gösterilmiş, bu algoritmalar için gerekli verilerin ortamdan alınması için kullanılan sensörlerden bahsedilmiştir. Son olarak da gerçek dünyada yapılan sürüş testlerine değinilmiş ve sonuçlar irdelenmiştir.As the need of intelligent vehicles on our roadways emerges, there is an equally important need emerges as well: The need of intelligent vehicles on areas such as university campuses, airports or shopping malls. These intelligent vehicles can help elderly, disabled, or people with heavy luggage. This thesis describes an intelligent vehicle that can be used indoor areas where pedestrians exist. The vehicle is planned to carry luggages and transport humans. Vehicle used is an electric golf cart, considering the significant advantages of less noise, no toxic gas emission and higher maneuverability. Firstly, vehicle is modified for unmanned drive. Drivers are added to control actuators on steering wheel and brake pedal. Then, main controller, dSpace MABX2 is placed. This device runs a MATLAB simulink model embedded in itself. While running, this model communicates with real world through input and output pins on the device, which are related to RTI blocks placed inside simulink model. Controllers are constructed in this simulink model and actuators were ready to control by connecting this in/out pins to related elements with cable. Other than the main controller, a separate controller, an Arduino board is used for braking, for emergency purposes. If an emergency situation occurs, if brake signal is cut off from main controller or if button on the related RC transmitter is pressed, this controller applies full braking independent of the main controller. PID controllers are preferred for steering wheel, brake and throttle unmanned drive subsystems. Indoor positioning is one of the most important problems when it comes to autonomous vehicles.There are studies proposing several computer vision based, wireless signal based etc. methods. Most accurate method is (IPS) but it is costly to set up and because of wireless signals gets weaker while passing through walls, it is not the best solution for every indoor environment. In this study, an encoder is used as main sensor for calculating position. Error caused by tire slip is very small because of the flat surface and slow move speed of the vehicle. But because of the error being accumulative, on long distance travel, real position and calculated position differ slightly. A computer vision based method similar to landmarking could be implemented in future phases to correct this difference. Environment identification and decision making is necessary for autonomous drive. For detecting obstacles and pedestrians in front of the vehicle, a LIDAR sensor is used. 3d cloud data consisting of 4 plane, can be obtained from this sensor. With the 4 plane LIDAR sensor used, it is possible to separate pedestrians from static obstacles and measure their movement speed. A second 1 plane scanning LIDAR with wide scan angle added to detect objects falling out of the 4 plane LIDAR scan angle, for the purpose of achieving more stable and safer obstacle avoidance. Avoiding obstacles is first priority for the vehicle. Some path following algorithms had been experimented on. General path following logic is based on goal points. To travel between two destinations in a known map, vehicle is given a number of goal points in proper order. Vehicle follows this points using implemented path following algorithm until the last goal point is reached. Last goal point means vehicle arrived the destination. On first experimental path following algorithm, vehicle calculates error of heading between itself and the goal point and rotates towards goal point by selecting the shortest direction, using a control logic. Moreover, vehicle constantly checks if the goal point is in vehicle's minimum turning radius. If it is, vehicle will never be able to reach it while trying to rotate towards it. Instead, vehicle maneuvers to opposite direction until the point is out of the minimum turning radius. Then rotates towards it. Second and final experiment is potential field method. A method including both path following and obstacle avoidance behaviors. Calculating pushing forces proportional to distances from objects in front of the vehicle and pulling force proportional to distance from next goal point, vehicle is able to maneuver between obstacles and reach the point. In this thesis, various stages of design and production of an autonomous vehicle, which is planned to operate in indoor environment where pedestrians exists, is explained. Sensors and mechatronic systems used for unmanned drive were presented, hardware and software used for control are discussed. Moreover, algorithms used for the vehicle to travel autonomously and and sensors used for receiving environmental data are explained. Finally, the real world driving tests performed are shown and the results were discussed.Yüksek LisansM.Sc
    corecore