82,065 research outputs found

    Drawings of Planar Graphs with Few Slopes and Segments

    Get PDF
    We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on nn vertices has a plane drawing with at most 5/2n{5/2}n segments and at most 2n2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.Comment: This paper is submitted to a journal. A preliminary version appeared as "Really Straight Graph Drawings" in the Graph Drawing 2004 conference. See http://arxiv.org/math/0606446 for a companion pape

    Convex drawings of hierarchical planar graphs and clustered planar graphs

    Get PDF
    AbstractIn this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs

    Convex drawings of hierarchical planar graphs and clustered planar graphs

    Get PDF
    AbstractIn this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs

    Signed graph embedding: when everybody can sit closer to friends than enemies

    Full text link
    Signed graphs are graphs with signed edges. They are commonly used to represent positive and negative relationships in social networks. While balance theory and clusterizable graphs deal with signed graphs to represent social interactions, recent empirical studies have proved that they fail to reflect some current practices in real social networks. In this paper we address the issue of drawing signed graphs and capturing such social interactions. We relax the previous assumptions to define a drawing as a model in which every vertex has to be placed closer to its neighbors connected via a positive edge than its neighbors connected via a negative edge in the resulting space. Based on this definition, we address the problem of deciding whether a given signed graph has a drawing in a given \ell-dimensional Euclidean space. We present forbidden patterns for signed graphs that admit the introduced definition of drawing in the Euclidean plane and line. We then focus on the 11-dimensional case, where we provide a polynomial time algorithm that decides if a given complete signed graph has a drawing, and constructs it when applicable

    Bar 1-Visibility Drawings of 1-Planar Graphs

    Full text link
    A bar 1-visibility drawing of a graph GG is a drawing of GG where each vertex is drawn as a horizontal line segment called a bar, each edge is drawn as a vertical line segment where the vertical line segment representing an edge must connect the horizontal line segments representing the end vertices and a vertical line segment corresponding to an edge intersects at most one bar which is not an end point of the edge. A graph GG is bar 1-visible if GG has a bar 1-visibility drawing. A graph GG is 1-planar if GG has a drawing in a 2-dimensional plane such that an edge crosses at most one other edge. In this paper we give linear-time algorithms to find bar 1-visibility drawings of diagonal grid graphs and maximal outer 1-planar graphs. We also show that recursive quadrangle 1-planar graphs and pseudo double wheel 1-planar graphs are bar 1-visible graphs.Comment: 15 pages, 9 figure

    Saturated 22-planar drawings with few edges

    Full text link
    A drawing of a graph is kk-plane if every edge contains at most kk crossings. A kk-plane drawing is saturated if we cannot add any edge so that the drawing remains kk-plane. It is well-known that saturated 00-plane drawings, that is, maximal plane graphs, of nn vertices have exactly 3n63n-6 edges. For k>0k>0, the number of edges of saturated nn-vertex kk-plane graphs can take many different values. In this note, we establish some bounds on the minimum number of edges of saturated 22-plane graphs under different conditions. If two edges can cross at most once, then such a graph has at least n1n-1 edges. If two edges can cross many times, then we show the tight bound of 2n/3\lfloor2n/3\rfloor for the number of edges

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex vv^*) are decompositions into dd spanning trees rooted at vv^* such that each edge not incident to vv^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n1)×(n1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    Graphs 4n4_n that are isometrically embeddable in hypercubes

    Full text link
    A connected 3-valent plane graph, whose faces are qq- or 6-gons only, is called a {\em graph qnq_n}. We classify all graphs 4n4_n, which are isometric subgraphs of a mm-hypercube HmH_m.Comment: 18 pages, 25 drawing
    corecore