18 research outputs found

    Robust and Automatic Data-Adaptive Beamforming for Multi-Dimensional Arrays

    Get PDF
    The robust Capon beamformer has been shown to alleviate the problem of signal cancellation resulting from steering vector errors, caused, e.g., by calibration and/or angle- of-arrival errors, which would otherwise seriously deteriorate the performance of an adaptive beamformer. Here, we examine robust Capon beamforming of multi-dimensional arrays, where robustness to angle-of-arrival errors is needed in both azimuth and elevation. It is shown that the commonly used spherical uncertainty sets are unable to control robustness in each of these directions independently. Here, we instead propose the use of flat ellipsoidal sets to control the angle-of-arrival un- certainty. To also allow for other errors, such as calibration errors, we combine these flat ellipsoids with a higher-dimension error ellipsoid. Computationally efficient automatic techniques for estimating the necessary uncertainty sets are derived, and the proposed methods are evaluated using both simulated data and experimental underwater acoustics measurements, clearly showing the benefits of the technique

    Low-Complexity Uncertainty-Set-Based Robust Adaptive Beamforming for Passive Sonar

    Get PDF
    Recent work has highlighted the potential benefits of exploiting ellipsoidal uncertainty-set-based robust Capon beamformer (RCB) techniques in passive sonar. Regrettably, the computational complexity required to form RCB weights is cubic in the number of adaptive degrees of freedom, which is often prohibitive in practice. For this reason, several low-complexity techniques for computing RCB weights, or equivalent worst case robust adaptive beamformer weights, have recently been developed. These techniques, whose complexities are only quadratic in the number of adaptive degrees of freedom, use gradient-based, reduced-dimension Krylov-subspace or Kalman-filtering methods. In this work, we review these techniques for passive sonar, analyzing their complexities and evaluating them initially on simulated data. The best performing methods are then evaluated on two in-water recorded passive sonar data sets. One set, containing a strong controlled acoustic source, demonstrates the ability of the algorithms to protect against signal cancellation when pointing at the source, and their ability to reject the source when pointing away from it. The other data set, recorded during a period when the boat was accelerating, demonstrates the ability of the algorithms to operate in the presence of speed-induced noises

    Twenty-Five Years of Advances in Beamforming: From Convex and Nonconvex Optimization to Learning Techniques

    Full text link
    Beamforming is a signal processing technique to steer, shape, and focus an electromagnetic wave using an array of sensors toward a desired direction. It has been used in several engineering applications such as radar, sonar, acoustics, astronomy, seismology, medical imaging, and communications. With the advances in multi-antenna technologies largely for radar and communications, there has been a great interest on beamformer design mostly relying on convex/nonconvex optimization. Recently, machine learning is being leveraged for obtaining attractive solutions to more complex beamforming problems. This article captures the evolution of beamforming in the last twenty-five years from convex-to-nonconvex optimization and optimization-to-learning approaches. It provides a glimpse of this important signal processing technique into a variety of transmit-receive architectures, propagation zones, paths, and conventional/emerging applications

    Array signal processing robust to pointing errors

    No full text
    The objective of this thesis is to design computationally efficient DOA (direction-of- arrival) estimation algorithms and beamformers robust to pointing errors, by harnessing the antenna geometrical information and received signals. Initially, two fast root-MUSIC-type DOA estimation algorithms are developed, which can be applied in arbitrary arrays. Instead of computing all roots, the first proposed iterative algorithm calculates the wanted roots only. The second IDFT-based method obtains the DOAs by scanning a few circles in parallel and thus the rooting is avoided. Both proposed algorithms, with less computational burden, have the asymptotically similar performance to the extended root-MUSIC. The second main contribution in this thesis is concerned with the matched direction beamformer (MDB), without using the interference subspace. The manifold vector of the desired signal is modeled as a vector lying in a known linear subspace, but the associated linear combination vector is otherwise unknown due to pointing errors. This vector can be found by computing the principal eigen-vector of a certain rank-one matrix. Then a MDB is constructed which is robust to both pointing errors and overestimation of the signal subspace dimension. Finally, an interference cancellation beamformer robust to pointing errors is considered. By means of vector space projections, much of the pointing error can be eliminated. A one-step power estimation is derived by using the theory of covariance fitting. Then an estimate-and-subtract interference canceller beamformer is proposed, in which the power inversion problem is avoided and the interferences can be cancelled completely

    Principles of minimum variance robust adaptive beamforming design

    Get PDF
    Robustness is typically understood as an ability of adaptive beamforming algorithm to achieve high performance in the situations with imperfect, incomplete, or erroneous knowledge about the source, propagation media, and antenna array. It is also desired to achieve high performance with as little as possible prior information. In the last decade, several fruitful principles to minimum variance distortionless response (MVDR) robust adaptive beamforming (RAB) design have been developed and successfully applied to solve a number of problems in a wide range of applications. Such principles of MVDR RAB design are summarized here in a single paper. Prof. Gershman has actively participated in the development and applications of a number of such MVDR RAB design principles

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Robust acoustic beamforming in the presence of channel propagation uncertainties

    No full text
    Beamforming is a popular multichannel signal processing technique used in conjunction with microphone arrays to spatially filter a sound field. Conventional optimal beamformers assume that the propagation channels between each source and microphone pair are a deterministic function of the source and microphone geometry. However in real acoustic environments, there are several mechanisms that give rise to unpredictable variations in the phase and amplitudes of the propagation channels. In the presence of these uncertainties the performance of beamformers degrade. Robust beamformers are designed to reduce this performance degradation. However, robust beamformers rely on tuning parameters that are not closely related to the array geometry. By modeling the uncertainty in the acoustic channels explicitly we can derive more accurate expressions for the source-microphone channel variability. As such we are able to derive beamformers that are well suited to the application of acoustics in realistic environments. Through experiments we validate the acoustic channel models and through simulations we show the performance gains of the associated robust beamformer. Furthermore, by modeling the speech short time Fourier transform coefficients we are able to design a beamformer framework in the power domain. By utilising spectral subtraction we are able to see performance benefits over ideal conventional beamformers. Including the channel uncertainties models into the weights design improves robustness.Open Acces

    Robust Beamforming for Cognitive and Cooperative Wireless Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Robust Optimal Power Distribution for Hyperthermia Cancer Treatment

    Get PDF
    We consider an optimization problem for spatial power distribution generated by an array of transmitting elements. Using ultrasound hyperthermia cancer treatment as a motivating example, the signal design problem consists of optimizing the power distribution across the tumor and healthy tissue regions, respectively. The models used in the optimization problem are, however, invariably subject to errors. To combat such unknown model errors, we formulate a robust signal design framework that can take the uncertainty into account using a worst-case approach. This leads to a semi-infinite programming (SIP) robust design problem, which we reformulate as a tractable convex problem that potentially has a wider range of applications
    corecore