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Robustness is typically understood as an ability of adaptive beamforming algorithm to

achieve high performance in the situations with imperfect, incomplete, or erroneous

knowledge about the source, propagation media, and antenna array. It is also desired to

achieve high performance with as little as possible prior information. In the last decade,

solve a number of problems in a wide range of applications. Such principles of MVDR RAB

design are summarized here in a single paper. Prof. Gershman has actively participated in

the development and applications of a number of such MVDR RAB design principles.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Robust adaptive beamforming (RAB) was perhaps the
favorite research topic of Prof. Gershman. He obtained a
number of fundamental results that shaped the research
in this field in the last two decades. Therefore, it is most
appropriate to have in this special issue a tutorial paper
devoted to the overview of the results in the RAB field
with a stress on the most recent results. Alex himself has
published as a single author or a coauthor two excellent
tutorial papers on RAB and its applications [1,2]. The
paper [1] has been published more than a decade ago
and does not reflect the most recent progress in the field.
Moreover, it is not devoted to the review of the design
principles for minimum variance distortionless response
(MVDR) RAB, but rather overviews the solutions to such
particular RAB issues as robustness against pointing and
antenna calibration errors [3–7], robustness against small
sample size [8–11], robustness against coherent signal and
interferers [12–16], robustness against imperfect wave-
form coherence at sensor outputs [17–22], robustness
. All rights reserved.

erta.ca
against moving and broadband interferences [23–28].
The paper [2] overviews the recent applications of adaptive
and robust beamforming to new emerging fields in wire-
less communications such as downlink beamforming in
cellular wireless networks [29], robust code-division multi-
ple-access (CDMA) multiuser detection [30–32], linear
receiver design for multi-access space-time codded systems
[33,34], multicast beamforming [35,36], secondary multi-
cast beamforming for spectrum sharing in cognitive radio
systems [37], relay network beamforming [38], etc.

The emphasize of this tutorial paper is on the overview of
some most notable principles of MVDR RAB design rather
than the review of particular RAB techniques as in [1] or their
applications as in [2]. The design principles will be explained
based on the application to receive beamforming in
array signal processing, radar, and sonar [39–45]. However,
the same principles are used or can be used in other
applications such as the above mentioned wireless commu-
nications (see also [46,47]) as well as speech processing [48],
radio astronomy [49,50], biomedicine [51,52], and other
fields.

The traditional approach to the design of adaptive
beamforming is to maximize the beamformer output
signal-to-interference-plus-noise ratio (SINR) assuming
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that there is no desired signal in the beamforming train-
ing data [40,42]. Although such desired signal free data
assumption may be relevant to certain radar applications,
the beamforming training snapshots include the desired
signal component in most of the practical applications of
interest [6,53–55]. In such non-ideal situation, the SINR
performance of adaptive beamforming can severely
degrade even in the presence of small signal steering
vector errors/mismatches, because the desired signal
component in the beamformer training data set can be
mistakenly interpreted by the adaptive beamforming
algorithm as an interferer and, consequently, it can be
suppressed rather than being protected. The latter effect
is known as signal cancellation phenomenon [56]. The
steering vector errors are, however, very common in
practice and can be caused by a number of reasons such
as signal look direction/pointing errors; array calibration
imperfections; non-linearities in amplifiers, A/D conver-
ters, modulators and other hardware; distorted antenna
shape; unknown wavefront distortions/fluctualtions; signal
fading; near-far wavefront mismodeling; local scattering;
and many other effects. Even if the steering vector of the
desired signal is known perfectly, the performance degrada-
tion of adaptive beamformer can take place when the
number of samples at the training stage is small [6]. To
protect against multiple imperfections, the RAB has to be
considered.

The particular design principles for MVDR RAB
explained in this paper include the generalized sidelobe
canceller [3,4,57], the regularization (diagonal loading)
principle [53–55], the eigenspace projection principle [58],
the design principles that use the worst-case optimization
[59–67] and the outage probability constrained optimiza-
tion [68,69], one-dimensional and multi-dimensional cov-
ariance fitting [63,67,70], eigenvalue beamforming using a
multi-rank MVDR beamformer and subspace selection [71],
and steering vector estimation with as little as possible
prior information [72–75]. All the aforementioned design
principles can be gathered under one unified design para-
digm [75] which will also be explained. The MVDR RAB
design principles will be explained based on the narrow-
band point source model. However, the extensions to the
general-rank source model [76–79] and the broadband
signal model [80–83] will also be briefly reviewed.

2. MVDR RAB principles

The MVDR RAB design principles are reviewed in this
section based on the point source narrowband signal
model. It is also assumed for simplicity that an antenna
array has linear geometry and it consists of onmi-
directional antenna elements.

2.1. Signal model

Consider a linear antenna array with M omni-directional
antenna elements. The narrowband signal received by the
antenna array at the time instant k is mathematically
represented as

xðkÞ ¼ sðkÞþ iðkÞþnðkÞ ð1Þ
where sðkÞ, iðkÞ, and nðkÞ denote the M � 1 vectors of
the desired signal, interference, and noise, respectively.
The desired signal is assumed to be uncorrelated with the
interferers and noise, while the received signal is assumed
to be zero-mean and quasi-stationary. Under the aforemen-
tioned point source assumption, the desired signal sðkÞ is
expressed as

sðkÞ ¼ sðkÞaðysÞ ð2Þ

where s (k) is the signal waveform and aðysÞ is the steering
vector associated with the desired signal. This steering
vector is a function of array geometry as well as source
and propagation media characteristics such as, for example,
the desired source direction-of-arrival (DOA) ys.
2.2. MVDR Beamformer

The beamformer output at the time instant k can be
written as

yðkÞ ¼wHxðkÞ ð3Þ

where w is the M�1 complex weight (beamforming)
vector of the antenna array and ð�ÞH stands for the
Hermitian transpose.

In the case of a point source, under the assumption
that the steering vector aðysÞ is known precisely, the
optimal weight vector w can be obtained by maximizing
the beamformer output SINR given as

SINR9
E½9wHs92

�

E½9wHðiþnÞ92
�
¼
s2

s 9w
HaðysÞ9

2

wHRiþnw
ð4Þ

where s2
s9E½9sðkÞ92

� is the desired signal power,

Riþn9E ½ðiðkÞþnðkÞÞðiðkÞþnðkÞÞH� is the M�M interference-
plus-noise covariance matrix, and E½�� denotes the expecta-
tion operator.

The MVDR beamformer is obtained by minimizing the
denominator of (4), i.e., minimizing the variance/power of
interference and noise at the output of the adaptive
beamformer, while keeping the numerator (4) fixed, i.e.,
ensuring the distortionless response of the beamformer
towards the direction of the desired source. The corre-
sponding optimization problem is

min
w

wHRiþnw s:t: wHaðysÞ ¼ 1 ð5Þ

The solution of the optimization problem (5) is well known
under the name MVDR beamformer and it is given as

wMVDR ¼ aR�1
iþnaðysÞ ð6Þ

where ð�Þ�1 denotes the inverse of a positive definite square
matrix and a¼ 1=aHðysÞR

�1
iþnaðysÞ is the normalization con-

stant that does not affect the output SINR (4) and, therefore,
will be omitted.
2.3. SMI Beamformer

The interference-plus-noise covariance matrix Riþn is
unknown in practice, and it is substituted by the following
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data sample covariance matrix:

R̂9
1

K

XK

k ¼ 1

xðkÞxHðkÞ ð7Þ

where K is the number of training data samples which also
include the desired signal component. Note that other
more sophisticated estimates of the data covariance matrix
than (7) can be used [84,85].

The sample matrix inversion (SMI) adaptive beamfor-
mer [86] is obtained by replacing the interference-plus-
noise covariance matrix Riþn in the MVDR beamformer
(6) with the sample estimate of the data covariance
matrix (7). Then the expression for the corresponding
beamformer is given as

wSMI ¼ R̂
�1

aðysÞ: ð8Þ

Under the assumption shared by all traditional adap-
tive beamforming techniques that the desired signal
component is not present in the training data, the
requirement of the SMI beamformer on the number of
training snapshots is given by the well known Reed–
Mallett–Brennan (RMB) rule [86]: the mean losses rela-
tive to the optimal SINR due to the SMI approximation of
wMVDR do not exceed 3 dB if KZ2M.

2.4. Motivations of RAB

If the desired signal component is present in the data
vector x, but the estimate of the data covariance matrix is
perfect and the steering vector of the desired signal aðysÞ

is known precisely, the SMI beamformer (8) is equivalent
to the MVDR beamformer (6). Indeed, the data covariance
matrix can be written as

R¼ E½xðkÞxHðkÞ� ¼ s2
s aðysÞa

HðysÞþRiþn ð9Þ

Substituting (9) into (6) and applying the matrix inversion
lemma, it can be obtained for the SMI beamformer that

R�1aðysÞ ¼ ðRiþnþs2
s aðysÞa

HðysÞÞ
�1aðysÞ

¼ R�1
iþn�

R�1
iþnaðysÞaHðysÞR

�1
iþn

1=s2
s þaHðysÞR

�1
iþnaðysÞ

 !
aðysÞ

¼ 1�
aHðysÞR

�1
iþnaðysÞ

1=s2
s þaHðysÞR

�1
iþnaðysÞ

 !
R�1

iþnaðysÞ ð10Þ

where the coefficient 1�aHðysÞR
�1
iþnaðysÞ=ð1=s2

s þaHðysÞ

R�1
iþnaðysÞÞ is immaterial for the output SINR of the

adaptive beamformer.
The result (10) on the equivalence between the MVDR

and SMI beamformers holds true only under the conditions
that (i) there is infinite number of snapshots available at
the training stage and the data covariance matrix can be
estimated with very high accuracy and (ii) the desired
signal steering vector aðysÞ is known precisely. However,
these conditions are not satisfied in practice since the data
covariance matrix R cannot be known exactly and its
estimate R̂ typically contains the desired signal component
where the desired signal steering vector aðysÞ may be
known imprecisely. The inaccuracies in the knowledge of
the desired signal steering vector may appear for multiple
reasons associated with imperfect knowledge of the source
characteristics, propagation media and/or antenna array
itself. Indeed, even small look direction errors can lead
to significant degradation of the adaptive beamformer
performance [57,87]. Similarly, an imperfect array calibra-
tion and distorted antenna shape can also lead to signifi-
cant degradations [4]. Other common causes of the adaptive
beamformer’s performance degradation are the array mani-
fold mismodeling due to source wavefront distortions
resulting from environmental inhomogeneities [18], near–
far problem [19], source spreading and local scattering
[20–22], and so on. Other effects such as possible coherence
between the desired signal and interferers also lead to the
performance degradation [12–16]. We, however, assume
that the desired signal is uncorrelated to interferers and
noise and concentrate the discussion around the design
principles principles of MVDR RAB while the techniques
such as decorrelation of coherent sources are summarized
in the existing tutorial [1].
2.5. Generalized sidelobe canceller

The simplest reason for the mismatch in the desired
signal steering vector is the pointing error. Even a very
slight look direction mismatch can lead to the effect that
is known as the signal cancellation phenomenon when
the adaptive beamformer misinterprets the desired signal
with an interference and puts the null in the direction of
the desired signal [56].

To stabilize the mainbeam response of adaptive beam-
former in the case of pointing error, additional constraints
are required in the MVDR beamforming. If all additional
constraints are of the same type as the destortionless
response constraint, i.e., linear constraints, the optimiza-
tion problem can be reformulated as

min
w

wHRw s:t: CHw¼ f ð11Þ

where C and f are some Q�M and Q�1 matrix and
vector, respectively. Depending on the choice of C or f, we
may have point or derivative mainbeam constraints
[3,88]. For example, in the case of the point mainbeam
constraints, the matrix of constrained directions is given

as C¼ ½aðys,1Þ,aðys,2Þ, . . . ,aðys,Q Þ�, where aðys,qÞ, 8q are taken

in the neighborhood of the steering vector in the pre-

sumed direction aðysÞ and include the steering vector in
the presumed direction as well. Then the vector of

constraints f is f ¼ ½1, 1, � � � , 1�T , where ð�ÞT stands for
the transpose. The constraint in the optimization problem
(11) consists of multiple point constraints similar to the
distortionless response constraint, but covers not only the
presumed direction, but also the directions in the neigh-
borhood of the presumed direction. The disadvantage of
using multiple distortionless response constraints is that
additional degrees of freedom are used by the beamfor-
mer in order to satisfy these constraints. Since for an
antenna array of M sensors, the number of degrees of
freedom is M, the use of each additional degree of free-
dom for satisfying additional distortionless response con-
straints limits the remaining degrees of freedom that may
be needed for suppressing interference signals.
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The solution of the optimization problem (11) can be
found in a similar way as the solution (6), and it is given
as

wSMI ¼ R�1CðCHR�1CÞ�1f: ð12Þ

The solution (12) can be further decomposed into two
components, one in the constrained subspace and the
other in the orthogonal subspace to the constrained sub-
space, as follows [3]:

wopt ¼ ðPCþP?C Þwopt ¼ CðCHCÞ�1CHR�1CðCHR�1CÞ�1f

þP?C R�1CðCHR�1CÞ�1f ð13Þ

where PC9CðCHCÞ�1CH and P?C 9I�CðCHCÞ�1CH are the
projection matrix on the constrained subspace and the
orthogonal projection matrix on the constrained sub-
space, respectively.

The decomposition (13) can be written in a general
form as

wGSC ¼wq�Bwa ð14Þ

where wq ¼ CðCHCÞ�1f is the so-called quiescent beam-
forming vector, which is independent of the input/output
data of the antenna array. The matrix B in (14) must be
selected so that BHC¼ 0 and it is called the blocking
matrix. The vector wa is the new adaptive weight vector,
while wq is non-adaptive. The beamformer (14) is called
the generalized sidelobe canceller (GSC).

The choice of the blocking matrix B in the GSC (14) is
not unique. In (13), for example, the blocking matrix
B¼ P?C is used. However, in this case, B is not a full-rank
matrix. Therefore, it is more common to select an M �

ðM�Q Þ full-rank matrix B. Then, the vectors zðkÞ9BHxðkÞ
and wa both have shorter length of ðM�Q Þ � 1 relative to
the M�1 vectors x and wq. Since the non-adaptive
component wq is data independent and has to be pre-
computed only once, the GSC reduces the computational
complexity by requiring to compute only the adaptive
component wa of a shorter length.

To find the adaptive component wa, it can be observed
that since the constrained directions are blocked by the
matrix B, the desired signal cannot be suppressed and,
therefore, the weight vector wa can adapt freely to suppress
interference by minimizing the output GSC power:

PGSC ¼wH
optRwopt ¼ ðwq�BwaÞ

HRðwq�BwaÞ

¼wH
q Rwq�wH

q RBwa�wH
a BHRwqþwH

a BHRBwa: ð15Þ

The unconstrained minimization of (15) results in the follow-
ing expression for the adaptive component of the GSC:

wa,opt ¼ ðB
HRBÞ�1BHRwq: ð16Þ

Noting that yðkÞ9wH
q xðkÞ and zðkÞ9BHxðkÞ, the following

covariance matrix of the data vector zðkÞ and the correlation
vector between z(k) and y(k) can be introduced
as Rz9E½zðkÞzHðkÞ� ¼ BHE½xðkÞxHðkÞ�B¼ BHRB and ryz9
E½zðkÞynðkÞ� ¼ BHE½xðkÞxHðkÞ�wq ¼ BHRwq. Using these nota-
tions, the expression (16) can be rewritten as

wa,opt ¼ R�1
z ryz ð17Þ

which is a similar to SMI beamformer expression for finding
optimal wa of a shorter length than w after the desired
signal direction is already protected.
The main disadvantage of the GSC is the very specific
type of the desired signal steering vector mismatch
considered, which limits its applicability. The GSC is also
used for broadband adaptive beamforming [3]. If the
matrix C contains a single column, that is, the presumed
steering vector, the CSC boils down to the standard MVDR
beamformer (6).

2.6. Regularization (diagonal loading) principle

The presence of the desired signal in the training data
may dramatically reduce the convergence rate of adaptive
beamforming algorithms even if the desired signal steer-
ing vector is precisely known [6]. It is especially so in the
situation of small training sample size. The RMB rule for
the SMI adaptive beamformer (8) does not hold in such
situations any longer.

In order to penalize the imperfections of the data
covariance matrix estimate due to small sample size as
well as imperfections in the knowledge of the desired
signal steering vector, the regularization principle [89]
can be used. Specifically, adding a regularization term in
the objective function of the optimization problem (5)
and using the sample data covariance matrix, the problem
can be reformulated as

min
w

wHR̂wþgJwJ2 s:t: wHaðysÞ ¼ 1 ð18Þ

where g is some penalty parameter and J � J denotes the
Euclidian norm of a vector. The solution to the problem
(18) after omitting the immaterial scaling factor a is given
by the well known diagonally loaded or shortly just
loaded SMI (LSMI) beamformer [53–55]:

wLSMI ¼ ðR̂þgIÞ�1aðysÞ ð19Þ

where the empirically optimal penalty weight g equals to
double the noise power [53]. LSMI beamformer allows to
converge faster than in 2 M snapshots as suggested by
RMB rule. Particularly, the LSMI convergence rule is
formulated as follows. The mean losses relative to the
optimal SINR due to the LSMI approximation of (6) do not
exceed a few dB’s if the number of training snapshots is
equal or larger than the number of interference signals.
The fact that for a properly selected g the LSMI beamformer
is also efficient in the case when the desired signal steering
vector is mismatched will be explained in details later.
However, the choice of g is not a trivial problem for the
LSMI beamformer.

2.7. Eigenspace projection principle

Hereafter, the imperfectly known presumed desired
signal steering vector is denoted as p, while a stands for
the actual desired signal steering vector that is different
from p, i.e., aap. The estimate of the actual desired signal
steering vector is denoted as â.

Using a priori knowledge on the presumed desired
signal steering vector p, the eigenspace projection-based
RAB computes and uses the projection of p onto the
sample signal-plus-interference subspace as a corrected
estimate of the actual desired signal steering vector.
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The eigendecomposition of (7) yields R̂ ¼ EKEH
þGCGH ,

where the M � ðLþ1Þmatrix E and M � ðM�L�1Þmatrix G
contain the signal-plus-interference subspace eigenvec-
tors of R̂ and the noise subspace eigenvectors, respec-
tively, while the ðLþ1Þ � ðLþ1Þ matrix K and
ðM�L�1Þ � ðM�L�1Þ matrix C contain the eigenvalues
corresponding to E and G, respectively, and as before L

stands for the number of interfering signals.
The estimate of the actual desired signal steering

vector is found as

â ¼ EEHp ð20Þ

where EEH is the projection matrix to the desired signal-
plus-interference subspace. Then the eigenspace-based
beamformer is obtained by substituting the so-obtained
estimate of the steering vector to the SMI beamformer (8),
and it can be expressed as [58]

weig ¼ R̂
�1

â ¼ R̂
�1

EEHp¼ EK�1EHp: ð21Þ

Summarizing, the essence of the eigenspace projection
principle is to project the presumed desired signal steer-
ing vector onto the measured signal-plus-interference
subspace prior to processing in order to reduce the signal
wevefront mismatch. Then, the estimate of the actual
desired signal steering vector is plugged to the standard
SMI beamformer. The interference rejection part remains
unchanged for this beamformer as compared to the SMI
beamformer. The prior information used is the presumed
steering vector p and the number of interfering sources L.
Moreover, it is required that the noise components at
antenna elements are mutually uncorrelated and have the
same power. The notion of robustness is the projection
of the presumed steering vector to the signal-plus-
interference subspace. It is, however, well known that at
low signal-to-noise ratio (SNR), the eigenspace-based
beamformer suffers from a high probability of subspace
swap and incorrect estimation of the signal-plus-
interference subspace dimension [90].
2.8. The worst-case optimization-based RAB design principle

This RAB design principle is based on modeling the
actual desired signal steering vector a as a sum of the
presumed steering vector and a deterministic norm

bounded mismatch vector d : a9pþd, JdJre, where e
is some a priori known bound. Thus, the worst-case
optimization-based RAB uses the prior information about
the presumed steering vector and the information that
the mismatch vector is norm bounded [59]. An ellipsoidal
uncertainty region can also be considered instead of the
mentioned above spherical uncertainty [60]. However, a
more sophisticated prior information has to be available
in the case of ellipsoidal uncertainty. Assuming spherical

uncertainty for d, the uncertainty set can be represented

as AðdÞ9fa¼ pþd9JdJreg. Then the worst-case optimi-

zation-based RAB aims at solving the following optimiza-
tion problem [59]:

min
w

wHR̂w s:t: min
â2AðdÞ

9wHâ9Z1: ð22Þ
The optimization problem (22) is equivalent to the
following second-order cone (SOC) programming problem
[59]:

min
w

wHR̂w s:t: wHpZeJwJþ1 ð23Þ

which can be solved efficiently using standard numerical
optimization methods with complexity comparable to the
complexity of matrix inversion.

For the future discussion, it is worth mentioning that
many modern RAB techniques are based on convex opti-
mization theory [91]. Most of such RAB techniques cannot
be expressed in closed-form, but the complexity of solving
optimization problems that correspond to such RAB tech-
niques is comparable to the complexity of the closed-form
solutions like the SMI beamformer. Indeed, the most
computationally costly operation of the SMI beamformer
is the matrix inversion. Although strictly speaking the
matrix inversion is not a closed-form operation, we call
such solution to be closed-form following the tradition in
array signal processing field. The complexity of matrix
inversion is of order 3 the dimension of the matrix. The
numerical solution of the worst-case optimization-based
RAB problem (23) has a comparable computational com-
plexity of order 3.5 of the dimension of the sample data
covariance matrix. Thus, there is no significant difference
in terms of computational complexity between the so-
called closed-form solutions and numerical solutions of
convex problems.

2.9. RAB using one-dimensional covariance fitting principle

The above worst-case optimization-based RAB design
principle can be equivalently interpreted in terms of the
use of the standard SMI beamformer in tandem with the
desired signal steering vector estimation obtained using
the covariance fitting approach. Specifically, the desired
signal steering vector estimate is obtained by solving the
following problem [63]:

min
s2

s ,â
s2

s s:t: R̂�s2
s ââ

H
k0

for any â satisfying JdJre ð24Þ

where the notation k0 indicates that the matrix on the
left-hand side is positive semi-definite. It is worth to note
that the corresponding MVDR RAB coincides with (22). It
is because the same model for actual desired signal
steering vector is used.

Summarizing, the prior information used in the worst-
case optimization-based RAB design as well as in the
RAB based on one-dimensional covariance fitting design
principles is the presumed steering vector and the value e,
which may be difficult to obtain in practice. The notion of
robustness is the uncertainty region for the presumed
steering vector. The robustness to the rapidly moving
interference sources can also be added to the worst-case
optimization-based RAB design [64].

The RAB based on one-dimensional covariance fitting
principle can be extended to the doubly constrained RAB
[67]. The doubly constrained RAB is similar to the worst-
case optimization-based one (22) (equivalently (24)), but
it exposes also an additional constraint on the norm of the
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desired signal steering vector estimate, that is, JâJ2
¼M.

Then the corresponding optimization problem for finding
â is

min
s2

s ,â
s2

s s:t: R̂�s2
s ââ

H
k0

for any â satisfying JdJre, JâJ2
¼M: ð25Þ

This beamforming approach uses the same prior informa-
tion as the worst-case optimization-based RAB. Clearly,
the notion of robustness for this method is the same as
well. Due to the constraint JâJ2

¼M, the doubly con-
strained RAB provides a better estimate of the desired
signal in the applications where such estimate is needed.

2.10. Relationship between the worst-case and

regularization RAB design principles

The constraint in the optimization problem (22) must
be satisfied with equality at optimality. Indeed, if the
constraint is not satisfied with equality, then the mini-
mum of the objective function in (22) is achieved when

k9mina2AðdÞ9wHa941. However, by replacing w with

w=
ffiffiffiffi
k
p

, the objective function of (22) can be decreased
by the factor of k41, whereas the constraint in (22) will
be still satisfied. This contradicts the original statement
that the objective function is minimized when k41.
Therefore, the minimum of the objective function is
achieved at k¼ 1, and the inequality constraint in (22)
is equivalent to the equality constraint. This also means

that wHa is real-valued and positive. Using these facts, the
problem (22) can be rewritten as

min
w

wHR̂w s:t: ðwHp�1Þ2 ¼ e2wHw: ð26Þ

The solution to (26) can be found by using the method
of Lagrange multipliers, i.e., by optimizing the following
Lagrangian:

Lðw,lÞ ¼wHR̂wþlðe2wHw�ðwHp�1Þ2Þ ð27Þ

where l is a Lagrange multiplier. Taking the gradient of
(27) and equating it to zero, it can be found that

w¼�lðR̂þle2I�lppHÞ
�1p: ð28Þ

Furthermore, applying the matrix inversion lemma to
(28), the beamforming vector can be expressed as [59]

w¼
l

lpHðR̂þle2IÞ�1p�1
ðR̂þle2IÞ�1p ð29Þ

which is the LSMI beamformer with adaptive diagonal
loading factor. The expression (29) cannot be used practi-
cally since the optimal value of l has to be first found. The
numerical algorithms designed in [60] are particularly
based on finding l numerically, while the general SOC
programming is used in [59]. The complexity of both type
of methods is, however, the same and is comparable to
the matrix inversion as in SMI and LSMI beamformers.

2.11. Unified framework to MVDR RAB design

It is interesting to note now that the aforementioned
different MVDR RAB design principles, which use different
specific notions of robustness, can be all explained based
on the same design framework. Indeed, the signal cancel-
lation effect for the SMI beamformer occurs in the situation
when the desired signal steering vector is misinterpreted
with any of the interference steering vectors or their linear
combinations. Thus, if with incomplete and/or imperfect
prior information, a RAB technique is able to estimate the
desired signal steering vector so that the estimate does not
converge to any of the interferences and their linear
combinations, such technique is robust. Using this general
notion of robustness (versus specific notions of robustness
mentioned above to motivate each of the aforementioned
techniques), the unified framework to MVDR RAB design
can be formulated as follows. Use the standard SMI
beamformer (8) in tandem with the desired signal steering
vector estimation performed based on some possibly
incomplete and imperfect prior information [75]. The
differences between different MVDR RAB design principles
can be then shown to boil down to the differences in the
assumed prior information, the specific notions of robust-
ness, and the corresponding steering vector estimation
techniques used [75]. This unified framework to MVDR
RAB design can be used for developing other design
principles as we explain in what follows.

2.12. The MVDR RAB design principle based on outage

probability constrained optimization

The other MVDR RAB design principle is based on the
assumption that the mismatch vector d is random (versus the
deterministic norm-bounded as in the worst-case optimiza-
tion-based design). Then the problem has to be formulated in
probabilistic terms. Specifically, the probabilistically con-
strained RAB problem is formulated as [68]

min
w

wHR̂w s:t: Prf9wHa9Z1gZp0 ð30Þ

where Prf�g denotes probability and p0 is preselected prob-
ability value. In this case, the prior information is the
presumed steering vector p as before, but since the steering
vector mismatch is assumed to be random, the other prior
information is the distribution type and the distribution
covariance of d as well as the non-outage probability p0 for
the distortionless response constraint. In two cases when d is
Gaussian distributed and the distribution of d is unknown
and assumed to be the worst possible, it has been shown that
the problem (30) can be tightly approximated by the follow-
ing problem [68]:

min
w

wHR̂w s:t: ~eJQ 1=2
d wJrwHp�1 ð31Þ

where Q d is the covariance matrix of the random mismatch

vector d and ~e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnð1�p0Þ

p
if d is Gaussian distributed and

~e ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�p0

p
if the distribution of d is unknown. Thus, the

latter problem boils down mathematically to the same form
as the worst-case optimization-based RAB formulation and
can be considered as a part of the unified framework.
However, the prior information required by the MVDR RAB
design principle based on the outage probability constrained
optimization may be easier to obtain than that required by
the worst-case optimization-based one since it is typically
easier to estimate the statistics of the mismatch distribution
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reliably, while p0 has a clear physical meaning. The non-
outage probability is the specific notion of robustness used in
this approach.
2.13. RAB using multi-dimensional covariance fitting

principle

It has been observed in [70] that the refined estimate of
the desired signal steering vector obtained using the RAB
based on one-dimensional covariance fitting principle tends
towards the principal eigenvector of the sample covariance
matrix. This principal eigenvector, however, does not
entirely correspond to the desired signal, but rather is a
weighted sum of the steering vectors of all sources including
the interference sources. It results in the fact that the
application of the RAB based on one-dimensional covariance
fitting principle can lead to an erroneous estimate of the
desired signal steering vector in the presence of interferers.
Therefore, to reduce the detrimental effect of interferes on
the desired signal steering vector estimate, the RAB based
on one-dimensional covariance fitting principle has been
extended to the RAB based on multi-dimensional covariance
fitting in [70].

Assuming that the steering vectors of the desired source
and interfering sources are all linearly independent, the
RAB based on one-dimensional covariance fitting optimi-
zation problem (24) can be extended to the RAB based on
multi-dimensional covariance fitting by replacing (24)
with the following optimization problem [70]:

max
Â ,P̂ ,ŝ2

n

log detðÂP̂Â
H
þ ŝ2

nIÞ

s:t: R̂�ÂP̂Â
H
�ŝ2

nIk0

JðÂ� ~AÞelJrel 8l, P̂ � ILþ1k0 ð32Þ

where ~A9½ ~a, ~ai1
, . . . , ~a iL

� is the M � ðLþ1Þ matrix of the
source steering vector estimates, ~a il

is an estimate of the
steering vector of lth interference source, el is an estimated
upper bound on J ~a il

�ail
J, Â is the optimization variable

standing for the matrix of source steering vectors, P̂ is the
optimization variable standing for the ðLþ1Þ � ðLþ1Þ
source covariance matrix, ŝ2

n is the optimization variable
standing for the noise power, el is the unit column-vector
whose lth entry is equal to one and all other entries are
equal to zero, and � denotes the Schur–Hadamard
element-wise matrix product. The last constraint in (32)
ensures that the matrix P̂ is positive semi-definite and
diagonal. A multiple steering vector uncertainty sets are
used here, one per each steering vector, and they are
assumed to be sufficiently separated one from another so
that the columns of Â are pairwise linearly independent.
The optimization problem (32) is based on a maximum
volume inscribed ellipsoid approach, it is not convex, but
its approximate version can be efficiently solved [70].
Clearly the solution of an approximate version of (32)
contains refined estimates of the steering vectors of all
sources. The beamformer weight vector is computed sub-
sequently based on the MVDR expression, using the refined
estimate of the desired signal steering vector just as in the
RAB based on one-dimensional covariance fitting case.
In addition to the prior information used by the RAB
based on one-dimensional covariance fitting principle, the
RAB based on multi-dimensional covariance fitting exten-
sion uses information about the interferer steering vectors
to compute a refined estimate of the desired signal
steering vector. Thus, in fact, it requires more prior infor-
mation that goes against the general notion of robustness
mentioned above. Moreover, the desired signal, inter-
ferers, and noise components are assumed to be uncorre-
lated as well as the noise waveforms are assumed to have
the same power in all antenna elements for the RAB based
on one-dimensional covariance fitting principle. However,
the RAB based on multi-dimensional covariance fitting
principle outperforms the RAB based in one-dimensional
covariance fitting principle in the scenarios with large
sample size and, thus, is competitive in the scenarios
when it is applicable.

2.14. Eigenvalue beamforming using multi-rank MVDR

beamformer

Let the desired signal and interference steering vectors
lie in known signal subspaces and the rank of the signal
correlation matrix is known. For example, let us consider
the case when the interference and desired signals have
the same structure and are modeled as signals with a
rank-one covariance matrix from a p-dimensional sub-
space. The corresponding steering vector of the desired

and interference signals are all modeled as s¼Wb0s

where W is an M � p ðpoMÞ matrix whose columns are

orthogonal (WHW¼ Ip�p) and b0 is an unknown but fixed

vector over the snapshots. The matrix W is different for
each signal and is obtained by choosing p dominant

eigenvectors of the matrix
RfpþDf
fp�Df

dðyÞdH
ðyÞdy (here dðyÞ

is the steering vector associated with direction y and
having the structure defined by the antenna geometry) as

the columns of W where fp denotes the presumed

location of the source and Df is the phase shift that is
the same for all the signals. Then, the eigenvalue beam-
forming using multi-rank MVDR beamformer can be
efficient [71]. The multi-rank beamformer matrix is com-
puted as [71]

W¼ R̂
�1

WðWHR̂
�1

WÞ�1Q ð33Þ

where Q is a data dependent left-orthogonal matrix, i.e.,

Q HQ ¼ I. For example, for resolving a signal with a rank-
one covariance matrix, i.e., a point source, and an
unknown but fixed DOA, the columns of Q should be
selected as the dominant eigenvectors of the error covar-

iance matrix Re ¼ ðW
HR�1WÞ�1. If it is assumed that the

signal lies in a known subspace, but the DOA is unknown
and unfixed (randomly changes from snapshot to snap-
shot), it is the subdominant eigenvectors of the error
covariance matrix that should be used as the columns of
the matrix Q.

The prior information required for this beamforming is
the linear subspace in which the desired signal lies and
the rank of the desired signal covariance matrix. The main
disadvantages are that a very specific modeling of the
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covariance matrix is used and the signal subspace has to
be known.

2.15. The MVDR RAB design principle based on steering

vector estimation with the knowledge of the angular sector

According to this MVDR RAB design principle, the
estimate of the actual steering vector a is found so that
the beamformer output power is maximized while the

convergence of the estimate â to any interference steering
vector is prohibited [72]. This principle is also based on
and, in fact, motivated by the above explained unified
framework to the MVDR RAB design. The rationale behind
maximization of the beamformer output power is the
following. In the steering vector mismatched case, the

solution (8) can be written as a function of unknown d as

wðdÞ ¼ R̂
�1
ðpþdÞ. Using wðdÞ, the beamformer output

power can be also written as a function of the mismatch

d as

PðdÞ ¼
1

ðpþdÞHR̂
�1
ðpþdÞ

: ð34Þ

Thus, the estimate of d or, equivalently, the estimate of

a9pþd that maximizes (34) is the best estimate of the
actual steering vector a under the constraints that the

norm of â equals
ffiffiffiffiffi
M
p

and â does not converge to any of
the interference steering vectors. The latter is guaranteed
by requiring that

P?ðpþ d̂Þ ¼ P?â ¼ 0 ð35Þ

where P?9I�UUH , U9½u1,u2, . . . ,uT �, ul,l¼ 1, . . . ,T are the

T dominant eigenvectors of the matrix C9
R
YdðyÞdH

ðyÞ dy,

dðyÞ is the steering vector associated with direction y and
having the structure defined by the antenna geometry,
Y is the angular sector in which the desired source is

located, d̂ and â stand for the estimates of the steering
vector mismatch and the actual desired signal steering
vector, respectively. The optimization problem for finding

the estimate â can be written as [72]

min
â

â
H

R̂
�1

â

s:t: P?â ¼ 0, JâJ2
¼M

â
H ~CârpHCp ð36Þ

where ~C9
R
~YdðyÞdH

ðyÞ dy and the sector ~Y is the comple-

ment of the sector Y. The last constraint in (36) limits the

noise power collected in ~Y. The optimization problem
(36) is non-convex and, thus, it is modified in [72] so that

the orthogonal component of d could be estimated itera-

tively by solving a simpler convex problem. Here d is
decomposed to collinear and orthogonal components. The
corresponding solution technique is called the sequential
quadratic programming (SQP)-based RAB.

It is interesting, however, that the steering vector
estimation problem (36) can be expressed as a quadrati-
cally constrained quadratic programming (QCQP) pro-
blem that makes it possible to find a much simpler
solution than the SQP-based RAB of [72]. Let us first
find the set of vectors satisfying the constraint P?â ¼ 0.
Note that P?â ¼ 0 implies that â ¼UUHâ and, therefore,
we can write that â ¼Ub, where b is an L�1 complex
valued vector. Using the latter expression for â, the
optimization problem (36) for estimating the steering
vector can be equivalently rewritten in terms of b as [75]

min
b

bHUHR̂
�1

Ub

s:t: JbJ2
¼M

bHUH ~CUbrpH ~Cp ð37Þ

which is a QCQP problem.
It can be seen that the prior information used in this

MVDR RAB design principle is the presumed steering
vector and the angular sector Y in which the desired
source is located. Note that if the constraint (35) is
replaced by the constraint JdJre used in the worst-case
optimization-based MVDR RAB design principle, the con-
vergence to an interference steering vector will also be
avoided, but the design principle becomes equivalent to
that of the worst-case optimization-based MVDR RAB
design principle (see also [67]). Techniques obtained
based on this design principle can be further simplified
for more structured uncertainties, for example, when it is
known that the array is partially calibrated [73]. However,
the amount of prior information about the uncertainty
then increases. It brings us to the last design principle that
is motivated by the wish to use as little as possible prior
information, while still ensuring the robustness.

2.16. MVDR RAB design principle based on steering vector

estimation with as little as possible prior information

In essence, the robustness can be practically viewed as
an ability of adaptive beamformer to achieve acceptably
high output SINR despite imprecise and perhaps very
limited prior information. The following MVDR RAB
design principle aims at fulfilling such most general
notion of robustness. Assume that the desired source lies
in the known angular sector Y¼ ½ymin,ymax� that is dis-
tinguishable from general locations of the interfering
signals. The estimate â can be forced not to converge to
any vector with DOAs within the complement of
Y including the interference steering vectors and their
linear combinations by the means of the following con-
straint [75]:

â
H ~CârD0 ð38Þ

where D0 is a uniquely selected value for a given angular
sector Y, that is,

D09max
y2Y

dH
ðyÞ ~CdðyÞ: ð39Þ

It is worth stressing that no restrictions/assumptions on
the structure of the interferences are needed. Moreover,
the interferences do not need to have the same structure
as the desired signal.

In order to illustrate how the quadratic constraint (38)
works, let us consider a ULA of 10 omni-directional
antenna elements spaced half wavelength apart from
each other. Let the range of the desired signal angular
locations be Y¼ ½01, 101�. Fig. 1 depicts the values of the
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quadratic term dH
ðyÞ ~CdðyÞ for different angles. The rec-

tangular bar in the figure marks the directions within the
angular sector Y. It can be observed from this figure that
the term dH

ðyÞ ~CdðyÞ takes the smallest values within the
angular sector Y and increases outside of the sector.
Therefore, if D0 is selected to be equal to the maximum
value of the term dH

ðyÞ ~CdðyÞ within the angular sector Y,
the constraint (38) guarantees that the estimate of the
desired signal steering vector does not converge to any of
the interference steering vectors and their linear combi-
nations. The equality dH

ðyÞ ~CdðyÞ ¼D0 must occur at one of
the edges of Y. However, the value of the quadratic term
might be smaller than D0 at the other edge of Y. Therefore,
a possibly larger sector YaZY has to be defined, at which
the equality dðyÞH ~CdðyÞ ¼D0 holds at both edges.

Although for computing the matrix ~C, the presumed
knowledge of the antenna array geometry is used, an
inaccurate information about the antenna array geometry
is sufficient. It further stresses on the robustness of such
beamforming design principle to the imperfect prior
information [74]. Taking into account the desired signal
steering vector normalization constraint and the con-
straint (38), the problem of estimating the desired signal
steering vector based on the knowledge of the sector Y
can be formulated as the following optimization problem:

min
â

â
H

R̂
�1

â

s:t: JâJ2
¼M

â
H ~CârD0: ð40Þ

Compared to the other MVDR RAB design principles,
which require the knowledge of the presumed steering
vector and, thus, the knowledge of the presumed antenna
array geometry, propagation media, and source charac-
teristics, only imprecise knowledge of the antenna array
geometry and of the angular sector Y are needed for the
RAB (40).

Compared to the SQP-based beamformer, where the
constraint P?â ¼ 0 enforces the estimated steering vector
to be a linear combination of T dominant eigenvectors U,
the steering vector in (40) is not restricted by such linear
combination requirement, while the convergence to any
of the interference steering vectors and their linear
combinations is avoided by means of the constraint
(38). As a result, the beamformer (40) has more degrees
of freedom compared to the SQP-based beamformer.
Thus, it is expected that it outperforms the latter one.
Finally, due to the non-convex equality constraint, the
problem (40) is non-convex and NP-hard in general. The
efficient polynomial-time solution to this problem is
developed in [75] based on the semi-definite program-
ming relaxation theory [92–94].

In addition, the solution of the problem (37) leads to a
better performance for RAB compared to that of the other
techniques designed based on other principles, particu-
larly, the worst-case optimization-based and outage prob-
ability constrained MVDR RAB design principles. This
performance improvement is the result of forming the
beam toward a single corrected steering vector yielding
maximum output power, while the worst-case type of
methods maximize the output power for all steering
vectors in its uncertainty set. Thus, despite a significantly
more relaxed assumptions on the prior information, the
performance of the MVDR RAB design based on (40) is
expected to be superior to that of the other RAB techniques
designed according to other principles.
2.17. Comparison between MVDR RAB design principles

To compare a number of aforementioned MVDR RAB
design principles, the following example is considered.
A ULA of 10 omni-directional sensors with the inter-
element spacing of half wavelength is used. Additive
noise in antenna elements is modeled as spatially and
temporally independent complex Gaussian noise with
zero mean and unit variance. Two interfering sources
are assumed to impinge on the antenna array from the
directions 301 and 501, while the presumed direction
towards the desired signal is assumed to be 31. The INR
equals 30 dB and the desired signal is always present in
the training data that contain K¼30 samples. The desired
signal steering vector is distorted by local scattering effect
so that the actual steering vector is formed by five signal
paths as a¼ pþ

P4
i ¼ 1 ejci bðyiÞwhere p corresponds to the

direct path and bðyiÞ, i¼ 1,2,3,4 correspond to the coher-
ently scattered paths. The ith path bðyiÞ is modeled as a
plane wave impinging on the antenna array from the
direction yi. The angles yi, i¼ 1,2,3,4 are independently
drawn in each simulation run from a uniform random
generator with mean 31 and standard deviation 11. The
parameters ci, i¼ 1,2,3,4 represent path phases that are
independently and uniformly drawn from the interval
½0,2p� in each simulation run. Note that yi and ci, i¼

1,2,3,4 change from run to run but do not change from
snapshot to snapshot. Moreover, the antenna elements
are assumed to be displaced. The difference between the
presumed and actual positions of each antenna element is
modeled as a uniform random variable distributed in the
interval ½�0:05,0:05� measured in wavelength.
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The RAB of (40) is compared with the eigenspace-
based, the worst-case optimization-based, the SQP-based,
and the LSMI RAB techniques. For the beamformer (40)
and the SQP-based one, the angular sector of interest Y is
assumed to be Y¼ ½yp�51,ypþ51� where yp is the pre-
sumed DOA of the desired signal. The value d¼ 0:1 and 8
dominant eigenvectors of the matrix C are used in the
SQP-based beamformer and the value e¼ 0:3 M is used for
the worst-case optimization-based beamformer. The
dimension of the signal-plus-interference subspace is
assumed to be always estimated correctly for the
eigenspace-based beamformer. Diagonal loading factor
of the SMI beamformer is selected as twice the noise
power as recommended in [53].

Fig. 2 depicts the output SINR performance of the
aforementioned RAB techniques tested versus the SNR.
As it can be observed from the figure, the beamformer
(40) has a better performance even if there is an error in
the knowledge of the antenna array geometry.

3. Extensions to general-rank and broadband sources

3.1. General-rank signal model

In the case of general-rank desired signal, the desired
signal can no longer be presented as in (2). Then, the SINR
expression also changes as

SINR¼
wHRsw

wHRiþnw
ð41Þ

where Rs is the covariance matrix of the general-rank
source that is no longer a rank one matrix as in the case of
a point source. Typically, the desired signal is modeled as
a spatially distributed source with some central angle and
angular spread. The source covariance matrix is, therefore,
no longer a rank-one matrix and, for example, in the
incoherently scattered source case is given as [17]:

Rs ¼
R p=2
�p=2 rðyÞaðyÞa

HðyÞ dy, where rðyÞ is the normalized

angular power density (i.e.,
R p=2
�p=2 rðyÞ dy¼ 1). The name

‘general rank source’ is reflecting the fact that the desired
signal covariance matrix can have any rank from 1 in a
degenerate case to M.
3.2. Adaptive beamforming for general-rank source

In the case of general-rank source, the SINR expression
(41) is the one that has to be used. The corresponding
MVDR-type optimization problem can be then formulated as

min
w

wHRiþnw s:t: wHRsw¼ 1: ð42Þ

The solution of the optimization problem (42) is well
known to be given by the following generalized eigenvalue
problem:

Riþnw¼ lRsw ð43Þ

where l is a generalized eigenvalue. Then the solution is
the generalized eigenvector corresponding to the smallest
generalized eigenvalue of the matrix pencil fRiþn,Rsg.

Multiplying (43) by R�1
iþn, this equation can be rewritten

as R�1
iþnRsw¼ ð1=lÞw, which is the characteristic equation

of the matrix R�1
iþnRs. The minimum generalized eigenva-

lue lmin in (43) corresponds to the maximum eigenvalue

1=lmin in the characteristic equation R�1
iþnRsw¼ ð1=lÞw.

Then the optimum beamforming vector can be written as

wopt ¼PfR�1
iþnRsg ð44Þ

where Pf�g denotes the operator that computes the princi-
pal eigenvector of a matrix. The solution (44) is of a limited
practical use because in most applications, the matrix Rs is
unknown, and often no reasonable estimate of it is avail-
able. However, if the estimate of Rs is available as well as
the estimate of Riþn, (44) provides a simple solution to the
adaptive beamforming problem for the general-rank
source. The solution of (42) can be equivalently found as
the solution of the characteristic equation for the matrix

R�1
s Riþn, that is, R�1

s Riþnw¼ lw, if the matrix Rs is full-

rank invertible. In practice, however, the rank of the
desired source can be smaller than the number of sensors
in the antenna array and the source covariance matrix Rs

may not be invertible, while the matrix Riþn is guaranteed
to be invertible due to the presence of the noise compo-
nent. Therefore, the solution (44) is always preferred
practically.

3.3. RAB for general-rank source

RAB techniques for general-rank signal model address
the situation when the desired signal covariance matrix
Rs is not known precisely as well as the sample estimate
of the data covariance matrix (7) is inaccurate because of
small sample size.

In order to provide robustness against the norm-
bounded mismatches JD1JrE and JD2Jrg (where E and
g are some preselected bounds) in the desired signal and
data sample covariance matrices, respectively, the worst-
case optimization-based MVDR RAB design principle has
been extended and the following solution has been
derived [61,76]:

w¼PfðR̂þgIÞ�1
ðRs�EIÞg: ð45Þ

Although it is a simple closed-form solution, it is overly
conservative due to the fact that the negatively diagonally
loaded signal covariance matrix can be indefinite. A less
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conservative RAB problem formulation, which enforces
the matrix RsþD1 to be positive semi-definite has been
considered in [77]. Defining Rs ¼Q HQ , which is, for
example, the Cholesky decomposition, the corresponding
RAB problem for a norm bounded-mismatch JDJrZ
(where Z is some bound value found based on the bound
value E) to the matrix Q is given as [77]

min
w

max
JD2Jrg

wHðR̂þD2Þw

s:t: min
JDJrZ

wHðQþDÞHðQþDÞwZ1: ð46Þ

If the mismatch of the signal covariance matrix is small
enough, the optimization problem (46) can be equiva-
lently recast as

min
w

wHðR̂þgIÞw

s:t: JQwJ�ZJwJZ1: ð47Þ

Due to the non-convex (difference-of-convex functions)
constraint, the problem (47) is non-convex. Although the
difference-of-convex functions (DC) programming pro-
blems are believed to be NP-hard in general, the problem
(47) is shown to have very efficient polynomial-time
solution [78,79] by applying the polynomial-time DC
(POTDC) method [95].

3.4. Broadband signal model

In the broadband case, the desired signal and/or the
interference signals is widely spread in the frequency
domain. As a result, it is not possible to factorize the
processing in temporal and spatial parts. Therefore, joint
space-time adaptive processing (STAP) has to be performed.

Let the number of taps in the time domain be denoted
as P. Let also the M array sensors be uniformly spaced

with the inter-element spacing less than or equal to c=2f u,

where f u ¼ f cþBs=2 is the maximum frequency of the
desired signal/maximum passband frequency, fc is the
carrier frequency, Bs is the signal bandwidth, and c is the
wave propagation speed. The received signal at the ith
sensor goes to a broadband presteering delay filter with
the delay Di. Let the output of the broadband presteering
delay filter be sampled with the sampling frequency

f s ¼ 1=t where t is the sampling time and fs is greater
than or equal to 2fu. Then the MP�1 stacked snapshot
vector containing P delayed presteered data vectors is the
data vector x (k). The beamformer output y (k) is then

given as: yðkÞ ¼wT xðkÞ where w is the real-valued MP�1
beamformer weight vector, i.e., wMðp�1Þþm ¼wm,p. The

above described modeling is shown schematically in
Fig. 3.

In the broadband case, the steering vector also

depends on frequency and is given as aðf ,yÞ ¼
½ej2pfz1sinðyÞ=c , . . . ,ej2pfzM sinðyÞ=c�T where zi is the ith sensor
location. The overall MP�1 steering vector can be

expressed as aðf ,yÞ ¼ dðf Þ � ðBðf Þaðf ,yÞÞ, where dðf Þ9½1,

e�j2pft, . . . ,e�j2pf ðP�1Þt�T , Bðf Þ9diagfe�j2pfD1 , . . . ,e�j2pfDM g,
and � denotes the Kronecker product. Then the array
response to a plane wave with the frequency f and angle

of arrival y is Hðf ,yÞ ¼wT aðf ,yÞ.
The presteering delays are selected so that the desired
signal arriving from the look direction y0 appears coher-
ently at the output of the M presteering filters so that [3]

Bðf Þaðf ,y0Þ ¼ 1M ð48Þ

where 1M is the M�1 vector containing all ones. Then the
steering vector towards the look direction y0 becomes

aðf ,y0Þ ¼ dðf Þ � 1M ð49Þ

and the array response towards such signal becomes

Hðf ,y0Þ ¼wT aðf ,y0Þ ¼wT C0dðf Þ ð50Þ

where C09IP � 1M .

3.5. Broadband beamforming

One popular approach to broadband beamforming is to
decompose the baseband waveforms into narrowband
frequency components by means of fast Fourier transform
(FFT) [81,96]. Subsequently, the subbands can be pro-
cessed independently from each other using narrowband
beamforming techniques as it is shown in Fig. 4. Then any
of the above discussed adaptive beamforming methods
can be used to solve each narrowband beamforming
problem. Thus, P adaptive beamforming problems, each
for the beamforming vector of length M, are needed to be
solved. The time-domain beamformer output samples are
obtained by applying an inverse FFT (IFFT) of the output
samples of the individual narrowband beamformers.
However, such FFT-based broadband beamforming tech-
nique is non-optimum, since correlations between the
frequency domain snapshot vectors of different subbands
are not taken into account. Although these correlations
can be reduced by increasing the FFT length, the latter
requires a larger training data set [96].

Based on the broadband data and beamforming mod-
els, another approach to broadband beamforming that
does not require subband decomposition exists [3]. The
block scheme of such adaptive beamformer is shown in
Fig. 3. This beamformer uses a presteering delay front-end
consisting of presteering delay filters to time-align the
desired signal components in different sensors. Then the
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Fig. 4. Subband processing scheme for broadband adaptive beamforming.
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presteering delays are followed by finite impulse response
(FIR) filters, each of length P. The beamformer output is
then the sum of the filtered waveforms. The weights of
such spatial-temporal filter for the broadband MVDR
beamformer are designed to minimize the output power
subject to the distortionless response constraint for the
desired signal. Multiple mainbeam constraints are required
to protect the desired signal in the frequency band of
interest. The distortionless response constraint is formu-
lated for the steering vector (49) after the desired signal
components in different sensors are made identical at the
presteering stage. Then the narrowband adaptive beam-
forming algorithms can be extended relatively straightfor-
wardly for the STAP shown in Fig. 3. Moreover, the GSC
design principle can be straightforwardly used [3].
3.6. Broadband RAB

In the broadband case (see Fig. 3), the desired signal
components at different frequencies are typically not
perfectly phased-aligned by the presteering delays
because of multiple practical imperfections. The reasons
for imperfections are accentually the same as in the
narrowband case with an addition of more error sources
such as the presteering delay quantization effects. There-
fore, there are errors that can be modeled in terms of the
phase error vector dðf Þ that is the function of the
frequency f. Then the actual components of the desired
signal arriving from DOA ys after the presteering delay
filter are [80]

Bðf Þaðf ,ysÞ ¼ ejpfB1Mþdðf Þ 8f 2 ½f l, f u� ð51Þ

instead of (48) in the case of no mismatch. Here B is a
common time delay at each of the M sensors and fl is the
minimum frequency of the desired signal.

Defining the mismatch set that contains all possible
phase error vectors at the frequency f as Aeðf Þ9fdðf Þ 2
CM9Jdðf ÞJreðf Þg, the broadband RAB problem can be
written as

min
dðf Þ2Aeðf Þ

9Hðf ,ysÞ9Z1 8 f 2 ½f l,f u�: ð52Þ
Using (50) and (51), the array response towards DOA ys

can be written as [80]

Hðf ,ysÞ ¼ ejpfBwT C0dðf ÞþwT Q ðf Þdðf Þ ð53Þ

where Q ðf Þ9dðf Þ � IM is MP�M matrix.
Using the triangular and then Cauchy–Schwarz

inequalities, the magnitude of the lower bound for the
array responde (53) can be found as

9Hðf ,ysÞ9¼ 9ejpfBwT C0dðf ÞþwT Q ðf Þdðf Þ9

Z9wT C0dðf Þ9�9wT Q ðf Þdðf Þ9

Z9wT C0dðf Þ9�eðf ÞJQ T
ðf ÞwJ: ð54Þ

Finally, using the lower bound (54) for the constraint
9Hðf ,ysÞ9Z1 in (52) and imposing a linear phase con-
straint on each of the M FIR filters of the array processor,
Fig. 3, the optimization problem (52) can be reformulated
as the following worst-case robust MVDR optimization
problem:

min
w

wT Rw

s:t: 9wT C0dðf Þ9�eðf ÞJQ T
ðf ÞwJZ1, f 2 ½f l, f u�

wm,l ¼wm,P�lþ1 8m 2 ZM
1 , l 2 ZPc�1

1 ð55Þ

where R is the covariance matrix of the stacked snapshot
vectors, Pc ¼ ðPþ1Þ=2, and Zj

i denotes the ring of integers
from i to j. The last constraint in the optimization problem
(55) ensures the linear phase at each of the M FIR filters
and it provides additional robustness against presteering
errors [80]. The problem (55) is non-convex, but it can be
reformulated as a convex problem that can be solved
efficiently [80]. The disadvantage is, however, that the
constraint on the magnitude of the array response is
strengthened by using the triangular and Cauchy–
Schwarz inequalities (see (54)). More sophisticated broad-
band RAB designs can be found, for example, in [83].

4. Conclusion

The basic principles of MVDR RAB design have been
summarized based on the example of narrowband point
source. The extensions of some design principles to
general-rank and broadband desired signal have also been
given. Many (other than summarized in this tutorial)
more particular MVDR RAB techniques which use more
specific notions of robustness and are based on more
specific assumptions on the available prior information
have been designed based on the revised MVDR RAB
design principles. The area of RAB remains to be an
exciting field of research and this tutorial is anticipated
to be constructive for further developments in the field.
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