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Adaptive Beamforming for Passive Sonar
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Andreas Jakobsson, Senior Member, IEEE, and Les Hart

Abstract

Recent work has highlighted the potential benefits of exploiting ellipsoidal uncertainty set based robust Capon
beamformer (RCB) techniques in passive sonar. Regrettably, the computational complexity of forming RCB weights
is cubic in the number of adaptive degrees of freedom, which is often prohibitive in practice. For this reason, several
low-complexity techniques for computing RCB weights, or equivalent worst-case robust adaptive beamformer
(WC-RAB) weights, have recently been developed, whose complexities are only quadratic in the number of adaptive
degrees of freedom. In this work, we review several such techniques for passive sonar, evaluating them initially on
simulated data. The best performing methods are then evaluated on in-water recorded passive sonar data.

Index Terms

Efficient robust adaptive beamforming, robust Capon beamforming, worst-case robust adaptive beamforming,
robust adaptive beamforming, underwater acoustics.

I. INTRODUCTION

In this work, we are interested in examining techniques for efficiently computing ellipsoidal uncertainty
set based robust Capon beamformer (RCB) weights, or equivalent worst-case robust adaptive beamformer
(WC-RAB) weights, for the purposes of implementing recent RCB-based passive sonar beamformers with
low computational complexity.

As is well known, an adaptive beamformer can outperform a conventional delay-and-sum beamformer
providing that it a) is robust to array steering vector errors, b) can converge sufficiently on the, often
limited, data available, and c) is low enough complexity to be implementable on the, typically limited,
computational resources that are available [1], [2]. The model of the signal-of-interest spatial signature, or
array steering vector, that is used by a beamformer is usually derived under plane-wave assumptions, as a
set of complex phase delays, and is subject to several sources of error. These include calibration errors, due
to sensor gain/phase errors, mutual coupling effects and sensor position errors, pointing errors, caused by
differences in the assumed angle-of-arrival and the true one, and deviations from plane wave assumptions,
e.g., caused by inhomogeneity in the ocean and/or multipath propagation. If not properly dealt with, these
errors lead to cancellation of the desired signal and a consequent loss of array output signal to noise
ratio [3]. A wealth of robust adaptive techniques have been proposed to deal with steering vector errors,
including using extra linear constraints [4]–[8], diagonal loading [9], white noise gain or weight norm
constraints [10], and more recently ellipsoidal uncertainty set based robust Capon beamforming [2], [11],
[12] or, equivalently, worst-case robust adaptive beamforming (WC-RAB) [13], [14]. The main practical
drawback with many robust adaptive algorithms is that the user is a required to select a parameter that
is not directly related to the steering vector uncertainty, making the parameter choice difficult and often
ad hoc. For instance, it is unclear how to choose a white noise gain constraint, which is a constraint
on the norm of the weights, based on the array steering vector uncertainty [15]. The main benefit of the
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RCB-type techniques, which are the focus of this work, is that their constraint is the ellipsoidal uncertainty
set of the array steering vector, which can be defined in a systematic manner to allow for mismatch in
passive sonar applications [16]–[19]. We remark that the benefits of using a narrowband robust Capon
beamformer (NBRCB) over the commonly used white noise gain constrained MVDR beamformer, with
or without extra linear constraints, were shown in [16] for passive sonar.

To provide sufficient sensitivity, passive sonar arrays are typically large and contain many sensors and
therefore, if independent adaptive weights were calculated for each sensor, would require a large number
of independent snapshots for good covariance matrix estimation. However, passive sonars often operate
in highly dynamic environments [20], which limits the amount of stationary data available for covariance
matrix estimation, leading to a snapshot deficient situation. Since covariance matrix estimation error can
be viewed as a type of array steering vector error [21], many of the robust adaptive techniques that
are used to deal with array steering vector errors, including robust Capon beamforming, can also, up to
a point, alleviate the effects of snapshot deficiency. Other notable approaches, which can be combined
with robust Capon beamforming, when needed, include using reduced-dimension techniques, such as
beamspace [22] or sub-array [23]–[26] preprocessing, eigenvalue [27] and Krylov methods [28], [29],
dominant mode rejection [27], [30], [31], null broadening [32], and wideband integration techniques [19].
For instance in [18], [33], a framework for combining any reduced-dimension technique with robust
Capon beamforming was derived for producing reduced-dimension RCBs (RDRCBs), whereas in [19],
the wideband nature of sonar signals was exploited to speed-up algorithm convergence and reduce
computational complexity, by using the steered covariance matrix method with the RCB to form wideband
RCBs (WBRCBs).

At the core of the NBRCB, WBRCB, and RDRCB algorithms is an RCB algorithm that computes
RCB weights by solving an RCB optimization problem using the Lagrange multiplier method outlined
in [2], [11], [12] via eigenvalue decomposition (EVD) of the sample covariance matrix, which we term
RCB-EVD. Due to the required eigenvalue decomposition, RCB-EVD is O(M3) complexity, where M
denotes the number of adaptive degrees of freedom, which is often computationally prohibitive in practice.
To alleviate this problem, the aim of this work is to examine recent low complexity techniques for
computing RCB weights efficiently1. As shown in [34], the WC-RAB and RCB weights are equivalent2,
even though their optimization problems are formulated quite differently. Therefore, we examine recent
efficient implementations, whose complexities are only quadratic in M , that start from either the WC-RAB
or the RCB formulation. Those that start from a WC-RAB formulation are the (second-order) constrained
Kalman filter implementation of the WC-RAB [36], which we term WC-KF and re-writes the WC-RAB
optimization as a minimum mean-squared error problem that can be solved using Kalman filtering tech-
niques, and a modified version of the iterative gradient-based implementation of the WC-RAB [37], which
we term WC-IG and solves the WC-RAB optimization problem iteratively using gradient-based methods.
We examine three methods that solve the RCB optimization. Two of these use steepest descent methods,
with one exploiting variable diagonal loading [38], which we term RCB-VDL-SD, and the other exploiting
scaled projections [39], which we term RCB-SP-SD. The third, which we term the Krylov-RDRCB,
solves the RCB problem by first projecting the data onto a reduced-rank Krylov-subspace and then
solving a reduced-dimension RCB problem [29]. For quick reference, we refer the reader to Table II,
which summarizes the complexity of the five efficient algorithms and the eigenvalue decomposition based

1In [34], it was suggested that a recursive eigenvalue decomposition (EVD) approach could be used to implement the RCB. Although such
schemes may be acceptable when only adding snapshots to the sample covariance matrix, they often become unstable and more expensive
when simultaneous addition and deletion of snapshots are required, as is the case for passive sonar. Further, due to the overheads involved,
these techniques are only beneficial when M is sufficiently large, which is typically not the case in passive sonar applications.

2Due to the equivalence of the RCB and WC-RAB weights, one could instead consider implementations based on the WC-RAB [13],
[14], [35], which can be formulated as a convex second-order cone program and solved using the interior-point method in ρO(M3)
complexity [13], where ρ is the number of required iterations (typically less than 10), or solved using the Lagrange multiplier method in
O(M3) complexity [14], [35]. However, as was shown in [12], the RCB weights are simpler to compute and the RCB method provides a
means for addressing the scaling ambiguity issue occurring in WC-RABs. For this reason, several of our previous works have focused on
RCB based beamforming [16]–[19].
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RCB-EVD. Initially, we compare and contrast these efficient algorithms using simulated passive sonar
data and then select the most promising algorithms to implement the RCB-based NBRCB algorithm used
in [16], [19]. These efficient implementations are evaluated on in-water recorded experimental data and
compared with the original RCB-EVD based implementation. We note that these techniques could equally
well be used to implement other RCB-based algorithms such as the WBRCBs or RDRCBs.

The remainder of this paper is organized as follows: In Section II, we briefly review the data model, the
NBRCB approach, the uncertainty set design, and the RCB and WC-RAB formulations. In Sections III–
VII, we summarize the efficient algorithms, before examining their complexities in Section VIII. In
Sections IX and X, we evaluate the efficient algorithms on simulated and experimental in water passive
sonar data, respectively. In the following, E {·}, (·)T , (·)H , (·)−1, and (·)† denote the expectation, transpose,
Hermitian transpose, inverse, and Moore-Penrose pseudo-inverse operators, respectively. Furthermore, ‖·‖2

denotes the two-norm. Moreover, X ≥ 0 (X > 0) implies that the Hermitian matrix X is positive semi-
definite (positive definite). Part of this work was presented at UDT 2014 [40].

II. DATA MODEL AND UNCERTAINTY SET BASED ROBUST ADAPTIVE BEAMFORMING

To apply narrowband beamforming methods to wideband sonar signals, the time-series sensor data are
Fourier transformed, using the fast Fourier transform (FFT), to a frequency resolution, Bw, satisfying

Bw <
1

10Ttransit
(1)

where Ttransit denotes the transit time across the array, so that the signals in each FFT bin can be assumed
to be narrowband. The kth snapshot from FFT bin with center frequency f can be modeled as (see,
e.g., [19])

xk,f
4
=

[
x1,k(f) . . . xM,k(f)

]T
= a0(f,θ0)s0,k(f) + nk,f (2)

where xm,k(f) and s0,k(f) are the kth Fourier coefficients associated with the mth sensor and signal-of-
interest (SOI) waveform, respectively, nk,f is a zero-mean complex Gaussian noise vector, uncorrelated
with the SOI and defined similarly to xk,f , and a0(f,θ0) is the true SOI array steering vector (ASV) at
center frequency f . For a source at θ, the ASV can be modeled as

a(f,θ)
4
=
[
e−i2πfτ1(θ) . . . e−i2πfτM (θ)

]T
, (3)

where τm(θ) is the propagation delay to the mth sensor, relative to some reference point, for a signal
impinging from a location described by θ. The cross-spectral density matrix (CSDM) at frequency f is
given by

Rf
4
= E

{
xk,fx

H
k,f

}
= σ2

0,fa0(f,θ0)aH0 (f,θ0) + Qf (4)

where σ2
0,f = E

{
|s0,k(f)|2

}
is the desired signal power at frequency f and Qf = E

{
nk,fn

H
k,f

}
is the

noise-plus-interference covariance. In practice, the true CSDM is not available, and Rf is replaced by the
sample CSDM estimate

R̂f =
1

K

K∑
k=1

xk,fx
H
k,f (5)

In the following, we will specify the different algorithms assuming Rf , but note that in practice they
will be implemented using R̂f .
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A. The Narrowband Robust Capon Beamformer (NBRCB)
For the bth beam, with an assumed steer direction of θ̄b, and center frequency f the NBRCB is obtained

from maxσ2,a σ2 s.t. Rf − σ2aaH ≥ 0, a ∈ EM(āθ̄b,f ,Eθ̄b,f ), which can be reduced to [11], [12]

min
a

aHR−1
f a s.t. a ∈ EM(āθ̄b,f ,Eθ̄b,f ) (6)

where EM(āθ̄b,f ,Eθ̄b,f ) denotes the uncertainty ellipsoid for the bth beam and the frequency bin with
center frequency f . The ellipsoid is parameterized by its center āθ̄b,f , which often represents the assumed
ASV, and by its principal semi-axes, described by the unit-norm left singular vectors of E

−1/2

θ̄b,f
scaled by

the corresponding singular values, where Eθ̄b,f ≥ 0 ∈ CM×M , and can be written as EM(āθ̄b,f ,Eθ̄b,f ) ={
a
∣∣ [a− āθ̄b,f ]

HEθ̄b,f [a− āθ̄b,f ] ≤ 1
}

. If Eθ̄b,f = ε−1
θ̄b,f

I, the ellipsoid reduces to a spherical uncertainty

set
∥∥a− āθ̄b,f

∥∥2

2
≤ εθ̄b,f with radius √εθ̄b,f . The uncertainty sets must be specified for each beam and FFT

bin (see, e.g., [2], [14], [16], [17], [19], [41] for ellipsoidal uncertainty set design techniques). Denoting
the solution to (6) â0,θ̄b,f (see also [2], [11], [12]), to overcome the scaling ambiguity, the ASV is scaled
so that its Euclidean length squared equals M , forming

ˆ̂a0,θ̄b,f =
√
M â0,θ̄b,f/

∥∥â0,θ̄b,f

∥∥
2

(7)

Then, the NBRCB power and weight estimates are given by σ̂2
0,θ̄b,f

= 1
ˆ̂aH

0,θ̄b,f
R−1

f
ˆ̂a0,θ̄b,f

and wθ̄b,f,NBRCB =

R−1
f

ˆ̂a0,θ̄b,f

ˆ̂aH
0,θ̄b,f

R−1
f

ˆ̂a0,θ̄b,f

, where the weights can be used to filter the data in the frequency bin with center frequency

f , xk,f .

B. Uncertainty Set Design
We now describe the approach outlined in [16], [17] for designing a spherical ASV uncertainty set

for the bth beam and for the frequency bin with center frequency f , assuming azimuth and elevation
angle steering, so that θ = [θ, φ]T , where θ and φ denote azimuth and elevation. For the bth beam, we
assume that the possible SOI angle-of-arrival (AOA) angles belong to a rectangle in azimuth/elevation
space that is described by azimuth and elevation angles in the ranges [θ̄b − 0.5∆Az, θ̄b + 0.5∆Az] and
[φ̄b − 0.5∆El, φ̄b + 0.5∆El]. The uncertainty set is derived from NAzNEl equally spaced samples of the
array response over this rectangle. It is assumed that NAz and NEl are large enough to give a sufficiently
dense sampling of the rectangle in azimuth angle and elevation angle, respectively. We find the smallest
possible spherical uncertainty set [15]–[17] so that

εθ̄b,f = sup
k,j

∥∥∥∥∥∥a(f, θk, φj)

(
a(f, θk, φj)

H āθ̄b,f

āH
θ̄b,f

a(f, θk, φj)

)1/2

− āθ̄b,f

∥∥∥∥∥∥
2

2

, (8)

for k = 1, . . . , NAz and j = 1, . . . , NEl, where a(f, θk, φj) [c.f. (3)] is calculated from the delays of a
plane-wave signal with frequency f impinging on the array from azimuth θk and elevation φj , with θk =

θ̄b +
(

k−1
NAz−1

− 1
2

)
∆Az and φj = φ̄b +

(
j−1
NEl−1

− 1
2

)
∆El. The sphere center is given by āθ̄b,f = a(f, θ̄b, φ̄b).

So far, these sets have been designed assuming only AOA errors. As shown in [16], the uncertainty
sets need to be large enough to allow for the effects of covariance matrix estimation errors, which can be
interpreted as additional ASV errors (see, e.g. [21]), and for calibration errors. To allow for these other
errors, we impose a minimum value on the size of the uncertainty sets. As shown in [17], and as was also
done in [16], we can use ASV estimates obtained using the RCB itself on strong sources of opportunity
to determine the calibration errors and set a minimum value for allowing for these types of error. As was
shown in [16], one can use simulations with the sample covariance matrices to determine the minimum
sphere radius to cope with covariance matrix estimation errors. Note how one can systematically look at
each of the errors and include this information in the uncertainty sets in a non ad hoc manner.
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C. Robust Capon Beamformer (RCB) Optimization
At the core of the NBRCB (and WBRCB and RDRCB) is an RCB optimization (6) . Without loss of

generality, we consider spherical uncertainty, which gives [11], [12]

min
a

aHR−1a s.t. ‖a− ā‖2
2 = ε, (9)

where, for notational simplicity, we have dropped the dependence on frequency and beam. The associated
Lagrangian function is given by

L(λ, a) = aHR−1a + λ
(
‖a− ā‖2

2 − ε
)
, (10)

where λ denotes a real-valued Lagrange multiplier. As shown in [2], [11], [12], (10) can be solved exactly
for a and λ via eigenvalue decomposition. We term the resulting O(M3) algorithm the RCB eigenvalue
decomposition (RCB-EVD) algorithm. The RCB weight vector is given by

wRCB =
R−1â

âHR−1â
, (11)

where â is the solution to (9).

D. WC Robust Adaptive Beamformer (WC-RAB) Optimization
In [13], the worst-case robust adaptive beamformer (WC-RAB) problem, under spherical uncertainty,

is formulated as
min

w
wHRw s.t.

∣∣wHa
∣∣ ≥ 1 ∀ a

∣∣‖a− ā‖2
2 ≤ ε (12)

where the constraints ensure that the distortionless constraint is maintained for the worst-case steering
vector contained in the set, i.e., for the steering vector a such that

∣∣wHa
∣∣ has the smallest value. After

some manipulation, (12), which contains an infinite number of non-linear and non-convex constraints, can
be re-written equivalently as [13]

min
w

wHRw s.t. wH ā = 1 +
√
ε ‖w‖2 (13)

providing that
∣∣wH ā

∣∣ > √ε ‖w‖2. The weights that solve (13), here termed the WC-RAB weights, have
been shown to be equivalent to the RCB weights in (11) [12]. Thus, in the following sections, we examine
efficient implementations of both the RCB and the WC-RAB.

III. WORST-CASE ROBUST ADAPTIVE BEAMFORMER USING ITERATIVE GRADIENT MINIMIZATION
(WC-IG)

Here, we present a modified version of the iterative gradient (IG) minimization based approach proposed
in [37], fixing an issue with the Lagrange multiplier evaluation in the original algorithm and also providing
an ad hoc fix to the weight normalization problem. The Lagrange function for (13) can be written as

J(w, λ) = wHRw − λ
(
wH ā− 1−

√
ε ‖w‖2

)
(14)

where λ denotes the Lagrange multiplier. Instead of solving (14) analytically for w and λ, which would
require at least an O(M3) complexity for eigenvalue decomposition [2], [14], [37], a numerical iterative
gradient (IG) minimization scheme is used to update the weight vector as

wk+1 = wk − µkδk (15)

where, for the kth snapshot, µk and δk denote the step-size parameter and the gradient vector of (14),
respectively, with

δk = Rkwk − λ
(

ā−
√
ε

wk

‖wk‖2

)
(16)
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Substituting (16) into (15) yields

wk+1 = wk − µkRkwk + µkλ

(
ā−
√
ε

wk

‖wk‖2

)
4
= ŵk+1 + µkλpk (17)

with

ŵk+1 = wk − µkRkwk (18)

pk = ā−
√
ε

wk

‖wk‖2

(19)

where ŵk+1 solves the unconstrained minimization. The optimum step-size is given by [37]

µopt,k = α
wH
k R2

kwk

wH
k R3

kwk

(20)

where 0 < α < 1 is added to improve the numerical stability of the algorithm. If ŵk+1 in (18) satisfies
the constraint in (13), the weights are accepted and one sets wk+1 = ŵk+1; otherwise, (17) is substituted
into the following inequality constraint to estimate the Lagrange multiplier yielding

Re
{

[ŵk+1 + µkλpk]
H ā
}
≥
√
ε ‖ŵk+1 + µkλpk‖2 + 1 (21)

Rearranging (21), squaring both sides and noting that the inequality can be replaced by equality, yields([
Re
{
ŵH
k+1ā

}
− 1
]

+ λµkRe
{
pHk ā

})2

= ε ‖ŵk+1 + λµkpk‖2
2

which can be expressed as
aλ2 + bλ+ c = 0, (22)

where

a = µ2
k

[(
Re
{
pHk ā

})2 − ε ‖pk‖2
2

]
(23)

b = 2µk

[
XRe

{
pHk ā

}
− εRe

{
ŵH
k+1pk

}]
(24)

c = X 2 − ε ‖ŵk+1‖2
2 (25)

with X = Re
{
ŵH
k+1ā

}
− 1. Using the quadratic formula, the Lagrange multiplier is given by

λ =
−b±

√
b2 − 4ac

2a
(26)

In the original derivation in [37], it was assumed that c < 0 on the basis that the Lagrange multiplier
is only estimated if X <

√
ε ‖ŵk+1‖2; however, this is only true if X is non-negative which it may not

be. Thus, we include additional solutions for the cases of c = 0 and c > 0. Also, we disagree with the
solutions given in [37] for the c < 0 case and therefore, give alternative solutions for this case. Further,
we remark that λ is a real constant, and therefore, b2 − 4ac ≥ 0. We treat the cases of b2 − 4ac > 0 and
b2 − 4ac = 0 separately. Table I summarizes the signs of the roots under the various different conditions
on a, b and c. When b2 > 4ac, there are two distinct roots. If there is a negative and a positive root, the
positive root is selected to ensure positive definiteness of the loaded covariance matrix. When there are
two positive roots, the smallest root is selected to guarantee algorithm stability. Since λ is a Lagrange
multiplier, it should satisfy λ ≥ 0, however, we do sometimes find that we get two negative roots due
to numerical issues. In such cases, we select the largest (or least negative) root and either reduce the
uncertainty sphere radius or α in (20) until we stop getting two negative roots; we stress that we do not
force the negative roots to be zero. When c = 0, there will always be one zero root. If there is zero root
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Algorithm 1 The WC-IG algorithm

1: Update the sample covariance matrix R̂.
2: Compute µopt,k using (20).
3: Update the unconstrained MV weight vector (18).
4: if X <

√
ε ‖ŵk+1‖2 then

5: Compute λ using (26) and update weights as wk+1 = ŵk+1 + µkλpk
6: else
7: Set wk+1 = ŵk+1.
8: end if
9: Rescale wk+1 using (29) prior to filtering the data.

and a negative root, we select the zero root. If there is a zero root and a positive root, we select the
positive root. We remark that when b2 = 4ac, the two roots are identical. The solution λ is inserted into
(17) to form wk+1.

An important consideration in passive sonar is appropriate normalization of the weights, not only for
accurate power estimation, which is well understood, but also for, e.g., time-series analysis of beam
data when several weight updates have been applied over the duration of the time-series to be analyzed.
If weight normalization is not consistent, so that the response of the weights to the signal ASV varies
significantly at each weight update, the segments of the time series will have varying magnitudes or power
due to this, which would then affect, e.g., spectral analysis. In the RCB-based algorithms, this issue can
be addressed as one can access and re-scale the estimated ASV in a consistent manner such as in (7). This
was not considered in the original WC-based algorithms, however, in [12], it was suggested that given
the optimal worst-case weights w0, the scaling ambiguity could be resolved by obtaining an estimate of
the ASV using

a0 =
Rw0

wH
0 Rw0

(27)

Replacing the above quantities with their estimates, the worst-case weights could then be scaled as

ˆ̂w0 = ŵ0‖â0‖2/
√
M. (28)

Later, in Section IX, we show why this in not necessarily a good fix in practice. Here, we propose an
alternative ad hoc scaling of the weights. Note that ā is contained within the uncertainty ellipsoid and so
wH ā ≥ 1, that is, the worst-case beamformer will not steer a null towards ā and therefore, we expect
that the beampattern will not vary drastically between the true ASV and the assumed ASV. Thus, we
constrain the weights so that the response to ā is unity, forming

ˆ̂w = ŵ
ei∠ŵH ā

|ŵH ā|
. (29)

After initializing with R0 = I, w0 = ā, and α = 1, the WC-IG algorithm iterates the steps given in
Algorithm 1. The first step requires 2M2 operations, the second 2M2 + 2M , and the third M . Finally, the
remaining steps require 7M operations. We term the resulting algorithm the gradient minimization based
WC-RAB (WC-IG), which has O(4M2 + 10M) complexity.

IV. WORST-CASE ROBUST ADAPTIVE BEAMFORMER USING KALMAN FILTERING (WC-KF)
The WC-RAB problem (13) can be written as

min
w

MSE s.t. h2(w) = 1 (30)
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TABLE I
SIGNS OF ROOTS FOR DIFFERENT CONDITIONS ON a, b AND c.

a > 0, b > 0 a < 0, b > 0 a > 0, b < 0 a < 0, b < 0
c < 0, b2 > 4ac +− ++ +− −−
c > 0, b2 > 4ac −− +− ++ +−
c = 0, b2 > 4ac 0− +0 +0 0−
b2 = 4ac −− ++ ++ −−

where MSE = E
{∣∣0−wHx

∣∣2} = wHRw is the mean square error (MSE) between a desired signal of
0 and the beamformer output, and where

h2(w)
4
= ε ‖w‖2

2 −wH āāHw + wH ā + āHw = 1 (31)

is equivalent to the constraint
∣∣1−wH ā

∣∣2 = |−
√
ε ‖w‖2|

2. Since the Kalman filter is a minimum MSE
(MMSE) filter, it can be used to solve (30) as shown in [36]. We proceed to summarize the algorithm.

The system equation is given by the weight update equation wk+1 = γwk + vs,k, where γ is a fixed
parameter of the model and vs,k is the process noise, which is assumed to be a zero mean white Gaussian
process with covariance Rvs = E

{
vs,kv

H
s,k

}
= σ2

s,KFI. The measurement equation is given by z =

h (wk) + vm,k, with z =
[

0 1
]T , h (wk) =

[
wH
k xk h∗2(wk)

]H and vm,k =
[
v1,k v2,k

]T , where
v1,k and v2,k are the residual and constraint errors, respectively. These errors are modeled as zero-mean,
independent white noise sequences with covariance matrix

Rvm = E
{
vm,kv

H
m,k

}
= diag

{[
σ2

1,KF σ2
2,KF

]}
(32)

Due to the non-linearity of the measurement equation, the second-order extended Kalman filter is used
to obtain the following recursion for the weight vector estimate [36]

ŵk = ŵk−1 + Gk

[
z− ẑk|k−1

]
(33)

where Gk and ẑk|k−1 denote the filter gain and the predicted measurement.
The user must select the following parameters: γ, σ2

s,KF, H
(2)
ww = εI− āāH , and σ2

1,KF and σ2
2,KF. For a

stationary environment, one should set γ = 1 and σ2
s,KF = 0, whereas for a non-stationary environment,

increasing these values will enable better tracking of the environment and typical values are γ set slightly
larger than 1 and σ2

s,KF = 10−4. The parameter σ2
1,KF should be selected to be of the same order as the

optimal array output power, which is a quantity often estimated by the beamformer. It is suggested in [36]
that one may approximate the power as ‖w‖2

2 (Mσ2 + σ2
n), where σ2 and σ2

n denote the desired signal
and sensor noise powers, respectively. However, we note that these quantities are not available a priori
so, instead, we here use the DAS estimate. It is noted in [36] that the beamformer is not sensitive to
the choice of σ2

1,KF because the norm of the weights is chosen by the filter so that the output power of
the filter matches σ2

1,KF. The value of σ2
2,KF should be chosen very small to ensure that the robustness

constraint is satisfied with high accuracy. The uncertainty sphere radius
√
ε is chosen according to the

uncertainty in the ASV.
Given the selected parameters, the algorithm iterates the steps given in Algorithm 2. Initial values ŵ0,

ẑ1|0 and P1|0 are required. ŵ0 is set to a random vector. To obtain an initial P1|0, first form h2(γŵ0)
using (31) and

Hw(1, γŵ0) =

[
xH1

εγŵH
0 − γ

[
āāHŵ0

]H
+ āH

]
(34)

Then, set P1|0 = βI, where

β =
1

εv,1

[
z− ẑ1|0

]H [
Hw(1, γŵ0)HH

w(1, γŵ0)
]−1 [

z− ẑ1|0
]

(35)
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Algorithm 2 Kalman Filtering Implementation of WC-RAB
1: Initiate ẑ1|0, ŵ0 and P1|0 as indicated.
2: for k=1,. . . do
3: Pk|k−1 = γ2Pk−1|k−1 + Rvs

4: Hw(k, γŵk−1) =

[
xHk

εγŵH
k−1 −

[
āāHγŵk−1

]H
+ āH

]
5: Sk = Hw(k, γŵk−1)Pk|k−1H

H
w(k, γŵk−1) + 1

2

[
0 0
0 1

] [
ε2tr
{

P2
k−1|k−1

}
− 2ε

∥∥Pk|k−1ā
∥∥2

2
+

|āHPk|k−1ā|2
]

+ Rvm

6: Gk = Pk|k−1H
H
w(k, γŵk−1)S−1

k

7: Pk|k = Pk|k−1 −GkSkG
H
k

8: h2(γŵk−1) = εγ2ŵH
k−1ŵk−1 − γ2ŵH

k−1āāHŵk−1 + γŵH
k−1ā + āHŵk−1

9: ẑk|k−1 =

[
γxHk ŵk−1

h2(γŵk−1) + 1
2
tr
{

H
(2)
wwPk|k−1

} ]
10: ŵk = ŵk−1 + Gk

[
z− ẑk|k−1

]
11: k ← k + 1
12: end for

where εv,1 = 3 was used as suggested in [36], and where

ẑ1|0 =

[
γxH1 ŵ0

h2(γŵ0) + 1
2
tr
{

H
(2)
ww

} ] (36)

Earlier, it was noted that the norm of the weights is chosen so that the output power matches σ2
1,KF.

Since we have chosen σ2
1,KF to be equal to the DAS estimate, it means that the spatial spectrum would be

similar to the DAS spectrum. We apply the ad hoc rescaling of the weights (29) noting that this will not
affect the output SNR. In the following, we term this implementation the Kalman Filtering Implementation
of WC-RAB (WC-KF). Ignoring O(M) terms, the complexity of updating the weights is approximately
O(12M2).

V. THE KRYLOV-RDRCB
In [29], a family of Krylov-subspace reduced-dimension robust Capon beamformers (Krylov-RDRCBs)

was derived, which project the data onto a reduced-rank Krylov subspace and solve an RCB problem in the
reduced-dimension space. Here, we describe the Conjugate Gradient RDRCB, which uses the conjugate
algorithm [42], [43] to expand a rank-N Krylov-subspace basis DN =

[
d1 . . . dN

]
by initializing with

d1 = ā, r1 = −ā and then for i = 1, . . . , N−1 calculates αi = − dH
i ri

dH
i Rdi

, ri+1 = ri+αiRdi, βi =
dH
i Rri+1

dH
i Rdi

and di+1 = −ri+1 + βidi. The framework in [29] (see, also, [18]) shows how to produce a reduced-
dimension ellipsoid, from the full-dimension (or element-space) ellipsoid and the Krylov basis DN , which
can be used in the reduced-rank subspace. Here, without loss of generality, we only consider spherical
full-dimension uncertainty, which leads to a reduced-dimension ellipsoid EN(b̄,F), with b̄ = DH

N ā and
F = ε−1(DH

NDN)−1, where ε and ā denote the radius squared and center of the full-dimension spherical
uncertainty set. This leads to the following rank-N reduced-dimension RCB problem

min
b

bHΛ−1
CGb s.t.

[
b− b̄

]H
F
[
b− b̄

]
≤ 1, (37)

where ΛCG = DH
NRDN is a diagonal reduced-dimension covariance matrix. We refer the reader to [29]

on details on how to solve (37) via the Lagrange multiplier method. Denoting the solution to (37) as b̂0,
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Algorithm 3 The RCB-VDL-SD algorithm
1: Update inverse covariance matrix using
2: qk = η−1R−1

k−1xk
(
1 + η−1xHk R−1

k−1xk
)−1

3: R−1
k = η−1R−1

k−1 − η−1qkx
H
k R−1

k−1

4: Update the gradient vector using
5: ḡk = R−1

k âk−1

6: dk−1 = âk−1 − ā
7: gk = ḡk + λk−1dk−1

8: Calculate step-size parameter using
9: µSD,k = αgHk gk

(
Re
{
gHk R−1

k gk
}

+ δ
)−1

10: Calculate unconstrained ASV using
11: ãk = âk−1 − µSD,kḡk
12: if ‖ãk − ā‖2

2 ≤ ε then
13: âk = ãk and λk = 0
14: else
15: Calculate optimal loading and constrained ASV estimate using
16: a1 = µ2

SD,k ‖âk−1 − ā‖2
2

17: b1 = µSD,kRe
{

[ãk − ā]Hdk−1

}
18: c1 = ‖ãk − ā‖2

2 − ε

19: λk =
−b1−Re

{√
b21−a1c1

}
a1

20: âk = ãk − µSD,kλkdk−1

21: end if
22: Form weights as wk =

R−1
k âk

âH
k R−1

k âk

the weight vector is formed as w =
Λ−1

CG b̂0

b̂H
0 Λ−1

CG b̂0

√
b̂H

0 (DH
NDN )−1b̂0

M
. The operation counts for the Conjugate-

Gradient RDRCB under spherical uncertainty are given in Table V in [29] and are summarized here in
Table II. In the following, we will refer to the algorithm simply as the Krylov-RDRCB.

VI. THE RCB-VDL-SD ALGORITHM

We proceed to examine the steepest-descent based RCB with variable diagonal loading (RCB-VDL-SD)
introduced in [38], where the ASV is updated recursively using

âk = âk−1 − µSD,kgk (38)

where gk is the gradient, obtained by differentiating (10) w.r.t aH ,

gk = R−1
k âk−1 + λ(âk−1 − ā) (39)

The optimal step size is given by

µSD,k =
αVDL ‖gk‖2

2

gHk R−1
k gk + δ

(40)

Initializing with R−1
0 = I, â0 = ā, η = 1, λ0 = 0, g0 = ā, and αVDL = 0.01, the RCB-VDL-SD

algorithm iterates the steps given in Algorithm 3. Updating the inverse covariance matrix, the gradient
vector, the step-size parameter, and the unconstrained ASV estimate requires O(2M2+2M), O(M2+2M),
O(M2 + 2M), and O(M) operations, respectively. Testing whether the unconstrained estimate if feasible
requires around 2M operations and then, if needed, calculating the constrained ASV estimate requires a
further O(4M) operations. Forming the weights requires a further O(M2 +M) operations. Therefore, the
total cost of updating the weights is roughly O(5M2 + 14M).
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VII. THE RCB-SP-SD ALGORITHM

In [39], the RCB optimization problem (9) is solved by using a steepest descent algorithm to recursively
update the ASV using

ãk = ak−1 − µSD,kgk (41)

where ak−1 is the steering vector estimate from the previous iteration, µSD,k = 1

tr{R−1
k }

and gk = R−1
k ak−1

is the unconstrained minimizer of (9). In the same way as was done in the RCB-VDL-SD algorithm, the
inverse covariance matrix estimate at the kth iteration R−1

k is updated using the matrix inversion lemma as
new snapshots are added to the sample covariance matrix at each new time step. To satisfy the constraint
in (9), ãk is projected onto the uncertainty set constraint boundary, yielding

ak =

√
ε (ãk − ā)

‖ãk − ā‖2

+ ā (42)

The weights are then formed as

wk =
R−1
k ak

aHk R−1
k ak

(43)

We remark that one can scale ak to have norm
√
M and use this in the equation for the weights. Updating

gk, µSD,k and ãk requires O(M2), O(M) and O(M) operations, respectively. Then, updating ak and the
weights costs O(3M) and O(M2 +M) operations, respectively. Thus, updating the weights at each time
step requires a total of O(4M2 + 8M) operations, assuming O(2M2 + 2M) operations are needed to
update the inverse covariance matrix.

VIII. COMPARISON OF COMPUTATIONAL COMPLEXITY

Table II summarizes the approximate number of floating point operations required to update the
weights, given that either the covariance matrix, in RCB-EVD, Krylov-RDRCB and WC-IG, or the inverse
covariance matrix, in RCB-VDL-SD and RCB-SP-SD, has already been updated. For the RCB-EVD
algorithm, we use the online operation counts for spherical uncertainty from Table I in [29], where niter is
the number of iterations used in the Newton search to find the Lagrange multiplier. For the Krylov-RDRCB,
we use the operation counts for the Conjugate-Gradient RDRCB under spherical uncertainty from Table V
in [29], where N is the rank of the Krylov-subspace and ñiter is the number of Newton iteration used to
find the Lagrange multiplier. With N = 5, niter = ñiter = 15 and M = 40, we find that the Krylov-RDRCB,
WC-IG, WC-KF, RCB-VDL-SD and RCB-SP-SD are around 20, 80, 15, 50 and 80 times less complex
than RCB-EVD, respectively.

The complexity of the RCB-EVD algorithm is dominated by the O(41
3
M3) complexity eigenvalue

decomposition, which is neither easily parallelizable nor efficient on parallel hardware such as graphics
processing units (GPUs). Consequently, as reported in [40], our GPU implementation of RCB-EVD runs
tens of times slower than our CPU version. However, because the WC-IG algorithm is made up much
simpler operations that can be parallelized on GPUs, as are the other efficient implementations we have
considered, it runs more than 20 CHECK WITH ROGER times faster on GPUs than on a CPU, providing
yet another advantage for implementation.

IX. SIMULATED DATA EXAMPLES

Initially, we evaluate the above discussed algorithms on a simulated half-wavelength spaced uniform
linear array with M = 64 elements, recreating the simulated scenario described in [18]. The data were
simulated using array covariance R = σ2

0a0a
H
0 + Q, where σ2

0 and a0 denote the true SOI power and
the true SOI ASV, respectively, and where Q =

∑d
i=1 σ

2
i aia

H
i + σ2

sI + σ2
isoQiso. The simulated noise plus

interference covariance, Q, consists of terms due to d zero-mean uncorrelated interfering sources, where,
for the ith interferer, σ2

i and ai denote the source power and the ASV, respectively, as well as a term
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TABLE II
COMPLEXITY REQUIRED TO UPDATE WEIGHTS, GIVEN R̂ OR R̂−1 HAVE BEEN UPDATED ALREADY.

Algorithm Complexity
RCB-EVD O(4 1

3
M3 + 3M2 + [6niter + 3]M)

WC-IG O(2M2 + 10M)
WC-KF O(10M2 + 19M)
Krylov-RDRCB O([N + 1]M2 + [N2 + 6N + 1]M + [4 1

3
N3 + 4N2 + (6ñiter + 9)N ])

RCB-VDL-SD O(3M2 + 12M)
RCB-SP-SD 2M2 + 6M
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modeling the sensor noise σ2
sI, with sensor noise power σ2

s , and a term modeling an isotropic ambient noise,
σ2

isoQiso, with power σ2
iso. The isotropic noise covariance is given by [Qiso]m,n = sinc[πλ(m− n)]. In the

following, unless otherwise stated, d = 3, σ2
s = 0 dB, σ2

iso = 1 dB, σ2
0 = 10 dB, σ2

1 = 10 dB, σ2
2 = 20 dB,

and σ2
3 = 45 dB. The AOAs of the discrete interferers are θ1 = 70◦, θ2 = 88◦, and θ3 = 100◦, where the

angle of arrival is measured from along the axis of the line array, i.e., from end-fire, so that θ ∈ [0, 180◦].
The azimuth space is sampled using 3M = 192 equally cosine-spaced beams, where uncertainty sets are
designed for each beam as described in Section II-B. The SOI is assumed to belong to the beam whose
center is at θ̄0 = 90.25◦, with uncertainty sphere radius squared ε = 4.2029. To allow for the typical case
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that AOA errors exist, the SOI is simulated anywhere in the interval [θl, θu], where θl (θu) is the angle
midway between the center of the SOI beam and the center of the adjacent beam with lower (higher)
angle. Furthermore3, we assume that the SOI and interference ASVs are subject to independent arbitrary
errors and, at each Monte-Carlo simulation, add to each ASV an arbitrary error vector e = ẽ/‖ẽ‖2,
where each element of ẽ is drawn from a zero-mean circularly symmetric distribution with unit variance.
In the following, we examine the beamformer signal-to-interference-plus-noise ratio (SINR), defined as
SINR =

σ2
0 |wHa0|2
wHQw

. It is well known that the optimal SINR is given by SINRopt = σ2
0a

H
0 Q−1a0. Since we

simulate mismatch in the source ASVs, we compare the beamformer SINRs to the mean optimal SINR,
obtained by averaging SINRopt over the Monte-Carlo simulations. Further, we will also sometimes compare
to SINRTheor, which is obtained from the analytical expression for the expected SINR as a function of
K given the true ASV (without mismatch), derived in [21]. Unless otherwise stated, we assume that
K = 2M = 128 snapshots are available for covariance matrix estimation. In WC-KF, we set γ = 1,
σ2
s,KF = 0, σ2

1,KF = σ̂2
DAS = M−2āHRā and σ2

2,KF = 10−12. We set α = 1 in WC-RAB and αVDL = 0.01
in RCB-VDL-SD. In RCB-VDL-SD and RCB-SP-SD, we set η = 1 and, when estimating the spatial
spectrum, we re-scale the estimated SOI ASV to have norm

√
M before calculating the SOI power. We

have used a fixed rank of N = 5 in the Krylov-RDRCB.
Fig. 1 illustrates the spatial spectra, and, as can be seen, particularly in the zoomed in panel, the standard

RCB-EVD, Krylov-RDRCB, and WC-IG, which exploits the ad hoc weights normalization (29), provide
the best power estimates, whereas the MVDR, WC-KF, RCB-SP-SD, and RCB-VDL-SD all exhibit severe
SOI cancellation. We remark that without the additional weights normalization step (29), the Kalman-filter
based WC-KF provides spatial power estimates similar to the DAS, as we used the DAS power estimate
for σ2

1,KF in (32).
Fig. 2 shows the SINR versus the SOI power, clearly showing that WC-IG performs the best out of the

efficient techniques and even better than the more complex standard RCB-EVD. The performance of the
Krylov-RDRCB is indistinguishable from RCB-EVD. Figs. 3(a) and (b) illustrate the SINR as a function
of the number of snapshots K for a weak SOI (low SNR) and a strong SOI (high SNR), clearly indicating
that WC-IG and Krylov-RDRCB are also here showing preferable performance as compared to the other
algorithms. Fig. 3(a) illustrates the faster convergence properties of the Krylov-RDRCB compared with the
RCB-EVD. In Fig. 2 and Figs. 3(a) and (b), we have also added an additional curve for the WC-KF, which
instead of using the DAS estimate for σ2

1,KF, uses σ2
1,KF = ‖wk−1‖2

2 (Mσ2
0 + σ2

NPI), where wk−1 denotes

3We note that our simulated scenario differs slightly to that in [18], as here we have added arbitrary ASV errors to the source ASVs.
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the weight vector at the previous iteration and σ2
NPI = trace {Q} /M . This clairvoyant version, which is

not implementable on measured data, is termed WC-KF-Clairvoyant and though it performs much better
than the one that exploits the DAS estimate, it is still poorer performing than both the Krylov-RDRCB
and the WC-IG.

In summary, on simulated data, the WC-IG and Krylov-RDRCB approaches perform the best out of
the efficient schemes examined.

X. EXPERIMENTAL DATA RESULTS

We proceed to examine the performance using experimental data. Here, we are interested in azimuth
beamforming of a hull-mounted sonar array, which consists of 40 staves of sensors, where each stave is
on the arc of a circle and contains 8 sensors. As we are only interested in azimuth beamforming, each
stave of sensors is first beamformed conventionally, at a prescribed elevation, to give a pseudo-row of
hydrophones focused at this elevation that are then processed adaptively. Due to some faulty sensors in the
experimental array, the pseudo-row contains only M = 35 sensors, with its geometry given in Fig. 1(b) (in
arbitrary units) in [19]. We examine results from two different data sets, two of which were used in [16]
and one of which was used in [19]. The time-series sensor data were 50% overlapped, Hann shaded, and
Fourier transformed to a resolution satisfying (1). Actual parameter values, such as the used frequencies
and sensor spacings, are proprietary, but we remark that the array is not aliased. We chose to look at a
subband consisting of 96 frequency cells and evaluated 192 equally spaced (in degrees) azimuth beams.
The beamformed frequency-domain data is inverse Fourier transformed to produce time-series beam data,
which is integrated and then magnitude squared, to produce a bearing time record (BTR). From the BTR
samples, we obtain estimates of the detection index, also known as the linear deflection measure of SNR,
at sample t using

SNR(t) =

[
ˆ̄s(t)− ˆ̄n(t)

]2
σ̂2
n(t)

(44)

where, at sample t, ˆ̄s(t), ˆ̄n(t), and σ̂2
n(t) denote the mean signal-plus-noise level, the mean noise level

and the noise variance estimates, respectively, which are given by

ˆ̄s(t) =
1

T

t∑
k=t−T+1

s(k) (45)

and

ˆ̄n(t) =
1

TNn

t∑
k=t−T+1

Nn∑
i=1

ni(k) (46)

σ̂2
n(t) =

1

TNn − 1

t∑
k=t−T+1

Nn∑
i=1

(ni(k)− ˆ̄n(t))2 (47)

with s(k) and {ni(k)}Nn

i=1 denoting the assumed signal-plus-noise sample, and the Nn assumed noise
samples at the kth BTR time sample. To improve the quality of the estimates, they are obtained by
averaging over a time window of length T , where T is selected small enough to reasonably assume
stationarity over the window. The simulated data results in Section IX indicated that the WC-IG and
Krylov-RDRCB algorithms performed the best out of the efficient algorithms. We thus proceed to compare
results obtained from the EVD-based NBRCB used in [16], [19] and summarized in Section II-A, here
denoted NBRCB-EVD, with an implementation based on the WC-IG, which we denote NBWC-IG, and
another based on the Krylov-RDRCB, which we term NBKrylov-RDRCB. In the robust adaptive methods,
we used the method described in Section II-B to design uncertainty sets, where the minimum sphere radius
was set equal to 3. In the following, we assume K = 96 frequency-domain snapshots per frequency-bin are
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Fig. 4. For the strong controlled source run, bearing time records with K = 96 for (a) DAS, (b) NBRCB-EVD, (c) NBWC-IG with
normalization, and (d) NBKrylov-RDRCB. Azimuth spectra for samples (e) 75 and (f) 500.
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Fig. 5. For a fast section of the strong controlled source run, bearing time records with K = 96 for (a) NBRCB-EVD, (b) NBWC-IG with
normalization, (c) NBKrylov-RDRCB. Azimuth spectra for samples (d) 1100, (e) 1120, and (f) 1140.

available for covariance estimation. Due to the Hann shading and 50% overlap, the degree of correlation
between the frequency-domain snapshots is 0.1667 [44], yielding Keff = (1 − 0.1667)K = 80 effective
independent snapshots. As there are M = 35 adaptive degrees of freedom, since Keff ≥ 2M , we are not
concerned with snapshot deficiency here. We also examine results obtained from a (Taylor) shaded DAS
(SDAS) beamformer.

A. Strong Controlled Acoustic Source Run
The first data set contains signals from a known, strong, controlled acoustic source in the far-field of the

array, on which we were able to check if the algorithms protected against (desired) signal cancellation,
when pointing towards the source, and also their ability to null out the strong source when pointing
away from it. The experiment was conducted in deep water, late afternoon in midwinter between sea state
conditions 1 and 2. Fig. 4(a)–(d) shows the bearing time records (BTRs), whose axes are in arbitrary units,
clearly showing that the robust adaptive methods improve the output SNR and spatial resolution compared
to the SDAS. Notably, when using robust adaptive beamforming, it is possible to see four weaker sources
around beams 40, 95, 120, and 140, which are masked by high sidelobes when using SDAS.

Fig. 4(e) and (f), shows azimuth spectra for samples 75 and 100, where we have also included curves
when the proposed ad hoc normalization (29) is not used in the NBWC-IG beamformer and also when
we instead use the normalization (28) proposed in [34], which we term the “LiSW03” normalization.
For the strong controlled source, the NBRCB-EVD, NBWC-IG with the proposed normalization, and the
NBKrylov-RDRCB power estimates converge to the DAS estimate. Since the strong controlled source
power is at least 20 dB greater than any other source or background noise, and is well separated from any
other source at sample 75, we expect that its DAS power estimate will be close to the true power [16].
When no normalization is used, the NBWC-IG power estimate does not converge to the DAS estimate,
as a result of the scaling ambiguity that occurs in the worst-case based algorithms. Even though using
the normalization (28) proposed in [34] results in convergence to the DAS estimate for the strong source,
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Fig. 6. For the strong controlled source run, SNR for (a) the strong controlled source and the lines at around azimuth indices (b) 95, (c)
120, and (d) 140.

one can see that a large amount of noise is added the spatial spectrum, which leads to large loss in the
(deflection) SNR as compared to the unnormalized case. It is clear that our proposed ad hoc normalization
(29) is preferable.

Even though the BTRs in Fig. 4(b)–(d) are similar, there are some important differences especially
during the fast moving turn towards the end of the data. For samples 1050 onwards, Fig. 5(a), (b) and
(c) show the BTRs for NBRCB-EVD, NBWC-IG, and NBKrylov-RDRCB, respectively, indicating that
NBWC-IG sidelobes are comprised during the fast turn, due to the fact that the iterative scheme is unable
to track the minimum of the optimization fast enough. This issue does not occur in the NBKrylov-RDRCB
or NBRCB-EVD which effectively solve the optimization afresh for each new snapshot. Fig. 5(d), (e)
and (f) show the azimuth spectra for samples 1100, 1120 and 1140, respectively, showing the issue more
clearly.

From the first 400 samples of the BTRs, and using (44), we extract the linear deflection measure of
SNR for the strong controlled acoustic source and the weaker sources that are around azimuth indices
(beams) 94, 120, and 140. At instant k, the peak sample from each source is used as the signal-plus-noise
sample s(k) in (45). We assume that beams 160-180 contain only noise, from which we can measure
the noise statistics in (46) and (47). Here, we use an integration window of T = 10 BTR samples when
obtaining the estimates in (45)–(47). Figs. 6 show the SNRs as a function of sample number for the strong
controlled source and the weaker sources at around azimuth indices 95, 120, and 140, respectively. Figs. 7
show the SNRs normalized with respect to the NBRCB-EVD SNR. We have only plotted the SDAS SNR
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Fig. 7. For the strong controlled source run, SNR gain over NBRCB-EVD for (a) the strong controlled source and the lines at (b) 94, (c)
120, and (d) 140.

for the strong controlled acoustic source as the other, weaker, sources are not detectable with SDAS. For
the strong controlled source, the adaptive algorithms give 30-55 dB higher SNR than SDAS, as the high
SDAS sidelobes lead to an increase in the mean noise level and variance. Since the weaker lines are
undetectable using SDAS, we can assume that their SDAS SNRs are less than 0 dB. From Figs. 6(b)–
(d), it is clear then that the adaptive algorithms give at least between 15-45 dB gain over the SDAS for
these weak sources. The curves showing the SNR gain over NBRCB-EVD indicate that NBWC-IG and
NBKrylov-RDRCB are within ±2 dB and ±0.4 dB of NBRCB-EVD, respectively, indicating that both
are good implementations of the NBRCB-EVD. The results in Figs. 6 and 7 also show the importance of
normalizing the weights using (29) in NBWC-IG, as not normalizing the weights results in losses of up
to approximately 10 dB on the weaker sources.

B. Acceleration Run
The second data set was recorded during an acceleration run, where the boat was initially at low speed

and moved in a straight line accelerating to high speed over a period of 20 minutes. The data was recorded
in the Alboran basin, during mid-winter, at nighttime, and at sea state condition 0. In Fig. 8(a), we plot
the bearing-time record for two segments of the data. Samples 1-295 contain the bearing-time record for
a continuous segment of data containing low to medium speeds. Samples 296 and above show the BTR
for a continuous segment of data recorded at high speed. Figs. 8(b)–(d) illustrate azimuth spectra for
low, medium, and high speeds. For the initial segment at low to medium speeds, Figs. 9(a) and (b) show
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Fig. 8. For the acceleration run, (a) the NBWC-IG bearing time record and the azimuth spectra measured at (b) low, (c) medium and (d)
high speed.

NBKrylov-RDRCB and SDAS BTRs. For the (deflection) SNR calculation, we assume that the beams at
azimuth indices 130-150 contain noise only and we use a window length of T = 10 samples. For the
weak source at around azimuth index 40, Figs. 9(c) and (d) illustrate the SNR and the SNR gain over
NBRCB-EVD, respectively. The associated plots for the stronger source at around azimuth index 110 are
shown in Figs. 9(e) and (f). Figs. 10 (a) and (b) show the NBWC-IG and SDAS BTRs for the continuous
segment recorded at high speed. For the (deflection) SNR calculation, we assume that the beams at azimuth
indices 60-70 only contain noise and use a window length of T = 5 samples. The results in Figs. 9 and
10 illustrate how significant gains over SDAS are achievable at all speeds. Similar to the results obtained
on the strong controlled acoustic source run, NBRCB-EVD, NBKrylov-RDRCB and NBWC-IG perform
similarly. At the highest speed there is deviation of the NBWC-IG spectrum from the NBRCB-EVD and
NBKrylov-RDRCB spectra, which could be due to the ad hoc normalization. We remark that the sudden
drop in (deflection) SNR for the conventional SDAS beamformer observed between samples 350 and 360
in Figs. 10 (c) and (d) is due to the appearance of a transient at around azimuth angle index 10, which can
be seen, e.g., in Fig. 10 (a). The effect of this transient on the robust adaptive beamforming algorithms’
SNRs is negligible.

To summarize, the experimental data results show that the efficient NBKrylov-RDRCB and NBWC-IG
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Fig. 9. For samples 10-280 of the acceleration run, BTRs for (a) NBKrylov-RDRCB and (b) SDAS; For the weak source at around azimuth
index 40, (c) the SNRs and (d) the SNR gains over NBRCB-EVD; For the strong source at around azimuth index 110, (e) the SNRs and (f)
the SNR gains over NBRCB-EVD
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Fig. 10. For the fast section of the acceleration run, (a) the NBWC-IG BTR (b) the SDAS BTR, (c) the SNR as a function of sample
number, and (f) the SNR gain over NBRCB-EVD.

algorithms performs similarly, in terms of (deflection) SNR, to the NBRCB-EVD. The NBKrylov-RDRCB
is a closer representation to the NBRCB-EVD algorithm and also does not suffer when the environment
changes rapidly.

XI. CONCLUSIONS

In this paper, we have examined five recent efficient (ellipsoidal uncertainty set based) robust adaptive
beamforming algorithms. Using simulated data, we conclude that the Krylov reduced-dimension robust
Capon beamformer implementation of the robust Capon beamformer and the iterative gradient based
implementation of the worst-case robust adaptive beamformer performed the best for the considered
passive sonar application, being around 20 times and 80 times less complex than the standard eigenvalue
decomposition based RCB, respectively, on a 40 degrees of freedom adaptive array, and also more
amenable to parallelization on, e.g., graphical processing units. We used these approaches to implement
the recent NBRCB algorithm, terming the efficient implementations NBKrylov-RDRCB and NBWC-IG,
and evaluated them on recorded passive sonar data with reasonable snapshot support. We found that
NBKrylov-RDRCB performed more like NBRCB-EVD and was more robust to rapidly varying envi-
ronments than the NBWC-IG, and that both performed significantly better than the conventional shaded
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DAS beamformer. In summary, the efficient Krylov-RDRCB and WC-IG based implementations provide
excellent performance at a significantly reduced computationally complexity.
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