836 research outputs found

    High Speed Chaos in Optical Feedback System with Flexible Timescales

    Full text link
    We describe a new opto-electronic device with time-delayed feedback that uses a Mach-Zehnder interferometer as passive nonlinearity and a semiconductor laser as a current-to-optical-frequency converter. Bandlimited feedback allows tuning of the characteristic time scales of both the periodic and high dimensional chaotic oscillations that can be generated with the device. Our implementation of the device produces oscillations in the frequency range of tens to hundreds of MHz. We develop a model and use it to explore the experimentally observed Andronov-Hopf bifurcation of the steady state and to estimate the dimension of the chaotic attractor.Comment: 7 pages, 6 figures, to be published in IEEE J. Quantum Electro

    Spontaneous Synchronization in Two Mutually Coupled Memristor-Based Chua’s Circuits: Numerical Investigations

    Get PDF
    Chaotic dynamics of numerous memristor-based circuits is widely reported in literature. Recently, some works have appeared which study the problem of synchronization control of these systems in a master-slave configuration. In the present paper, the spontaneous dynamic behavior of two chaotic memristor-based Chua’s circuits, mutually interacting through a coupling resistance, was studied via computer simulations in order to study possible self-organized synchronization phenomena. The used memristor is a flux controlled memristor with a cubic nonlinearity, and it can be regarded as a time-varying memductance. The memristor, in effect, retains memory of its past dynamic and any difference in the initial conditions of the two circuits results in different values of the corresponding memductances. In this sense, due to the memory effect of the memristor, even if coupled circuits have the same parameters they do not constitute two completely identical chaotic oscillators. As is known, for nonidentical chaotic systems, in addition to complete synchronizations (CS) other weaker forms of synchronization which provide correlations between the signals of the two systems can also occur. Depending on initial conditions and coupling strength, both chaotic and nonchaotic synchronization are observed for the system considered in this work

    Resonant Tunnelling Optoelectronic Circuits

    Get PDF
    Nowadays, most communication networks such as local area networks (LANs), metropolitan area networks (MANs), and wide area networks (WANs) have replaced or are about to replace coaxial cable or twisted copper wire with fiber optical cables. Light-wave communication systems comprise a transmitter based on a visible or near-infrared light source, whose carrier is modulated by the information signal to be transmitted, a transmission media such as an optical fiber, eventually utilizing in-line optical amplification, and a receiver based on a photo-detector that recovers the information signal (Liu, 1996)(Einarsson, 1996). The transmitter consists of a driver circuit along a semiconductor laser or a light emitting diode (LED). The receiver is a signal processing circuit coupled to a photo-detector such as a photodiode, an avalanche photodiode (APD), a phototransistor or a high speed photoconductor that processes the photo-detected signal and recovers the primitive information signa

    A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites

    Get PDF
    A design procedure for producing chaos is proposed. The procedure aims to transfer design issues of analog autonomous chaotic oscillators from the nonlinear domain back to the much simpler linear domain by intentionally modifying sinusoidal oscillator circuits in a semisystematic manner. Design rules that simplify this procedure are developed and then two composite devices, namely, a diode-inductor composite and a FET-capacitor composite are suggested for carrying out the modification procedure. Applications to the classical Wien-bridge oscillator are demonstrated. Experimental results, PSpice simulations, and numerical simulations of the derived models are include

    Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit

    Get PDF
    We investigate the dynamics of a driven Van der Pol–Duffing oscillator circuit and show the existence of higher-dimensional chaotic orbits (or hyperchaos), transient chaos, strange-nonchaotic attractors, as well as quasiperiodic orbits born from Hopf bifurcating orbits. By computing all the Lyapunov exponent spectra, scanning a wide range of the driving frequency and driving amplitude parameter space, we explore in two-parameter space the regimes of different dynamical behaviours

    Chaotic Oscillations in CMOS Integrated Circuits

    Get PDF
    Chaos is a purely mathematical term, describing a signal that is aperiodic and sensitive to initial conditions, but deterministic. Yet, engineers usually see it as an undesirable effect to be avoided in electronics. The first part of the dissertation deals with chaotic oscillation in complementary metal-oxide-semiconductor integrated circuits (CMOS ICs) as an effect behavior due to high power microwave or directed electromagnetic energy source. When the circuit is exposed to external electromagnetic sources, it has long been conjectured that spurious oscillation is generated in the circuits. In the first part of this work, we experimentally and numerically demonstrate that these spurious oscillations, or out-of-band oscillations are in fact chaotic oscillations. In the second part of the thesis, we exploit a CMOS chaotic oscillator in building a cryptographic source, a random number generator. We first demonstrate the presence of chaotic oscillation in standard CMOS circuits. At radio frequencies, ordinary digital circuits can show unexpected nonlinear responses. We evaluate a CMOS inverter coupled with electrostatic discharging (ESD) protection circuits, designed with 0.5 μm CMOS technology, for their chaotic oscillations. As the circuit is driven by a direct radio frequency injection, it exhibits a chaotic dynamics, when the input frequency is higher than the typical maximum operating frequency of the CMOS inverter. We observe an aperiodic signal, a broadband spectrum, and various bifurcations in the experimental results. We analytically discuss the nonlinear physical effects in the given circuit : ESD diode rectification, DC bias shift due to a non-quasi static regime operation of the ESD PN-junction diode, and a nonlinear resonant feedback current path. In order to predict these chaotic dynamics, we use a transistor-based model, and compare the model's performance with the experimental results. In order to verify the presence of chaotic oscillations mathematically, we build on an ordinary differential equation model with the circuit-related nonlinearities. We then calculate the largest Lyapunov exponents to verify the chaotic dynamics. The importance of this work lies in investigating chaotic dynamics of standard CMOS ICs that has long been conjectured. In doing so, we experimentally and numerically give evidences for the presence of chaotic oscillations. We then report on a random number generator design, in which randomness derives from a Boolean chaotic oscillator, designed and fabricated as an integrated circuit. The underlying physics of the chaotic dynamics in the Boolean chaotic oscillator is given by the Boolean delay equation. According to numerical analysis of the Boolean delay equation, a single node network generates chaotic oscillations when two delay inputs are incommensurate numbers and the transition time is fast. To test this hypothesis physically, a discrete Boolean chaotic oscillator is implemented. Using a CMOS 0.5 μm process, we design and fabricate a CMOS Boolean chaotic oscillator which consists of a core chaotic oscillator and a source follower buffer. Chaotic dynamics are verified using time and frequency domain analysis, and the largest Lyapunov exponents are calculated. The measured bit sequences do make a suitable randomness source, as determined via National Institute of Standards and Technology (NIST) standard statistical tests version 2.1
    • …
    corecore