3,243 research outputs found

    Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking

    Full text link
    We show that a double quantum-dot system made of diluted magnetic semiconductor behaves unlike usual molecules. In a semiconductor double quantum dot or in a diatomic molecule, the ground state of a single carrier is described by a symmetric orbital. In a magnetic material molecule, new ground states with broken symmetry can appear due the competition between the tunnelling and magnetic polaron energy. With decreasing temperature, the ground state changes from the normal symmetric state to a state with spontaneously broken symmetry. Interestingly, the symmetry of a magnetic molecule is recovered at very low temperatures. A magnetic double quantum dot with broken-symmetry phases can be used a voltage-controlled nanoscale memory cell.Comment: 4 pages, 5 figure

    Optimal laser-control of double quantum dots

    Get PDF
    Coherent single-electron control in a realistic semiconductor double quantum dot is studied theoretically. Using optimal-control theory we show that the energy spectrum of a two-dimensional double quantum dot has a fully controllable transition line. We find that optimized picosecond laser pulses generate population transfer at significantly higher fidelities (>0.99) than conventional sinusoidal pulses. Finally we design a robust and fast charge switch driven by optimal pulses that are within reach of terahertz laser technology.Comment: 5 pages, 4 figure

    Excited state spectroscopy in carbon nanotube double quantum dots

    Get PDF
    We report on low temperature measurements in a fully tunable carbon nanotube double quantum dot. A new fabrication technique has been used for the top-gates in order to avoid covering the whole nanotube with an oxide layer as in previous experiments. The top-gates allow us to form single dots, control the coupling between them and we observe four-fold shell filling. We perform inelastic transport spectroscopy via the excited states in the double quantum dot, a necessary step towards the implementation of new microwave-based experiments.Comment: 16 pages, 6 figures, submitted to nanoletter

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed
    • …
    corecore