7 research outputs found

    Design Rules in VLSI Routing

    Get PDF
    One of the last major steps in the design of highly integrated circuits (VLSI design) is routing. The task of routing is to compute disjoint sets of wires connecting different parts of a chip in order to realize the desired electrical connectivity. Design rules define restrictions on the minimum distance and geometry of metal shapes. The intent of most design rules is to forbid patterns that cannot be manufactured well in the lithographic production process. This process has become extremely difficult with the current small feature sizes of 32 nm and below, which are still being manufactured using 193 nm wavelength technology. Because of this, the design rules of modern technologies have become very complex, and computing a routing with a sufficiently low number of design rule violations is a difficult task for automated routing tools. In this thesis we present in detail how design rules can be handled efficiently. We develop an appropriate design rule model which considerably reduces complexity while not being too restrictive. This involves mapping complex polygon-based rules to simpler rectangle-based rules and building equivalence classes of shapes with respect to their minimum distance requirements. Our model enables efficient checking of minimum distance rules, which has to be done dozens of times in each routing run. We also discuss efficient data structures that are necessary to achieve this. We implemented our design rule model within BonnRoute, the routing tool of the BonnTools, a software package for VLSI physical design developed at the Research Institute for Discrete Mathematics at the University of Bonn in cooperation with IBM. The result is a new module of BonnRoute, called BonnRoutRules, which computes this design rule model and embeds BonnRoute in the complex routing environment of current technologies. The BonnRouteRules module was a key part in enabling BonnRoute to route current 32 nm and 22 nm chips. We describe the combined routing flow used by IBM in practice, in which BonnRoute solves the main routing task and an industrial standard router is used for postprocessing. We present detailed experimental results of this flow on real-world designs. The results show that this combined flow produces routings with almost no remaining design rule violations, which proves that our design rule model works well in practice. Furthermore, compared to the industrial standard router alone, the combination with BonnRoute provides several significant benefits: It has 24% less runtime, 5% less wiring length, and over 90% less detours, which shows that with this flow we have an excellent routing tool in practice

    Analog layout design automation: ILP-based analog routers

    Get PDF
    The shrinking design window and high parasitic sensitivity in the advanced technology have imposed special challenges on the analog and radio frequency (RF) integrated circuit design. In this thesis, we propose a new methodology to address such a deficiency based on integer linear programming (ILP) but without compromising the capability of handling any special constraints for the analog routing problems. Distinct from the conventional methods, our algorithm utilizes adaptive resolutions for various routing regions. For a more congested region, a routing grid with higher resolution is employed, whereas a lower-resolution grid is adopted to a less crowded routing region. Moreover, we strengthen its speciality in handling interconnect width control so as to route the electrical nets based on analog constraints while considering proper interconnect width to address the acute interconnect parasitics, mismatch minimization, and electromigration effects simultaneously. In addition, to tackle the performance degradation due to layout dependent effects (LDEs) and take advantage of optical proximity correction (OPC) for resolution enhancement of subwavelength lithography, in this thesis we have also proposed an innovative LDE-aware analog layout migration scheme, which is equipped with our special routing methodology. The LDE constraints are first identified with aid of a special sensitivity analysis and then satisfied during the layout migration process. Afterwards the electrical nets are routed by an extended OPC-inclusive ILP-based analog router to improve the final layout image fidelity while the routability and analog constraints are respected in the meantime. The experimental results demonstrate the effectiveness and efficiency of our proposed methods in terms of both circuit performance and image quality compared to the previous works

    VLSI Routing for Advanced Technology

    Get PDF
    Routing is a major step in VLSI design, the design process of complex integrated circuits (commonly known as chips). The basic task in routing is to connect predetermined locations on a chip (pins) with wires which serve as electrical connections. One main challenge in routing for advanced chip technology is the increasing complexity of design rules which reflect manufacturing requirements. In this thesis we investigate various aspects of this challenge. First, we consider polygon decomposition problems in the context of VLSI design rules. We introduce different width notions for polygons which are important for width-dependent design rules in VLSI routing, and we present efficient algorithms for computing width-preserving decompositions of rectilinear polygons into rectangles. Such decompositions are used in routing to allow for fast design rule checking. A main contribution of this thesis is an O(n) time algorithm for computing a decomposition of a simple rectilinear polygon with n vertices into O(n) rectangles, preseverving two-dimensional width. Here the two-dimensional width at a point of the polygon is defined as the edge length of a largest square that contains the point and is contained in the polygon. In order to obtain these results we establish a connection between such decompositions and Voronoi diagrams. Furthermore, we consider implications of multiple patterning and other advanced design rules for VLSI routing. The main contribution in this context is the detailed description of a routing approach which is able to manage such advanced design rules. As a main algorithmic concept we use multi-label shortest paths where certain path properties (which model design rules) can be enforced by defining labels assigned to path vertices and allowing only certain label transitions. The described approach has been implemented in BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics, University of Bonn, in cooperation with IBM. We present experimental results confirming that a flow combining BonnRoute and an external cleanup step produces far superior results compared to an industry standard router. In particular, our proposed flow runs more than twice as fast, reduces the via count by more than 20%, the wiring length by more than 10%, and the number of remaining design rule errors by more than 60%. These results obtained by applying our multiple patterning approach to real-world chip instances provided by IBM are another main contribution of this thesis. We note that IBM uses our proposed combined BonnRoute flow as the default tool for signal routing

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore