74 research outputs found

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Manual and automatic image analysis segmentation methods for blood flow studies in microchannels

    Get PDF
    In blood flow studies, image analysis plays an extremely important role to examine raw data obtained by high-speed video microscopy systems. This work shows different ways to process the images which contain various blood phenomena happening in microfluidic devices and in microcirculation. For this purpose, the current methods used for tracking red blood cells (RBCs) flowing through a glass capillary and techniques to measure the cell-free layer thickness in different kinds of microchannels will be presented. Most of the past blood flow experimental data have been collected and analyzed by means of manual methods, that can be extremely reliable, but they are highly time-consuming, user-intensive, repetitive, and the results can be subjective to user-induced errors. For this reason, it is crucial to develop image analysis methods able to obtain the data automatically. Concerning automatic image analysis methods for individual RBCs tracking and to measure the well known microfluidic phenomena cell-free layer, two developed methods are presented and discussed in order to demonstrate their feasibility to obtain accurate data acquisition in such studies. Additionally, a comparison analysis between manual and automatic methods was performed.This project has been funded by Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00532/2020 (Transport Phenomena Research Center—CEFT), UIDB/04077/2020 (Mechanical Engineering and Resource Sustainability Center—MEtRICs), UIDB/00690/2020 (CIMO). The authors are also grateful for the partial funding of FCT through the projects, NORTE-01-0145-FEDER-029394 (PTDC/EMD-EMD/29394/2017) and NORTE-01-0145-FEDER-030171 (PTDC/EMD-EMD/30171/2017) funded by COMPETE2020, NORTE2020, PORTUGAL2020 and FEDER. D. Bento acknowledges the PhD scholarship SFRH/BD/ 91192/2012 granted by FCT

    Optical Coherence Tomography guided Laser-Cochleostomy

    Get PDF
    Despite the high precision of laser, it remains challenging to control the laser-bone ablation without injuring the underlying critical structures. Providing an axial resolution on micrometre scale, OCT is a promising candidate for imaging microstructures beneath the bone surface and monitoring the ablation process. In this work, a bridge connecting these two technologies is established. A closed-loop control of laser-bone ablation under the monitoring with OCT has been successfully realised

    Ultrasound Imaging Innovations for Visualization and Quantification of Vascular Biomarkers

    Get PDF
    The existence of plaque in the carotid arteries, which provide circulation to the brain, is a known risk for stroke and dementia. Alas, this risk factor is present in 25% of the adult population. Proper assessment of carotid plaque may play a significant role in preventing and managing stroke and dementia. However, current plaque assessment routines have known limitations in assessing individual risk for future cardiovascular events. There is a practical need to derive new vascular biomarkers that are indicative of cardiovascular risk based on hemodynamic information. Nonetheless, the derivation of these biomarkers is not a trivial technical task because none of the existing clinical imaging modalities have adequate time resolution to track the spatiotemporal dynamics of arterial blood flow that is pulsatile in nature. The goal of this dissertation is to devise a new ultrasound imaging framework to measure vascular biomarkers related to turbulent flow, intra-plaque microvasculature, and blood flow rate. Central to the proposed framework is the use of high frame rate ultrasound (HiFRUS) imaging principles to track hemodynamic events at fine temporal resolution (through using frame rates of greater than 1000 frames per second). The existence of turbulent flow and intra-plaque microvessels, as well as anomalous blood flow rate, are all closely related to the formation and progression of carotid plaque. Therefore, quantifying these biomarkers can improve the identification of individuals with carotid plaque who are at risk for future cardiovascular events. To facilitate the testing and the implementation of the proposed imaging algorithms, this dissertation has included the development of new experimental models (in the form of flow phantoms) and a new HiFRUS imaging platform with live scanning and on-demand playback functionalities. Pilot studies were also carried out on rats and human volunteers. Results generally demonstrated the real-time performance and the practical efficacy of the proposed algorithms. The proposed ultrasound imaging framework is expected to improve carotid plaque risk classification and, in turn, facilitate timely identification of at-risk individuals. It may also be used to derive new insights on carotid plaque formation and progression to aid disease management and the development of personalized treatment strategies

    River flow monitoring: LS-PIV technique, an image-based method to assess discharge

    Get PDF
    The measurement of the river discharge within a natural ort artificial channel is still one of the most challenging tasks for hydrologists and the scientific community. Although discharge is a physical quantity that theoretically can be measured with very high accuracy, since the volume of water flows in a well-defined domain, there are numerous critical issues in obtaining a reliable value. Discharge cannot be measured directly, so its value is obtained by coupling a measurement of a quantity related to the volume of flowing water and the area of a channel cross-section. Direct measurements of current velocity are made, traditionally with instruments such as current meters. Although measurements with current meters are sufficiently accurate and even if there are universally recognized standards for the current application of such instruments, they are often unusable under specific flow conditions. In flood conditions, for example, due to the need for personnel to dive into the watercourse, it is impossible to ensure adequate safety conditions to operators for carrying out flow measures. Critical issue arising from the use of current meters has been partially addressed thanks to technological development and the adoption of acoustic sensors. In particular, with the advent of Acoustic Doppler Current Profilers (ADCPs), flow measurements can take place without personnel having direct contact with the flow, performing measurements either from the bridge or from the banks. This made it possible to extend the available range of discharge measurements. However, the flood conditions of a watercourse also limit the technology of ADCPs. The introduction of the instrument into the current with high velocities and turbulence would put the instrument itself at serious risk, making it vulnerable and exposed to damage. In the most critical case, the instrument could be torn away by the turbulent current. On the other hand, considering smaller discharges, both current meters and ADCPs are technologically limited in their measurement as there are no adequate water levels for the use of the devices. The difficulty in obtaining information on the lowest and highest values of discharge has important implications on how to define the relationships linking flows to water levels. The stage-discharge relationship is one of the tools through which it is possible to monitor the flow in a specific section of a watercourse. Through this curve, a discharge value can be obtained from knowing the water stage. Curves are site-specific and must be continuously updated to account for changes in geometry that the sections for which they are defined may experience over time. They are determined by making simultaneous discharge and stage measurements. Since instruments such as current meters and ADCPs are traditionally used, stage-discharge curves suffer from instrumental limitations. So, rating curves are usually obtained by interpolation of field-measured data and by extrapolate them for the highest and the lowest discharge values, with a consequent reduction in accuracy. This thesis aims to identify a valid alternative to traditional flow measurements and to show the advantages of using new methods of monitoring to support traditional techniques, or to replace them. Optical techniques represent the best solution for overcoming the difficulties arising from the adoption of a traditional approach to flow measurement. Among these, the most widely used techniques are the Large-Scale Particle Image Velocimetry (LS-PIV) and the Large-Scale Particle Tracking Velocimetry. They are able to estimate the surface velocity fields by processing images representing a moving tracer, suitably dispersed on the liquid surface. By coupling velocity data obtained from optical techniques with geometry of a cross-section, a discharge value can easily be calculated. In this thesis, the study of the LS-PIV technique was deepened, analysing the performance of the technique, and studying the physical and environmental parameters and factors on which the optical results depend. As the LS-PIV technique is relatively new, there are no recognized standards available for the proper application of the technique. A preliminary numerical analysis was conducted to identify the factors on which the technique is significantly dependent. The results of these analyses enabled the development of specific guidelines through which the LS-PIV technique could subsequently be applied in open field during flow measurement campaigns in Sicily. In this way it was possible to observe experimentally the criticalities involved in applying the technique on real cases. These measurement campaigns provided the opportunity to carry out analyses on field case studies and structure an automatic procedure for optimising the LS-PIV technique. In all case studies it was possible to observe how the turbulence phenomenon is a worsening factor in the output results of the LS-PIV technique. A final numerical analysis was therefore performed to understand the influence of turbulence factor on the performance of the technique. The results obtained represent an important step for future development of the topic

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Weak and strong comets in the solar wind

    Get PDF
    When within the inner solar system, comets possess gaseous atmospheres. The gases therein are ionized, and eventually join the solar wind. This thesis describes an investigation of the interaction of comets with the solar wind. The work begins with an overview of the processes involved in the comet-solar wind interaction region, and the domains and boundaries that exist in the region. A review of remote observations of cometary ions is given. The characteristics of visible plasma features are summarized, together with the theories proposed to explain them. An overview of the Giotto spacecraft and its instruments, and a description of its mission to two comets are presented. Ground-based observations were obtained of the ion features present in Comet C/1996 B2 Hyakutake. The morphologies and motions of the comet's plasma features are described. The formation of tail rays was captured during a high temporal resolution image sequence. A gas production rate estimate is derived from the observations, and a model of ray morphologies is proposed, based partly upon observational evidence. 45P/Honda-Mrkos-Pajdusakova and C/1996 Q1 Tabur were also observed; however, no strong ion features were detected. An analysis of the plasma features of 26P/Grigg-Skjellerup then follows. A description of the solar wind conditions at that comet during the Giotto encounter is given, and an estimate of its production rate is made. Ground-based observations of Grigg-Skjellerup are compared to in-situ Giotto data. Morphological features were detected in ground-based images; it is proposed that they could have been linked to certain solar wind discontinuities. A qualitative description of a model of ion ray formation then follows. The thesis concludes with a summary of the main results
    corecore