788 research outputs found

    Experience-Based Evolutionary Algorithms for Expensive Optimization

    Full text link
    Optimization algorithms are very different from human optimizers. A human being would gain more experiences through problem-solving, which helps her/him in solving a new unseen problem. Yet an optimization algorithm never gains any experiences by solving more problems. In recent years, efforts have been made towards endowing optimization algorithms with some abilities of experience learning, which is regarded as experience-based optimization. In this paper, we argue that hard optimization problems could be tackled efficiently by making better use of experiences gained in related problems. We demonstrate our ideas in the context of expensive optimization, where we aim to find a near-optimal solution to an expensive optimization problem with as few fitness evaluations as possible. To achieve this, we propose an experience-based surrogate-assisted evolutionary algorithm (SAEA) framework to enhance the optimization efficiency of expensive problems, where experiences are gained across related expensive tasks via a novel meta-learning method. These experiences serve as the task-independent parameters of a deep kernel learning surrogate, then the solutions sampled from the target task are used to adapt task-specific parameters for the surrogate. With the help of experience learning, competitive regression-based surrogates can be initialized using only 1dd solutions from the target task (dd is the dimension of the decision space). Our experimental results on expensive multi-objective and constrained optimization problems demonstrate that experiences gained from related tasks are beneficial for the saving of evaluation budgets on the target problem.Comment: 19 pages, 5 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Continuous optimization via simulation using Golden Region search

    Get PDF
    Simulation Optimization (SO) is the use of mathematical optimization techniques in which the objective function (and/or constraints) could only be numerically evaluated through simulation. Many of the proposed SO methods in the literature are rooted in or originally developed for deterministic optimization problems with available objective function. We argue that since evaluating the objective function in SO requires a simulation run which is more computationally costly than evaluating an available closed form function, SO methods should be more conservative and careful in proposing new candidate solutions for objective function evaluation. Based on this principle, a new SO approach called Golden Region (GR) search is developed for continuous problems. GR divides the feasible region into a number of (sub) regions and selects one region in each iteration for further search based on the quality and distribution of simulated points in the feasible region and the result of scanning the response surface through a metamodel. The experiments show the GR method is efficient compared to three well-established approaches in the literature. We also prove the convergence in probability to global optimum for a large class of random search methods in general and GR in particular

    From Parameter Tuning to Dynamic Heuristic Selection

    Get PDF
    The importance of balance between exploration and exploitation plays a crucial role while solving combinatorial optimization problems. This balance is reached by two general techniques: by using an appropriate problem solver and by setting its proper parameters. Both problems were widely studied in the past and the research process continues up until now. The latest studies in the field of automated machine learning propose merging both problems, solving them at design time, and later strengthening the results at runtime. To the best of our knowledge, the generalized approach for solving the parameter setting problem in heuristic solvers has not yet been proposed. Therefore, the concept of merging heuristic selection and parameter control have not been introduced. In this thesis, we propose an approach for generic parameter control in meta-heuristics by means of reinforcement learning (RL). Making a step further, we suggest a technique for merging the heuristic selection and parameter control problems and solving them at runtime using RL-based hyper-heuristic. The evaluation of the proposed parameter control technique on a symmetric traveling salesman problem (TSP) revealed its applicability by reaching the performance of tuned in online and used in isolation underlying meta-heuristic. Our approach provides the results on par with the best underlying heuristics with tuned parameters.:1 Introduction 1 1.1 Motivation 1 1.2 Research objective 2 1.3 Solution overview 2 2 Background and RelatedWork Analysis 3 2.1 Optimization Problems and their Solvers 3 2.2 Heuristic Solvers for Optimization Problems 9 2.3 Setting Algorithm Parameters 19 2.4 Combined Algorithm Selection and Hyper-Parameter Tuning Problem 27 2.5 Conclusion on Background and Related Work Analysis 28 3 Online Selection Hyper-Heuristic with Generic Parameter Control 31 3.1 Combined Parameter Control and Algorithm Selection Problem 31 3.2 Search Space Structure 32 3.3 Parameter Prediction Process 34 3.4 Low-Level Heuristics 35 3.5 Conclusion of Concept 36 4 Implementation Details 37 4.2 Search Space 40 4.3 Prediction Process 43 4.4 Low Level Heuristics 48 4.5 Conclusion 52 5 Evaluation 55 5.1 Optimization Problem 55 5.2 Environment Setup 56 5.3 Meta-heuristics Tuning 56 5.4 Concept Evaluation 60 5.5 Analysis of HH-PC Settings 74 5.6 Conclusion 79 6 Conclusion 81 7 FutureWork 83 7.1 Prediction Process 83 7.2 Search Space 84 7.3 Evaluations and Benchmarks 84 Bibliography 87 A Evaluation Results 99 A.1 Results in Figures 99 A.2 Results in numbers 10

    Analytics of Heterogeneous Breast Cancer Data Using Neuroevolution

    Get PDF
    https://ieeexplore.ieee.org/document/8632897Breast cancer prognostic modeling is difficult since it is governed by many diverse factors. Given the low median survival and large scale breast cancer data, which comes from high throughput technology, the accurate and reliable prognosis of breast cancer is becoming increasingly difficult. While accurate and timely prognosis may save many patients from going through painful and expensive treatments, it may also help oncologists in managing the disease more efficiently and effectively. Data analytics augmented by machine-learning algorithms have been proposed in past for breast cancer prognosis; and however, most of these could not perform well owing to the heterogeneous nature of available data and model interpretability related issues. A robust prognostic modeling approach is proposed here whereby a Pareto optimal set of deep neural networks (DNNs) exhibiting equally good performance metrics is obtained. The set of DNNs is initialized and their hyperparameters are optimized using the evolutionary algorithm, NSGAIII. The final DNN model is selected from the Pareto optimal set of many DNNs using a fuzzy inferencing approach. Contrary to using DNNs as the black box, the proposed scheme allows understanding how various performance metrics (such as accuracy, sensitivity, F1, and so on) change with changes in hyperparameters. This enhanced interpretability can be further used to improve or modify the behavior of DNNs. The heterogeneous breast cancer database requires preprocessing for better interpretation of categorical variables in order to improve prognosis from classifiers. Furthermore, we propose to use a neural network-based entity-embedding method for categorical features with high cardinality. This approach can provide a vector representation of categorical features in multidimensional space with enhanced interpretability. It is shown with evidence that DNNs optimized using evolutionary algorithms exhibit improved performance over other classifiers mentioned in this paper

    Bayesian optimization in adverse scenarios

    Get PDF
    Optimization problems with expensive-to-evaluate objective functions are ubiquitous in scientific and industrial settings. Bayesian optimization has gained widespread acclaim for optimizing expensive (and often black box) functions due to its theoretical performance guarantees and empirical sample efficiency in a variety of settings. Nevertheless, many practical scenarios remain where prevailing Bayesian optimization techniques fall short. We consider four such scenarios. First, we formalize the optimization problem where the goal is to identify robust designs with respect to multiple objective functions that are subject to input noise. Such robust design problems frequently arise, for example, in manufacturing settings where fabrication can only be performed with limited precision. We propose a method that identifies a set of optimal robust designs, where each design provides probabilistic guarantees jointly on multiple objectives. Second, we consider sample-efficient high-dimensional multi-objective optimization. This line of research is motivated by the challenging task of designing optical displays for augmented reality to optimize visual quality and efficiency, where the designs are specified by high-dimensional parameterizations governing complex geometries. Our proposed trust-region based algorithm yields order-of-magnitude improvements in sample complexity on this problem. Third, we consider multi-objective optimization of expensive functions with variable-cost, decoupled, and/or multi-fidelity evaluations and propose a Bayes-optimal, non-myopic acquisition function, which significantly improves sample efficiency in scenarios with incomplete information. We apply this to hardware-aware neural architecture search where the objective, on-device latency and model accuracy, can often be evaluated independently. Fourth, we consider the setting where the search space consists of discrete (and potentially continuous) parameters. We propose a theoretically grounded technique that uses a probabilistic reparameterization to transform the discrete or mixed inner optimization problem into a continuous one leading to more effective Bayesian optimization policies. Together, this thesis provides a playbook for Bayesian optimization in several practical adverse scenarios

    Γ (Gamma): cloud-based analog circuit design system

    Get PDF
    Includes bibliographical references.2016 Summer.With ever increasing demand for lower power consumption, lower cost, and higher performance, designing analog circuits to meet design specifications has become an increasing challenging task, On one hand, analog circuit designers must have intimate knowledge about the underlining silicon process technology's capability to achieve the desired specifications. On the other hand, they must understand the impact of tweaking circuits to satisfy a given specification on all circuit performance parameters. Analog designers have traditionally learned to tackle design problems with numerous circuit simulations using accurate circuit simulators such as SPICE, and have increasingly relied on trial-and-error approaches to reach a converging point. However, the increased complexity with each generation of silicon technology and high dimensionality of searching for solutions, even for some simple analog circuits, have made trial-and-error approaches extremely inefficient, causing long design cycles and often missed market opportunities. Novel rapid and accurate circuit evaluation methods that are tightly integrated with circuit search and optimization methods are needed to aid design productivity. Furthermore, the current design environment with fully distributed licensing and supporting structures is cumbersome at best to allow efficient and up-to-date support for design engineers. With increasing support and licensing costs, fewer and fewer design centers can afford it. Cloud-based software as a service (SaaS) model provides new opportunities for CAD applications. It enables immediate software delivery and update to customers at very low cost. SaaS tools benefit from fast feedback and sharing channels between users and developers and run on hardware resources tailored and provided for them by software vendors. However, web-based tools must perform in a very short turn-around schedule and be always responsive. A new class of analog design tools is presented in this dissertation. The tools provide effective design aid to analog circuit designers with a dash-board control of many important circuit parameters. Fast and accurate circuit evaluations are achieved using a novel lookup-table transistor models (LUT) with novel built-in features tightly integrated with the search engine to achieve desired speed and accuracy. This enables circuit evaluation time several orders faster than SPICE simulations. The proposed architecture for analog design attempts to break the traditional analog design flow using SPICE based trial-and-error methods by providing designers with useful information about the effects of prior design decisions they have made and potential next steps they can take to meet specifications. Benefiting from the advantages offered by web-hosted architectures, the proposed architecture incorporates SaaS as its operating model. The application of the proposed architecture is illustrated by an analog circuit sizer and optimizer. The Γ (Gamma) sizer and optimizer show how web-based design-decision supporting tool can help analog circuit designers to reduce design time and achieve high quality circuit

    Genetic Algorithms in Stochastic Optimization and Applications in Power Electronics

    Get PDF
    Genetic Algorithms (GAs) are widely used in multiple fields, ranging from mathematics, physics, to engineering fields, computational science, bioinformatics, manufacturing, economics, etc. The stochastic optimization problems are important in power electronics and control systems, and most designs require choosing optimum parameters to ensure maximum control effect or minimum noise impact; however, they are difficult to solve using the exhaustive searching method, especially when the search domain conveys a large area or is infinite. Instead, GAs can be applied to solve those problems. And efficient computing budget allocation technique for allocating the samples in GAs is necessary because the real-life problems with noise are often difficult to evaluate and require significant computation effort. A single objective GA is proposed in which computing budget allocation techniques are integrated directly into the selection operator rather than being used during fitness evaluation. This allows fitness evaluations to be allocated towards specific individuals for whom the algorithm requires more information, and this selection-integrated method is shown to be more accurate for the same computing budget than the existing evaluation-integrated methods on several test problems. A combination of studies is performed on a multi-objective GA that compares integration of different computing budget allocation methods into either the evaluation or the environmental selection steps. These comparisons are performed on stochastic problems derived from benchmark multi-objective optimization problems and consider varying levels of noise. The algorithms are compared regarding both proximity to and coverage of the true Pareto-optimal front, and sufficient studies are performed to allow statistically significant conclusions to be drawn. Finally, the multi-objective GA with selection integrated sampling technique is applied to solve a multi-objective stochastic optimization problem in a grid connected photovoltaic inverter system with noise injected from both the solar power input and the utility grid
    corecore