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Genetic Algorithms in Stochastic Optimization
and Applications in Power electronics

ABSTRACT OF DISSERTATION

Genetic Algorithms (GAs) are widely used in multiple fields, ranging from mathe-
matics, physics, to engineering fields, computational science, bioinformatics, manu-
facturing, economics, etc. The stochastic optimization problems are important in
power electronics and control systems, and most designs require choosing optimum
parameters to ensure maximum control effect or minimum noise impact; however,
they are difficult to solve using the exhaustive searching method, especially when the
search domain conveys a large area or is infinite. Instead, GAs can be applied to solve
those problems. And efficient computing budget allocation technique for allocating
the samples in GAs is necessary because the real-life problems with noise are often
difficult to evaluate and require significant computation effort. A single objective GA
is proposed in which computing budget allocation techniques are integrated directly
into the selection operator rather than being used during fitness evaluation. This
allows fitness evaluations to be allocated towards specific individuals for whom the
algorithm requires more information, and this selection-integrated method is shown
to be more accurate for the same computing budget than the existing evaluation-
integrated methods on several test problems. A combination of studies is performed
on a multi-objective GA that compares integration of different computing budget allo-
cation methods into either the evaluation or the environmental selection steps. These
comparisons are performed on stochastic problems derived from benchmark multi-
objective optimization problems and consider varying levels of noise. The algorithms
are compared regarding both proximity to and coverage of the true Pareto-optimal
front, and sufficient studies are performed to allow statistically significant conclusions
to be drawn. Finally, the multi-objective GA with selection integrated sampling tech-
nique is applied to solve a multi-objective stochastic optimization problem in a grid
connected photovoltaic inverter system with noise injected from both the solar power
input and the utility grid.
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CHAPTER 1

INTRODUCTION

Genetic Algorithms (GAs) are widely used in multiple fields, ranging from math-

ematics, physics, to engineering fields, computational science, manufacturing, even

to economics [1], etc. The stochastic optimization problems are important in power

electronics and control systems [2], and most designs require choosing optimum pa-

rameters to ensure maximum control effect or minimum noise impact; however, they

are tough to solve using the exhaustive searching method, especially when the search

domain conveys a large area or is infinite [3]. Earlier researchers had proposed random

search algorithms, such as the Stochastic Ruler (SR) algorithm [4], and the Stochastic

Comparison (SC) algorithm [5]. However, these algorithms are difficult for application

problems because it is hard to decide the termination of the algorithms. Recently,

meta-heuristics methods, such as Genetic Algorithms, Particle Swarm Algorithms,

and Simulated Annealing, have drawn attention to researchers. A combination of the

searching method with statistical analysis techniques has made progress in solving

noisy function optimization.

Christian Schmidtl et al. presented integrating techniques from Statistical Rank-

ing into Evolutionary Algorithms [6], Hui Pan et al. presented a combination of

Particle Swarm Optimization with Optimal Computing Budget Allocation (OCBA)

technique [7], Alkhamis and Ahmed performed simulated annealing with confidence

intervals for simulation-based optimization [8].

The genetic algorithm is the most widely used meta-heuristics method to solve

stochastic optimization problems [9] [10]. Starting from a random search with no

prior information, the genetic operators guide the evolution of chromosomes (which

represent the solution set in this case) to the optimum solution. Sampling allocation

schemes are required to estimate the noise when evaluating stochastic problems; how-
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ever, in the ranking and selection process, one does not want to waste samples for

the solution that is unlikely to be the optimum solution or to oversample when the

noise level is low. In this case, computer budget allocation schemes are introduced

and integrated into the genetic algorithms to solve stochastic optimization problems.

Traditionally, the genetic algorithm evaluates all the individuals once at the eval-

uation process. Then the selection process is only used for selecting the optimum

off-spring from the fitness value computed in the evaluation. However, the selection

procedure is also a key factor where ranking occurs. Thus, in stochastic problems, the

probability of correct selection in the selection procedure can be improved by allocat-

ing samples during selection. And it may lead to improvement of overall performance

in the genetic algorithm.

There are two different ways of introducing the computer budget allocation

schemes into genetic algorithms with same initial sampling guaranteed in both cases.

The first is to allocate the computing budget into the evaluation procedure [11] [6]

to further improve the accuracy of the evaluation. The second is to allocate the

computing budget into the selection procedure to further improve the accuracy of

selection.

In this dissertation, a comprehensive study of the different computing budget

allocation schemes is included for both single objective and multi-objective genetic

algorithms. Details of the integration will be introduced in later chapters. In both

cases, typical test problems are studied in different noise level, and statistically val-

idated results are produced from large amount experiments and statistical tests. It

is found that while different computing budget schemes can affect the results in var-

ious test problems, it is more general that selection integrated sampling technique

performs better in genetic algorithm than evaluation integrated sampling technique

in both single objective genetic algorithm and multi-objective genetic algorithm.

2



Based on this conclusion, selection integrated sampling genetic algorithm can be

applied to solve practical power electronics and control problems. Many power elec-

tronics problems are discrete event stochastic optimization problems with unknown

noise. The only way to evaluate the system performance is to perform independent

experiments or simulations. However, for complicated control systems, it is computa-

tionally intensive to run those simulations. In this case, an algorithm which provides

the optimum solution for the single/multi-objective stochastic optimization problems

with the least number of simulation/evaluation is necessary. The selection integrated

genetic algorithm is applied to solve such control problems and provides the optimum

design solution for power electronics devices.

1.1 Applications of Dissertation

The first application of this dissertation is to improve the efficiency of a genetic al-

gorithm on single-objective stochastic problems by integrating the computing budget

allocation technique into the tournament selection process. Different allocation tech-

niques will be utilized and compared. Multiple deterministic test problems with a

known global optimum point are being added with a zero mean Gaussian noise to

test with the integrated genetic algorithm.

The second application of this dissertation is to improve the efficiency of a multi-

objective genetic algorithm to solve multi-object stochastic problems by integrating

the computing budget allocation technique into the environmental selection process.

For a multi-objective problem, there is no fixed optimum solution. However, we can

find the Pareto optimum solution, which is the set of solutions that cannot improve

any objective without sacrificing other objectives. Also, using a genetic algorithm

with computing allocation budget integrated into the environmental selection process

will improve the efficiency of finding Pareto optimum solutions for multi-objective

stochastic problems.

3



The third application focuses on applying the selection integrated genetic algo-

rithm to solve a realistic stochastic power electronic problem. Optimization of grid-

connected photovoltaic inverter system is considered a complicated stochastic problem

due to the randomness in solar irradiance and the grid variations. The system is very

complex and takes a long time for one simulation. It is important to locate optimum

control parameters to maintain the system stability and performance in varies noise

environment. Thus a significant amount of simulation in different noise cases are

required to select optimum results. And the proposed algorithm can be applied to

improve the accuracy of results given that computing power is limited. Hardware

experiment is performed to validate the algorithm results.

1.2 Organization

In this dissertation, the integrated genetic algorithms are proposed to solve stochastic

optimization problems, and a stochastic multi-objective power electronics problem is

solved through the proposed algorithm. The remainder of this dissertation is orga-

nized as follows:

Chapter 2 gives the background and literature review of the single objective genetic

algorithm, multi-objective genetic algorithm, optimum computing budget allocation

schemes and photovoltaic inverter.

Chapter 3 illustrates different methods to integrate computing budget allocation

schemes into the single objective genetic algorithm, which are the selection inte-

grated method and the evaluation integrated method. The basic operators of a single

objective genetic algorithm include initialization, evaluation, tournament selection,

crossover, mutation, elitism, and termination. The selection integrated genetic al-

gorithm integrates the computing budget allocation into the tournament selection

procedure, while the evaluation integrated method integrates the computing budget

allocation into the evaluation process. Experiments on test problems are conducted,
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and the results show that statistically the selection integrated genetic algorithm per-

formed than the evaluation integrated method.

Chapter 4 illustrates different methods to integrate computing budget allocation

schemes into the multi objective genetic algorithm, which are the selection integrated

method and the evaluation integrated method. The basic procedures of a multi-

objective genetic algorithm are different from a single objective algorithm which in-

clude two different selection procedures. The basic workflow of a multi-objective

genetic algorithm includes initialization which includes initial evaluation to produce

pool, mating selection, which is identical to tournament selection in the single ob-

jective genetic algorithm, followed by crossover, mutation, evaluation to produce a

new pool. Then the new pool is combined with old pool for environmental selection,

which ranks and selects the next generation pool. The environmental selection is

a more major selection procedure than mating selection in the multi-objective ge-

netic algorithm, so the selection integrated method for the multi-objective genetic

algorithm is integrated into the environmental selection. The evaluation integrated

method remains the same as the single objective genetic algorithm. Experiments on

multi-objective test problems are also performed and similar conclusion of a better

result from selection integrated method can also be drawn statistically.

Chapter 5 illustrates a practical multi-objective stochastic power electronic prob-

lem and solve the problem with the proposed selection integrated multi-objective

genetic algorithm. Randomness from solar irradiance and grid variations are in-

troduced to a photovoltaic inverter system. The randomness from solar irradiance is

introduced in both input power and ramp power to mimic the current solar irradiance

and irradiance change per second. The randomness from grid variation is introduced

in both base grid voltage magnitude and 5th and 7th harmonics voltage magnitude.

The two optimization objects are to minimize accumulative voltage variation from

simulation which includes a one-second power ramp and to minimize the grid cur-

5



rent. Optimization goals are to be achieved through tuning of control parameters

using the multi-objective genetic algorithm. The optimal results are validated and

tested with hardware experiments.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Based on the previous introduction, genetic algorithms, different computing budget

allocation methods, and realistic power electronic problems are the three key factors

in this dissertation. Related background information and literature review will be

presented. The remainder of this chapter is organized as follows: background of the

single-objective genetic algorithm is introduced in section 2.1; followed by the back-

ground of the multi-objective genetic algorithm in section 2.2. Optimal computing

budget techniques [12] with supportive lemmas are introduced in section 2.3. Buck

converter is introduced in section 2.4. The photovoltaic inverter is introduced in

section 2.5.

2.1 Single-objective Genetic Algorithm

Genetic Algorithms (GAs) are searching and optimization algorithms that mimic the

process of natural selection described by Charles Darwin. The concept of GAs was

first introduced by John Holland from University of Michigan, Ann Arbor, and it was

developed rapidly afterward [13]. GAs are naturally parallel and direct methods which

aim to evaluate and modify sets of solutions simultaneously [14]. After initialization, a

single-objective GA, which will be referred as SOGA in this section, repeats the basic

procedures of evaluation, selection, crossover, mutation, and elitism until termination

criteria are met. Detailed information about each procedure is given as follows.

2.1.1 Chromosome encoding

In natural selection, a chromosome represents the gene with the encoded information

that determines distinct properties. Similarly, chromosomes encode the independent
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decision variables (also known as genes) in genetic algorithms [14]. Each gene rep-

resents a unique design in the process. For the optimization problem, the coding

scheme is:

Chromosome: X̂ : X1, X2, . . . , Xk, where k is the number of designs, and Xi(i =

1, 2, . . . , k) is the solution vector that represents the ith gene.

2.1.2 Initialization

The SOGA starts with initialization. During this process, random values in the search

space are assigned to each chromosome. Specifically, the initial random chromosomes

are uniformly distributed between the maximum and minimum search intervals to

form the initial pool which is evaluated with the number of initial samples.

2.1.3 Selection

Different selection algorithms are adapted to different SOGAs, and tournament selec-

tion is one of the most popular methods [15] [16]. The tournament selection can be

processed in three steps. First, randomly select m individuals from the pool, where

m is the tournament size and must be greater than or equal to 2. Second, rank the

fitness value for the tournament individuals. Third, choose the individual with the

highest rank to generate the new pool. For example, if the pool size is n, then n

different tournaments will be generated randomly, with the highest rank generating

a new pool for the next generation. The tournament size m determines the selection

pressure: the larger m is, the more difficult it is to select an individual with weak

fitness value.
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2.1.4 Crossover

Crossover is the first step of reproduction; it uses the genes of the parents to form

new chromosomes. In this study, simulated binary crossover [17] [18] is used.

Simulated binary crossover (SBX) is similar to one-point crossover in binary SO-

GAs; however, it performs as well or better than the one-point method. SBX is

particularly useful in solving complicated problems, such as problems with multi-

optimum solutions.

SBX generates two children, c1 and c2, from two parent genes, p1 and p2, using a

random generated spread factor, β, according to the following:

c1 = x̄− 1

2
β̄(p2 − p1) (2.1)

c1 = x̄+
1

2
β̄(p2 − p1) (2.2)

And the proposed probability distribution function of β is:

c(β) = 0.5(n+ 1)βn, β ≤ 1 (2.3)

c(β) = 0.5(n+ 1)
1

βn+2
, β > 1 (2.4)

2.1.5 Mutation

In SOGAs, the mutation may randomly alter the value of one or more genes from

the population. The changes mimic the natural process by which mistakes are copied

from the parent genes to the children.

The process of mutation can follow the process of crossover. For example, a gene

to be mutated is first randomly selected, and the simulated binary crossover is used
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to correlate the gene with a randomly generated number to ensure the randomness

of mutation.

2.1.6 Evaluation

The evaluation process is necessary to assign a fitness value to each chromosome,

thereby ranking gene performance. The fitness value guides the evolution of a chro-

mosome from generation to generation. Typically, evaluation calculates the fitness

function, sometimes through running a simulation for a discrete system. For the

stochastic problems considered in this dissertation, the noise vectors are also intro-

duced in the evaluation process.

2.1.7 Insertion

After the process of tournament selection, crossover and mutation, the new mating

pool was formed. The insertion process randomly insert the new mating pool into

previous pool to generate the next generation pool.

2.1.8 Termination

The SOGA terminates if the maximum iteration occurs. During the SOGA process,

the information of chromosomes and fitness value from each generation is collected.

Those data are to be analyzed after termination.

2.2 Multi-objective Genetic Algorithm

In the last section, background and basic procedures of the single-objective genetic

algorithm are introduced. However, in real-world optimization, application problems

often contain more than one objectives that need to be optimized. For example,

an economic power dispatch problem which aims to minimize and emission under
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constraints of overall capacity, power balance and security constraints is described

in [19]. A multi-objective optimization issue, which demands minimal of initial cost

or the maximum of power density and the maximum of power conversion efficiency

with a possible energy cost of a single phase rectifier is proposed in [20]. A multi-

objective control goal for the power converter in active hybrid fuel cell/battery sources

of energy includes regulating the output current of the fuel cell and the charging

current of battery while limiting the discharging current of the battery is achieved

in [21] with a flexible multi-objective control strategy. In [22], multi-objective genetic

algorithms (MOGAs) is demonstrated to be one of the efficient approaches to solving

such multi-objective engineering problems.

MOGAs usually combine operators such as mating selection [23], which selects

child genes, crossover, and mutation to construct new generations of individuals.

Among MOGAs, most elitist approaches archive non-dominated solutions from the

previous generation and combine them with non-dominated solutions from the current

generation to produce the subsequent generation, a process which is referred to as

environmental selection [23]. A non-dominated sorting based MOGA, which is called

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is one of the most widely

used and complexity efficient methods among all the MOGAs [18]. The general

procedure of an NSGA-II will be introduced herein.

2.2.1 Chromosome encoding

For MOGA, the search domain is Rn where n is the number of objectives. For an

objective i, the chromosomes are represented by X̂i : Xi1, Xi2, . . . , Xik, where k is the

number of designs, and Xij(i = 1, 2, . . . , n, j = 1, 2, . . . , k) is the solution vector that

represents the j-th gene of i-th objective.
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2.2.2 Initialization

The MOGA also starts with random initialization similar to SOGA. Unlike to SOGA,

the search domain is multi-dimensional. For two-objective optimization problems, the

search domain forms a plane; for three objective problems, the search domain forms a

3D space and can be imagined as unbounded cubic; For higher dimension, the search

domain forms a higher dimensional space and can hardly be imagined. The initial

random chromosomes are uniformly distributed between the maximum and minimum

search intervals in each dimension and build a n dimensional chromosomes space.

2.2.3 Evaluation and Non-dominated Sorting

In MOGA, evaluation assigns fitness value to each objective. For SOGA, the rank-

ing and comparison of two individuals are determined by its fitness. However, for

MOGA, it is difficult to determine which individual is best by merely observing the

fitness. In the multi-objective scenario, correctly ranking the individuals based on the

fitness value and assigning a legitimate rank to discriminate the individual becomes

an important issue. A fast non-dominated sorting algorithm was first proposed by

Deb.et al [18] in NSGA-II as an enhancement to NSGA and was widely used for its

accuracy and efficiency in determining the rank. The sorting algorithm is described

as follows:

Crowding distance is another measurement for an individual calculated by its

fitness values. If two individuals have the same rank, crowding distance is used

to discriminate the two individuals. The basic idea for calculating the crowding

distance is finding the Euclidean distance between each in a front based on the multi-

dimensional hyperspace. The individuals in the boundary are assigned with infinite

distance. The algorithm for calculating the crowding distance is described as follows:
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Algorithm 1 Non-dominated sort

1: for Each individual p in main polulation P do
2: Initialize Sp = ∅. Sp denotes the set that is dominated by p.
3: Initialize np = 0. np denotes the number of individuals that dominate p.
4: for Each individual q ∈ P do
5: if p dominates q then
6: Add q to the set Sp i.e. Sp = Sp ∪ q
7: else
8: Increment the domination counter i.e. np = np + 1
9: end if

10: end for
11: if np = 0 then
12: No individuals dominate p, p belongs to the first front, i.e. prank = 1
13: Update the first front set by adding p to it. i.e. F1 = F1 ∪ p
14: end if
15: end for
16: Initialize the front counter to one. i = 1
17: while The ith front is nonempty i.e.Fi 6= ∅ do
18: Initialize the set for storing the individuals of (i + 1)th front to empty. i.e.

Q = ∅
19: for Each individual p in front Fi do
20: for Each individual q in Sp (Sp denotes the set of individuals dominated by

p) do
21: Decrement the domination count for individual q, i.e. nq = nq − 1
22: if nq = 0 then
23: No individuals in the subsequent fronts dominate q. Set qrank = i+ 1.
24: Update the set Q with individual q i.e. Q = Q ∪ q.
25: end if
26: end for
27: end for
28: i = i+ 1
29: Set Q is the next front i.e. Fi = Q
30: end while

2.2.4 Tournament selection

Tournament selection procedure for MOGA is similar to the selection procedure for

SOGA. Tournaments which are composed of randomly selected individuals from the

pool are formed. A tournament size is usually greater than or equal to 2. The

individual with the highest rank from non-dominated sort is selected. If there are

more than two individuals with the same rank, the one with larger crowding distance
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Algorithm 2 Crowding Distance

1: for Each front Fi with n individuals do
2: Initialize the distance to be zero for all the individuals, i.e. Fi(dj) = 0, where

j denotes the index of individual.
3: for Each objective function m do
4: Sort the individuals in front Fi based on objective m, i.e. I = sort(Fi,m)
5: Assign infinite distance to boundary values for each individual in Fi, i.e.

I(d1) = inf, I(dn) = inf
6: for k equals 2 to (n− 1) do

7: I(dk) = I(dk) + fm(k+1)−fm(k−1)
fmax
m −fmin

m
, fm(k) denotes the fitness value of the mth

objective function of the kth individual in I
8: end for
9: end for

10: end for

will be selected. Tournament selection mimic the survival selection of evolutionary

process.

2.2.5 Crossover and Mutation

The crossover and mutation procedures for MOGA are the same as in SOGA. SBX

is used for both crossover and mutation.

2.2.6 Environmental selection

For a MOGA, a new pool will be generated after the tournament selection, crossover

and mutation. A process called recombination combines the new pool with the original

pool. A non-dominated sort would be performed on the combined pool. The process

of selecting the next generation pool from the combined pool based on minimizing

the rank and maximizing the crowding distance is called environmental selection. For

a MOGA, the environmental selection is the dominant selection procedure and poses

heavier selection pressure than the tournament selection.
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2.2.7 Termination

The MOGA terminates if the maximum iteration occurs. During the MOGA process,

the information of chromosomes, fitness values, rankings and crowding distances from

each generation is collected. Those data are to be analyzed afterward.

2.3 Optimum Computing Budget Allocation Schemes

A genetic algorithm achieves better accuracy by integrating computer budget alloca-

tion schemes into either the selection or evaluation process when solving optimization

problems with uncertainty. The procedure of integration into either the selection

or evaluation process is easy to understand and will be elaborated in the following

chapters. However, allocation schemes are also essential. Developed by Chen et al.,

optimum computing budget allocations (OCBA/OCBA-m) are sequential ranking and

allocation procedures developed from ordinal optimization (OO) [24]. They are inte-

grated with different algorithms and applied to realistic problems [3] [25] [26] [27] [28]

and also inside genetic algorithms [6].Although OO could significantly reduce the com-

putational cost with ”good-enough” solutions [3] [29], the OCBA procedure further

enhances the efficiency and optimally chooses the number of simulations for each de-

sign, obtaining maximum computing efficiency with the highest probability of correct

selection.

The probability of correct selection or P (CS) is defined to give the probability

of the observed good-enough solutions, selected via order comparison, are indeed the

true good-enough solutions [30]. The calculation of probability of correct selection

is very time-consuming via Monte Carlo simulation [24]; therefore, Chen et al [24]

proposed lower bound estimation under the following assumptions: assume the simu-

lation output L(Xi, ξij) to be a normal distribution with unknown mean, assume the

variance σ2
i to be known for the purpose of simplicity, and assume a non-informative
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prior is applied (implies no prior knowledge about any designs). Then, under the

Bayesian model, the posterior distribution of Ji is also a normal distribution given

by:

p(Ji|L(Xi, ξij), j = 1, 2, . . . , Ni) ∼ N(J̄i,
σ2
i

Ni

) (2.5)

in which J̄i is the sample mean, and variance σ2
i is estimated using the sample variance

s2
i .

The definition of P (CS) is:

P (CS) = P{design b is actually the best one}

= P{Jb < Ji, ∀i, j = 1, . . . , Ni, i = 1, . . . , k, i 6= b}
(2.6)

The two forms of Approximate Probability of Correct Selection (APSCS) derived

from statistics literature [31] [32] [33] are described in the following Lemmas [34]:

Lemma 1. The approximate probability of correct selection using the Bonferroni

inequality is:

P (CS) ≥ 1−
k∑

i=1,i 6=b

P{J̃b > J̃i}

= 1−
k∑

i=1,i 6=b

Φ

(
δb,i
σb,i

)
= APCS −B

(2.7)

Lemma 2. The approximate probability of correct selection using a product form

is:

P (CS) ≥
k∏

i=1,i 6=b

P{J̃b < J̃i}

=
k∏

i=1,i 6=b

Φ

(
−δb,i
σb,i

)
= APCS − P

(2.8)
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where J̃i ∼ N(J̄i,
σ2
i

Ni
), J̄b ≤ mini J̄i,δb,i = J̄b − J̄i,σ2

b,i = s2
i /Ni + s2

b/Nb, k is the total

number of designs and Φ(x) is the standard normal cumulative distribution function.

The two methods of calculating APCS are similarly easy and quick without the

necessity of Monte Carlo simulation. Chen et al. developed two distinct procedures

of OCBA based on these two methods. The classical OCBA scheme is derived by

maximizing the APCS-B and allocating samples with a total computing budget of T .

The APCS-B is calculated to estimate the probability of correct selection, P (CS).

This equation is then used to form a Lagrangian relaxation and to find the stationary

point of the Lagrangian function through calculation. The classical OCBA scheme

asymptotically maximizes the APCS-B using Lemma 1 with a total computing budget

of T and minimizes the total computing cost to maximize the probability of correct

selection while choosing the optimum design.

The OCBA-m scheme identifies the optimum subset of m designs out of total of

k designs. The probability of correct selection is estimated using Lemma 2:

P (CS) = P{J̃i ≤ J̃j, i ∈ Sm and j /∈ Sm}

= P{J̃i ≤ c and J̃j ≥ c, i ∈ Sm and j /∈ Sm}

=
∏
i∈Sm

P{J̃i ≤ c}
∏
i/∈Sm

P{J̃i ≥ c}

= APCS −m

(2.9)

By calculating the APCS-m and using it to form a Lagrangian relaxation, the

stationary point can also be found. Based on these calculations, Chen et al state the

asymptotic solution for classical OCBA [24] and OCBA-m [34] in the following two

theorems:

Theorem 1. Given a total computing budget (T) to be allocated to k compet-

ing designs with performance measured by means J̄(X1), J̄(X2), . . . , J̄(Xk) and finite

variances σ2
1, σ

2
2, . . . , σ

2
k, respectively, as T →∞, the approximate probability of cor-
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rect selection can be asymptotically maximized when:

Ni

Nj

=

(
σi/δb,i
σj/δb,j

)2

, i, j ∈ {1, 2, , . . . , k}, and i 6= j 6= b (2.10)

Nb = σb

√√√√ k∑
i=1,i 6=b

N2
i

σ2
i

(2.11)

Theorem 2. Given a total computing budget (T) to be allocated to k compet-

ing designs with performance measured by means J̄(X1), J̄(X2), . . . , J̄(Xk) and finite

variances σ2
1, σ

2
2, . . . , σ

2
k,respectively, as T → ∞, the approximate probability of cor-

rect selection for top m best designs (APCS-m) can be asymptotically maximized

when:

Ni

Nj

=

(
σi/δi
σj/δj

)2

, i, j ∈ {1, 2, , . . . , k}, and i 6= j (2.12)

Where δi = J̄i − c, c =
σ̂im+1

J̄im+σ̂im J̄im+1

σ̂im+σ̂im+1
and, σ̂i ≡ σi/

√
Ni.

In the above theorems,
δb,i
σi

from Theorem 1 and δi
σi

from Theorem 2 can be con-

sidered as signal-to-noise ratios for design i. In selecting the best design, high
δb,i
σi

means that either the design i is much worse than the best design, or the design has

smaller noise. This condition increases confidence in differentiating this design from

the best design; thus fewer samples are needed to allocate further. In the selection

of the top m designs, a higher ratio, δi
σi

, indicates greater certainty that design i is

either included in the top m subset or is among the worst designs; in both cases, fewer

samples are needed. When m = 1, the OCBA-m selects the best design. Overall,

we should spend more samples on the designs which have lower signal-to-noise ratio,

and the allocating of computing budget is inversely proportional to the square of the

signal to noise ratio.

According to the theorems, the allocation algorithm can be summarized in the

following steps:
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Input: input number of designs k, initial sample number n0, and allocation com-

puting budget T. The initial sample number, n0, should be sufficient to allow sufficient

stochastic information while not so large as to allocate excessively many initial sam-

ples. Usually, it is chosen according to an estimation of the variance of the noise,

defined as the noise level. If the noise level is high, more initial samples should be

expected and vice versa for a low noise level. The ratio of T : n0 may vary.

Initialize: initialize n0 samples for all designs.

Calculate: calculate sample mean J̄i = 1
N l

i

∑N l
i

j=1 L(Xi, ξij), and sample standard

deviation si =

√
1

N l
i−1

∑N l
i

j=1(L(Xi, ξij)− J̄i)2, i = 1, . . . , k. Use the updated sample

variance s2
i as the estimation of variance σ2

i . For OCBA, find b = arg mini J̄i,

i = 1, . . . , k, and compute δbi, i = 1, . . . k, i 6= b. For OCBA-m, use the ranking of J̄i

to determine the subset Sm and compute σ̂i, c, and δi according to Theorem 2.

Allocate: allocate the computing budget T to k designs. For OCBA, allocate

according to Theorem 1. For OCBA-m, allocate according to Theorem 2.

The formulation of OCBA for multi-objective problems [34] follows a similar pro-

cedure for the single objective problems illustrated above. The detailed calculation

steps for optimal allocation of samples will be included in Chapter 4. Overall, the

OCBA schemes aim to maximize simulation efficiency by determining the best num-

bers of samples for each to achieve the maximum probability of correct selection.

2.4 Three phase Photo-voltaic (PV) inverter

The last topic of this dissertation is about the optimization of a three-phase photo-

voltaic (PV) inverter system. There has been a major growth in both residential and

commercial installation of PV systems recently. The US solar market reported a 45%

increase in PV market in 2016 than 2015. Until now, nearly 32 GW of total solar

capacity now installed can generate enough electricity to power 6.2 million homes.

And the solar prices also dropped a significant of 18% from 2015 to 2016 according to
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the solar energy industries association reports. The optimization of the three phase

PV system had been an important topic in both research and industry due to the

increasing demands.

The structure of a three-phase PV inverter system usually contains PV arrays,

three-phase inverter, and output filter. A brief introduction to the PV inverter system

is given herein.

2.4.1 Photo-voltaic (PV) array

A PV array is a complete power generating unit, which is usually composed of some

PV modules or panels. A PV module is one of the fundamental building blocks of PV

system, which consists PV cell circuits [35]. PV cells use semiconductor p-n junction

to absorb light energy and translate to electrical charge. PV array translates the solar

energy into electricity form.

2.4.2 Three phase inverter

The inverter in a PV system is used to transform the DC form of electricity generated

from the PV arrays into AC form. The three-phase inverter usually adopts six switches

for the three-phase configuration. The six switches are arranged in three parallel legs,

with each leg contains two switches in series. The DC input to the three-phase inverter

is applied between the top and bottom of the three legs. The three phase output is

produced in each leg for each phase using the two series switches. The switching is

performed by Pulse-Width Modulation (PWM). PWM is the process of modifying

the width of the pulse in a series of pulses according to the control signal produced

by the control goal and the real time circuit response.

In three phase inverter, the PWM signal is usually produced by comparison of a

sinusoidal control signal and the triangular switching signal [36]. The control signal

is traditionally produced out of proportional integral (PI) current control [37]. How-
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ever, this control strategy is known for several drawbacks: the steady-state errors in

single-phase systems and the need for synchronous d-q transformation in three-phase

systems. Based on these drawbacks, the proportional-resonant (PR) controller is used

in this study. Another main benefit is to implement selective harmonic compensa-

tion without requiring excessive computational resource [38]. The PR control is now

widely used in grid-interfaced converters.

Another important control loop for grid connected three phase inverter is the

phase locked loop (PLL) to provide the rotational frequency and angle by resolving

the grid voltage abc component. The grid voltage is first transformed to qd frame;

then a PI controller is used to force the quadrature component of the voltage to zero.

The block diagram of the PLL is shown in Figure 2.1

Figure 2.1: Block diagram of the phase locked loop (PLL)

The abc/qd transformation is used to transform quantities in the synchronous

reference frame (abc) to a synchronously rotating reference frame (qde). The benefits

of the translation are that when the system is balanced, the components would be

constant. The equations of the transformation are given in Eq. 2.13 and Eq. 2.14.

fqde = Krfabc

Kr =
2

3


cos θ cos(θ − 2π

3
) cos(θ + 2π

3
)

sin θ sin(θ − 2π
3

) sin(θ + 2π
3

)

1
2

1
2

1
2


(2.13)
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fabc = Kr
−1fqde

Kr
−1 =


cos θ sin θ 1

cos(θ − 2π
3

) sin(θ − 2π
3

) 1

cos(θ + 2π
3

) sin(θ + 2π
3

) 1


(2.14)

For a balanced network, after the transformation, Eq. 2.15 can be obtained.

vedge = vs sin(ωe − ω̂e) (2.15)

The rotational frequency can be obtained by driving vedge to zero using PI control:

ω̂e = kp(0− vedge) + ki

∫
(0− vedge)dt (2.16)

The rotation angle θ is the integral of radiance:

θ =

∫
ω̂edt (2.17)

2.4.3 Filter

The output quantity from a three-phase inverter contains switching harmonics along

with the fundamental desired frequency. A filter plays a critical role in the transaction

from the output to the grid by separating the fundamental frequency part from the

high-frequency noise. The output filter can be designed to L filter, LC filter or LCL

filter according to requirements. Among the three types of filters, LCL is the kind

that has the most significant filtering effect. However, because of the complexity of

the second order system, the inverter with LCL filter is less stable than the other two

kinds. A virtual resistance damping method is used for the grid current controlled

inverter to increase the stability of the system. More technical details about the

controlling and the damping will be introduced in Chapter 5.
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CHAPTER 3

SINGLE-OBJECTIVE GENETIC ALGORITHM WITH

ALLOCATION TECHNIQUES FOR STOCHASTIC

PROBLEMS

Stochastic problems are widely encountered in almost every field of science and en-

gineering. Many realistic industrial problems are subject to randomness or to un-

certainties that can be modeled stochastically. Example problems include stochastic

scheduling [11,39], computation of optimal power flow and optimization of an operat-

ing point with constraints [40], stochastic network partitioning and clustering [41,42],

stochastic vehicle routing problem [43], and design of power system stabilizers [44].

A common feature of these example problems is the relatively high computational

expense of performing the required simulations. The straightforward approach of

collecting a large number of samples can be computationally very expensive. Im-

provements to this approach can be made by use of efficient sampling in the search

algorithm for these types of problems, potentially improving both the runtime and

the accuracy of the search algorithm.

Meta-heuristic methods, such as genetic algorithms (GAs), particle swarm opti-

mization, simulated annealing and ant colony optimization, have been widely used

to solve optimization problems [45, 46], and they have been particularly successful

when the derivative of the objective function is unknown or does not exist. How-

ever, when randomness is introduced into these problems, appropriate methods for

addressing it are necessary. Some methods seek a robust solution, which is insen-

sitive to small variations [47], such as analog circuits designed to be robust against

certain faults [48]. Variations of the heuristic algorithms have been proposed to find

solutions to stochastic problems. Such variations include specifying the probability

of constraint satisfaction as part of the fitness function of a GA [49], introducing a
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probability vector in the extension of each colony for ant colony optimization [50],

integrating statistical sequential selection into simulated annealing [51], incorporating

equal re-sampling methods into particle swarm optimization [52], integrating math-

ematical approximations of a solution’s reliability into evolutionary algorithms and

investigating the situation case by case [53], employing the concept of global and local

optimization and improving the efficiency of globally robust search by dividing the

search space into regions [54], and by constructing local approximate models of the

fitness function [55]. These approaches have primarily focused on the quality of the

solutions, with only secondary concern for computational efficiency.

Applying ordinal optimization techniques, which seek to allocate adequate num-

bers of samples to promising individuals and reduce unnecessary sampling of non-

critical individuals, is a promising approach to improve efficiency while maintaining

accuracy at locating the solution to stochastic problems [56,57]. In this direction, the

optimal computing budget allocation (OCBA) methods, which are sequential ranking

and allocation procedures developed from ordinal optimization [24], have been devel-

oped. OCBA methods and other methods for computing budget allocation (CBA)

are used to allocate the samples that are performed on a set of individuals to re-

veal the relative merit of the individuals. Combining CBA methods into heuristic

search algorithms, such as GAs, is a good way of improving the sampling efficiency in

robust optimization methods. A technique for integrating statistical ranking into evo-

lutionary algorithms is presented in [6]. The OCBA method is proposed to guide the

allocation of sampling budget and identification of good particles in particle swarm

optimization [7], and it is further developed and investigated with various distribu-

tions in [58]. The previous usage of CBA methods with evolutionary algorithms has

focused on the integration of the CBA methods into the evaluation and ranking pro-

cess [3, 6, 59]. In [60], the OCBA rule for selecting the best m individuals out of a
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set of k is integrated with GA evaluation to improve the search efficiency. A GA

involving CBA methods in this way is called an evaluation-integrated GA (EIGA).

The contribution of this work is to propose a selection-integrated GA (SIGA) in

which CBA techniques are integrated directly into the GA selection operator rather

than being used during fitness evaluation. The SIGA allows fitness evaluations to be

allocated towards specific individuals for whom the GA requires more information.

Several stochastic test problems are considered under different noise levels, including

problems based on benchmark functions from a recent conference competition, and

the performance of the EIGA and the SIGA with different CBA methods is compared.

Statistical significance tests are performed on those problems to verify the accuracy

of the proposed algorithm. It is shown that the SIGA is capable of achieving more

accurate results for the same computational budget or results with the same accuracy

for a considerably decreased computing budget.

The remainder of this chapter is organized as follows. First, descriptions of the

problem and different CBA methods are given. Then, the existing EIGA and proposed

SIGA approaches for integrating CBA methods into GAs are described. Next, test

functions, including various noise levels, are presented, and experimental results and

analysis are given.

3.1 Stochastic problems and computing budget allocation

methods

The stochastic problems and the CBA methods considered herein are described below.
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3.1.1 Stochastic problem statement

The stochastic problems considered herein have the following form [61]:

min
X

J(X) = E[L(X, ξ)], (3.1)

where X is the (possibly multi-dimensional) decision variable, L(·, ·) is the sample

performance and can only be calculated via simulation, ξ is a random variable rep-

resenting the noise integrated within the function, and J(·) represents the expected

performance. For the test problems discussed herein, the randomness is modeled as

additive noise with a Gaussian distribution, but it can be represented in other ways

as well. It is also assumed that such a problem is unconstrained in the sense that any

constraints that bind the solution are appropriately penalized in L(·, ·).

For a deterministic problem J(X) = L(X), GAs are widely applied to find the

optimal solution X∗ = arg minX L(X). For a stochastic problem, the fitness function

J(X) can only be estimated by calculating the mean of a limited number of random

samples. For individual i, the mean performance measure can be estimated as

J(Xi) ≈ L̄i =
1

ni

ni∑
j=1

L(Xi, ξij), (3.2)

where ni represents the number of samples and ξij represents the noise of the jth

sample for individual i. The variance σ2
i for individual i is unknown and can be

approximated by the sample variance s2
i ; the sample mean for individual i is denoted

as L̄i; the optimum individual given previous samples is denoted as b, which has the

smallest sample mean, i.e. L̄b ≤ L̄i,∀i.

Due to the law of large numbers, increasing ni will result in L̄i being a better

estimate of the actual mean J(Xi). However, evaluating more samples requires more

computational time. GAs, depending on the fitness scaling and selection methods
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used, often require an understanding of the relative fitness of smaller sets of individuals

rather than a precise understanding of the absolute fitness of each. The goal of the

proposed SIGA is to provide this information to the GA. Under the cases of two

individuals have sufficiently different sample means or small sample variances such

that one individual is very likely better than the other, there is no need to evaluate

more samples of these individuals.

3.1.2 Computing budget allocation methods

Various CBA methods exist in the literature, and the CBA methods applied in this

study are discussed in this subsection. For each of these methods, it is assumed that

N samples are being allocated among k individuals.

Equal allocation method

The simplest allocation technique to conduct sampling is the equal allocation (EQU)

technique and it often serves as a benchmark for comparison [34]. The available

computing budget is equally distributed to all individuals being compared:

ñi =
N

k
, (3.3)

where ñi is the number of additional samples to be allocated to individual i.

Optimal computing budget allocation methods

OCBA methods are based on asymptotic arguments that show that allocating sam-

ples in a particular manner will result in the highest probability of correct selection.

The two OCBA methods used herein, described in [12], are based on different as-

sumptions and are treated separately. In both OCBA methods, some initial samples

ni have been performed for each individual, and information about the sample mean
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L̄i and variance σ2
i of each individual is used to perform the allocation. The available

N samples are allocated to individuals based on assumptions about distribution and

asymptotic behavior to maximize the probability of correctly selecting the best indi-

vidual (OCBA) or selecting the best m individual subset (OCBAM). In this study,

m = 1, and the OCBAM represents an alternative OCBA method of correctly select-

ing the best individual.

For the OCBA method, the best individual is identified:

b = arg min
i
L̄i, (3.4)

and this individual is used to calculate a distance

δb,i = L̄i − L̄b. (3.5)

This distance and the sample variance are used to establish the ratio of samples

allocated to different individuals:

ñi
ñj

=

(
σi/δb,i
σj/δb,j

)2

, i 6= b, j 6= b (3.6)

The number of samples allocated to the best individual is given by

ñb = σb

√√√√ k∑
i=1, i 6=b

ñ2
i

σ2
i

, (3.7)

and the total number of allocated samples must be N .

For the OCBAM method, the individuals are sorted such that i is the rank of the

individual (i.e., the first individual is the best individual). A boundary between the
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best m individual subset and the remainder of the set is established as

c =
σ̂m+1L̄m + σ̂mL̄m+1

σ̂m + σ̂m+1

, (3.8)

where σ̂i = σi/
√
ni. This boundary is used to calculate a distance

δi = L̄i − c. (3.9)

This distance and the sample variance are used to establish the ratio of samples

allocated to different individuals:

ñi
ñj

=

(
σi/δi
σj/δj

)2

, (3.10)

and the total number of allocated samples must be N .

Proportional to variance method

Like the OCBA methods, the proportional to variance (PTV) method uses informa-

tion about the initial ni samples of each individual (i.e., the variance σ2
i ) to perform

the allocation. The PTV method allocates budget in proportion to the variances

because a smaller calculated sample variance usually implies more certainty [62]. The

allocation is given by

ñi
ñj

=
σ2
i

σ2
j

, (3.11)

and the total number of allocated samples must be N .
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Algorithm 3 EIGA: sigle objective

1: Initialize population of individuals with random values in search space
2: Evaluate each individual in initial population with number of initial samples
3: if EIGA then
4: Apply CBA to allocate additional samples for each individual in initial popula-

tion
5: end if
6: while Maximum generation not reached do
7: for Each tournament do
8: Select the best individual from tournament into mating pool
9: end for

10: Perform crossover for each pair of individuals in mating pool
11: Perform mutation on each individual in mating pool
12: Evaluate each individual in mating pool with number of initial samples
13: if EIGA then
14: Apply CBA to allocate additional samples for each individual in mating pool
15: end if
16: Insert mating pool into population
17: end while

3.2 Computing budget allocation method integrated genetic

algorithms

Herein, two fundamental GAs for solving optimization of stochastic problems are

considered. The first algorithm is the EIGA and is the traditional approach for inte-

grating CBA schemes with GAs. The second algorithm is the SIGA and is proposed

herein as an alternative method for solving stochastic problems. Figure 3.1 gives the

flow chart of the integrated GAs for EIGA, and Figure 3.2 gives the flow chart of the

integrated GAs for SIGA. From Figure 3.1, the EIGA integrates the CBA procedure

into the evaluation process. From Figure 3.2, the SIGA integrates the CBA procedure

after the evaluation process, at the point in which order information is required by

the GA. Therefore, it includes an additional application of the CBA method after

termination to determine the final solution.
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Figure 3.1: Flow chart of the evaluation-integrated genetic algorithm

Pseudo-codes for the two algorithms are listed in Algorithm 3 and Algorithm 4,

and steps specific for each algorithm are marked in italics. The integrated GAs have

the following steps:

Step 1: The population of nind individuals is uniformly randomly initialized in the

search domain.

Step 2: Each individual is initially sampled n0 times, and the sample mean and

variance of each individual are calculated. In the EIGA, the CBA method uses

the sample means and variances to allocate n1nind additional samples across the

population.

Step 3: Tournament selection is used. The tournament size is ntour with one

individual selected from each tournament, and npool tournaments are used to form the

mating pool. For the EIGA, the selection is performed using the previously updated
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Figure 3.2: Flow chart of the selection-integrated genetic algorithm

sample means. For the SIGA, n1 additional samples are allocated to each tournament

by the CBA method, and the tournament winner is decided after these samples are

performed. The tournaments are processed sequentially such that samples allocated

to an individual in one tournament are considered if the individual participates in

subsequent tournaments.

Step 4: Individuals in the mating pool are arranged in pairs, and a crossover is

performed on each pair. The simulated binary crossover (SBX) method [17, 18] is

used with crossover constant η.

Step 5: Polynomial mutation for real-valued GAs [63] is performed on each indi-

vidual in the mating pool with probability pm.
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Algorithm 4 SIGA: single objective

1: Initialize population of individuals with random values in search space
2: Evaluate each individual in initial population with number of initial samples
3: while Maximum generation not reached do
4: if SIGA then
5: for Each tournament do
6: Apply CBA to allocate additional samples for each individual in tourna-

ment
7: end for
8: end if
9: for Each tournament do

10: Select best individual from tournament into mating pool
11: end for
12: Perform crossover for each pair of individuals in mating pool
13: Perform mutation on each individual in mating pool
14: Evaluate each individual in mating pool with number of initial samples
15: Insert mating pool into population
16: end while
17: if SIGA then
18: Apply CBA to allocate additional samples for each individual in final population
19: end if

Step 6: Each individual in the mating pool is initially sampled n0 times, and

the sample mean and variance are of each individual are calculated. In the EIGA,

the CBA method uses the sample means and variances to allocate n1npool additional

samples across the mating pool.

Step 7: The new npool individuals randomly replace npool individuals in the popu-

lation. Elitism is not used as the fitness evaluation is uncertain due to the noise.

Step 8: The algorithm terminates after ngen generation. After the SIGA completes

its final generation, the CBA method is used to allocate n1nind samples across the

final population to identify the best individual.

The total samples required by each method is equal to n(nind + ngennpool), where

n = n0 + n1 is the total number of samples to be performed per individual per

generation.

The primary focus of this work is to compare EIGA with SIGA. The particular

genetic operators employed by these algorithms or their parameters are considered to
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be secondary to the manner in which CBA is performed. The parameters for the GAs

are given in Table 3.1. While the parameters can certainly affect the performance of

the GA, the selection of these parameters is not the focus of this work. Therefore, the

parameters are selected manually to achieve acceptable performance on the determin-

istic versions of the test functions described below and used for both the EIGA and

the SIGA. It should also be noted that elitism is not used by any of the algorithms.

While elitism has been shown near universally to improve the performance of GAs,

the stochastic problems pose particular difficulties for the use of elitism. In particular,

knowledge of whether an individual is elite is based on an imperfect sample mean.

Elitism combined with a particularly unlucky sample can derail the algorithm.

Table 3.1: Parameters of genetic algorithms

Parameter Parameter Value

ngen Number of generations 300

nind Number of individuals 100

npool
Number of individuals

in mating pool

60

ntour Tournament size 4

η Crossover constant 2

pc Crossover probability 100%

pm Mutation probability 0.05

n0 Initial samples per individual 50

n1 Allocated samples per individual 200
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3.3 Results and analysis

This section presents several stochastic test problems, describes experimental results,

and compares the EIGA and SIGA as well as the CBA methods.

3.3.1 Test functions

Several deterministic test functions with known global minima are selected. Zero-

mean Gaussian noise is added to each deterministic test function in order to form a

stochastic test function with known global expected minima:

L(X, ξ) = f(X) + ξ (3.12)

ξ = N (0, D2) (3.13)

where D is a parameter establishing the noise level associated with the problem. The

global expected minimizer of the stochastic problem is equal to the global minimizer

of the deterministic problem:

X∗ = arg min
X

E[L(X, ξ)] = arg min
X

f(X), (3.14)

and the global expected minimium is equal to the global minimum of the deteministic

problem:

E[L(X∗, ξ)] = f(X∗). (3.15)

In order to evaluate the quality of a solution X proposed by one of the optimization

methods, its error with respect to the global minimum is computed:

∆ = f(X)− f(X∗), (3.16)
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which is possible for the test functions because the global minimum is known.

The algorithms are tested on four traditional test functions and three functions

based on benchmark functions from a recent conference competition. The plate-

shaped Matyas function has one global optimum and no local optima. The valley-

shaped Rosenbrock function is one of the most popular optimization test problems.

Its global optima are situated inside a parabolic valley that makes convergence diffi-

culty. The two higher dimensional test functions are the bowl-shaped Sphere function

and the plate-shaped Zakharov function. The traditional test functions are listed in

Table 3.2. Three test functions from the 2014 IEEE Congress on Evolutionary Com-

putation competition are used [64]. The three functions used are the Griewank,

HappyCat and HGBat functions, and these functions are shifted and rotated. The

dimensions used for these functions are d = 10 for the Griewank function and d = 30

for the both the HappyCat and HGBat functions. The search domain for these func-

tions is [−100, 100]d. It is noted that these problems are intended to be representative

of modern benchmark functions but that not all functions that are appropriate bench-

mark functions for deterministic optimization are suitable stochastic problems.
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Table 3.2: Traditional test functions
Function d Definition Global minimum Search domain

Matyas 2 f(X) = 0.26(x2
1 + x2

2)− 0.48x1x2 f(0, 0) = 0 xi ∈ [−10, 10]

Rosenbrock 2 f(X) = (1− x1)2 + 100(x2 − x2
1)2 f(1, 1) = 0 xi ∈ [−2.048, 2.048]

Sphere 8 f(X) =
d∑

i=1

x2
i f(0, . . . , 0) = 0 xi ∈ [−5, 5]

Zakharov 5 f(X) =
d∑

i=1

x2
i +

(
d∑

i=1

0.5ixi

)2

+

(
d∑

i=1

0.5ixi

)4

f(0, . . . , 0) = 0 xi ∈ [−5, 5]

37



3.3.2 Choice of noise level

To determine proper noise levels for each of the test functions, a traditional GA

with the same genetic operators and parameters is applied to the deterministic test

functions. The traditional GA is a special case of both the EIGA and the SIGA when

n0 = 1 and n1 = 0. This GA was applied 1600 times for each allocation method with

each problem and noise level, and the mean error and the standard deviation (STD)

of the error for each case (when D = 0) are given in Table 3.3 and Table 3.4.

The choice of the noise level D is related to the performance of the traditional

GA on the deterministic test problems. Using the EIGA with EQU (EQUE) as

a benchmark, the noise levels were selected so that the mean errors of the EQUE

when executed 1600 times were within the range of 1–20 times the mean error of the

traditional GA on the deterministic test problems. Three different noise levels in the

range were compared to measure the performance of the GAs under relatively small,

moderate, and high noise conditions. The performance of the benchmark EQUE

under these noise levels is also shown in Table 3.3 and Table 3.4.
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Table 3.3: Mean and standard deviation (STD) of error under different noise levels

(part 1)

Function D Mean STD

Matyas

0 4.59× 10−5 1.12× 10−4

0.01 1.74× 10−4 3.04× 10−4

0.05 4.89× 10−4 7.01× 10−4

0.1 7.64× 10−4 1.02× 10−3

Rosenbrock

0 1.41× 10−2 2.78× 10−2

1 3.89× 10−2 5.27× 10−2

5 7.46× 10−2 8.83× 10−2

10 1.10× 10−1 1.17× 10−1

Sphere

0 4.38× 10−3 4.08× 10−3

0.1 7.86× 10−3 5.27× 10−3

0.5 1.69× 10−2 9.99× 10−3

2 3.68× 10−2 1.98× 10−2

Zakharov

0 5.17× 10−3 5.95× 10−3

0.1 8.73× 10−3 7.35× 10−3

1 2.54× 10−2 2.07× 10−2

2 3.82× 10−2 2.93× 10−2
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Table 3.4: Mean and standard deviation (STD) of error under different noise levels

(part 2)

Function D Mean STD

Griewank

0 1.13 2.82× 10−1

50 2.14 5.55× 10−1

250 5.18 2.16

500 8.90 4.23

HappyCat

0 5.09× 10−1 1.27× 10−1

10 1.57 7.82× 10−1

50 4.55 7.54× 10−1

100 5.99 1.03

HGBat

0 1.08 1.85

10 2.14 2.81

50 7.46 4.78

100 1.27× 101 5.24

3.3.3 Comparison of different strategies

Experiments were performed to compare the EIGA and SIGA with different CBA

methods under the various noise levels identified in Table 3.3 and Table 3.4. The

EIGA and SIGA with different CBA schemes are denoted as EQUE, EQUS, OCBAE,

OCBAS, OCBAME, OCBAMS, PTVE, PTVS, with the last letter ‘E’ or ‘S’ denoting
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Table 3.5: Detailed nomenclature of EIGA and SIGA with different CBA schemes
Name Method Name Method

EQUE EIGA with EQU EQUS SIGA with EQU

OCBAE EIGA with OCBA OCBAS SIGA with OCBA

OCBAME EIGA with OCBAM OCBAMS SIGA with OCBAM

PTVE EIGA with PTV PTVS SIGA with PTV

Figure 3.3: Comparison of mean error for Matyas function

the EIGA or SIGA, respectively. Detailed nomenclature can be seen in Table 3.5.

Each algorithm was applied to each problem with each noise level using each CBA

method 1600 times. Table 3.6 and Table 3.7 show the mean error for each method.

The best algorithm for each problem and the noise level is indicated with boldfaced

text. Examples of visualization of the table data are shown in Figure 3.3 to 3.6.
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Figure 3.4: Comparison of mean error for Rosenbrock function

Figure 3.5: Comparison of mean error for Sphere function

Figure 3.6: Comparison of mean error for Zakharov function
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Table 3.6: Part 1 of comparison of mean error for test functions (bold-face text indicates the best algorithm for each problem
and noise level)

Function Method Mean Method Mean Method Mean Method Mean

Matyas

D = 0.01

EQUE 1.74× 10−4 OCBAE 1.95× 10−4 OCBAME 2.30× 10−4 PTVE 1.83× 10−4

EQUS 1.50× 10−4 OCBAS 1.46× 10−4 OCBAMS 1.47× 10−4 PTVS 1.37× 10−4

Matyas

D = 0.05

EQUE 4.89× 10−4 OCBAE 6.09× 10−4 OCBAME 6.54× 10−4 PTVE 4.75× 10−4

EQUS 4.22× 10−4 OCBAS 4.26× 10−4 OCBAMS 3.72× 10−4 PTVS 3.73× 10−4

Matyas

D = 0.1

EQUE 7.64× 10−4 OCBAE 9.81× 10−4 OCBAME 1.12× 10−3 PTVE 7.77× 10−4

EQUS 6.55× 10−4 OCBAS 6.76× 10−4 OCBAMS 6.41× 10−4 PTVS 6.90× 10−4

Rosenbrock

D = 1

EQUE 3.89× 10−2 OCBAE 3.92× 10−2 OCBAME 4.07× 10−2 PTVE 3.56× 10−2

EQUS 3.72× 10−2 OCBAS 3.73× 10−2 OCBAMS 3.52× 10−2 PTVS 3.68× 10−2

Rosenbrock

D = 5

EQUE 7.46× 10−2 OCBAE 8.06× 10−2 OCBAME 8.90× 10−2 PTVE 7.28× 10−2

EQUS 7.45× 10−2 OCBAS 7.71× 10−2 OCBAMS 7.20× 10−2 PTVS 7.11× 10−2

Rosenbrock

D = 10

EQUE 1.10× 10−1 OCBAE 1.15× 10−1 OCBAME 1.32× 10−1 PTVE 1.07× 10−1

EQUS 1.07× 10−1 OCBAS 1.09× 10−1 OCBAMS 1.06× 10−1 PTVS 1.00× 10−1

Sphere

D = 0.1

EQUE 7.86× 10−3 OCBAE 8.70× 10−3 OCBAME 9.70× 10−3 PTVE 7.98× 10−3

EQUS 7.09× 10−3 OCBAS 7.22× 10−3 OCBAMS 6.99× 10−3 PTVS 7.06× 10−3

Sphere

D = 0.5

EQUE 1.69× 10−2 OCBAE 1.89× 10−2 OCBAME 2.16× 10−2 PTVE 1.71× 10−2

EQUS 1.37× 10−2 OCBAS 1.51× 10−2 OCBAMS 1.38× 10−2 PTVS 1.37× 10−2

Sphere

D = 2

EQUE 3.68× 10−2 OCBAE 4.48× 10−2 OCBAME 5.29× 10−2 PTVE 3.76× 10−2

EQUS 3.18× 10−2 OCBAS 3.65× 10−2 OCBAMS 3.28× 10−2 PTVS 3.24× 10−2
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Table 3.7: Part 2 of comparison of mean error for test functions (bold-face text indicates the best algorithm for each problem
and noise level)

Function Method Mean Method Mean Method Mean Method Mean

Zakharov

D = 0.1

EQUE 8.73× 10−3 OCBAE 9.41× 10−3 OCBAME 1.02× 10−2 PTVE 9.01× 10−3

EQUS 7.79× 10−3 OCBAS 7.97× 10−3 OCBAMS 7.77× 10−3 PTVS 7.90× 10−3

Zakharov

D = 1

EQUE 2.54× 10−2 OCBAE 3.06× 10−2 OCBAME 3.38× 10−2 PTVE 2.61× 10−2

EQUS 2.12× 10−2 OCBAS 2.29× 10−2 OCBAMS 2.23× 10−2 PTVS 2.16× 10−2

Zakharov

D = 2

EQUE 3.82× 10−2 OCBAE 4.83× 10−2 OCBAME 5.56× 10−2 PTVE 3.92× 10−2

EQUS 3.45× 10−2 OCBAS 3.58× 10−2 OCBAMS 3.48× 10−2 PTVS 3.41× 10−2

Griewank

D = 50

EQUE 2.14 OCBAE 2.42 OCBAME 2.64 PTVE 2.16

EQUS 2.02 OCBAS 2.12 OCBAMS 2.04 PTVS 2.02

Griewank

D = 250

EQUE 5.18 OCBAE 6.67 OCBAME 7.79 PTVE 5.32

EQUS 5.12 OCBAS 5.56 OCBAMS 5.27 PTVS 5.10

Griewank

D = 500

EQUE 8.90 OCBAE 1.20× 101 OCBAME 1.39× 101 PTVE 8.97

EQUS 8.76 OCBAS 1.02× 101 OCBAMS 9.51 PTVS 9.09

HappyCat

D = 10

EQUE 1.57 OCBAE 2.10 OCBAME 2.47 PTVE 1.59

EQUS 1.40 OCBAS 1.63 OCBAMS 1.48 PTVS 1.43

HappyCat

D = 50

EQUE 4.55 OCBAE 5.16 OCBAME 5.60 PTVE 4.59

EQUS 4.44 OCBAS 4.66 OCBAMS 4.43 PTVS 4.40

HappyCat

D = 100

EQUE 5.99 OCBAE 6.87 OCBAME 7.34 PTVE 6.07

EQUS 5.93 OCBAS 6.20 OCBAMS 5.94 PTVS 5.92

HGBat

D = 10

EQUE 2.14 OCBAE 2.51 OCBAME 2.84 PTVE 2.27

EQUS 1.99 OCBAS 2.24 OCBAMS 2.16 PTVS 2.13

HGBat

D = 50

EQUE 7.46 OCBAE 9.32 OCBAME 1.08× 101 PTVE 7.74

EQUS 6.92 OCBAS 7.24 OCBAMS 6.84 PTVS 6.73

HGBat

D = 100

EQUE 1.27× 101 OCBAE 1.58× 101 OCBAME 1.76× 101 PTVE 1.30× 101

EQUS 1.16× 101 OCBAS 1.24× 101 OCBAMS 1.15× 101 PTVS 1.18× 101
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Comparison of EIGA and SIGA

By examining Table 4.2 vertically, it can be seen that the SIGA with a given CBA

method generally outperforms the EIGA with the same CBA method. The errors

are assumed to follow a Rayleigh distribution, so an F-test can be used determine

the statistical significance of the results [65]. The null hypothesis is that the mean

error of the SIGA for a given CBA method is less than or equal to the mean error

of the EIGA for the same CBA method. A significance level of α = 5% is used to

determine whether this hypothesis can be rejected. The results of these statistical

tests are shown in Table 3.8. Due to a large number of samples (1600), many of the

calculated p-values are smaller than the machine epsilon, and these are denoted in the

table as ‘< ε’. Statistically, significant results are indicated with boldfaced text. It

can be seen that in most cases, the SIGA has statistically significantly less error than

the EIGA for a given CBA method. The SIGA only has a larger sample mean error

than the EIGA in two cases out of 84 scenarios: the Rosenbrock function with D = 1

and PTV and the Griewank function with D = 500 and PTV, and not statistically

significantly so in either case. Generally, it can be concluded that by integrating the

CBA method into the selection process of the SIGA, the search algorithm allocates

samples as needed to make the comparisons between individuals that are required by

the algorithm. The relatively small size of each tournament for the size of the mating

pool may also improve the accuracy of the sampling.

Comparison of computing budget allocation methods

By examining Table 4.2 horizontally, comparisons among the CBA methods can be

made. For EIGA, the EQU and PTV methods generally have the smallest error.

There are large differences in the error when applying these methods compared to

the application of the OCBA methods. For the SIGA, there are relatively small
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Table 3.8: P-value of comparison between SIGA over EIGA for each CBA method
(< ε indicates p-value less than machine epsilon, bold-face text indicates statistical
significance with significance level α = 0.05)

Function D EQU OCBA OCBAM PTV

Matyas

0.01 1.29× 10−5 < ε < ε 1.11× 10−16

0.05 1.56× 10−5 < ε < ε 6.46× 10−12

0.1 6.42× 10−6 < ε < ε 3.94× 10−4

Rosenbrock

1 1.07× 10−1 8.04× 10−2 2.49× 10−5 8.24× 10−1

5 4.88× 10−1 1.06× 10−1 1.22× 10−9 2.50× 10−1

10 2.88× 10−1 5.93× 10−2 3.72× 10−10 2.36× 10−2

Sphere

0.1 1.85× 10−3 6.59× 10−8 < ε 2.60× 10−4

0.5 1.18× 10−9 1.52× 10−10 < ε 9.30× 10−11

2 1.71× 10−5 2.94× 10−9 < ε 1.26× 10−5

Zakharov

0.1 6.21× 10−4 1.31× 10−6 1.15× 10−14 9.97× 10−5

1 1.98× 10−7 1.1× 10−16 < ε 6.28× 10−8

2 1.72× 10−3 < ε < ε 4.55× 10−5

Griewank

50 5.95× 10−2 9.34× 10−5 9.79× 10−14 3.60× 10−2

250 3.62× 10−1 1.42× 10−7 < ε 1.12× 10−1

500 3.28× 10−1 1.04× 10−6 < ε 3.77× 10−1

HappyCat

10 5.00× 10−4 2.97× 10−13 < ε 1.68× 10−3

50 2.46× 10−1 1.80× 10−3 1.77× 10−11 1.17× 10−1

100 3.78× 10−1 1.83× 10−3 1.17× 10−9 2.42× 10−1

HGBat

10 2.33× 10−2 6.21× 10−4 9.10× 10−15 3.38× 10−2

50 1.79× 10−2 5.32× 10−13 < ε 3.78× 10−5

100 7.22× 10−3 9.34× 10−12 < ε 4.08× 10−3

differences in the error regardless of the CBA method used. The OCBAM method

generally outperformed the OCBA method when used in the SIGA. However, the

EQU and PTV methods also resulted in similar errors. Among the 21 different cases

in this study, there are nine times the PTVS gave the best results and six times each

that the EQUS and OCBAMS gave the best results.
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To make these comparisons more formally, post hoc pairwise F-tests are applied

to the data for the eight methods using the Matyas function with D = 0.01. The post

hoc pairwise F-tests give the p-value of statistical comparison tests, comparing each

method with each of the methods that performed worse than it. These tests provide

insight into the statistical significance of the ranking of the methods for this problem.

A significance level of α = 5% is used, and the p-values associated with these tests are

shown in Table 3.9. Several of the calculated p-values are smaller than the machine

epsilon, and these are denoted in the table as ‘< ε’. Statistically, significant results

are indicated in the boldfaced text. These pairwise statistical comparisons induce a

partial ordering of the GAs for this problem. This ordering is illustrated in Figure 3.7.

For this problem, it can be seen that OCBAME is statistically dominated by the other

methods and that OCBAMS, EQUS, and OCBAS are not statistically dominated by

any other method. It can also be seen that each of the SIGA methods dominates

each of the EIGA methods for this problem.

The dominance of SIGA methods over the EIGA methods is significant and easy

to understand as the SIGA methods allocate samples as needed by the selection

procedure and improves the quality of the GA. The difference between different allo-

cation methods is more problem oriented and difficult to understand. The OCBA and

OCBAM methods, which may be the best static allocation methods to identify the

best individuals from a set, are not necessarily the best methods to identify the order-

ing of a set. The sampling with the OCBA and OCBAM methods is mostly allocated

to the individuals that are currently the best ones or close to the best ones, focusing a

large number of samples on those individuals and neglecting to sample other inferior

individuals. When integrating with the EIGA, these two methods may greatly over-

sample very few individuals and under-sample other individuals that might have the

potential to exhibit better means when more samples are allocated. Thus, integrating

OCBA or OCBAM methods with the EIGA can lead to worse solutions than the EQU
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or PTV methods with EIGA. However, the adverse impact on over-sample current

good individuals can be greatly reduced when integrating with SIGA, since the tour-

nament has a small size and the goal is to identify the best individual, the sampling

allocation calculated by OCBA and OCBAM methods is more evenly and reasonably

distributed than when integrating with EIGA or the other allocation methods, and

the statistical results are greatly improved. Also, the reason that the OCBAM ex-

hibits better solutions than OCBA may be caused by the fact that the OCBAM uses

a distance measure that involves both information from the good individuals and the

inferior individuals.
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Table 3.9: P-values of post hoc pairwise comparison of all GA methods for Matyas function with D = 0.01 (< ε indicates
p-value less than machine epsilon, bold-face text indicates statistical significance with significance level α = 0.05)

Method OCBAMS EQUS OCBAS PTVS EQUE PTVE OCBAE

EQUS 2.75× 10−1

OCBAS 6.66× 10−2 1.83× 10−1

PTVS 1.82× 10−2 6.77× 10−2 2.78× 10−1

EQUE 3.52× 10−7 6.42× 10−6 2.69× 10−4 2.05× 10−3

PTVE 2.58× 10−8 6.23× 10−7 3.97× 10−5 3.94× 10−4 3.13× 10−1

OCBAE < ε < ε < ε < ε 8.65× 10−13 2.51× 10−11

OCBAME < ε < ε < ε < ε < ε < ε 1.11× 10−4
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Figure 3.7: Partial ordering of all GA methods for Matyas function with D = 0.01
based on post hoc pairwise comparison with significance level α = 0.05

Comparison of convergence

To visualize the effect that integrating the CBA methods into either the evaluation or

the selection step of the GA has on the convergence of the algorithm, the OCBAMS,

and the EQUE method are considered for the Matyas function with D = 0.05. These

methods are generally the best SIGA and EIGA methods, respectively, performing

the best for the greatest number of problems and noise levels. The errors of the best

individual at each generation averaged over the 1600 trials are plotted in Figure 3.8.

It can be seen that the errors associated with both algorithms initially decline at ap-

proximately the same rate. However, as the solutions approach the optimal solution,

the OCBAMS method is better able to allocate the samples that it performs. This

results in faster and continued progress during the later phase of the algorithm, re-

sulting in a better solution. Alternatively, the OCBAMS method can reach a solution

of the same quality as the EQUE method in approximately 200 generations compared

with the 300 generations when using the same numbers of individuals and samples

per individual per generation.
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Figure 3.8: Example Convergence of EQUE and OCBAMS (Matyas function, D =
0.05)

Comparison of sampling efficiency

To understand the improvement of sampling efficiency due to the use of the SIGA, the

EQU methods are selected as the baseline for the comparison since the improvement

of other SIGA over EIGA are more significant than the EQU methods. The results

of the EQUS for each problem and noise level are compared with the EQUE method

with improved sampling. The number of allocated samples per individual n1 for the

EQUE method is increased in steps of 100 from 250 to 550, and the EQUE method was

executed 1600 times to determine the mean error. A second order polynomial fit be-

tween the total number of samples per individual per generation n and the error of the

EQUE method is established for each problem and noise level. This linear relationship

is used to determine the equivalent number of samples per individual per generation

required to obtain the same error with the EQUE method that was obtained with

the EQUS method using 250 samples per individual per generation. An example of

this process is shown in Figure 3.9. For each noise level (D ∈ {0.01, 0.05, 0.1}). The

mean errors are plotted in the figure, and a linear relationship is extracted. Bars in-

dicating the mean error obtained using the EQUS method with 250 samples and the

equivalent number of samples as the EQUE method with same mean error are shown.
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Figure 3.9: Equivalent numbers of samples per individual per generation for EQUE
method to match the mean error of EQUS method with 250 samples per individual
per generation for Matyas function (all three noise levels included) (circles denote
the mean error by EQUE method with the corresponding number of samples per
individual per generation, the lines indicate the second order polynomial relationship
between number of samples per individual per generation and mean error, the bars
indicate number of samples per individual per generation required by EQUE method
to match mean error of EQUS method)

The calculated equivalent samples and the relative cost of obtaining the same error

are shown in Table 3.10. It can be seen that the relative costs average approximately

143% with a maximal value of 225%. Generally, the relative cost of high noise levels is

smaller than that of low noise levels. In such problems, the noise present in samples

can dominate the differences in the expected fitness of individuals, requiring large

numbers of samples for each individual. While there is still an improvement with

using the SIGA in these cases, this improvement can be made more dramatic with

a higher computing budget. Also, it can be seen in Table 4.2 that the SIGA results

in a more dramatic improvement relative to the EIGA when other CBA methods are

used.
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Table 3.10: Equivalent numbers of samples per individual per generation and rela-
tive costs of EQUE versus EQUS to match EQUS mean error with 250 samples per
individual per generation

Function D
Equivalent

Samples

Relative

Cost

Matyas

0.01 407 163%

0.05 355 142%

0.1 441 176%

Rosenbrock

1 289 116%

5 251 100%

10 262 105%

Sphere

0.1 441 176%

0.5 562 225%

2 410 164%

Zakharov

0.1 511 204%

1 468 187%

2 356 142%

Griewank

50 343 137%

250 260 104%

500 263 105%

HappyCat

10 314 126%

50 285 114%

100 266 106%

HGBat

10 396 158%

50 295 118%

100 323 129%
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3.4 Conclusion

An SIGA is proposed in which CBA methods are integrated into the selection process

of the GA. This algorithm is compared with the EIGA, the typical existing approach

of integrating CBA methods within the evaluation and ranking process of the GA.

These algorithms are compared on several stochastic test problems with various levels

of noise. It should be noted that only test functions with additive Gaussian noise are

considered herein. This limitation is consistent with the traditional application of

CBA methods [66]. However, future research may include the consideration of more

general forms of stochastic problems. In particular, practical problems (e.g., design of

shipboard power systems subject to hostile disruptions [67], a future application area)

may have different forms. Furthermore, neither the existing EIGA nor the proposed

SIGA can be directly applied to multi-objective stochastic problems, and the future

extension to such problems would be of clear value.

In this study, it is found that the SIGA generally outperforms the EIGA regarding

mean error for a given CBA method. This is attributed to the manner in which

the SIGA allocates fitness evaluations towards specific individuals for whom the GA

requires more information. It is also found that EIGA generally performs best with

the EQU method of CBA. The performance of the SIGA is found to be less sensitive to

the choice of CBA method. Finally, it is found that the SIGA can find solutions with

comparable mean error to solutions found with EIGA when using the EQU method

while requiring significantly fewer samples for the test problems. The average relative

cost of the EQUE methods is 143% of that of the EQUS method and can be as high as

225%, but these costs vary with test function, noise level, and choice of CBA method.
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CHAPTER 4

MULTI-OBJECTIVE GENETIC ALGORITHM WITH

ALLOCATION TECHNIQUES FOR STOCHASTIC

PROBLEMS

Real-world optimization problems are often multi-objective and stochastic problems

[68,69]. Multi-objective evolutionary algorithms (MOEAs) are widely applied to solve

those problems [70]. MOEAs combine operators such as mating selection [23], which

selects child genes, crossover, and mutation to construct new generations of individu-

als. Among MOEAs, popular elitist approaches archive non-dominated solutions from

the previous generation and combine them with non-dominated solutions from the

current generation to produce the subsequent generation, a process which is referred

to as environmental selection [23].

Researchers have developed different noise handling techniques to solve stochas-

tic problems, aiming to improve the accuracy and efficiency of the algorithms. For

example, a probabilistic method to improve sampling using loopy belief propagation

for probabilistic model building genetic programming is described in [71]. Population

statistics based re-sampling technique is introduced in [52] with a particle swarm opti-

mization algorithm to solve stochastic optimization problems. For the elitist MOEAs,

because of the stochastic nature of the objective functions, MOEAs must perform re-

peated computationally expensive samples to assess the fitness of each individual.

The noise handling techniques seek to obtain more accurate results with fewer total

evaluations. For example, the optimal computing budget allocation (OCBA) method

proposed in [72] is integrated into the evaluation procedure to reduce the comput-

ing cost in [3]. In [73], fitness inheritance from parent genes is proposed to reduce

the computational intensity required for evaluation. A probabilistic method based

on statistical analysis of dominance is used to estimate Pareto-optimal front in [74].
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In [75], confidence-based dynamic re-sampling is proposed to improve the confidence

of Pareto ranking. A noise-aware dominance operator is integrated into the mating

selection in [76]. However, due to the nature of the elitist MOEAs, environmental se-

lection plays a more critical role than mating selection because it controls the evolving

set of non-dominated solutions [77].

Herein, a fundamental question regarding the application of computing budget

allocation (CBA) methods to MOEAs is considered. In particular, the effect of in-

tegrating CBA methods in either the evaluation or environmental selection on the

accuracy of the MOEA is examined. In previous work with re-sampling applied as

a noise handling technique, it is proposed either in evaluation [3] or in environmen-

tal selection [75]. However, there is no clear comparison between these two tech-

niques; the comparisons focused only on whether the proposals improved the results

or not. There exists no comprehensive study that examines, for a fixed total com-

puting budget, where the re-sampling procedure should be integrated to improve

the algorithms best. In this work, a combination of studies that compare the al-

ternative approaches to integrating CBA methods into genetic algorithms (GAs),

namely evaluation-integrated GAs (EIGAs) and selection-integrated GAs (SIGAs),

are described. Various CBA techniques are compared, including the most basic equal

allocation (EQU) method, OCBA method [72, 78], and the proportional-to-variance

(PTV) method. These algorithms and CBA techniques are applied to stochastic

multi-objective problems constructed from benchmark multi-objective optimization

problems [79–81]. Numerical experiments are performed, and statistical testing is

used to validate the significance of the comparisons.

The remainder of this chapter is organized as follows. First, descriptions of the

considered stochastic multi-objective problems and different CBA methods are given

in Section 4.1. In Section 4.2, the structure of the EIGA and SIGA approaches
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for integrating CBA methods into GAs are described. Test functions, performance

metrics, and experimental results are presented in Section 4.3.

4.1 Multi-Objective Stochastic Problems and Computing

Budget Allocation Methods

The multi-objective stochastic problems and the CBA methods considered herein are

described below.

4.1.1 Stochastic problem statement

The multi-objective stochastic problems considered herein can be defined as

min
X

J1(X), J2(X), . . . , JH(X), (4.1)

where X is the (possibly multi-dimensional) decision variable, J1, J2, . . . , and JH are

the H objectives to be minimized, Jl(X) = E[Ll(X, ξ)], l ∈ {1, 2, . . . , H}, Ll(·, ·) is

the sample performance of lth objective, and ξ is a random variable describing the

problem noise. For the test problems discussed herein, the noise for each objective is

modeled with additive independent and identical Gaussian distributions; however, it

can also be represented in other ways. It is also assumed that such a problem is un-

constrained in the sense that any constraints that bind the solution are appropriately

penalized in L(·, ·).

For a deterministic multi-objective problem where Jl(X) = Ll(X), the Pareto

optimal front [82] is the complete set of non-dominated solutions. A solution for the

multi-objective problem is defined as a non-dominated solution if it is not dominated

by any other solutions. A solution a dominates solution b if Jl(a) ≤ Jl(b) ∀l ∈

{1, 2, . . . , H} and ∃l ∈ {1, 2, . . . , H} such that Jl(a) < Jl(b). For the non-dominated
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solutions, each objective is minimized to the extent that it is not possible to further

minimize one objective without making one or more other objectives bigger (worse).

For a stochastic multi-objective problem, the fitness function of each objective can

only be estimated by calculating the mean of a limited number of random samples.

For practical problems, it is assumed that the evaluation of the samples takes far

more computation time and effort than the algorithm itself. Thus, it is desired to be

able to allocate the samples, or the total computing budget, efficiently to obtain the

best approximation of the Pareto optimal front. The quality of a Pareto optimal front

approximation is measured by both its proximity to the true front and the degree to

which it covers the true front.

4.1.2 Computing budget allocation methods

Various CBA methods have been studied, and the three such CBA methods applied

in this study are discussed below. For each of these methods, it is assumed that N

samples are being allocated among k individuals.

Equal allocation method

The simplest allocation technique to conduct sampling is the EQU technique, and it

often serves as a benchmark for comparison [34]. The available computing budget is

equally distributed to all individuals:

ñi =
N

k
, (4.2)

where ñi is the number of additional samples to be allocated to individual i.
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Optimal computing budget allocation method

The OCBA method [72] for multi-objective optimization is based on maximizing the

asymptotic probability that the selected subset is the non-dominated set. One such

implementation is described below.

For a set of unique individuals S, SP is defined as the non-dominated set and SD

is defined as the dominated set. In deterministic problems, SP and SD can be deter-

mined by non-dominated sorting [18]. The OCBA allocation rule aims to maximize

the probability of correctly selecting the Pareto optimal set in stochastic problems.

For an individual i, which has previously been sampled, L̄il is the sample mean,

and σ2
il denotes the sample variance corresponding to the lth objective. For two

individuals, i and j, the difference of sample means for objective l is expressed as

δijl = L̄jl − L̄il. (4.3)

The individual that dominates i with the highest probability is approximated as

ji ≈ arg max
j∈S,j 6=i

H∏
l=1

P (Ljl ≤ Lil) ≈ arg min
j∈S,j 6=i

δijlij

∣∣∣δijlij ∣∣∣
σ2
ilij

+ σ2
jlij

, (4.4)

where lij denotes the objective for which j is better than i with the lowest probability

and can be calculated as

lij ≡ arg min
l∈{1,...,H}

P (Ljl ≤ Lil) ≈ arg max
l∈{1,...,H}

δijl |δijl|
σ2
il + σ2

jl

. (4.5)
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The set of individuals S is partitioned into subsets SA or SB based on the following

equation:

SA =

h|h ∈ S, δ2
hjhl

h
jh

σ2
hlhjh

+ σ2
jhl

h
jh

≤ min
i∈Θh

δ2
ihlih

σ2
ilih

+ σ2
hlih

 (4.6)

SB = S\SA, (4.7)

where

Θh = {i|i ∈ S, ji = h}. (4.8)

The samples are allocated to each individual based on its membership in SA or

SB. In particular, for h,m ∈ SA,

ñh
ñm

=

(
σhlhjh/δhjhlhjh
σmlmjm/δmjmlmjm

)2

. (4.9)

For d ∈ SB,

ñ2
d =

∑
h∈Θ∗

d

σ2
dlhd

σ2
hlhd

ñ2
h, (4.10)

where

Θ∗d = {h|h ∈ SA, jh = d}. (4.11)

Proportional-to-variance method

The PTV method utilizes the variance information from the existing samples. This

method allocates computing budget proportional to the summation of the variance

over all the objectives:

ñi
ñj

=

H∑
l=1

σ2
il

H∑
l=1

σ2
jl

. (4.12)
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Figure 4.1: Flow chart of EIGA

4.2 Computing Budget Allocation Method Integrated Ge-

netic Algorithms

NSGA-II is a widely used elitist GA for solving multi-objective optimization problems

[18] . Herein, the CBA techniques described above are embedded in the framework of

NSGA-II. Two methods of integrating CBA techniques into NSGA-II are considered.

One is to integrate the allocation procedure into the evaluation step, and a GA using

this approach is referred to as an EIGA [3]. The second is to integrate the allocation

in the recombination and environmental selection procedure, which is to allocate the

budget across the merged pool, and a GA using this approach is referred to as an

SIGA. The flow charts of the integrated GA for either option are shown in Figure 4.1

and Figure 4.2.
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Pseudocode for the two algorithms is listed in Algorithm 5 and Algorithm 6, and

steps specific for each algorithm are marked in italics. The integrated GAs have the

following steps:

Step 1: The population of nind individuals is uniformly randomly initialized in

the search domain and is initially sampled n0 times. An initial non-dominated sort is

applied across the population [18]. The rank number and crowding distance [18] are

assigned to each individual by the calculation of non-dominated sort in the fitness

domain.

Step 2: Tournament selection is performed: for a total of nind randomly generated

tournaments, each tournament contains two randomly selected individuals. Among
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Algorithm 5 EIGA

1: Initialize population of individuals with random values in search space and eval-
uate the initial population with some initial samples; assign rank and crowding
distance to each individual through non-dominated sort.

2: while Maximum generation not reached do
3: Perform mating selection, selecting the individual out of each tournament with

minimum rank and maximum crowding distance
4: Perform crossover for each pair of individuals in the mating pool
5: Perform mutation on each individual in the mating pool with selected mutation

rate
6: Evaluate each individual in the mating pool with some initial samples
7: if EIGA then
8: Apply CBA to allocate additional samples for each individual in the mating

pool
9: end if

10: Combine the new pool of size nind with the old pool of size nind, and generate
a temporary pool of 2nind

11: Perform non-dominated sort on the temporary pool, and select nind individuals
to form the pool for the next generation based on rank and crowding distance

12: end while

Algorithm 6 SIGA

1: Initialize population of individuals with random values in search space and eval-
uate the initial population with some initial samples; assign rank and crowding
distance to each individual through non-dominated sort.

2: while Maximum generation not reached do
3: Perform mating selection, selecting the individual out of each tournament with

minimum rank and maximum crowding distance
4: Perform crossover for each pair of individuals in the mating pool
5: Perform mutation on each individual in the mating pool with selected mutation

rate
6: Evaluate each individual in the mating pool with some initial samples
7: Combine the new pool of size nind with the old pool of size nind, and generate

a temporary pool of 2nind
8: if SIGA then
9: Apply CBA to allocate additional samples for each individual in the temporary

pool
10: end if
11: Perform non-dominated sort on the temporary pool, and select nind individuals

to form the pool for the next generation based on rank and crowding distance
12: end while
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each tournament, the individual with the smaller front number is selected. If the front

numbers are equal, the individual with a larger crowding distance index is selected.

Step 3: Simulated binary crossover [17] and simulated binary mutation [18] are

performed to generate the new pool of size nind.

Step 4: Each individual in the new pool is evaluated with n0 number of samples.

In the EIGA, the CBA method is used to allocate a total of n1nind additional samples

across the new pool.

Step 5: Combine the new pool and the old pool to form a temporary pool of

size 2nind. In the SIGA, the CBA method is used to allocate n1nind samples to the

temporary pool.

Step 6: Non-dominated Sorting is applied across the temporary pool to update

the front index and crowding distance. The next generation pool is subsequently filled

with nind individuals with minimum rank and maximum crowding distance.

Step 7: The algorithm terminates after ngen generations. Otherwise, the algorithm

continues at Step 2. The same number of total samples per generation are used

in both EIGA and SIGA. The total number of samples allocated per algorithm is

(n0 + n1)nindngen + n0nind.

The primary focus of this work is to compare EIGA with SIGA. NSGA-II is used

as a representative multi-objective optimization framework, and the parameters for

the GAs are given in Table 4.1. The parameters of the GAs are selected manually

to achieve acceptable performance on the deterministic versions of the test functions

included in this study. And they are used for both EIGA and SIGA. A different

set of parameters can certainly affect the performance of the GAs, but since they

are used as a baseline, the selection of these parameters is not the focus of this

work. The sampling allocation procedure is performed sequentially, allocating the

total samples in 10 steps, updating the sample means and variances between each step.

The parameters are selected manually to achieve acceptable NSGA-II performance
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Table 4.1: Parameters of Genetic Algorithms

Parameter Parameter Value

ngen Number of generations 500

nind Number of individuals in pool 100

ntour Tournament size 2

η Crossover constant 2

pm Mutation probability 0.05

n0 Initial samples per individual 50

n1 Allocated samples per individual 200

on the deterministic versions of the test functions described below and used for both

the EIGA and the SIGA.

4.3 Results and Analysis

This section presents stochastic test problems and performance metrics, describes

experimental results and compares the EIGA and SIGA as well as the CBA methods.

4.3.1 Test functions

Several multi-objective test problems are selected for constructing the stochastic prob-

lems. More specifically, ZDT1 and ZDT2 [79] are selected for examples of 2D test

problems, and DTLZ2 and DTLZ6 [80,81] are selected for testing 3D cases. A typical

setting of 30 variables in the ZDT test sets and 12 variables in the DTLZ test sets

is followed. These problems are well-known test problems with known Pareto opti-

mal sets. Independent zero-mean Gaussian noise is added to each objective of the

deterministic test function:

Ll(X, ξl) = fl(X) + ξl (4.13)

ξl = N (0, σ2
l ) (4.14)
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where σ2
l is the parameter establishing the noise level associated with the problem. In

this study, values of σl of 1%, 10% and 20% of the maximum of each objective in the

true Pareto-optimal set are used [83], indicating low, medium, and high noise levels,

respectively. A letter ‘L’, ‘M’, or ‘H’ is appended to the names of the test problems to

specify the specific stochastic test functions, e.g. ‘ZDT1L’ specifies the test function

of ZDT1 with the low noise level.

4.3.2 Performance metrics

There are many different kinds of metrics measuring the performance of multi-

objective optimization algorithms, such as general distance (GD) [84], maximum

spread [85], hypervolume ratio [86], and inverse general distance (IGD) [87], and

each metric may have different versions. Despite the diversity of metrics, they often

measure two properties of the evolved front: how close is the evolved front to the true

front and how well does the evolved front cover the true front. These two properties

can be assessed with the GD and the IGD. The GD is calculated by averaging

Euclidean distances from the evolved front to the true front and is the most widely

used metric for convergence testing in multi-objective problems. The GD gives a

good indication of the error between evolved front and the true front. The IGD is

calculated by averaging the Euclidean distance from each true front sample to the

evolved front and in this way, it conveys the measurement of both convergence and

diversity. 1000 evenly distributed individuals on the true front are used to simulate

the true front in the calculations. The GD is calculated as

GD =

√√√√ 1

nEPF

nEPF∑
i=1

d2
i , (4.15)

where nEPF is the number of individuals in the evolved front, and di is the Euclidean

distance of the individual i to the true front in the objective space, which is calculated
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by the distance of individual i to the closest among the 1000 evenly distributed

individuals in the true front. The IGD is calculated as

IGD =

√√√√ 1

nTPF

nTPF∑
i=1

d̄2
i , (4.16)

where nTPF is the number of individuals in the true front, and d̄i is the Euclidean

distance of the individual i in the true front to the closest individual in the evolved

front in the objective space. The GD and IGD metrics are two different metrics

for the measurement of performance for multi-objective optimization, and they are

intended to quantify the two properties of the evolved front. In both cases, lower

values indicate better results, i.e., the evolved front is closer to the true front and

well spread over the true front.

4.3.3 Comparison of different strategies

Experiments were performed to compare the EIGA and SIGA with different CBA

methods under the various noise levels. The EIGA and SIGA with different CBA

schemes are denoted as EQUE, EQUS, OCBAE, OCBAS, PTVE and PTVS with the

last letter ‘E’ or ‘S’ denoting the EIGA or SIGA, respectively. Each algorithm was

applied to each problem with each noise level using each CBA method 1200 times.

Table 4.2 shows the mean GD and IGD for each method. The lowest value of GD and

IGD for each problem and the noise level is indicated with boldfaced text. Graphical

depiction of these results is shown in Figs. 4.3–4.6.
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Figure 4.3: Comparison of general distance (GD) and inverse general distance (IGD)
for ZDT1 function (the cases are divided by dashed lines from left to right corre-
sponding to low, medium, and high noise levels)
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Figure 4.4: Comparison of general distance (GD) and inverse general distance (IGD)
for ZDT2 function (the cases are divided by dashed lines from left to right corre-
sponding to low, medium, and high noise levels)
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Figure 4.5: Comparison of general distance (GD) and inverse general distance (IGD)
for DTLZ2 function (the cases are divided by dashed lines from left to right corre-
sponding to low, medium, and high noise levels)
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Figure 4.6: Comparison of general distance (GD) and inverse general distance (IGD)
for DTLZ6 function (the cases are divided by dashed lines from left to right corre-
sponding to low, medium, and high noise levels)
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Table 4.2: Comparison of mean error for test functions (bold-face text indicates the best algorithm for each problem and noise
level)

Function Method GD IGD Method GD IGD Method GD IGD

ZDT1L
EQUE 9.76E-02 7.22E-03 OCBAE 1.05E-01 7.79E-03 PTVE 9.87E-02 7.05E-03

EQUS 4.83E-03 7.08E-03 OCBAS 6.00E-03 7.29E-03 PTVS 4.80E-03 7.09E-03

ZDT1M
EQUE 1.16E-01 1.90E-02 OCBAE 1.18E-01 3.25E-02 PTVE 1.23E-01 1.47E-02

EQUS 7.85E-03 1.11E-02 OCBAS 1.07E-02 1.38E-02 PTVS 7.91E-03 1.11E-02

ZDT1H
EQUE 1.37E-01 3.52E-02 OCBAE 1.52E-01 5.51E-02 PTVE 1.63E-01 2.68E-02

EQUS 1.19E-02 1.71E-02 OCBAS 1.59E-02 2.12E-02 PTVS 1.19E-02 1.73E-02

ZDT2L
EQUE 1.45E-01 9.82E-03 OCBAE 1.55E-01 9.39E-03 PTVE 1.47E-01 9.94E-03

EQUS 3.79E-03 7.15E-03 OCBAS 5.17E-03 7.24E-03 PTVS 3.82E-03 7.15E-03

ZDT2M
EQUE 1.54E-01 2.60E-02 OCBAE 1.49E-01 4.97E-02 PTVE 1.68E-01 2.19E-02

EQUS 7.89E-03 1.49E-02 OCBAS 1.14E-02 1.79E-02 PTVS 8.00E-03 1.49E-02

ZDT2H
EQUE 1.63E-01 5.48E-02 OCBAE 1.97E-01 9.77E-02 PTVE 1.99E-01 3.82E-02

EQUS 1.15E-02 2.36E-02 OCBAS 1.66E-02 3.23E-02 PTVS 1.20E-02 2.47E-02

DTLZ2L
EQUE 3.73E-01 1.15E-01 OCBAE 6.66E-01 1.44E-01 PTVE 3.70E-01 1.14E-01

EQUS 5.66E-02 9.15E-02 OCBAS 1.75E-01 1.03E-01 PTVS 5.63E-02 9.13E-02

DTLZ2M
EQUE 3.74E-01 1.21E-01 OCBAE 6.82E-01 1.57E-01 PTVE 3.77E-01 1.21E-01

EQUS 5.33E-02 9.37E-02 OCBAS 1.87E-01 1.10E-01 PTVS 5.18E-02 9.38E-02

DTLZ2H
EQUE 3.82E-01 1.24E-01 OCBAE 7.03E-01 1.67E-01 PTVE 3.82E-01 1.23E-01

EQUS 4.59E-02 9.41E-02 OCBAS 2.00E-01 1.14E-01 PTVS 4.66E-02 9.45E-02

DTLZ6L
EQUE 1.77E+00 1.18E-02 OCBAE 3.10E+00 2.60E-02 PTVE 1.76E+00 1.16E-02

EQUS 1.01E-01 8.23E-03 OCBAS 4.78E-01 1.03E-02 PTVS 1.02E-01 8.26E-03

DTLZ6M
EQUE 2.06E+00 1.63E-02 OCBAE 4.18E+00 1.33E-01 PTVE 2.03E+00 1.58E-02

EQUS 1.00E-01 1.70E-02 OCBAS 5.30E-01 1.92E-02 PTVS 8.99E-02 1.72E-02

DTLZ6H
EQUE 2.19E+00 2.60E-02 OCBAE 4.49E+00 2.88E-01 PTVE 2.15E+00 2.13E-02

EQUS 7.50E-02 2.64E-02 OCBAS 5.77E-01 2.91E-02 PTVS 7.96E-02 2.66E-02
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Comparison of EIGA and SIGA

By examining Table 4.2 vertically, it can be seen that the SIGA with a given CBA

method generally outperforms the EIGA with the same CBA method. The distances

are assumed to follow a Rayleigh distribution, so an F-test can be used to determine

the statistical significance of the results [65]. The null hypothesis is that the mean

distance of the SIGA for a given CBA method is greater than or equal to the mean

distance of the EIGA for the same CBA method. A significance level of α = 5%

is used to determine whether this hypothesis can be rejected. The results of these

statistical tests are shown in Table 4.3. Due to a large number of samples (1200),

many of the calculated p-values are smaller than the machine epsilon, and these are

denoted in the table as ‘< ε’. Statistically, significant results are indicated with

boldfaced text. It can be seen that with the few exceptions in the IGD, the SIGA

statistically significantly outperforms the EIGA for a given CBA method. For the

GD metric, the SIGA was significantly better than the EIGA in each case considered.

Generally, it can be concluded that by integrating the CBA method into the

selection process of the SIGA, the search algorithm allocates samples as needed to

make the comparisons between individuals that are required by the algorithm and

more accurately select the correct individuals into the next generation.

Comparison of computing budget allocation methods

The comparisons among different CBA methods can be made by examining Table 4.2

horizontally. The smallest GD and IGD among each case are boldfaced. It is shown

that EQU and PTV allocation methods give similar results, and they are consistently

better than the OCBA method. This may be due to the dynamic nature of GAs. It

has been shown that the OCBA method works well in static selection problems [34],

but the OCBA rule may not allocate samples as well as the population evolves.
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Table 4.3: P-Value of Comparison between SIGA and EIGA for each CBA Method
(< ε indicates p-value less than machine epsilon, boldfaced text indicates statistical
significance with significance level α = 0.05)

Function
EQU OCBA PTV

GD IGD GD IGD GD IGD

ZDT1L < ε 3.16E-01 < ε 5.21E-02 < ε 5.55E-01

ZDT1M < ε < ε < ε < ε < ε 3.24E-12

ZDT1H < ε < ε < ε < ε < ε < ε

ZDT2L < ε 4.44E-15 < ε 1.01E-10 < ε 4.44E-16

ZDT2M < ε < ε < ε < ε < ε < ε

ZDT2H < ε < ε < ε < ε < ε < ε

DTLZ2L < ε 1.12E-08 < ε 1.11E-16 < ε 2.77E-08

DTLZ2M < ε 2.00E-10 < ε < ε < ε 2.36E-10

DTLZ2H < ε 7.53E-12 < ε < ε < ε 5.72E-11

DTLZ6L < ε < ε < ε < ε < ε < ε

DTLZ6M < ε 8.48E-01 < ε < ε < ε 9.81E-01

DTLZ6H < ε 6.46E-01 < ε < ε < ε 1.00E+00

From the previous discussion, the differences between SIGA and EIGA are dra-

matic and mostly statistically significant when using the same allocation method.

However, for the same integration method, the differences between different alloca-

tion methods are less dramatic and may not be statistically significant, especially in

the IGD metric. An example analysis is performed on ZDT1L. A post hoc pairwise

F-test is applied to the data for the six methods, and a significance level of α = 5%

is used. The p-values associated with these tests are shown in Tables 4.4 and 4.5 for

the GD and IGD, respectively. Several of the calculated p-values are smaller than the

machine epsilon, and these are denoted in the table as ‘< ε’. Statistically, significant

results are indicated in the boldfaced text. These pairwise statistical comparisons

induce a partial ordering of the GAs for this problem. In this specific example, the

differences between the methods for the GD metric are mostly statistically significant,

but for IGD metric the differences are largely not significant. The cases of ZDT1L,
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Table 4.4: P-Values of Post Hoc Pairwise Comparison of Generalized Distance for all
Methods on ZDT1L (< ε indicates p-value less than machine epsilon, boldfaced text
indicates statistical significance with significance level α = 0.05)

Method PTVS EQUS OCBAS EQUE PTVE

EQUS 4.39E-01

OCBAS 2.39E-08 5.56E-08

EQUE < ε < ε < ε

PTVE < ε < ε < ε 3.92E-01

OCBAE < ε < ε < ε 3.67E-02 6.48E-02

Table 4.5: P-Values of Post Hoc Pairwise Comparison of Inverse Generalized Distance
for all Methods on ZDT1L (< ε indicates p-value less than machine epsilon, boldfaced
text indicates statistical significance with significance level α = 0.05)

Method PTVE EQUS PTVS EQUE OCBAS

EQUS 4.59E-01

PTVS 4.45E-01 4.86E-01

EQUE 2.80E-01 3.16E-01 3.28E-01

OCBAS 2.06E-01 2.37E-01 2.48E-01 4.07E-01

OCBAE 7.26E-03 9.64E-03 1.06E-02 3.14E-02 5.21E-02

DTLZ6M, and DTLZ6H are the cases that the IGD metrics are very close to each

other. In the other problems, the differences are much larger.

The differences between different computing budget allocation methods for the

same integration method may also rely on the properties of the specific function.

Although these differences are less dramatic, the EQU and PTV allocation methods

are more favorable than the OCBA method when integrated into NSGA-II.

4.4 Conclusion

Several noise handling techniques for multi-objective stochastic problems are studied.

Various re-sampling techniques for allocating a given computing budget in either the

environmental selection step or the evaluation process within an NSGA-II implemen-

75



tation are compared. These algorithms are compared on both 2D and 3D stochastic

test problems with various levels of noise. It is found that the SIGA generally out-

performs the EIGA regarding both GD and IGD metrics. This is attributed to the

manner in which the SIGA allocates fitness evaluations towards specific individuals

for whom the GA requires more information when evolving the Pareto front. Among

the CBA methods, even though the OCBA method has been found to be a better

method to maximize the probability of correct selection when not integrating with

MOEAs, it is found to perform less favorably than the EQU and PTV methods when

integrated into an elitist MOEA.

This work can be applied to solve practical multi-objective stochastic problems.

Future study in the areas of optimization of photovoltaic inverters subject to solar

irradiance variation [88] and the design of shipboard power systems subject to hostile

disruptions [67, 89] will be performed to evaluate the relative merits of the CBA

integration approaches on more practical optimization problems.
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CHAPTER 5

APPLICATION OF GENETIC ALGORITHMS IN POWER

ELECTRONICS

Many power electronics problems involve the optimization of discrete event dynamics

systems (DEDS) [11] [90]. This type of problem can only be optimized through

simulation and searching [91] [92]. Thus the selection integrated genetic algorithm

can be applied to solve the problem efficiently by building models and using simulation

for the evaluation. One example of utilizing genetic algorithms in power electronics

problems is the optimization of grid-connected photovoltaic inverter system subject

to random noises.

Nowadays, Renewable energy sources are becoming more important due to the

environmental concerns [93]. Especially the solar energy, which is ultra clean, natural

and a sustainable source of energy, has a large potential market than the limited and

environmental unfriendly fossil and nuclear fuels [94]. Photovoltaic (PV) Inverter

serves as the bridge to transfer solar power into electricity, and grid-connected PV

system is becoming a commonly recognized method of contributing clean power to

the grid [95].

However, the input power of solar energy, which subjects to weather changes, is a

random and stochastic input to the PV system [96]; and the utility grid also contains

a range of noises depending on the customer side usage status and the various utility

side control [97]. Thus, the optimization and tuning of grid-connected PV inverter

system subject to those noises have become a significant problem in both research

and industry.

Based on the conclusion drawn from the previous chapter, the selection integrated

generic algorithm is a good approach to solve multi-objective optimization problems

with noise more efficiently. Vice versa, With the same number of samples, the SIGA
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can achieve better accuracy in stochastic problems. Power electronics system models

usually contain complicated models and will take a long time to simulate due to the

excessive zero crossings. It is proposed herein to use the multi-objective SIGA to

tune the PV inverter system with noise. The remainder of this chapter is organized

as follows:

First, the PV inverter system will be introduced in Section 5.1, including the

modeling of the inverter and the control methods used in the system. Next, Section

5.2 will focus on the modeling of the noises that can are introduced in the PV inverter

system. More specifically, a model of solar irradiance, which has a direct impact

on the input power of the inverter system, is extracted and modeled from a one-

day irradiance observation data file. And the model of grid harmonic, which causes

pollution to the inverter currents if not appropriately controlled, is extracted and

modeled from experimental measurement. Finally, the optimization methods and

results will be given in section 5.3. Experimental validation of the optimization

results in hardware is also included in this section. A short conclusion will be given

afterward.

5.1 PV inverter system description and Control schemes

A grid-connected PV inverter system is composed of a PV array, an inverter, and

a filter system, and a transformer which is used to step up the voltage and isolate

current to the grid. In this study, the material or detailed modeling of PV array

is not a primary concern. It is assumed that maximum power point tracking has

been achieved for the system. And the PV array output is modeled as a constant

power load, where the power output to the inverter system can maximumly tracking

the solar power into the array. The transformer serves the purpose of damping the

inverter output to the grid and isolating the current. It makes sure that no DC is
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flowing in the system. The primary focuses of this section are the modeling and

controlling of the three-phase inverter part, and are illustrated as follows.

5.1.1 Modeling of three-phase inverter system

A basic three-phase inverter consists of six switches, with two switches in a pair for

single-phase inversion. The operation of the three pairs is coordinated such that each

pair corresponds to each phase for the three-phase inverter system. The three phase

pairs operate identically except for the phase shift in between according to the control

signal generated by pulse width modulation. It is assumed that the switches are ideal

such that there is no power loss during the switching process. In realization of an

inverter with digital controllers, the switches are controlled and are switching at a

fixed switching frequency. The switching frequency is often limited by the hardware

limitations. Currently, the power switches are dominated by IGBT and MOSFET.

The IGBT applications usually are low frequency (less than 20KHZ) and high voltage

(up to greater than 1000V). The MOSFET applications are usually high frequency

(greater than 200KHZ) and low-voltage (less than 250V). In this study, IGBT switches

at a switching frequency of 10KHZ are chosen.

Modeling of zero-order hold

Uniformly sampled pulse width modulation (PWM) is used to generate switching

reference signal for digital implementation [98]. The modulation signal is regularly

sampled at the beginning of the switching period and stored in a shadow register for

use during the period [99]. The switching instant of uniformly sample PWM uses

this value to compare to the carrier signal and produces an effective delay which is

called zero-order hold and should be modeled appropriately. The following equation

calculates the inversion from the DC side voltage to the three phase inverter input

voltage.
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Figure 5.1: Block diagram of uniformly sampling PWM with zero-order hold

vinv =
mabc + 1

2
H(ZeroOrder)vdc −

1

3

∑
mabcvdc (5.1)

In which, the vinv stands for the line to neutral voltage for the inverter input

after the switching. The mabc stands for the three-phase vector of the control signal

produced by the circuit according to the controlling objectives. The vdc is the DC

input voltage before the switching. And the H(ZeroOrder) part stands for the pulse

width modulation with zero-order hold. A block diagram that depicts the uniform

sampling PWM with zero-order hold is shown in Figure 5.1.

The transfer function of zero-order hold is as follows:

H(ZeroOrder) =
1− exp(−sT )

sT
(5.2)

T stands for the switching period, which is 1/fsw, fsw stands for the switching fre-

quency. The detailed modeling of the zero-order hold with the embedded SIMULINK

block is very time consuming when running simulations due to its excessive zero-

crossing. A second-order approximation of the zero-order hold is opposed to Eq. 5.2

using Taylor expansion series to improve the simulation speed of the model. Average

model of the inverter system using the second order approximation can significantly

improve the simulation speed without impairing too much accuracy.
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H(ZeroOrder) u
1

T 2

12
s2 + T

6
s+ 1

(5.3)

Modeling of LCL filter

A filter is required in the interconnection of the inverter to the grid. The purpose of

a filter is to filter out the harmonics produced by the heavily switching. Basic filter

topologies include L filter, LC filter and LCL filter [100]. The L filter is the first order

filter with attenuation of 20dB per decade over the whole frequency range. Thus for

high switching frequency applications, the attenuation is usually sufficient. However,

it also greatly decreases dynamics of the whole system, and the damping may not be

sufficient for lower switching frequency applications. The LC filter is second order

filter and is better than L filter in damping behaviors [100]. However, there is a peak

in resonant frequency that usually needs series or parallels damped. And there is a

coupling issue on the filter and the grid impedance such that the grid impedance can

affect the resonant frequency. The LCL filter is much better at decoupling the filter

and the grid impedance than the LC filter. The current ripple over the grid inductor

is also much lower. The attenuation of the LCL filter is 60dB per decade above

resonant frequency and can be used for lower switching frequency cases. However,

the LCL filter can be easily unstable, and there is a peak in cut-off frequency. A

resistor damping is also suggested to improve the system stability and improve the

behavior at cut-off frequency. Virtual resistor damping is also a good choice and is

will be discussed next.

The LCL filter voltage and current calculations are governed by Eq. 5.4. The

SIMULINK block which models the calculation of the voltage and current for the

inverter side and the grid side is in Figure 5.2.
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Figure 5.2: Block diagram of the LCL filter

vinv − vc = L
diinv
dt

+ iinvR

vc − vgrid = Lg
dig
dt

+ igRg

iinv − igrid = C
dvc
dt

(5.4)

The R and Rg are the equivalent series resistances (ESRs) associated with L and

Lg of the LCL filter. The ESRs are measured because the inductors in real life are not

ideal and they are usually measured with standardized frequencies. In the three-phase

inverter application, the ESRs are most significant in the fundamental frequency, and

they are approximated in Eq. 5.5

R = 0.05 ∗ ω0 ∗ L

Rg = 0.05 ∗ ω0 ∗ Lg
(5.5)

where ω0 = 2 ∗ pi ∗ 60.
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5.1.2 Control schemes for the three-phase inverter system

The two optimization objectives over the control of the three phase inverter are:

1) the input voltage of the inverter needs to be stabilized to the reference voltage

with possible changes in the input solar power; 2) the current error of grid side

current of the inverter needs to be minimized, this is in accordance to achieve less

current harmonic and better control of current. The two objectives are obtained

by a coupled proportional-integral (PI) control with a proportional resonance (PR)

controlled inverter. PR controller is widely used in both single-phase and three-phase

inverter systems due to its advantages over traditional PI control, as the PI control

is known for several drawbacks: 1) presence of steady-state error in the stationary

frame 2) the need to decouple phase dependency in three-phase system 3) possibility

of distorting te line current caused by grid voltage harmonics [38]. In the study, LCL

filter was used to filter out the high-frequency harmonics and active damping will be

introduced.

The control diagram of the inverter system is shown in Figure 5.3. The control

of the inverter takes the measurement of input DC voltage, the three-phase inverter

side current, the three-phase grid side current and the three-phase grid voltage. The

measurements are filtered with low pass filters to eliminate high frequency noises and

the filtered measurements are denoted as vdcf , iabcf , iabcgf , vabcgf respectively. The

reference provided to the control is the referenced input DC voltage, v∗dc.

The goal stabilizing the input DC voltage is achieved by utilizing the PI controller

to produce the reference current: the controller takes the voltage error from the DC

voltage, then fed through the PI controller to produce the i?qe portion of the rotating

reference frame. The i?de portion from the rotating reference frame is desired to be 0.

The reference current vector i?qde in rotating reference frame is then transformed to

stationary reference frame i?qd0 for the inverter controller calculation. The reference
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Figure 5.3: Control diagram of the complete PV inverter system

frame transformation from synchronous reference frame (abc) to synchronously ro-

tating reference frame (qde) was introduced in section 2.4.2. The difference between

rotating reference frame (qde) and stationary reference frame (qd0) is that the former

takes instantaneous rotation angle θ into account and the later set the rotation angle

as a constant of 0.

The PI controller Gpi(s) for the reference current is defined in Eq. 5.6

Gpi(s) = Kpi(1 +
1

τpis
) (5.6)

The reference current can be calculated following Eq. 5.7-5.8.

i?qdge =

i?qge
i?dge

 =

Gpi(s)(vdcf − v?dcf )

0

 (5.7)

i?qdg0 = Ke0i
?
qdge (5.8)
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where Ke0 = K−1
r Ks. The transformation coefficient of Kr and K−1

r were given in

Eq. 2.13 and Eq. 2.14. The transformation coefficient of Ks and K−1
s can be obtained

by plug in θ = 0 into those equations. For the rotating reference frame, the rotating

angle θ is calculated by performing PLL in section 2.4.2 on the grid voltage.

The PR controller is designed to control the grid current to reach the reference

current. The filtered grid current iabcgf is transformed into the stationary reference

frame iqdg0 before calculation. The grid current usually contains 5th and 7th har-

monic from the grid voltage distortion. To reduce the grid current distortion, the

PR controller also includes harmonic compensator portion for 5th and 7th harmonic.

The controller Gpr(s) is defined in Eq. 5.9.

Gpr(s) = Kpr(1 +
s

τpr(s2 + ω2
0)

+
∑
h=5,7

s

τprh(s2 + (ω0h)2
) (5.9)

The system for controlling the grid current using PR controller with LCL filter

is easily unstable due to the second order system pole placement. The capacitor

current feedback damping is used to move the pole placement of the overall system

and increase the system stability. The modulation signal in the stationary reference

frame mqd0 can be calculated from the output of PR controller and the capacitor

current feedback damping part in Eq. 5.10.

mqd0 = Gpr(s)(i
?
qdg0 − iqdg0)− kd(iqd0 − iqdg0) (5.10)

mabc can be obtained by the transformation from the stationary reference frame

to synchronous reference frame of mqd0. And PWM is used to generate switching

reference signal based on the comparison of the modulation signal mabc to a triangular

switching signal.

The selection of the control parameters, including Kpi, τpi, Kpr, τpr, τprh and

kd, are a very difficult topic and there are papers on how to selecting reasonable
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parameters [38,101]. The remainder of this chapter will discuss different control cases

that the PV inverter systems can face from the randomness from the solar input

and the disturbances and harmonics from the utility grid, and how to use the multi-

objective genetic algorithm with the integrated sampling strategies to select optimal

control parameters for this stochastic problem.

5.2 Noise modeling from solar input and utility grid

As is discussed previously, the controlling objectives are to stabilize the input DC

voltage under any circumstance of input power change caused by the irradiance change

and to minimize the grid current error from the performance of the inverter and utility

grid pollution. It is important to build models to represent the behaviors of the solar

input and utility grid as accurate as possible to achieve the control goals.

5.2.1 Noise modeling of solar input

Modeling and forecasting of solar irradiance have been important research topic over

the years [102, 103]. Different numerical approaches are proposed to model the solar

irradiance better. The use of a Markov chain-exponential model is used to generate

precipitation of solar irradiance in [104].A Multilayer Perceptron MLP-model is pro-

posed in [102] to forecast the solar irradiance on a base of 24h using the present values

of the mean daily solar irradiance. A finite mixture of Dirichlet distributions is used

to model the daily solar irradiance distributions in [105]. The models are trained to

fit the practical data in these cases in a long term or a short term.

In this study, a set of one-day irradiance data from National Renewable Energy

Laboratory taken in Oahu, Hawaii is collected, and models of mixture distribution by

nonlinear regression are created to simulate the distribution of the irradiance and per
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Figure 5.4: Figure of one day solar irradiance

second change of the irradiance. A plot of one-day solar irradiance from one measure

point on the solar measurement grid is in Figure 5.4.

The mixture distribution fitting along with the histogram of the solar irradiance

data is in Figure 5.5. The mixture distribution is modeled with a mix of Exponential

distribution and T distribution. A representation of the probability density distri-

bution (pdf) is in Eq. 5.11. Non-linear regression is performed to obtain the best-fit

coefficients of the pdf on the real data.

f =p(1) ∗ exppdf(x ∗ p(2), p(3))

+ p(4) ∗ tpdf((x− p(5)) ∗ p(6), p(7))

+ p(8) ∗ tpdf((x− p(9)) ∗ p(10), p(11))

+ p(12) ∗ tpdf((x− p(13)) ∗ p(14), p(15))

(5.11)
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Figure 5.5: Histogram and distribution fitting of one day solar irradiance

where the trained coefficient is:

p = [3800 0.07 1.5 1300 280 0.01 500 1500 730 0.01 500 2300 1040 0.02 1] (5.12)

To be able to model the per second change of the data. A mixture distribution

with T Location Scale distribution and F distribution is fitted into the per second

change of the irradiance shown in Figure 5.6. A representation of the probability

density distribution is in Eq. 5.13. Non-linear regression is performed to obtain the

best-fit coefficients of the pdf on the real data.

f =p(1) ∗ pdf(makedist(‘tLocationScale’, ‘mu’, 0, ‘sigma’, abs(p(2)), ‘nu’, abs(p(3))), x)

+ p(4) ∗ fpdf((abs(x)− p(5))/(abs(p(6)) + 1), abs(p(7)), abs(p(8)))

(5.13)
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Figure 5.6: Histogram and distribution fitting of per second change of irradiance

where the best fit coefficient is:

p = [4.17e4 0.4527 3e7 2.4e4 1 3.6183 2.1169 1.9970] (5.14)

After acquiring the probability density distribution (pdf) of the mixture distribu-

tion models, the solar irradiance input and per second change of solar irradiance in

real time can be modeled as two random numbers that generated from the pdf. For

the per second irradiance change distribution, note that the majority of the popula-

tion are crowded in the middle. However, this distribution has long tails. To be able

to sample the cases over the range of the distribution with a very limited number of

samples, the stratified sampling technique is used to produce the random numbers

in this case. The six stratas are [-600 -200], [-200 -100], [-100 0], [0 100], [100 200],

[200 600]. Each of the strata is equally sampled. The stratified sampling ensures that

the range of the distribution can be covered with a limited number of samples.
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5.2.2 Modeling of utility grid

The utility grid is subject to grid harmonics [106]. And the grid is constantly changing

with the plugging and unplugging of input injection and output load. Regulations

and standards are posed to limit the grid variations [107,108]. Noises with the utility

grid are modeled in this study to improve the performance of PR controller over the

prominent harmonics. The grid voltage is modeled according to data acquiesced from

a transformer which connects to the grid to the University of Kentucky during work

days and holidays. The measurement is taken on the line to line voltage of vcb. A

Fourier transform analysis on the collected data suggests that among the harmonics,

the 5th and 7th grid harmonic with phase angle shift are the most significant ones.

During work days, there is more pollution over the fundamental frequency, while the

grid has a cleaner spike on the fundamental frequency on holiday. A math model

is constructed with the fundamental frequency, 5th and 7th harmonics with a phase

shift. And non-linear regression with least squares error is performed on the math

model and the acquired data. The equation for modeling the utility grid is in Eq. 5.15.

F =125 ∗ (1 + x(1)) ∗
√

2 ∗ sin(2 ∗ pi ∗ 60 ∗ (t+ x(2)) + pi/2)

+ x(3) ∗
√

2 ∗ sin(5 ∗ (2 ∗ pi ∗ 60 ∗ (t+ x(2)) + pi/2 + x(5)))

+ x(4) ∗
√

2 ∗ sin(7 ∗ (2 ∗ pi ∗ 60 ∗ (t+ x(2)) + pi/2 + x(6)))

(5.15)

And the coefficients for the work day data and the holiday data are fitted in the

least-squares sense, shown in Eq. 5.16

xworkday = [−1.9972 0.0014 2.9684 − 1.8392 1.6983 − 2.6631]

xholiday = [0.0058 0.0005 2.3177 − 1.9644 2.2869 − 2.2230]

(5.16)
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Visualization of the fitting results along with the original data are presented in

Figure 5.7 and Figure 5.8.
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Figure 5.7: Measurement and distribution fitting of utility grid (Work day)
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Figure 5.8: Measurement and distribution fitting of utility grid (Holiday day)

Based on the extracted models. Noises or errors about the utility grid are esti-

mated with the assumption that the noise from the grid follows a White Gaussian

distribution with the expected mean values. The pdf of the RMS fundamental voltage

(Vgrid), the RMS 5th harmonic voltage (V5th), the RMS 7th harmonic voltage (V7th),

the phase shift of 5th harmonic (P5th) and the phase shift of 7th harmonic(P7th) are

defined in Eq. 5.17.

Vgrid = 125 ∗ (1 +N (0, 0.01))

V5th = 2.5 ∗ (1 +N (0, 0.5))

V7th = 2 ∗ (1 +N (0, 0.5))

P5th = 2 ∗ (1 +N (0, 0.5))

P7th = 0.7 ∗ (1 +N (0, 0.5))

(5.17)
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5.3 Stochastic optimization and Hardware validation

Due to the stochastic nature of the solar power input and the output grid, the pro-

posed control scheme may produce large voltage ripple, heavily distorted grid current

or even instability if the control parameters are not well tuned for all the possible

cases. From section 5.1, some guidance and potential range of the control parameters

can be defined. However, it is impossible to manually select best solutions which

might fit all the noisy cases. The multi-objective genetic algorithm with selection

integrated scheme is proposed to tune the parameters and produce a Pareto front of

the two control objective.

5.3.1 Optimization setup

A MATLAB simulation of the proposed inverter system with the modeling of power

input and utility grid is built and parameters for the power input and utility grid can

be adjusted according to the noise modeling. Due to the limitation of the hardware

environment, the solar power input with randomness is represented with a DC power

supply. The DC power supply can mimic the solar power by running under current

limit mode with the desired voltage. The initial voltage of the power supply is set at

260V. And the initial current of the DC power supply is limited to a small amount

for the initiation of the inverter. After turn on the inverter and the control of the

inverter can adjust the input voltage to a steady DC voltage of 250V. The power

knob of the DC power supply can be turned to increase or decrease to mimic the

solar power change. The inverter will transfer the power from the DC power source

to the utility grid. The modeling of the DC power source in current limitation mode

is described in Eq. 5.18.
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Figure 5.9: Model of DC power source connect to inverter

iin =


iinmax, vdcmax >= vdc

min(iinmax, iinv), vdcmax < vdc

(5.18)

where the voltage from the power supply is denoted as vdcmax; the inverter capacitor

voltage is denoted as vdc; the current from the power supply is denoted as iinmax; the

current flowing in the inverter is denoted as iinv.

The SIMULINK model of the source is in Figure 5.9.

The randomness of the solar input and utility grid is introduced by generating

random parameters for the simulation according to the distributions defined in the

last section. The input voltage of the inverter is fixed at the desired DC voltage

of 250. Thus the output current of the DC power supply is proportionally scaled

to mimic solar power from the solar irradiance. The ramp change of the output

current is also proportionally scaled to mimic the power change from per second solar

irradiance change. The scaling needs to ensure that the maximum irradiance of the

day, which is 1400 corresponds to a current which is within the maximum current

limit of the hardware environment. A tolerable operation current is around 30A. The

scaling relationship is described in Eq. 5.19. The current is defined to be no less
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Figure 5.10: A distribution of generated input current scaled to the solar irrdiance
input for 1000 sample

than 1A. The per second current change, which is the ramp current, is then restricted

accordingly.

iinitial = IRinitial ∗ 30/1400 + 1

iramp =


IRramp ∗ 30/1400 IRramp >= −IRinitial

−IRinitial ∗ 30/1400, IRramp < −IRinitial

(5.19)

where iinitial stands for the initial output current from the power source, and iramp

stands for the per second current change; IRinitial stands for the initial irradiance

generated from the irradiance distribution, and IRramp stands for the per second

irradiance change generated from the per second irradiance change distribution.

The histograms of a set of random samples with the sample size of 1000 are shown

in Figure 5.10-5.14.
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Figure 5.11: A distribution of generated per second current change scaled to the per
second irradiance change for 1000 sample
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Figure 5.12: A distribution of generated RMS magnitude of the fundamental grid to
neutral voltage for 1000 sample
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Table 5.1: Parameters of Genetic Algorithm

Variable Parameter Value

ngen Maximum
Generation

50

nind Initial Pool 100

npool Mutation Pool 50

ntour Tournament size 2

nsamp Initial sample per
individual

50

tsamp Allocated sample
per individual

50

eta Crossover
constant

2

pm Mutation
constant

0.05

The SIGA is used to tune the control parameters on the simulation model with

varying solar input and the utility grid. The simulation is set such that the system

will run 1 second on initial current for the system to reach steady state, then followed

by 1 second of ramp current to simulate the per second irradiance change, then the

system will continue in the new state for 0.5 seconds. Simulation results from 0.5

seconds to 2.5 seconds are recorded for fitness evaluation. The parameters of the

GA are specified in Table 5.1. The ranges of the tuning control parameters are in

Table 5.2. Other fixed filter parameters and control parameters are in Table 5.3. The

other parameters including the three phase inverter hardware setup are in Table 5.4.

The hardware structure of the three-phase inverter are shown in Figure 5.15-5.16.

The fitness values for the fitness function are calculated from the simulation out-

put. The fitness function is defined as the voltage error and grid current error defined

in Eq. 5.20. The grid current error is calculated in the rotating reference frame.

This is because that in steady state, the grid current in the rotating reference frame

are two constants, and the error can be easily calculated. However, in the case of the
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Table 5.2: Searching Range for tunable control parameters

Variable Parameter Value

Kpi Proportional gain
for PI controller

[1e-2 1e2]

τpi Integral constant
for PI controller

[1e-4 1]

Kpr Proportional gain
for PR controller

[1 10]

τpr Integral constant
for PR controller

[1e-4 1]

τpr5 Integral constant
for PR controller

[1e-4 1]

τpr7 Integral constant
for PR controller

[1e-4 1]

kd Capacitor current
feedback damping

coefficient

[1 10]

Table 5.3: Un-tunable control and filter parameters

Variable Parameter Value

kppll kp for phase
locked loop

0.1

kipll ki for phase
locked loop

7.5398

τDC filter time
constant for DC

voltage

1/(2 ∗ pi ∗
100)

τf filter time
constant for

currents

1/(2 ∗ pi ∗
2000)
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Table 5.4: Parameter for Three Phase Inverter
Variable Description Value

L Inverter side
inductor

0.276 mH

Lg Grid side inductor 0.4 mH

R Inverter side
inductor ESR

5.2 mΩ

Rg Grid side inductor
ESR

7.5 mΩ

Cf Filter capacitance 24 µF

Cin Input capacitance 680 µF

v∗dc Input referenced
voltage

250 V

fsw Switching
frequency

10 kHz

Figure 5.15: Hardware box for the switches, input capacitor and controller
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Figure 5.16: Hardware box for the LCL filter

simulation is unstable, the DC voltage and grid current will be out of normal range,

and the simulation is terminated in advance when out of range is detected. The sim-

ulation ending time tend would be smaller than the simulation final time tfinal. The

penalty for these cases are described in Eq. 5.20. The purpose of the penalty function

are to distinguish the unstable cases from the stable cases, and also make sure more

penalty would be applied when the system is more unstable, which takes less time

to terminate. The goal of the SIGA is to minimize the voltage error and the current

error. And with these settings, the optimization goal can be achieved, and results are

discussed in next part.

Ffitness =



1e9 ∗ (10− tend

tfinal
)

1e9 ∗ (10− tend

tfinal
)

 tend < tfinal


√

1
tfinal

∫
(v?dc − vdc)2dt√

1
tfinal

∫
(i?qge − iqge)2 + (i?qge − iqge)2dt

 tend = tfinal

(5.20)
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Figure 5.17: Last generation population from the SIGA

5.3.2 Results and validation

The results and validation for the optimization of the stochastic three-phase inverter

system problem are described in this subsection. The last population of the individ-

uals from the SIGA is given in Figure 5.17. Due to the limited number of samples

during the SIGA, the fitness values are not good estimates of “true mean” values.

To give a better interpretation of the “true mean” value for the last population, the

fixed set of 1000 samples from Figure 5.10-5.14 is evaluated on the last populate and

the fitness is given in Figure 5.18. It can be seen that despite the limited number of

samples, the SIGA did converge very well to the Pareto front.

To better observe the trade-off between the voltage error and current error objec-

tives. Selected cases of ‘A’, ‘B’ , ‘E1’, ‘E2’ and ‘C’ are listed in Table 5.5. It can be

observed that the points from left to right in Figure 5.18 generally show an increasing

trend in voltage error and a decreasing trend in current error.
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Figure 5.18: Last generation population from the SIGA with 1000 sample re-
evaluation

Table 5.5: Comparison of Case A, B, E1, E2 and C

Case A Case B case E1 case E2 Case C

Voltage error (V) 0.1579 0.1692 0.2307 0.2948 0.3090

Current error (A) 0.2523 0.0625 0.0619 0.0593 0.0596

The simulation comparison of grid current in rotation reference frame and DC side

voltage of the end cases ‘A’ and ‘C’ under the same input is shown in Figure 5.19-5.20.

The initial current is 5A and ramp current per second is 10A for the simulation. The

grid values are the mean values of each parameter. Case ‘C’ has less current harmonic

content than case ‘A’ with more stable rotation reference frame currents. A phase

Figure 5.20 shows that case ‘A’ has more stable DC voltage than case ‘C’.

By comparing the three cases, the ‘knee’ point of the front, which is case ‘B’ is

usually the most desired selection for a balance of the two objectives. Both current

error and voltage error are regulated very well at this point. However, the PI control

for case ‘B’ and its left points are heavily under damped such that during the initial
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Table 5.6: Harmonics in steady state from experiment (Exp) and simulation (Sim)

Case Exp5th (%) Exp7th (%) Sim5th (%) Sim7th (%)

E1 0.7585 1.4054 0.0323 0.0403

E2 0.5935 1.3275 0.0307 0.0378

transient of starting the inverter, the DC voltage would drop below 250 significantly

and power flow reversely from the grid to the power source, which is not allowed in

the present experiment environment. Due to this concern, case ‘E1’ was selected to

represent the lower voltage error and higher current error case in hardware experiment.

And case ‘E2’ was selected to represent the higher voltage error and lower current

error case since case ‘E2’ exhibits better performance in both objectives than case

‘C’. The power source was initialized with 260 V DC output in current limit mode.

Then the knob to change the current was turned clockwise to increase the input

current which simulates the per second power change. Since each set of experiment is

human performed and the initial current and change current should be different each

time. So voltage error quantitatively calculated is unable to provide a fair comparison

between the two cases and can only be qualitatively examined. During the two sets of

experiments, very similar operations are performed and the initial current and final

current are controlled very close to each other within 1 A deviation. The measured

DC voltages for case ‘E1’ and case ‘E2’ are shown in Figure 5.21-5.22. The A phase

currents for the two cases are shown in Figure 5.21-5.22. It can be observed that the

transient for case ‘E2’ is larger than the transient for case ‘E1’. Current data from

last 0.5 second are used to calculate the 5th and 7th harmonic percentages shown in

Table 5.6. A set of harmonic percentages from simulation is also included with the

same simulation setting. It shows that case ‘E2’ exhibits larger 5th and 7th current

harmonic than case ‘E1’, which indicates that case ‘E2’ exhibits larger current error in

rotation reference frame. The experiment results correspond to the simulation results

from Table 5.5.
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Figure 5.19: Comparison of current between case ‘A’ and case ‘C’ in rotation reference
frame
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Figure 5.21: Measured DC voltage for ‘E1’
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Figure 5.22: Measured DC voltage for ‘E2’
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Figure 5.23: Measured A phase current for ‘E1’
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Figure 5.24: Measured A phase current for ‘E2’
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, the application studies of genetic algorithms with stochastic problems

are first studied. Genetic algorithms are widely used to solve practical problems that

are difficult or impossible to solve manually. And practical problems are usually

stochastic in real life scenarios. Thus there are many researchers seeking ways to

improve the efficiency of genetic algorithms.

The first topic of this dissertation is to study the integration of computing budget

allocation schemes into the single objective genetic algorithms. The purpose of the

study is to find the most efficient method of applying the genetic algorithms in solv-

ing single objective stochastic problems. A single objective genetic algorithm often

starts with random initialization, followed by loops that contain tournament selec-

tion, crossover, mutation, evaluation until termination. The previous studies focused

on applying computing budget allocation (CBA) methods, usually the optimal com-

puting budget allocation (OCBA) proposed by Chen et al., into the evaluation and

ranking process (EIGA). This work proposed to allocate the CBA techniques directly

into the tournament selection operator rather than the fitness evaluation operator

(SIGA). This allows the search algorithm to allocate samples as needed in the tour-

nament selection process and improve the accuracy of choosing the best individuals

in the tournament selection. The performance comparisons between the EIGA and

the SIGA with different CBA methods are performed on benchmark functions under

different noise levels. Each experiment is repeated 1600 times to achieve statistical

significance tests results in comparisons. It is shown that the SIGA with different

CBA methods is consistently achieving more accurate results than the EIGA for the

same amount of total computational budget. And the performance of OCBA is not
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necessarily better than other CBA methods under the same EIGA or SIGA frame-

work.

The second topic of this dissertation is to study the integration of computing bud-

get allocation schemes into the multi-objective genetic algorithms. The purpose of the

study is to find the most efficient method of applying the genetic algorithms in solving

multi-objective stochastic problems. Unlike the workflow of the single objective ge-

netic algorithm, the multi-objective genetic algorithms often contain recombination

of the previous pool and current pool and selecting the next generation pool from

the combined pool. This process is called environmental selection, which poses much

greater selection pressure than the tournament selection. Methods of integrating CBA

methods into the environmental selection or the evaluation procedure have been in-

vestigated by previous researchers separately in [75] and [3]. However, there were no

comprehensive studies about comparing the difference between these two techniques.

In this work, a combination of studies that compares the alternative approaches to

integrating CBA methods into the environmental selection (SIGA) and the evalua-

tion procedure (EIGA) of a multi-objective genetic algorithm have been proposed.

Repetitive experiments of 1200 times are performed on typical test problems with

the different noise level. The tests results, which are interpreted with general dis-

tance (GD) and inverse general distance (IGD) metrics, are compared with statistical

significance. It is found that the SIGA generally outperforms the EIGA regarding

both GD and IGD metrics. And among the CBA methods integrated, the OCBA

performs less favorably than the other CBA methods under the same EIGA or SIGA

framework.

The last topic of this dissertation aims to apply the proposed SIGE framework to

solve a practical stochastic problem in the area of power electronics. A three-phase

photovoltaic inverter system with PI control to stabilize the DC side input voltage

and PR control to generate the pulse width modulation (PWM) signal is studied.
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The inverter system is subject to noise from the randomness of input power and the

influence of dynamic grid. The system can produce huge distortions or even instability

if the control parameters are not properly tuned. The proposed selection integrated

multi-objective genetic algorithm is used to optimize the control parameters with the

random cases. The results are validated with hardware-experiment.

Future work may consider adding objectives from frequency domain, such as max-

imizing the stability phase margin to increase system stability. Other possible future

works include applying the proposed algorithms to solve other stochastic optimization

problems in power electronics, such as to optimize a DC to DC converter subject to

hardware noise by tuning the control parameters, to optimize a three phase rectifier

to deliver maximum power while minimizing converter loss, etc. The objectives for

those power electronics problems may also include time domain or frequency domain

objectives.

Recently, there is a growing interest in the optimization of the smart grid. The

concept of smart grid has emerged to solve the modern distribution problems. The

smart grid merges the concepts of information technology, customer participation, and

other new technologies. It enables the gathering of and communicating of information

on both the supplier side and consumer side and improves the efficiency, sustainability,

load balancing, reliability, and flexibility of distribution networks [109]. And the

genetic algorithms can be applied to improve different aspects of the smart grid. For

example, In [110], Ramaswamy et al. propose the reconfiguration of the grid to achieve

a few optimizing objectives such as minimal power loss, minimum voltage deviation,

etc. A simple GA is integrated to optimize a 16-node test network. Ana Soares

proposed scheduling of domestic electric loads to minimize the end user’s electricity

bill while maintaining the quality of the energy services [111]. Stephan Hutterer et

al. proposed evolutionary-algorithm-based control policies for flexible optimal power

flow over time [112]. Dominik Egarter uses a genetic algorithm to determine a set of
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devices for a load curve which enables a regular meter to act as a smart meter [113].

The genetic algorithms with an efficient sampling technique can be applied to solve

various smart grid optimization ranging from the cost, efficiency, realizability and

availability with the randomness of the distribution network.
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