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Abstract

The importance of balance between exploration and exploitation plays a crucial role while solving

combinatorial optimization problems. This balance is reached by two general techniques: by using an

appropriate problem solver and by setting its proper parameters. Both problems were widely studied in

the past and the research process continues up until now. The latest studies in the �eld of automated

machine learning propose merging both problems, solving them at design time and later strengthening

the results at runtime. To the best of our knowledge, the generalized approach for solving the parameter

setting problem in heuristic solvers has not yet been proposed. Therefore, the concept of merging

heuristic selection and parameter control has not been introduced.

In this thesis we propose an approach for generic parameter control in meta-heuristics by means of

reinforcement learning (RL). Making a step further, we suggest a technique for merging the heuristic

selection and parameter control problems and solving them at runtime using RL-based hyper-heuristic.

The evaluation of the proposed parameter control technique on a symmetric traveling salesman problem

(TSP) revealed its applicability by reaching the performance of tuned in o�ine and used in isolation

underlying meta-heuristic. Our approach provides the results on par with the best underlying heuristics

with tuned parameters.
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1 Introduction

1.1 Motivation

Heuristic-based optimization is a popular research area. Various optimization problems (OPs) are

de�ned and can be tackled by heuristic algorithms [14, 43, 63]. Unfortunately, an ideal algorithm

that can solve every OP does not and cannot exist. This issue was formalized by the no-free-lunch
theorem for optimization (NFLT) [121], which states that “all search algorithms have the same average

performance over all possible optimization problems”. Heuristic solver acts by means of exploration
(e�ort diversi�cation over a search space) and exploitation (e�ort intensi�cation in a promising area)

operations. The success of heuristic on the problem at hand is de�ned by the exposed strength of both

operations (E&E) and the provided balance between them (EvE). Both E&E and EvE characteristics can

be controlled in several ways.

Firstly, one could try to set proper values of hyper-parameters exposed by the algorithm. This process

is formalized under the notion of parameter settings problem (PSP), whose resolution can be done before

running the algorithm (design time), or while it solves the OP (runtime). The former approach is also

called parameter tuning and can be tackled by numerous universal tuning systems [41, 58, 59, 79, 93]. A

key assumption of this software is an expensive evaluation of the target system in terms of computational

resources. High expensiveness is tackled by a surrogate learning model creation, which is then used to

simulate the direct evaluations. The latter approach called parameter control was originally introduced

for evolutionary algorithms [66] and nowadays appears in an algorithm-dependent manner. However,

even a proper parameter setting may not lead to the best results for the problem at hand.

Secondly, one could try to select a proper algorithm. It was formalized as the algorithm selection
problem (ASP) and de�ned as a process of searching for an appropriate solver for the problem at hand.

ASP resolves the direct consequence of NFLT, which states that a single algorithm cannot be used to

tackle various problems. Hyper-heuristics are commonly used for solving ASPs. They may perform

low-level heuristic selection before solving [22] the actual problem, or at runtime [22]. To operate online,

hyper-heuristics often utilize reinforcement learning (RL) techniques [84, 86], while for design time, a

regular parameter tuning could be used.

The research has not been standing at a standstill and nowadays the researchers are actively attempting

to merge ASP and PSP into a united algorithm selection and parameter setting problem (APSP). For

instance, in automatic machine learning such combination was formalized as the combined algorithm
selection and hyper-parameter optimization problem (CASH) [112], while for heuristics the explicit

studies of APSP merging and solving at runtime were not found. To tackle ML CASH problem several

frameworks based on the existing parameter tuning systems were created [44, 88, 112]. However, those

solutions are not applicable in case of heuristics, since they are (1) purely related to ML �eld and (2)

acting at design time due to ML techniques nature. One may follow the ML approach of the united APSP

search space de�nition and solving for heuristics, but it is applicable only at design time. Nevertheless,

when it comes to runtime, it turns out that the universal technique for setting the parameters online

(parameter control) in heuristics has not yet been proposed. It is essential, since the generic approach

to tackle PSP is one of two required methodologies for solving heuristic APSP at runtime. The other

building block (ASP) is already available in online hyper-heuristics.
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1 Introduction

1.2 Research objective

The goal of this thesis is to improve the quality of online heuristic-based optimization. The research

objective is to determine whether it is possible to solve both PSP and ASP, while solving the OP. In

order to reach our objective we need to answer the following research questions:

• RQ1 Is it possible to perform the algorithm con�guration at runtime on a generic level?

• RQ2 Is it possible to simultaneously perform algorithm selection and parameters adaptation while

solving an OP?

• RQ3 What is the e�ect of selecting and adapting algorithms while solving an OP?

1.3 Solution overview

In this thesis we propose the uni�cation of both ASP and PSP into a single problem. To do so, we �rstly

introduce a generic runtime PSP solution; secondly, we suggest joining several PSPs search spaces into

a united APSP. The consequence of merging several PSPs into a single APSP is the appearance of sparse
search spaces, where the percentage of properly de�ned con�gurations is low due to requiring and

prohibiting dependencies among parameters (e.g., each algorithm has its own required set of parameters).

To overcome the sparseness issue we propose a complex solution, which is spread in both search

space structure and sampling process. For the APSP representation we suggest using a data structure,

similar to feature trees from software product lines �eld. By doing so, we treat a solver type and its

hyper-parameters uniformly. The dependencies between parameters are explicitly handled in the form of

parent-child relationship. As a result, the search space could be viewed as a layered structure, where on

the �rst level the algorithm type is de�ned, and on the level(s) below its respective hyper-parameters are

speci�ed. The prediction process is made sequentially for each level, utilizing the available performance

evidence in a form of already tried con�gurations and respective improvements. Therefore, in the

united APSP we �rstly build a surrogate model for the algorithm type prediction. Afterwards, when

the solver type is selected, we �lter the performance evidence to operate on data, which is relevant

to the selected algorithm type. With this �ltered data we build a surrogate for the second level and

predict the parameters values on second level. This level-wise process continues until obtaining a

completed con�guration. Next, we continue solving the underlying OP with the de�ned algorithm type

and the predicted con�guration to obtain new evidence and repeat con�guration prediction process.

This reinforcement learning technique enables us to solve the APSP online, while iteratively tackling the

OP at hand. The proposed concept evaluation showed that: (1) applying the generic parameter control

to each among the reviewed meta-heuristics results in the solution quality, comparable and in some

cases even outperforming the quality of tuned in o�ine parameters; (2) our APSP tackling approach is

preferable in cases, when the heuristics dominance and their parameters are unknown beforehand.

The structure of this thesis is organized as follows. Firstly, in Chapter 2 we refresh the readers’

background knowledge in the �eld of optimization problems and solver types, focusing on heuristics.

We also review the parameter setting and the available solutions for this problem. In Chapter 3 one will

�nd a description of the proposed approach for generic parameter control and APSP problem uni�cation.

There we also present both structural and functional requirements for system components. Chapter 4 is

dedicated to the review of implementation details, including a code basis selection, the aforementioned

requirements realization and the developed system work�ow representation. We evaluate the proposed

concept and discuss the results in Chapter 5. Chapter 6 concludes the thesis and Chapter 7 describes the

future work.
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2 Background and Related Work Analysis

In this Chapter we provide the reader with a review of the basic knowledge in �elds of optimization

problems and approaches for solving them. A reader, experienced in �eld of optimization and search

problems, may consider this chapter as an obvious discussion of well-known facts. If such notions as a

parameter tuning and a parameter control are not familiar to you or seem the same, we highly encourage

you to spend some time reading this chapter carefully. In any case, it is worth for everyone to refresh

the knowledge with a coarse-grained description of topics, mentioned in this section and examine the

examples of hyper-heuristics in Section 2.2.5 and systems for parameter tuning in Section 2.3.2.

The structure of this Chapter is de�ned as follows. Firstly, we give an informal de�nition of an

optimization problem and enumerate possible solver types in Section 2.1. Secondly, we pay attention

to the heuristic solvers, their weak points and No Free Lunch Theorem in Section 2.2. Afterwards, in

Section 2.3 we discuss the in�uence of parameter setting and possible approaches to set the parameters.

Section 2.4, dedicated to Combined Algorithm Selection and Hyper-parameter Tuning problem, is followed

by conclusion on the literature analysis outlining the thesis’ scope in Section 2.5.

2.1 Optimization Problems and their Solvers

Our life is full of di�erent di�cult and sometimes contradicting choices. Optimization is an art of

making good decisions.

A decision between working hard or going home earlier, to buy cheaper goods or to follow brands, to

isolate ourselves or to visit friends during the quarantine, to spend more time on a trip planning or to

start it instantly. Each decision that we make, has its consequences.

Figure 2.1 outlines the trade-o� between decision quality and an amount of e�ort spent. The underlying

idea of the research in optimization is to squash this curve simultaneously down and to the left, therefore,

deriving a better result with less cost when solving the optimization problem.

costlow high

qu
al

it
y

lo
w

hi
gh

Optimization research

Figure 2.1 Optimization trade-o�.
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2 Background and Related Work Analysis

2.1.1 Optimization Problems

While the search problem (SP) de�nes the process of �nding a possible solution for the computation
problem, the optimization problem (OP) de�ned as a special case of the SP, focused on the process of

�nding the best possible solution for computation problem [51].

The focus of this thesis is the optimization problems.

Most studies conducted in this �eld have tried to formalize the OP concept, but the underlying notion

is so vast that it is hard to exclude the application domain from the de�nition. The description of every

possible optimization problem and all approaches to its solving are not in the scope of this thesis, while

we consider it necessary to present a coarse-grained review in order to make sure that readers are

familiar with all the terms and notions mentioned in the thesis.

To begin with, let us de�ne the optimization subject. Analytically, it could be represented as the

function Y = f(X) that accepts some input X and reacts to it, providing an output Y . Informally, it

could be imagined as the target system f (TS), shown in Figure 2.2. It accepts the input information with

its inputs Xn, which are sometimes called variables or parameters, processes them performing some

task and produces the result on its outputs Ym.

f(Xn)

Xn Ym

......
Figure 2.2 Optimization Target System.

Each (unique) pair of sets Xi
n and respective Y i

m form the Solutioni for computational problem. All

possible inputs Xi
, where i = 1...N form the search space of N size, while all outcomes Y i

, where

i = 1...M form an objective space of M size.

The solution is characterized by the objective value(s) — a quantitative measure of TS performance

that we want to minimize or maximize in the optimization problems. We could obtain those value(s)

directly, by reading the output on Ym, or indirectly, for instance, noting the wall clock time TS took to

produce the output Y i
for given Xi

. The solution objective value(s) form the object of optimization. For

the sake of simplicity we here use Ym, outputs or objectives interchangeably as well as Xn, variables or

parameters.
Next, let us highlight the target system characteristics. In works [2, 14, 32, 46] dedicated to solving

the OPs, the authors distinguished OP characteristics that overlap through each of these works. Among

them, we found the following properties to be the most important ones:

• Input data type of Xm is a crucial characteristic. All input variables could be (1) discrete, where

representatives are binary strings, integer-ordered, or categorical data, (2) continuous, where

variables are usually a range of real numbers, or (3) mixed, as the mixture of the previous two

cases.

• Constraints describe the relationships among inputs and explain the dependencies in allowable

values for them. As an example, imagine that having Xn equal to value implies that Xn+k should

not appear at all, or could take only some subset of all possible values.

• Type of target system is an amount of exposed knowledge about the dependencies X → Y
before the optimization process starts. Taking this into consideration, an optimization could be

4



2.1 Optimization Problems and their Solvers

of several types: white-box — it is possible to derive the algebraic model of TS, gray-box — the

amount of exposed knowledge is signi�cant but not enough to build the algebraic model and

black-box — the exposed knowledge is mostly negligible.

• Determinism of TS is one of the possible challenges, when the output is uncertain. TS is

deterministic, when in each time it provides an equal output for the same input. However, in most

real-life challenges engineers tackle stochastic systems, the output of which is a�ected by random

processes happened inside TS.

• Cost of evaluation is an amount of resources (energy, time, money, etc.) TS should spend to

produce the output for particular input. It varies from cheap, when TS could be an algebraic

formula and task evaluation is a simple mathematic computation, to expensive, when the TS is a

pharmaceutical company, and the task is to perform a whole bunch of tests for a new drug, which

may last years.

• Number of objectives is a size of the output vector Y i
m. With regard to this, the optimization

could be either single- (m = 1), or multi- (m = 2...M ) objective, where the result is one single

solution, or a set of non-dominated (Pareto-optimal) solutions.

Most optimization problem types could be obtained by combining di�erent types of each characteristic

listed above.

In this thesis we tackle practical combinatorial problems, where the most prominent examples are bin
packing [82], job-shop scheduling [17] or vehicle routing [113] optimization problems. All combinatorial

problems are NP-Complete meaning they are in both NP and NP-Hard complexity classes [48]. NP

complexity implies that the solution is veri�able in the polynomial time, while in the NP-Hard case the

problem can be transformed into other NP-Complete problem in polynomial time, allowing to use a

di�erent solving algorithm.

As an example, let us grasp these characteristics for traveling salesman problem (TSP) [3] — an instance

of the vehicle routing problem [73] and one of the most frequently studied a combinatorial OP (here we

consider deterministic and symmetric TSP). The informal de�nition of TSP is as follows: “Given a set of

N cities and the distances between each of them, what is the shortest path that visits each city once

and returns to the origin city?” With respect to our previous de�nition of the optimization problem,

the target system here is a function that evaluates the length of proposed path. The TSP distance (or

cost) matrix is used in this function for the evaluation and it is clear that this TS exposes all internal

knowledge therefore, it is a white box. The input Xn is a vector of city indexes as a result, the type of

input data is non-negative integers. There are two constraints for the path: it should contain only unique

indexes (visit each city only once) and it should start and end from the same city: [2→ 1→ ...→ 2].
Since the cost matrix is �xed and not changing during the solving process, the TS is considered to be

deterministic and costs of two identical paths are always the same. Nevertheless, there exist Dynamic

TSP where the cost matrix changes at runtime to re�ect more realistic real-time tra�c updates [27]. It is

cheap to compute a cost for a given path using the cost matrix therefore, overall solution evaluation in

this OP is cheap, and n = N ! is the overall number of solutions. Since we are optimizing only the route

distance, this is a single-objective OP.

2.1.2 Optimization Problem Solvers

Most of the optimization problems could be solved by an exhaustive search — trying all possible

combinations of the input variables and choosing the one, which provides the best objective value.

This approach guarantees to �nd a globally optimal solution of the OP. But when the search space size

5



2 Background and Related Work Analysis

signi�cantly increases, the brute-force approach becomes infeasible and in many cases solving even the

relatively small problem instances take too much time.

Here, di�erent optimization techniques come into play. Characteristics exposed by target system

could restrict and sometimes strictly de�ne the applicable approach. For instance, imagine you have

a white-box deterministic TS with a discrete constrained input data and cheap evaluation. The OP in

this case could be solved using the Integer Linear Programming (ILP), or a heuristic approaches. But if

this TS turned out to be a black-box, the ILP approaches will not be applicable anymore and one should

consider using the heuristics [14].

Evidently, there exist a lot of di�erent facets for optimization problem solvers classi�cation, but they

are a subject of many surveying works [14, 43, 63]. In this thesis, as the point of interest we highlight

only two of them.

• Solution quality perspective:

1. Exact solvers are those algorithms that always provide an optimal OP solution.

2. Approximate solvers produce a sub-optimal output with guarantee in quality (some order

of distance to the optimal solution).

3. Heuristics solvers do not give any worst-case guarantee for the �nal result quality.

• Solution availability perspective:

1. Completion algorithms report the results only at the end of their run.

2. Anytime algorithms are designed for stepwise solution improvement thus, could expose

intermediate results.

Each of these algorithm characteristics provides their own advantages, having, however, their own

disadvantages. For instance, if solution is not available at any time, one will not be able to control the

optimization process. On the contrary, if it is available, the overall performance may decrease. If the

latter features are more or less self-explanatory, the former require more detailed explanation.

Solution Quality

Exact Solvers. As was stated above, the exact algorithms are those, which always solve OP to

guaranteed optimality. For some OP it is possible to develop an e�ective algorithm that is much

faster than the exhaustive search — they run in a super-polynomial time, instead of exponential, still

providing an optimal solution. As authors claimed in [120], if the common belief P 6= NP is true, the

super-polynomial time algorithms are the best we can hope to get when dealing with the NP-complete

combinatorial problems.

According to the de�nition in [47], the objective of an exact algorithm is to perform much better (in

terms of running time) than the exhaustive search. In both works [47, 120] the authors enumerated

main techniques for designing the exact algorithms. Each of these techniques contributes to this ‘better’

independently and later they could be combined.

You may �nd a brief explanation of them below:

• Branching and bounding techniques, when applied to the original problem, split the search

space of all possible solutions (e.g. exhaustive enumeration) to a set of smaller sub-spaces. More

formally, this process is called branching the search tree into sub-trees. This is done with an intent

to prove that some of sub-spaces never lead to an optimal solution and thus could be rejected.
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• Dynamic programming across sub-sets technique could be combined with the branching

techniques. After forming the sub-trees, the dynamic programming attempts to derive the solutions

for the smaller subsets and later combine them into the solutions for the lager subsets. This process

repeats until the solution for original search space obtained.

• Problem preprocessing could be applied as an initial phase of the solving process. This technique

is dependable upon the underlying OP, but when applied properly, it signi�cantly reduces the

running time. A simple example from [120] elegantly illustrates this technique: imagine a problem

of �nding a pair of two integers xi and yi in Xk and Yk sets of unique numbers (k here denotes

the size of sets) that sum up to an integer S. The exhaustive search approach implies enumerating

all x − y pairs. The time complexity in this case is O(k2). But if at �rst we consider the data

preprocessing by sorting and afterwards, using the bisection search repeatedly in these sorted

arrays to �nd k values S − yi, then the overall time complexity reduces to O(k log(k)).

Approximate Solvers. When the OP cannot be solved to optimal in polynomial time, the only

solution is to start thinking of the alternative ways to tackle it. A common decision is to apply the

requirement relaxation techniques [100] to derive the approximated solution. Approximate algorithms

are representatives of the theoretical computer science. They were created in order to tackle the

computationally di�cult (not solvable in super-polynomial time) white-box OP. Words of Garey and

Johnson (computer scientists, authors of Computers and Intractability book [48]) could pay a perfect

description of such approaches: “I can’t �nd an e�cient algorithm, but neither can all of these famous

people.”

Unlike exact, approximate algorithms relax the quality requirements and solve the OP e�ectively with

the provable assurances on the result distance from an optimal solution [119]. The worst-case results

quality guarantee is crucial in the approximation algorithms design and involves the mathematical

proofs.

How do these algorithms guarantee on quality, if the optimal solution is unknown beforehand? —

a reasonable question arises at this point. Certainly, it sounds contradictory, but the comprehensive

answer to this question requires an explanation of the key approximation algorithms design techniques

that is not in the scope of this thesis. Nevertheless, let us brie�y describe these techniques.

In [119] the authors provided several techniques to approximate solvers’ design. For instance, the

Linear Programming (LP) relaxation plays a central role in approximate solvers. It is well known that

solving the ILP is NP-hard problem. However, it could be relaxed to the polynomial-time solvable linear

programming. Later, a fractional solution for the LP will be rounded to obtain a feasible solution for the

ILP. Di�erent rounding strategies de�ne separate approximate solver techniques [119]:

• Deterministic rounding follows a prede�ned strategy.

• Randomized rounding performs a round-up of each fractional solution value to the integer

uniformly.

In contrast to rounding, another technique requires building a Dual Linear Program (DLP) for a given

linear program. This approach utilizes the weak and strong duality properties of DLP to derive the

distance of the LP solution to the original ILP optimal solution. Other properties of DLP form a basis

for the Primal-dual algorithms. They start with a dual feasible solution and use the dual information

to derive the primal linear program solution (possibly infeasible). If the primal solution is not feasible,

the algorithm modi�es the dual solution increasing the dual objective function values. In any case,

these approaches are far beyond the thesis scope, but in case of an interest reader could start his own

investigation from [119].
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Heuristics. As opposed to the solvers mentioned above, heuristics do not provide any guarantee on

the solution quality. They are applicable not only to the white-box TS but also to the black-box cases.

These approaches are su�cient to quickly reach an immediate, short-term goal in such cases, when

�nding an optimal solution is impossible or impractical because of the huge search space size.

As in the reviewed above approaches, here exist many facets for classi�cation. We start from the

largest one, namely the level of generality:

• Simple heuristics are the speci�cally designed to tackle the concrete problem algorithms. They

fully rely on the domain knowledge, obtained from the optimization problem. Simple heuristics

do not provide any mechanisms to escape a local optimum therefore, could be easily trapped to

it [90].

• Meta-heuristics are the high-level heuristics that being domain knowledge-dependent, also

provide some level of generality to control the search. They could be applied to broader range of

the OPs. They are often nature-inspired and comprise mechanisms to escape the local optima but

may converge slower than the simple heuristics. For the more detailed explanation we refer to

survey [12].

• Hybrid-heuristics arise as the combinations of two or more meta-heuristics. They could be imag-

ined as the recipes merge from the cookbook, combining the best decisions to create something

new and presumably better.

• Hyper-heuristics are the algorithms that operate in the search space of low-level heuristics (LLH).

Instead of tackling the original problem, they choose (or construct) LLHs, which will tackle this

problem for them [21].

In the upcoming Section 2.2, dedicated to heuristics, we provide more detailed information on each of

the approaches mentioned above.

The Most Suitable Solver Type

“Fast, Cheap or Good? Choose two.”

The old engineering slogan.

At this point, we have reached the crossroads and should make a decision, which way to follow.

Firstly, we have the exact solvers for the optimization problems. As mentioned above, they always

guarantee to derive an optimal solution. Today, tomorrow, maybe in the next century, but eventually

the exact solver will �nd it. The only thing we need is to construct the exact algorithm. This approach

de�nitely o�ers the best �nal solution quality however, it sacri�ces the solver construction simplicity

and the speed in problem-solving.

Secondly, we have the approximate solvers. They do not guarantee to �nd the one and only optimal

solution but suggest a provably good instead. From our perspective, the required e�ort for constructing

the algorithm and proving its preciseness remains the same as for the exact solvers. However, this

approach outperforms the previous one in the speed of problem-solving, sacri�cing a reasonably small

amount of the result quality. It sounds like a good deal.

Finally, the remaining heuristic approaches. They quickly produce a solution, in comparison to the

previous two. In addition, they are much easier to apply for the speci�c problem — there is no need

to build complex mathematical models or prove the theorems. However, the biggest �aw in these

approaches is the absence of the solution quality guarantee.
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As we mentioned in Section 2.1.1, this thesis is dedicated to facing the practical combinatorial problems,

such as the TSP. They are NP-complete, that is why we are not allowed to apply the exact solvers. In both

approximate and heuristic solvers we are sacri�cing the solution quality, though in di�erent quantities.

Nevertheless, the heuristic algorithms repay in the development time and provide the �rst results faster.

The modern world is highly dynamic, in the business survive those, who are faster and stronger. In the

most cases, former plays the crucial role for success. The great products are built iteratively, enhancing

existing results step-by-step and leaving the unlucky decisions behind. It motivates us stick to the

heuristic approach within the scope of the thesis.

In the following Section 2.2 we shortly survey di�erent heuristic types and examples. We analyze

their properties, weaknesses and ways to deal with them. As the result, we select the best-suited class of

heuristics for solving the TSP problem.

2.2 Heuristic Solvers for Optimization Problems

We base our descriptions of heuristics and their examples on the mentioned in Section 2.1.1 traveling

salesman problem. The input data X to our heuristics will be the problem description in form of a

distance matrix (or coordinates to build this matrix), while as an output Y from heuristics we expect to

obtain the sequence of cities, depicting the route plan.

Most heuristic approaches utilize the following concepts:

• Neighborhood, which de�nes a set of solutions that could be derived performing a single step

of the heuristic search.

• Iteration, which could be de�ned as an action (or a set of actions) performed over the solution in

order to derive a new, hopefully better one.

• Exploration (diversi�cation), which is the process of discovering previously unvisited and pre-

sumably high-quality parts of the search space.

• Exploitation (intensi�cation), which is the usage of already accumulated knowledge (solutions)

to derive a new solution but similar to existing one.

2.2.1 Simple Heuristics

As we mentioned above, simple heuristics are domain-dependent algorithms, designed to solve a

particular problem. They could be de�ned as the rules of thumb, or strategies to utilize the information,

exposed by the TS and obtained from the previously found solutions, to control the problem-solving

process [90].

Scientists draw the inspiration for heuristics creation from all aspects of our being: starting from the

observations of how humans tackle daily problems using intuition, and proceeding to the mechanisms

discovered in nature. The two main types of simple heuristics were outlined in [22]: constructive and

perturbative.

The �rst type aggregates the heuristics which construct the solutions from its parts step by step. A

prominent example of constructive approach is a greedy algorithm, which can also be called the best
improvement local search. When applied to TSP, it tackles the path construction simply accepting the

next closest city from currently discovered one. Generally, the greedy algorithm follows the logic of

making a sequence of locally optimal decisions therefore, it ends up in a local optimum after constructing

the very �rst solution.
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The second type, called a local search, implies heuristics which operate on the complete solutions,

perturbing them. A simple example of the local search is a hill climbing algorithm, also known as a �rst
improvement local search [118]. This heuristic accepts a better solution as soon as it �nds it, during the

neighborhood evaluation. This approach plays a central role in many high-order algorithms however, it

could be very ine�cient, since in some cases the neighborhood could be enormously huge.

Indeed, since the optimization result is fully dependent on the starting point. The use of simple local

search heuristics might not lead to a globally optimal solution. Nevertheless, in this case the advantage

will be the implementation simplicity [119].

2.2.2 Meta-Heuristics

Meta-Heuristic (MH) is an algorithm, created to solve a wider range of complex optimization problems

with no need to deeply adapt it to each problem.

The research in MHs �eld arose even before 1940s, when the MHs were already actively applied.

However, there were no all-embracing and complex studies of MHs at that time. The �rst formal studies

appeared between 1940s and 1980s. Deep and profound research in this �eld reaches its most active

stage in the late 1990s, when the numerous MHs popular nowadays were invented. The period from

2000 and up till now the authors in [107] call the framework growth time, when the meta-heuristics

widely appear in form of frameworks, providing a reusable core and requiring only the domain-speci�c

adaptation.

The pre�x meta- indicates the algorithms to be of the higher level when compared to simple problem-

dependent heuristics. The static part of the algorithms is stable and problem independent, it forms

the core of an algorithm and usually exposes hyper-parameters, which could be used for the algorithm

con�guration. The changeable parts are domain-dependent and should be adapted for problem at

hand. Many MHs contain stochastic components, which provide abilities to escape from local optimum.

However, it also means that the output of meta-heuristic is non-deterministic and it could not guarantee

the result preciseness [18].

The meta-heuristic optimizer success on a given OP depending on the exploration vs exploitation
balance. If there is a strong bias towards diversi�cation, the solving process could naturally skip a good

solution while performing huge steps over the search space, but in case of intensi�cation domination,

the process will quickly settle in the local optima. The disadvantage of the simple heuristic approaches

mentioned above is a high exploitation dominance, since they simply do not have the components

contributing to exploration. In most of the cases, it is possible to decompose MH into simple components

and clarify, to which of competing processes contributes each component. Often, the simple heuristics

are used as the intensi�cation component.

In general, the di�erence between existing meta-heuristics lays in a particular way how they are

trying to achieve this balance, but the common characteristic is that the most of them are inspired by

real-world processes — physics [117], biology [103], ethology [34, 102, 110], and even evolution [11, 39].

Meta-Heuristics Classification

When the creation of novel methodologies has slowed down, the research community began to

organize and classify the created algorithms.

As an example, [15] highlights the following classi�cation facets:

• The walk-through search space method could be either trajectory-based or discontinuous.

The �rst one corresponds to a closed walk through the neighborhood where such prominent

examples as iterated local search [81] or tabu search [50] do exist. The second one allows large
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jumps in the search space, where the examples are such MHs as variable neighborhood search [54]

or simulated annealing [69].

• The number of concurrent solutions could be either single or multiple. Such approaches

as tabu search, simulated annealing or iterated local search are examples of algorithms with a

single concurrent solution. Evolutionary algorithms [39], ant colony optimization [34] or particle

swarm optimization [67] are the instances of algorithms with multiple concurrent solutions (the

population of solutions).

• From the memory usage perspective, we distinguish those approaches which do and do not

utilize the memory. Tabu search explicitly uses memory in form of tabu lists to guide the search,

but simulated annealing is memory-less.

• The neighborhood structure could be either static or dynamic. Most local search algorithms,

such as simulated annealing and tabu search are based on a static neighborhood. Variable neigh-

borhood search is an opposite case, where various structures of neighborhood are de�ned and

interchanged while the algorithm solves the OP.

There are many more classi�cation facets, which are not in the scope of this thesis. Figure 2.3

illustrates the summarized classi�cation including some characteristics and well-known meta-heuristic

instances we did not mention.

Figure 2.3 Meta-heuristics Classification [36].
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Figure 2.4 Evolutionary Algorithms Workflow.

Meta-Heuristics Examples

At this point, let us brie�y describe some of the most prominent and widely used meta-heuristics. It

is motivated by the later usage of them in our approach, described in Section 4.4.

Evolutionary Algorithms (EAs) are directly inspired by the processes in nature, described in evolu-

tion theory. The common underlying idea in all of these methods is as follows: if we put a population of

individuals (solutions) into an environment with limited resources (population size limit), a competition

processes cause natural selection, where only the best individuals survive [39].

Three basic actions are de�ned as operators of EAs: a recombination operator selects the parent

solutions, which later will be combined to produce the new ones (o�spring); a mutation operator, when

applied to solution, creates a new and very similar one. Applying both operators,the algorithm creates a

set of new solutions — the o�spring, whose quality is then evaluated with the TS. After that, a selection
operator is applied to all available solutions (parents and o�spring) to keep the population size within the

de�ned boundaries. This process is repeated, until some termination criterion is ful�lled. For instance,

the maximal iterations counter was reached, the number of TS evaluations exceeds the de�ned maximal

value, or the solution with the required quality is found. The high-level work-�ow of EA is depicted in

Figure 2.4.

The well-known examples of EAs include the genetic algorithm [103], genetic/evolutionary program-
ming [72], evolution strategies [11], and many other algorithms.

Genetic Algorithm (GA) is the �rst of all associated with the Evolutionary Algorithms. GA traditionally

has a �xed work�ow: given an initial population of µ usually randomly sampled individuals, the parent

selection operator creates pairs of parents, where the probability of each solution to become a parent
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depends on its objective value (�tness, or results). After that, the crossover operator is applied to every

created pair with a probability pc and produces children. Then, newly created solutions undergo the

mutation operator with an independent probability pm. The resulting o�spring perform a tournament

within the selection operator and µ survivals replace the current population [38]. Distinguishable

characteristic of vanilla GA is the usage of the following operators: bit-string solution representation,

one-point crossover recombination, bit-�ip mutation and generational selection (only children survive).

Evolution Strategy (ES), comparing to GA, is working in a vector space of the solution representa-

tion. However, they also use the population size of µ individuals and λ o�spring generated in each

iteration. While the general work�ow for all EAs remains the same, they mostly di�er in underlying

operators. In ES, the parent selection operator takes a whole population into consideration uniformly,

the recombination scheme could involve more than two parents to create one child. To construct a child,

the recombination operator joins parents alleles in two possible ways: (1) with uniform probability for

each parent (discrete recombination), or (2) averaging the weights of alleles by parent solution quality

(intermediate recombination). There are two selection schemes, used in such algorithms. (µ, λ): discard

all parents and select only among o�spring highly enriching the exploration, and (µ+ λ): include also

the predecessor solutions into selection, which is often called the elitist selection [38]. In many cases, the

ES utilizes a very useful feature of self-adaptation: changing the mutation step sizes at runtime, which

we will discuss in Section 2.3.3.

Simulated Annealing (SA). This is the other type of meta-heuristics, inspired by the technique used

in metallurgy to obtain ‘well-ordered’ solid-state of metal [117]. An annealing technique imposes a

globally minimal internal energy state and avoids locally minimal semi-stable structures.

The SA treats the search process as a metal with a high temperature at the beginning and lowering

it to the minimum while approaching the end. It starts with an initial solution S creation (randomly

or using some other heuristic) and temperature parameter T initialization. At each iteration, a new

solution candidate is sampled within a neighborhood of the current solution: S∗ ← N(S). The newly

sampled solution replaces the older one, if (1) optimization objective f(S∗) dominates over f(S) or (2)

with a probability that depends on a quality loss and current value of T , see Equation (2.1).

p(T, f(S∗), f(S)) = exp(−|f(S
∗)− f(S)|
T

) (2.1)

At each iteration the temperature parameter T value is decreased following some type of annealing

schedule, which is also called cooling rate [18]. The weak side here is that the quality of each anneal-

ing schedule is the problem-dependent and cannot be determined beforehand. Nevertheless, the SA

algorithms with adaptive parameters do exist and address this problem changing the cooling rate or

temperature parameter T during the search process. Later, we will shortly review these techniques in

Section 2.3.3.

2.2.3 Hybrid-Heuristics

The hybridization of di�erent systems often provides a positive e�ect — taking the advantages of one

system and merging them with characteristics of the other, getting the best from both systems. The same

idea is applicable in the case of meta-heuristics. Imagine you have two algorithms, one is biased towards

exploration, the other — towards exploitation. Applying them separately, the expecting results in most

cases may be far away from the optimal as the outcome of disrupted diversi�cation-intensi�cation

balance. However, when merging them into, for example, repeated stages of hybrid heuristic, one will

obtain the advantages of both escaping a local optimum and �nding a good quality result.
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Most of the available hybridization algorithms are created with the help of this idea of two heuristics

staging combination, one of which is suited for the exploration and other is better for the exploitation.

The methods to construct the hybrids are mostly de�ned by the underlying heuristics. Therefore, to

the best of our knowledge they could not be generalized and classi�ed in an appropriate way. Commonly,

there is only one shared characteristic in the usage of a staging approach, in which the output of one

algorithm is used as the initial state of the other.

As during the simple heuristics review, here we also introduce examples of performed hybridization in

order to provide the reader a better understanding how can be combined di�erent algorithms components

and what is the e�ect on the aforementioned balance.

Hybrid-Heuristics Examples

Guided Local Search and Fast Local Search. The main focus of guided local search (GLS) in this

case, lies in the search space exploration and the process guidance using incubated information. To some

extent, the GLS approach is closely related to the frequency-based memory usage in tabu search. During

the runtime, GLS modi�es the problem cost function to include penalties and passes this modi�ed cost

function to the local search procedure. These penalties form a memory that characterizes a local optimum

and guide the process out of it. The more time algorithm spends in the local optimum, the higher are

the penalties. A local search procedure is carried out by fast local search (FLS) algorithm, where the

main advantage is a quick neighborhood traversal. It is done by breaking it up into a number of small

sub-neighborhoods. Afterwards, while performing the depth-�rst search over these sub-neighborhoods,

it ignores those, which do not make any improvements. At some point in time, FLS reaches the local

optimum and passes back the control in GLS to update the penalties and repeat the iteration [114].

Direct Global and Local Search. This hybridization consists of two stages: the stochastic global

coarse pre-optimization and the deterministic local �ne-optimization. At the �rst stage, the authors

apply one of the two abovementioned meta-heuristics — genetic algorithm or simulated annealing [56].

A transition from global to local search happens after reaching the prede�ned conditions. For instance,

when the number of TS evaluations exceeds a boundary, or when no distinguishable improvement

was made in the last few iterations. Then, the pattern search algorithm also known as the direct,

derivative-free, or black-box search performs �ne-optimization. The hybrid-heuristic terminates when

the pattern search converges to the local optima [109].

Simulated Annealing and Local Search. After the brief explanation of the previous two hybrids, it

is not so di�cult to guess, how the next hybridization works. The authors in their work [83] called this

method ‘Chained Local Optimization’. Therefore, it is yet another representative of staged hybridization.

Iteration starts with the current solution perturbation, called kick in [83], referring to a dramatic change

of a current position within the search space. Afterwards, the hill climbing algorithm is applied to

intensify the obtained solution. After reaching the local optimum, hill climber passes the control �ow

back to the simulated annealing for acceptance criteria evaluation, which �nishes the iteration.

EMILI. Easily Modi�able Iterated Local search Implementation (EMILI) is a framework system for

the automatic generation of new hybrid stochastic local search algorithms [89]. EMILI is a solver for

permutation �ow-shop problems (PFSP), also known as �ow shop scheduling problems [96]. In PFSP

the search of an optimal sequence of steps to create products within a workshop is performed. In this

framework, the authors have implemented both generic algorithmic- and problem-speci�c building

blocks. They also have de�ned grammar-based rules for those blocks composition and used an automatic
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parameter tuning tool called IRACE [79] in order to �nd the high performing algorithm con�gurations.

The work�ow of EMILI could be split into three steps: (1) adaptation of the grammar rules to speci�c

PFSP objective representations (makespan, sum completion times and total tardiness), (2) generation

of all possible hybrid heuristics for each PFSP representation and (3) execution of IRACE to select the

best-performing hybrid for each problem.

From our perspective, the described approach of automatic algorithm generation is an example of

construction hyper-heuristics, which we describe in the upcoming Section 2.2.5. However, we are not

authorized to change the system class (from hybrid- to hyper-heuristic) de�ned by the EMILI authors.

2.2.4 No Free Lunch Theorem

At this point, an obvious question may arise: “If there already exist excellent and well-performing

heuristics, is there any need to put an e�ort into developing new algorithms instead of using existing

ones?” The answer to this question is quite simple — the perfect algorithm suited for all OP does not

exist and cannot exist at all. The empirical research has shown that some meta-heuristics perform better

with some types of problems, but are less-performing with others. In addition to that, for di�erent

instances of the same problem type, the same algorithm could result in unexpected performance metrics.

Moreover, even at di�erent stages of the same problem solving process the dominance of one heuristic

over another could change.

All search algorithms perform exactly the same, when the results are averaged over all possible

optimization problems. If an algorithm is gaining the performance in one problem class, it loses in

another class. This is a consequence of a so-called no free lunch theorem for optimization (NFLT) [121].

In fact, one cannot predict, how exactly one or another algorithm will behave with a problem at hand.

A possible and most obvious way is to probe one algorithm and compare its performance to another

one during the problem-solving process. In this case, simple heuristics and meta-heuristics are out of

the competition, since once the optimization problem is solved, one probably would not try to solve it

for the second time. Here, the hyper-heuristics come into play to intelligently pick heuristics suitable to

the problem at hand. We will proceed with their description outlining the way they deal with the NFLT

consequences in the following section.

2.2.5 Hyper-Heuristics

Many of state-of-the-art heuristics and meta-heuristics are developed in a complex and very domain-

dependent way, which causes problems with their reuse. It motivated the research community to raise

the question of a generality level at which the optimization systems can operate and still provide good

quality solutions for various optimization problems.

The term hyper-heuristic (HH) was de�ned to describe an approach of using some high-level-
heuristics (HLH) to select over other low-level-heuristics (LLH) and apply them to solve the class of

optimization problems rather than a particular instance. Indeed, scientists report that the combination

of di�erent HLH produces better results when applied separately [35]. This behavior can be explained

by the way of how the search process evolves in time. When one applies a heuristic, it sooner or later

converges to some extreme point, hopefully global optimum. But it is ‘blind’ to others, not visited

regions of the search space. Changing the trajectory of an investigation by (1) drastically varying

the neighborhood, (2) changing the strategy of neighborhood exploration and exploitation could (1)

bring one to those previously unreachable zones (2) in more rapid ways. However, usually it is hard

to predict how one LLH will behave in every stage of the search process in comparison to another. In

hyper-heuristics, this job was encapsulated into the HLH and performed automatically.
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Figure 2.5 Hyper-Heuristics.a

a
Icons are taken from https://thenounproject.com/

In [86] the authors made an infer that HHs can be viewed as a form of reinforcement learning (RL),

which is a logical conclusion, especially if rephrased to hyper-heuristics utilize reinforcement learning
methodologies.

The new concept, which was implicitly used in meta-heuristics, but explicitly pointed out in hyper-

heuristics is the domain barrier (see Figure 2.5). As was stated previously, HH do not tackle the OP

directly, but use LLH instead. This means that usually HH is minimally aware of the domain details,

such as data types, relationships, etc. within a domain. This information is rather encapsulated in LLHs,

therefore, HHs could be applied to a broader range of optimization problems.

With this idea, many researchers started to create not only hyper-heuristics to tackle a concrete

optimization problem class, but also frameworks with building blocks for their creation.

Classification

Although the research in hyper-heuristics �eld is actively going on, many algorithm instances were

already created and some trials to organize approaches were conducted in [22, 35, 68, 101].

Researchers in their surveys classify HHs by di�erent characteristics, some of which overlap, but

sometimes important features (from our perspective) were not highlighted in all works.

In this section we unite of those important hyper-heuristics classi�cation facets in order to better

justify the goal of this thesis.

To begin with, there are two broadest classes, which di�erentiate HH routine, also called nature of
high-level-heuristic search space [22, 23, 35]. The �rst class consists of hyper-heuristics to select low-level-

heuristic, in other words selection hyper-heuristic. Please note, previously in this thesis all discussions

of HHs were referencing to this speci�c type. These algorithms operate in the de�ned by complete

and rather simple low-level-heuristics search space. The task of HLH here is to pick the best-suited

LLH (or sequence of LLHs) based on the available prior knowledge and apply it to the OP underway.

Hyper-heuristic of the second class seeks to construct LLH following some prede�ned receipt and using

the atomic components of other heuristics as Lego bricks. The other commonly used name here is a

construction hyper-heuristic. These approaches often lead to a creation of new and unforeseen heuristics
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that are expected to reveal good performance while solving the problem at hand.

Next, the distinction in the nature of LLH search space arises. In other words: “How does the LLH

derive a solution for the OP?” The authors in [22, 23, 35] distinguished construction LLHs, where the

solution creation happens each time from scratch and perturbation LLHs, where the new solutions are

created from parts of already existing ones.

The other broadly used characteristic is learning time. From this perspective hyper-heuristic can be

of type online, o�ine or not learning algorithm [22, 101]:

• In online case, the HH derives information, used to select among LLH, while those LLH are

solving the problem.

• In o�ine case, the learning happens before solving a certain OP. Here one should �rst train

the HH solving other homogeneous problem instances by underlying LLHs (o�ine learning

phase). After that, the HLH will be able to properly choose among LLHs, therefore, be applicable

to problems at hand (online use phase). Note that this approach also requires creation of a

meta-features extraction mechanism and its application to every optimization problem.

• In the last case no learning mechanisms are present. Therefore, HLH here performs to some

extent a random search over LLH search space. At the �rst sight it may seem to be a weak

approach, however, there exist meta-heuristics, which are similar to HH and perform well (variable

neighborhood search).

• There also exist mixed cases, where the learning happens �rstly in the o�ine and later also in the

online phase. De�nitely, it is a promising (in terms of results quality) research direction, despite

its high complexity.

For more detailed analysis, description, other classi�cation facets and respective hyper-heuristic

examples we encourage the reader to look into recent classi�cation and surveying researches [21, 22, 35,

101].

Hyper-Heuristics Instance Examples

Hyper-heuristic for integration and test order problem (HITO). HITO [52] is an example of a

construction HH. LLHs in this case are presented as a composition of basic EAs operators — crossover and

mutation forming multi-objective evolutionary algorithms (MOEA). HH selects those components from

jMetal framework [37] using interchangeably choice function (form of the weighted linear equation)

and multi-armed-bandit-based heuristic to balance exploitation of good components and an exploration

of new promising ones.

Markov Chain Hyper-Heuristic (MCHH). MCHH [84] is an online selection hyper-heuristic for

multi-objective continuous problems. It utilizes reinforcement learning techniques and Markov chain

approximations to provide an adaptive heuristic selection method. While solving the OP, MCHH updates

the prior knowledge about the probability of producing Pareto dominating solutions by each underlying

LLH using Markov chains, guiding an LLH selection process. Applying online reinforcement learning

techniques, this HH adapts transition of weights in the Markov chains constructed from all available

LLHs, updating prior knowledge for LLH selection.
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Hyper-Heuristics Frameworks Examples

Hyper-Heuristics Flexible Framework (HyFlex). HyFlex [87] is a software skeleton, built speci�-

cally to help other researchers creating hyper-heuristics. It provides the implementation of components

for 6 problem domains: boolean satis�ability, bin packing, personnel scheduling, permutation �ow

shop and vehicle routing problems. Thereby, problem and solution descriptions, evaluation functions

and adaptations for set of low-level-heuristics are provided out-of-the-box. The set benchmarks and

comparison techniques to other built HHs on top of HyFlex are included in the framework as well.

The intent of HyFlex creators was to provide low-level features that enable the users to focus directly on

HLHs implementation without a need to challenge other minor details. It also brings a clear comparison

among created HLH performance, since the other parts are mostly common.

From the classi�cation perspective, all derivatives from the HyFlex framework are selection hyper-

heuristics, however, they utilize di�erent learning approaches. Algorithms, built on top of HyFlex

framework could be found in many reviews [35, 85, 101] or on the CHeSC 2011 challenge website
1

(CHeSC is dedicated to choosing the best HH built on top of HyFlex).

Along with HyFlex, the number of hyper-heuristic-dedicated frameworks is growing, some of them

are under active development while others are abandoned:

• Hyperion [108] is a construction hyper-heuristic framework, aiming to extract information from

the OP search domain for identi�cation of promising components in form of object-oriented

analysis.

• hMod [116] framework allows not only to rapidly prototype an algorithm using provided compo-

nents, but also to construct those components using prede�ned abstractions (such as Iterative-
Heuristic). In the current development stage, developers of hMod are focusing on a creation of

development mechanisms rather than providing a set of pre-built heuristics.

• EvoHyp [92] framework focuses on hyper-heuristics, created from evolutionary algorithms and

their components. Here, the authors enable framework users to construct both selection and

generation HHs for both construction and perturbation LLHs types.

2.2.6 Conclusion on Heuristic Solvers

To conclude our review on heuristic approaches for solving optimization problems, we shortly refresh

each heuristic level.

On the basic level remain simple heuristics with all their domain-speci�c knowledge usage and

particular tricks for solving problems. Usually, they are created to tackle a concrete problem instance,

applying simple algorithmic approach. The simplicity of development and usually fast runtime result in

medium-quality results.

On the next level inhabit meta-heuristics. They could be compared with more sophisticated solu-

tions hunters, which could not only charge directly, but also take a step back when stuck in a dead

end. This additional skill enables them to survive in new and complex environments (optimization

problems). However, some adaptations to understand a speci�c problem and parameter tuning for better

performance still should be performed.

Along with MHs exist hybrid-heuristics. In short, they simply just took some survival abilities from

several meta-heuristics with a hope to outperform and still requiring adaptation and tuning. In some

cases this hybridization provides an advantage, but as the time shows they did not force MHs out.

1

Cross Domain Heuristic Search Challenge website: asap.cs.nott.ac.uk/external/chesc2011/
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Therefore, we can conclude that the provided balance between development e�ort and exposed results’

quality not always assure users to use them.

Finally, those who lead the others, hyper-heuristics are on the upper generality level. Operating by

the other heuristics, HHs analyze how good the former are and make a use of this knowledge by solving

a speci�c problem using those best-suited heuristics. Imposing such great abilities, hyper-heuristics

tackle not only a certain optimization problem but an entire class of problems.

2.3 Setting Algorithm Parameters

Most of the existing learning algorithms expose some parameter set, needed to be assigned before

using this algorithm. Modifying these parameters, one could change the system behavior and a possible

result quality.

When we are talking about the problem of settings the best parameters, the following terms should

be outlined explicitly:

1. Target System (TS) is a subject whose parameters are undergoing changes. In short, it could be

a heuristic, machine learning algorithm or any other system.

2. Parameter is one of the con�guration hooks, exposed by TS. It should be described in terms of

its type and possible values.

3. Con�guration is a unique combination of parameter values, required to run TS.

4. Search Space is a set of all possible Con�gurations for de�ned parameters.

In this thesis we use notions of parameter and hyper-parameter interchangeably, since the approaches

discussed in this section are generally applicable also in machine learning cases. As an example, consider

a neuron network. Hyper-parameters in this case specify a structure (number of hidden layers, units,

etc.) and de�ne a learning process (rate, regularization parameters values, etc.). Changes in their values

dramatically a�ect the networks’ performance and results.

A frequently tackled optimization problem is a parameter settings problem (PSP): the process of

searching hyper-parameter values that optimize some characteristic of TS. When talking about NN

example, PSP could be de�ned as a task of networks’ accuracy maximization with a given dataset,

resulting in a single-objective PSP (SO-PSP). Optimizing a number of TS characteristics simultaneously,

such as training time and prediction accuracy, one transforms the SO-PSP into a multi-objective PSP

(MO-PSP).

The same applies to heuristics. A proper assignment of hyper-parameters has a great impact on the

exploration-exploitation balance and, as a result, on an overall algorithm performance [74].

Up until now, there were formalized many approaches for solving task of settings hyper-parameters.

One way is simply to use the intuition and to apply the parameters that seem more or less logical for a

particular system and a problem instance. This error-prone technique was quickly abandoned in favor

of automatic approaches. It was also motivated by increasing computational capacities, which gave an

opportunity to evaluate more con�gurations in less time. These automatic methods could be split into

two technique families: one is an o�ine parameter tuning, which is performed at the design time and

the other is an online parameter control, performed at runtime.

2.3.1 Parameter Tuning

Roughly speaking, the o�ine approach is a process of traversing the search space of hyper-parameters

and evaluating TS with these parameters on some set of toy problems. At the end of this process, the
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a) Grid. b) Random. c) Learning.

Figure 2.6 Automated Parameter Tuning Approaches.

best found HPs are reported and later used to solve a new, unforeseen problem instance.

In this part of thesis we outline existing automated approaches for parameter tuning, illustrating

them in Figure 2.6
1
. In this example, the TS exposes two parameters: X1 and X2. Each �gure shows

dependencies between X1 (horizontal axis) and X2 (vertical axis) values and the subject of optimization

along those axes (here the maximization case is depicted). The best con�gurations found by each

approach are highlighted in pink.

Grid search parameter tuning. It is a rather simple approach for searching parameters. Here, the

original search problem is relaxed and later solved by a brute-force algorithm. The set of all possible

con�gurations (parameter sets) for relaxed problem is derived by specifying a �nite number of possible

values for each hyper-parameter under consideration. After evaluating all con�gurations on TS, the best-

found solution is reported. Hence, this approach could skip promising parts of search space (Figure 2.6a).

Moreover, the required time to probe all possible combinations is increasing by means of a factorial

complexity.

Random search parameter tuning. This methodology relies on a random (often uniform) sampling

of hyper-parameters and their evaluation on each iteration. At �rst sight, it might seem unreliable

to chaotically traverse the search space. But empirical studies show that with a growing number

of evaluations this technique starts to outperform grid search [9]. As an example, let us draw your

attention to the best con�gurations (highlighted in pink) found by grid (Figure 2.6a) and random search

(Figure 2.6b) techniques. The best randomly sampled con�guration is de�nitely better than the one

found by the grid search.

Heuristic search parameter tuning. By their nature, heuristic algorithms may be applied to tackle

the most black-box search problems. Since the parameter tuning is one concrete type of search problem,

it is also often tackled by a high-order heuristic approaches (meta-, hybrid-, hyper-heuristics) [25, 29,

30]. The advantage of heuristics usage lays in their ability to learn during the optimization process and

use an obtained memory to guide the search more e�ciently.

Model-Based Search Parameter Tuning. In most cases, the dependencies between tuned parameter

values and optimization objective do exist and can be utilized for hyper-parameter tuning. By predicting

1

Original graphics are taken from [70]
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which parameter combinations lead to better results, model-based tuning could make precise guesses. As

it is shown in Figure 2.6c, after accumulating enough information the learning algorithm starts making

more precise guesses, which in contrast to previously outlined model-free approaches are desirable and

more robust.

Naturally, this optimization problem could be tackled by almost every approach discussed in this thesis.

However, taking into account the fact that (1) TS is often a black-box we eliminate exact and approximate

solvers, (2) the evaluation cost is high, therefore, it is not desirable to apply the aforementioned heuristics

directly, since they require performing a high number of TS evaluations to �nd a good con�guration.

With this idea in mind, researchers started to (1) create optimization algorithms that traverse the search

space of con�gurations more e�ciently and (2) build models that could imitate the dependencies between

parameters and objective values, a so-called surrogate models. The former direction is nothing else but

an enhancement to already existing optimization techniques, which allows accumulating and utilization

of more information, obtained during an optimization. The latter approach is crucial for problems where

TS is expensive to evaluate. It is often used as an enhancement in optimization algorithm, enabling one

to simulate evaluation of real system instead of expensive direct evaluations. Still, it is a frequently used

approach to combine the previously reviewed search space traversal techniques, such as evolutionary

algorithms, simulated annealing, tabu search with the surrogate models for optimization.

2.3.2 Systems for Model-Based Parameter Tuning

Parameter tuning is an obligatory task when the maximum system performance is a must-have

requirement and should be performed at the design time. Novel tuning approaches are usually developed

in form of frameworks with exposed hooks for attaching the TS.

Since the target system evaluations here supposed to be costly, parameter tuning frameworks are

trying to utilize every single bit of information from evaluations and a creation of surrogate models and

using e�cient optimization approaches is obligatory.

In this section we review some existing open-source parameter tuning systems from the following

perspectives:

• Conditional parameters support is provided to user and handled by tuning system ability to

describe conditional dependencies between hyper-parameters. As an example, imagine crossover
type parameter of genetic algorithm that takes only some speci�c values: partially mapped

crossover (PMX), Cycle Crossover (CX), etc. Binding a certain crossover type, one will require

providing parameters for this speci�c crossover type, as well as to eliminate the respective

parameters for other crossover types. This type of dependency could be described in form of a

parent-child relationship, however, other types of dependencies also exist.

• Parameter types support is one of the basic tuning systems usability requirements. In detail,

TS parameters could be not only a numerical (integer or fractional) but also a categorical in form

of strings, boolean values, etc. Considering categorical data types, they could be either nominal,
which depict only possible atomic values, or ordinal, which imply also value comparison but no

distance notion. For instance, let us refer to genetic algorithm parameters. Population size is of

numerical integer type in a range [1..∞), mutation probability is of numerical fractional type in a

range [0..1], crossover type is of categorical nominal type with {PMX,CX} choices. Please note, we

could also view the population size as a set of �nite values {10,100,1000} therefore, turning it

into the categorical ordinal parameter.

21



2 Background and Related Work Analysis

• Extensibility is crucial when one would like to try a new promising and intriguing learning algo-

rithm for guiding a search that was not available in the parameter tuning system yet. Practically,

one may need not only new learning algorithm, but some other features like a non-trivial stopping

criterion, tools for handling stochastic behaviors, or di�erent strategies for random sampling

(which are used to replace a model-based prediction, while the tuning system is learning).

• Parallel evaluations required for utilizing available computational resources that could scale

horizontally, providing simultaneous evaluation of multiple con�gurations. This often could

speeds-up the learning process.

Among reviewed systems, we could distinguish those, which were created directly to face the param-

eter tuning problem and the others that are more generic optimizers but still applicable in parameter

tuning cases. A speci�c optimizer will be used for searching the parameters, if it exposes several features.

Firstly, it must consider an optimization function evaluation to be expensive and tackle this problem

explicitly. For instance, using surrogate models or the other TS approximations. Secondly, a potential

tuner should be able to tackle dependencies and conditions among parameters.

SMAC

Sequential Model-based Algorithm Con�guration (SMAC
1
) [58] is a system for parameters tuning,

developed by the AutoML research group (here we review the 3rd version of SMAC).

In their research, scientists generalized the process of parameter tuning under the Sequential Model-
Based Optimization (SMBO) term as the iterations between (1) �tting models and (2) using them to

choose the next con�gurations for evaluation. This term naturally formalizes most of the existing

(except MBMO, but we do not tackle multi-objectiveness in this thesis) parameter tuning approaches

and may be used as a distinguishing characteristic of optimization algorithms, since they naturally could

be applied not only to the parameter tuning problems.

SMACv3 is an extension introducing the learning models and sampling mechanisms to previously

existing random online aggressive racing (ROAR) algorithm. The authors showed that a machine

learning in general and regression models in particular (playing the role of surrogates) are applicable

not only to parameter tuning but also to optimize any expensive black-box function.

The development of this system was motivated by the limitations of all existing SMBO approaches.

Among them an expanding the applicability to categorical, but not only to numerical parameters. Also,

to reduce a variance in�uence the target algorithm performance optimization may be performed on a

number of problem instances (benchmark set), instead of a single instance.

A routine in SMAC could be viewed as an iterated application of three steps: (1) building a learning

model, (2) using it for making choices regarding which con�gurations to investigate next and (3) actual

evaluation of TS.

The evaluation (3) here is carried out by the original ROAR mechanism, where the running of each

new candidate solution continues until enough data (from benchmark set of problem instances) is

obtained to either replace the current solution or reject the candidate. On contrary to model-less

ROAR, SMAC at step (1) builds the regression random forest surrogate — an instance of a machine

learning algorithm [19]. The usage of the regression decision trees is motivated by the fact that they

�t well to categorical data and complex dependencies in general. Later, at step (2) an iterative local

search (ILS) heuristic is applied in combination with expected improvement (EI) evaluation (part of the

Bayesian optimization process) [105]. The EI is a measurement of possible solution quality improvement

obtained by an underlying con�guration, therefore, higher EI means that the candidate is better. ILS

1

SMACv3 GitHub repository https://github.com/automl/SMAC3/
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starts at the best previously found con�guration and traverses its neighborhood distinguishing between

con�gurations using EI and regression model built at step (1). SMAC compares con�gurations by means

of the objective value and considers only minimization case. EI is large for those con�gurations, which

have a low predicted cost and for those, with high uncertainty in results, therefore, providing the

exploration-exploitation balance [62].

IRACE

IRACE
1

is a hyper-parameter tuning package [79] as the implementation of the iterated racing

algorithm [16].

The underlying methodology is somewhat similar to the one implemented in SMACv3 and comprise

three main steps: (1) sampling new con�gurations using prior knowledge, (2) empirically �nding the

best ones among the sampled using the racing algorithm and (3) updating the prior knowledge to bias

future samples towards better con�gurations. The prior knowledge here is represented as a probability

distribution of values for each parameter independently (truncated normal and discrete distributions for

numeric and categorical parameter types respectively). During step (3), the probability distributions

are build using the best found in step (2) con�gurations, increasing the sampling chance for promising

values.

Iterated racing step (2) here is a process of running the target system using sampled con�guration on

a set of problem instances. After solving each instance, the statistically worse-performing con�gurations

are rejected and racing proceeds with remaining ones. This process continues until it reaches the

prede�ned number of survivors, or after solving a required amount of problem instances (in this case all

remaining con�gurations are considered to be good).

IRACE supports various data types, such as numerical or categorical and the possibility of conditions

description as well. While the problem of data types is resolved by the usage of di�erent underlying

distribution types, the conditional relationships are handled by the dependency graphs. During step (1),

non-conditional parameters are sampled �rstly and only afterwards, if the respective conditions are

satis�ed, the dependent parameters are sampled.

HpBandSter

A distributed Hyperband implementation on Steroids (HpBandSter
2
) is a realization of BOHB algo-

rithm [41] in the software framework. While SMAC outperforms and partially reuses the decisions

made in ParamILS [59], BOHB (Bayesian optimization combined with Hyperband) is the parameter

tuning tool that outperforms SMAC and was created by the same AutoML research group.

As it stated in the framework name, the SMBO routines are carried out with mainly two algorithms:

learning and con�gurations sampling is performed by the Bayesian optimization (BO) technique tree
parzen estimator (TPE), while evaluation of sampled con�gurations and their comparison is carried out

by the Hyperband (HB) algorithm.

The TPE usage instead of naive Gaussian processes-based BO and expected improvement evaluation

was motivated by a better dimensional scaling abilities and an internal support of both numerical and

categorical parameter types. However, some minor transformations are still required. Unlike vanilla BO,

where the optimization is done by modeling the result distributions given the con�guration parameters,

TPE builds two distributions of parameter values. It splits the con�gurations into two sets distinguishing

their ‘goodness’. During the sampling, it proposes those parameter values, which have a high probability

1

IRACE GitHub repository https://github.com/MLopez-Ibanez/irace
2

HpBandSter GitHub repository: https://github.com/automl/HpBandSter
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to be in the ‘good’ distribution and simultaneously low probability to be in the ‘bad’ one. For more

detailed explanation, we refer to TPE description given in [10].

A central part of BOHB, namely the Hyperband algorithm, is a promising bandit-based strategy

for hyper-parameter optimization [77], in which the budget for entire parameter tuning session is

de�ned beforehand and divided between iterations. The role of the budget could play any setting that

controls the accuracy of a con�guration evaluation by TS, where estimation with the maximal budget

provides the most precise evaluation, while the minimal budget gives the least accurate approximation

of con�guration results. The running examples of budget could be a number of iterations in iterative

algorithm, a number of epochs to train the neuron network, or a number of problem instances from

benchmark set to evaluate. As a result, the requirements in TS arise to expose and support budget usage

as expected in BOHB.

At each iteration, in original version HB samples a number of con�gurations uniformly at random.

The authors introduced an intensi�cation mechanism according to which, a number of per-iteration

sampled con�gurations decreases for the later iterations, while the amount of budget given for iteration

remains the same. As an outcome, �rst iterations of HB are full of coarse-grain evaluated con�gurations,

while the later iterations produce a higher number of more precise measurements. Each iteration of

HB is split to the number of successful halving (SH) procedure executions, which at each execution

drop poorly performing con�gurations (usually 2/3). As one may expect, since the number of measured

con�gurations in subsequent iterations decreases, the amount of SHs execution drops too, therefore, the

remaining con�gurations are evaluated more precisely.

The binding of Hyperband and Bayesian TPE is made in several places. Firstly, the learning models

are updated each time, when new results are available for every budget value. Secondly, at each HB

iteration instead of random sampling, the TPE model is used to pick next con�gurations. Please note

that BOHB uses only the surrogate, which was built on the con�gurations evaluated with the largest

budget. This decision results in more precise surrogate models and, therefore, better predictions in the

later stages of parameter tuning process.

BRISEv2

The great part of software potential lays not only in its ability to tackle a problem at hand, but also on

the general usability and adaptivity to unforeseen tasks. Here we review the 2nd version of BRISE
1

[93],

since the very early BRISE versions (major version 1 [94]) were more monolithic and hard to apply for

parameter tuning problem at hand.

While designing this system, authors were focused not solely on learning mechanisms for parameter

prediction, but on the overall system modularity as well. Being a software product line (SPL), BRISE

was designed as a set of interacting components (nodes), each acting according to its own speci�c role.

The system could be viewed from two perspectives. One is a birds-eye view on all available nodes with

their roles and the other is a �ne-grained description of main-node concretely.

Before reviewing each perspective, it is worth justifying the central terms used in the system. Please

note that some of them are similar to the one de�ned above, but they were explicitly implemented in

form of interacting entities.

• Experiment encapsulates the information about a certain run of BRISE. For instance, within a

parameter tuning session it carries such information as BRISE experiment description (a speci�-

cation of parameter tuning procedure in JSON format), evaluated during session con�gurations

with their results.

1

BRISEv2 GitHub repository: https://github.com/dpukhkaiev/BRISE2/releases/tag/v2.3.0
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• Con�guration is a combination of input parameter values for TS. It could be run several times

to obtain a statistical data, therefore, contains number of Tasks. Naturally, the con�gurations are

comparable in terms of the results averaged over performed runs.

• Task is a single evaluation of TS under provided con�guration for speci�ed in description problem

scenario.

• Parameter is a meta-description of certain con�guration part and a building block for search

space. It de�nes a set or range of possible values.

• Search space comprises all parameters and their dependencies and could verify the validity of

con�guration.

From a birds-eye view perspective, BRISE consists of main-node as the system backbone, several

worker-nodes as target algorithm runners under provided con�gurations, event-service to distribute

tasks between available worker-nodes, front-end-node to control and report optimization process on

a web-page, and non-obligatory benchmark-node that could be handy for executing and analyzing a

number of experiments.

The main-node is a combination of objects, which interact in terms of queue callbacks. Therefore, when

a new con�guration is evaluated, the new model is built and used for the next con�guration prediction.

The intent of introducing the aforementioned terms is to use them as a core of the framework, while

such components as prediction models, termination criteria, repetition management or outliers detection
are exposed to client for the variability reasons. Naturally, the developers also created a set of available

out-of-the-box implementations for each variability component.

To use BRISE for parameter tuning, one should (1) construct an experiment and search space descrip-

tions in JSON format and (2) add the respective target system evaluation logic in workers. All the rest

will be carried out by the system.

2.3.3 Parameter Control

Generally speaking, the biggest disadvantage of parameter tuning approaches is de�ned by the fact

that they usually require many TS runs to evaluate its performance with di�erent con�gurations. On

the other hand, the parameter control approaches are able to solve this issue but the drawback lays in

their universality.

The advantageous characteristic of any system is its ability to adapt at runtime. It could happen so that

an algorithm with tuned parameters performs well at the very beginning of a problem-solving process,

but struggles in the later stages. The other algorithm con�guration may result in an opposite behavior.

This could be caused by various reasons and it is often hard to tell, which of them the algorithm is facing

at the moment.

In contrast to the parameter tuning approaches, where optimal parameters are �rstly searched and only

afterwards are used to solve the OP, the parameter control is an approach of searching the parameters

while solving the OP. It also could be expressed as a system reaction to the changes in a solving process.

Sometimes, it is named an online parameter tuning. The drawback of this approach lays in a lack

of generality, since often a parameter control technique is embedded into an algorithm, therefore, is

algorithm-dependent.

The only broad classi�cation facet we were able to distinguish is the type of control mechanism, where

the deterministic and adaptive strategies exist. The �rst type suggests changing the parameters in a

prede�ned schedule, while the second type assigns the parameter values upon received feedback. To

the best of our knowledge, the adaptive approaches are mostly dependent on the concrete algorithm
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instance. Therefore, it is hard to present a generic classi�cation of parameter control approaches for all

algorithms. However, this could be done for each particular algorithm family.

We provide an insight into the parameter control reviewing the examples of proposed strategies

for some meta-heuristics. For the more comprehensive review of the recently published strategies we

encourage the reader to examine the source paper, used here [57].

Parameter Control in Simulated Annealing

The most frequently controlled parameters in simulated annealing algorithms are the cooling rate (the

velocity of temperature decrease) and the acceptance criteria (decision, whether to accept a proposed

solution, or not).

The control in cooling rate parameter is motivated as follows: if the temperature decreases too rapidly,

the optimization process may settle in the local optima, but too low cooling rate is a computationally

expensive, since SA requires more TS evaluations to converge. Among deterministic approaches,

researchers mainly distinguish linear, exponential, proportional, logarithmic and geometrical cooling

schedules. In contrast to deterministic approaches, in [64] the authors proposed an adaptive strategy

to change the cooling rate, based on the statistical information, evaluated on each optimization step.

Speci�cally, if the statistical analysis named in research a heat capacity shows that the system is unlikely

to be trapped in the local optima, the cooling rate is increased. On the contrary, it is decreased if the

possibility of being trapped is high.

In [49] the authors propose an adaptation of another hyper-parameter: acceptance criteria. The

utilized mechanism is based on thermodynamics fundamentals, such as entropy and kinetic energy. The

authors suggest replacing the standard acceptance criteria (based on the current temperature and the

solution quality) with the one based on the solutions entropy change evaluation.

Many researches were made to investigate, which is the best among deterministic and adaptive

strategies [5, 31, 60, 80, 111]. In many cases, the authors conclude that the adaptive methods provide

more robust and promising results.

Parameter Control in Evolutionary Algorithms

While searching the parameter control examples in heuristics, one will �nd dozens of proposed

methodologies for the evolutionary algorithms. It is arising from the fact that an idea of changing the

algorithm parameters dynamically came from EAs [66]. The motivation for such a number of performed

studies lays in a strong dependence of an algorithms’ performance on parameter values.

The deterministic and adaptive mechanisms in EAs are extended by the 3rd type — a self-adaptive
approach. It implies an encoding of parameter values in the solution genomes, allowing them to co-

evolve with the solutions at runtime [33]. All the proposed strategies could be split into two families: one

includes the algorithms proposing to adapt a concrete parameter solely and the other, which includes

the approaches to control a group of parameters. In EAs the commonly implicated hyper-parameters are

population size, selection strategies and variation aspects (namely crossover and mutation operators). In

case of interest, we propose the reader to analyze recently conducted reviews and researches dedicated

to parameter control in evolutionary algorithms [1, 33, 66, 106].

There is one rather intriguing parameter control approach proposed for the evolutionary algorithms.

In [65] the authors introduce a reinforcement learning (RL) parameter controller, whose goal is to select

the EA parameters online evaluating a set of simple observables. They include: a genotype diversity, a

phenotype diversity, a �tness standard deviation, a �tness improvement and a stagnation counter. The

RL in this work adheres the following MAPE-K methodology [20]. On each iteration the observables

are Monitored, their values are Analyzed to build a parameter control Plan, which is Executed in the
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next iteration. The letter K denotes a central part of this methodology — the knowledge. This set

of proposed observables could be split into two logical groups. One is the algorithm-speci�c with

the genotype/phenotype diversities and the �tness standard deviation, while the other is algorithm-

independent and includes the �tness improvement and the stagnation counter. We believe the proposed

RL approach could be applied to other algorithms, with the only requirement in exposing the observable

knowledge. The proposed in [65] parameter control methodology may be one of the �rst to generalize a

parameter control techniques and later in Section 3.1 we use it as a part of our approach.

2.3.4 Conclusion on Parameter Setting

At this point, we �nalize our review of the parameter settings problems with three conclusions:

1. The parameter tuning area is investigated widely and nowadays the research settles in the form

of combining di�erent learning models to implement the SMBO algorithms in framework-like

tuning systems.

2. The parameter control is actively driven by two motivations. Firstly, the runtime changes in

solving process are unpredictable; therefore, the control is believed to better �t them, comparing

to the statically de�ned by parameter tuning techniques. Secondly, the resources spent for o�ine

parameter settings are high, but they are paid-o� by a high quality of algorithm con�guration.

Therefore, from this perspective, the control approaches are trying to reach the quality of the

o�ine settings, spending fewer resources. Unfortunately, nowadays the online approach is not

generic to be commonly applicable.

3. The decision on concrete technique is use-case speci�c and is driven by the amount of available

resources and the required setting quality as well.

2.4 Combined Algorithm Selection and Hyper-Parameter Tuning
Problem

The goals of automatic machine learning are quite similar to persecuted by hyper-heuristics. They

both operate on search space of algorithms (or their building blocks), which later are combined, with an

objective to �nd the best performing ones, and used to solve the problem at hand.

In this section we review one particular representative of automatic machine learning systems. Based

on the ML framework Scikit-learn [91], Auto-sklearn system [44] operates over a number of classi�ers,

data and features preprocessing methods including their hyper-parameters to construct, for provided

dataset, the best performing (in terms of classi�cation accuracy) machine learning pipeline. This

problem was formalized as combined algorithm selection and hyper-parameter tuning problem (CASH)

and presented previously in Auto-WEKA [112] system. Intuitively, it could be rephrased as follows:

“For a given optimization problem, �nd the best performing algorithm and its hyper-parameters among

available and solve the problem”.

Please note, to the certain extent Auto-sklearn is similar to HHs, which use LLHs for traversing the

search space and solving the OP. However, the automatic machine learning techniques operate on the

completion algorithms, the results of which are evaluated at the end of their run. On the contrary, online

HHs are able to evaluate the intermediate performance of low-level heuristics, since they are anytime

algorithms. CASH problem seems to be a combination of problems solved by HHs and parameter tuning

approaches. We also found that the architecture search problems [40] (related to neural networks) are

nothing else but particular case of CASH.
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Turning back to Auto-sklearn, the crucial decisions made here is the combination of o�ine and online

learning, resulted an exceptional performance of Auto-sklearn in classi�cation tasks.

During the o�ine phase, for each of available datasets published by the OpenML community [45],

search of the best performing machine-learning pipeline was done using the BO technique implemented

in the discussed previously SMAC framework [58]. After that, the meta-learning was executed to derive

the meta-features for each dataset.

The resulting combination of the datasets, machine learning pipeline and meta-features were stored

and later used to initialize the online phase of pipeline search. The information from the meta-learning

phase is used as follows: for a given new dataset, the system derives the meta-features and selects some

portion of created during the o�ine phase pipelines that are the nearest in terms of meta-feature space.

Then, these pipelines are evaluated on a new dataset to initialize the BO in SMAC. This decision results

in the ability to evaluate well-performing con�gurations at the beginning of the tuning process.

During the online phase, another crucial improvement was introduced. Usually, while searching

the best-performing pipeline, a lot of e�ort is spent in order to build, train and evaluate intermediate

pipelines. After each evaluation, only the results and the pipeline description are stored, but the pipeline

itself is discarded. In Auto-sklearn, however, the idea lays in preserving previously instantiated and

trained pipelines, obtained while solving the CASH problem. Later, they are used to form an ensemble

of models and tackle the problem at hand together. This means that the results of this architecture

search are a set of models with di�erent hyper-parameters and preprocessing techniques, rather than

a single model. This ensemble starts from the worst performing ones (obtained at the beginning of

the search) and ends with the best suited model for the respective dataset. Naturally, each ensemble

members’ in�uence on the �nal results is weighted.

The potential of o�ine phase is derived entirely from the existence of such a dataset repository and

depends on the availability of homogeneous datasets. The proposed online methodology, which mimics

the regression trees, is more universal and could be reused widely.

In general, an empirical investigation of Auto-sklearns’ universality would be rather intriguing, since

the only cases of Auto-sklearn application we managed to �nd are the classi�cation tasks but not

regression problems [13, 44].

The �eld of automated machine learning is one of trending research directions, that is why there

exist dozens of open-source systems, such as Auto-Weka [112], Hyperopt-Sklearn [71], Auto-Sklearn [44],

TPOT [88], Auto-Keras [61], etc. Among open-source, there are many commercial systems, such as

RapidMiner, DataRobot, Microsoft’s Azure Machine Learning, Google’s Cloud AutoML, and Amazons’

Machine Learning on AWS.

2.5 Conclusion on Background and Related Work Analysis

In this chapter we have presented the review of optimization problems, their concrete instances and

existing solver types focusing on the heuristics. There exist several levels of generality in heuristic

solvers: simple heuristics, meta-heuristics and hyper-heuristics.

The applicability of each algorithm is problem-dependent and derives from the exploration-exploitation

balance and strength, revealed in a particular case. It is di�cult to guess beforehand, which heuristic

will outperform the others in an unforeseen use-case. With respect to this, hyper-heuristics seems to be

the most perspective and universal solvers, since they do not tackle the problem directly, but rather

select and apply the best suited among controlled algorithms.

From the other perspective, the solver performance is also dependent on the values of its parameters.

It turns out, that the parameter setting is also an optimization problem. There exist several ways to

solve it: (1) set the values manually, based on experience and intuition, (2) utilize the parameter tuning
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systems, which �nd the best values automatically and later use those found parameters, or (3) exploit

the parameter control mechanisms. Among all strategies, the last seems to be the happy medium,

since tuning requires lots of expensive algorithm executions to produce good parameter settings, while

manually choosing hyper-parameters is an error-prone process that requires experienced guidance. The

analysis of parameter control approaches showed that the existing techniques are heuristic-dependent,

therefore, our �rst research question is de�ned as follows RQ1 Is it possible to perform the algorithm
con�guration at runtime on a generic level?

The outcome of no-free-lunch theorem cannot be ignored, according to which no single algorithm

can tolerate a broad range of problems equally outperforming other solvers. That is why we cannot

set aside hyper-heuristics, which are designed to �nd the best solving algorithm suited for a particular

optimization problem case.

The research in automatic machine learning has made a step further and tends to combine both

algorithm selection and parameter tuning problems into a single CASH problem, formalized in [112]. The

search space in CASH problem is formed of algorithm variants and their respective hyper-parameters.

However, one solver cannot use the parameters of another, thus, the resulting search space happens to

be ‘sparse’. In general, the structure of CASH problem is almost the same as regular parameter tuning

case. That is why the commonly used solvers for CASH problems are the parameter tuning systems:

SMAC in Auto-sklearn and Auto-Weka, Hyperopt in Hyperopt-Sklearn and so forth. Not many surrogate

models are able to handle the sparse search spaces: random forest machine learning model and Bayesian

optimization approaches with exotic kernel density estimators [75]. Even fewer optimizers are able to

perform well in such sparse spaces. The other drawback is that the CASH problem de�nition is limited

to searching the algorithm and its parameters in an o�ine manner.

We believe that the solutions of both algorithm selection and parameter setting problems is highly

dependent on a problem at hand. That is why a search for the best tool (solver) and its setting (parameters)

should be performed in an online manner, in other words, while solving the optimization problem.

Since the generic parameter control concept was not proposed yet, naturally, we were not able to

�nd the techniques to merge and solve both the algorithm selection and parameter control problems

in runtime. Therefore, we de�ned our second research question RQ2 Is it possible to simultaneously
perform algorithm selection and parameters adaptation while solving an optimization problem?

As CASH merges algorithm selection and parameter tuning techniques to get the outstanding per-

formance, we found a merge of online algorithm selection and parameter control an intriguing and

worth-to-try idea. However, the amount of spent resources and the imprecision of surrogates estimations

for simultaneous search of both the algorithm type and its parameter values may be discouraging. To

explicitly evaluate this, we de�ne the �nal research question as RQ3 What is the e�ect of selecting and
adapting algorithms while solving an optimization problem?

Research objective de�ned.
In this thesis we are trying to achieve the best of both online algorithm selection and parameter control

worlds. The resulting approach should be able to solve an optimization problem, applying the best
suited low-level-heuristic and setting its parameters at runtime. With this idea in mind, we investigate

a possibility of turning existing parameter tuning system into an online selection hyper-heuristic
with parameter control in low level heuristics.
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3 Online Selection Hyper-Heuristic with
Generic Parameter Control

While there exists no universal approach to control the parameters of the algorithm (Section 2.3.4),

our conclusion was that there exists no approach to combine both online techniques for the algorithm

selection and the parameter settings (Section 2.5).

In this Chapter we propose the approach to solve this problem, excluding the implementation details.

In Section 3.1, we introduce a generic parameter control technique and expand it with the process of

algorithm selection. As concluded in Section 2.5, the main weakness of the reviewed approaches to tackle

CASH problems lays in the inability of learning mechanisms to �t and predict in sparse search spaces.

The same issue arises in case of online algorithm selection and parameter settings, and we solve it on

two levels: 1) in the search space structure and 2) in the prediction process. In Section 3.2 we present a

joint search space of both algorithm selection and parameter control problems. We outline functional

requirements for such search space. Next, we describe a related prediction process in Section 3.3. We

decouple the learning models from the search space structure and provide a certain level of �exibility in

the usage of di�erent learning models. Finally, in Section 3.4 we direct our attention to the low-level

heuristics (LLH) — workhorses of our approach. We highlight the requirements to LLH that are crucial

within the scope of this thesis.

3.1 Combined Parameter Control and Algorithm Selection Problem

The basic idea of parameter control approaches lay in the solver behavior adaptation as the response

to changes in the solving process (Section 2.3.3). As we mentioned in the heuristics review (Section 2.2),

the algorithm performance is highly dependent on the provided exploration-exploitation balance, which

in turn, depends on (1) the algorithm itself and (2) its con�guration. The task of parameter control is to

�nd such parameters, which provide the best performance.

In our work, we solve the parameter control problem by utilizing an approach for evolutionary

algorithms similar to the one proposed in [65] reinforcement learning (RL). The underlying idea of RL

could be described as a process of performing actions in some environment in order to maximize the

reward obtained after each performed action. To apply this technique to the parameter control problem,

we should de�ne what those actions are and how to estimate the reward. Therefore, in order to make the

parameter control applicable to a broad range of algorithms, we analyze not the solver state itself but

the optimization process (in [65], the authors use both algorithm-dependent and generic metrics). To

realize the MAPE-K control loop, we should interrupt the solver, analyze the intermediate results, learn

the current trend among parameters, con�gure the solver with the most promising parameter values

and continue solving. The number of MAPE-K loop iterations i de�ne the granularity of learning, where

one should balance between time to control (TTC) the parameters vs time to solve (TTS) the problem.

Naturally, the limitation of proposed approach is TTS � TTC , therefore, we are restricted to use-cases

with large TTS w.r.t. TTC.

To evaluate the gained in iteration i reward, instead of using the solution quality straightforwardly,

we calculate the quality improvement, obtained with the con�guration Ci. When the search process
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converges towards the global optimum, the improvement value tends to decrease, since the amount

of signi�cantly better solutions drops. Using the improvement values directly could confuse the learn-

ing models and, therefore, cause the prediction quality to struggle. To solve this issue, the relative

improvement (RI) of solution quality is calculated:

RI =
Si−1 − Si
Si−1

(3.1)

In Equation (3.1) Si−1 and Si are the solution qualities before and after ith iteration respectively.

The evaluated Ci → RI pairs in previous iterations are then used to predict a con�guration for

the next iteration Ci+1. Please note, here we utilize the notion of sliding learning window to follow a

possibly changing trends of the optimization process, therefore, we use only N (pcs., or %) of the latest

available Ci → RI pairs. Moreover, we made two other decisions for the sampling process: (1) hide the

search space shape and (2) use the surrogate models for �nding con�gurations that lead to the highest

RI. After sampling the Ci+1 con�guration, we set it as the solvers’ parameters. To proceed with the

solving process, we initiate the solver with the solutions obtained at i− 1 iteration as well.

When it comes to the algorithm selection problem (discussed in Section 2.2.5), we treat the solver

type itself as a subject of parameter control and use the proposed RL approach to estimate the best

performing algorithm. However, when we add the solver type as a parameter, the resulting search space

becomes sparse and requires a special treatment. There exist two commonly used approaches to tackle

this problem. The �rst [41, 58, 93] requires a special type of learning models, while the second [79]

suggests the problem transformation in a way of excluding the undesired characteristics. During the

review of model-based parameter tuning approaches (Section 2.3.1), we made a conclusion that most of

the reviewed systems follow strictly the �rst idea. For instance, the surrogate models in BOHB [41] and

BRISE [93] use the Bayesian probability density models. Those surrogates could naturally �t the sparse

search spaces (described in the following section), but the proposed approaches are not able to make

the predictions e�ectively, since most of predicted con�gurations will violate the dependencies. As an

example, let us imagine after ith iteration, the surrogate models learn about two superior parameters: one

indicates a well-performing heuristic type (genetic algorithm), the other — an e�ective con�guration for

another algorithm type (an exponential cooling rate for simulated annealing). In this case, the reviewed

systems sampling methods will tend to predict invalid con�gurations with those two parameter values.

In this thesis we adapt the second approach of problem transformation used in [79] for sampling the

valid con�gurations only. The following section depicts a required preparation step made in the search

space, while Section 3.3 is dedicated to the prediction process.

3.2 Search Space Structure

When time comes to selecting not only the solver parameters but also the solver itself, the united

search space can no longer be presented as a ‘�at’ set of parameters, since it tends to produce many

invalid parameter combinations. Let us estimate the number of all possible con�gurations in comparison

to the proportion of meaningful ones. Suppose we haveNs solvers, each exposingNs,p hyper-parameters

with Ns,p,v possible values. The aggregated quantity of con�gurations Nc in the disjoint search spaces

is calculated as a number of possible combinations using Equation (3.2).

Nc = Ns ·
Ns,p∏
1

Ns,p,v (3.2)

However, if we decide to tune (or rather to control) the solver type itself, the resulting quantity of

possible con�gurations is calculated using Equation (3.3).
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Nc =
Ns∏
1

Ns,p∏
1

Ns,p,v (3.3)

For the better intuition, let us try some numbers. By setting all Ns = Ns,p = Ns,p,v = 3 (a rather

small example), the number of con�gurations estimated separately for each solver equals to Nc = 81
(Equation (3.2)). However, if we join the parameter spaces of all three solvers, Equation (3.3) shows

a signi�cant growth in the search space size: Nc = 19683. Please note, the number of unique and
valid con�gurations remains the same; thus, in the joint space it is only ≈ 0.4%. By setting the

Ns = Ns,p = Ns,p,v = 4, this number drops to ≈ 9 · 10−8%. It could decrease even further, if the

dependencies among hyper-parameters exist. In such case, the predictive abilities of models may

struggle.

To overcome this problem, we utilize a certain idea, similar to the one used in IRACE [79]: explicitly
indicate the dependencies as parent-child relationships among the search space entities, �rstly predicting
the parent parameter, and the children parameter afterwards. This gives us an opportunity to treat the

algorithm type as a regular categorical parameter, making the search space structure uniform and

simplifying the prediction process.

This decision sets the following search space structural requirements (S.R.):

S.R.1 The parent-child relationship must describe dependencies between di�erent parameter types.

S.R.2 The uniform parameter type simpli�es the structure and hides the domain-speci�c intent of

each parameter; therefore, algorithm type and its hyper-parameters are treated in the same way.

S.R.3 The value-speci�c dependencies describe certain parent value(s), when the child should be

exposed. For instance, the parameter algorithm type has a number of possible values, each

requiring its own set of hyper-parameters, which should remain hidden for the other solver types.

Figure 3.1 shows an example of such a search space with s algorithm types, each having p parameters

with v possible values. The entities with triangles5, namely, the concrete values of parameters, form

the joint-points to which the other parameters could be linked.

AlgorithmType

5Algorithm1 5Algorithms

Parameter1,1 Parameter1,p Parameters,1 Parameters,p

5V alue1,1,1 5V alue1,1,v 5V alues,p,1 5V alues,p,v... ......

... ...

...

Figure 3.1 Search space representation.
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3.3 Parameter Prediction Process

After formalizing the search space structural requirements, let us switch to the prediction process

and de�ne the functional requirements for both search space and prediction process, which should be

ful�lled to decouple the learning models from the complex search space shape.

The idea of this decoupling lays in resolving the value-speci�c dependencies among the parameters

in a step-wise prediction approach. To do so, we �rstly predict the parent value, which in case of the

hyper-heuristic is a low-level heuristic type (Level 0 in Figure 3.2). Afterwards, the search space must

expose the parameters of this solver only, ignoring the others (Level 1 in Figure 3.2). The dependencies

among exposed parameters are then handled in the same way (Level 2 and further in Figure 3.2).

Level 1

Level 0

Level 1

AlgorithmType

5Algorithm1 5Algorithms

Parameter1,1 Parameter1,p Parameters,1 Parameters,p

5V alue1,1,1 5V alue1,1,v 5V alues,p,1 5V alues,p,v... ......

... ...

...

Level 2 Level 2 ...... Level 2 Level 2...

Figure 3.2 Level-wise prediction process.

The prediction on each level is performed in three main steps: (1) �ltering the required for this level

information, (2) building the surrogate model and (3) �nding the best performing parameters on this

level.

While building the surrogates and making the predictions, we ignore the information from levels

above and below with the motivation to simplify the overall process and hide the search space structure.

In addition, when we predict on the parent level, it will not change on the descendant levels, therefore,

we do not need to operate useless static information. While the backward ignorance is clear, the forward

data omission puts a restriction on the surrogate models. Cutting o� the parameter values from the

deeper levels, we may get the data points with the same parameter values for current level (also named

features in machine learning) but di�erent results (labels). Thus, only those surrogate models should be

used on such level(s), which will not be confused by the multi-valued dependencies in data (when the

same input results in di�erent outputs). In the implementation description in Section 4.3.3 we clarify,

which models are the better choice in such cases and implement one of the promising.

Certainly, while solving the problem, the quality trends among parameter values may change. For

instance, at later stages the domination of one solver could be declined in comparison to others. Or else,

the previously best-performing parameter values are not good enough and should be replaced by the

other. These changes may be caused by the variety of reasons, which we are not tackling. Instead, the

old trends should be left out by some forgetting mechanism.
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At this point, let us summarize the functional requirements for the search space (S.F.R) and prediction

process (P.F.R).

• In the search space we need:

S.F.R.1 The data �ltering mechanism, which will be used to �nd out only those feature-label

pairs, which can be utilized to learn the dependencies on current level.

S.F.R.2 The sampling propagation mechanism, which will be used to randomly sample the

parameter values for the next level taking into account currently available parameter values,

which is required to expose the parameters after predicting on current level.

S.F.R.3 The parameter description mechanism, which will provide the information about a type

and possible values for the given parameters. This knowledge will later be used by the

models for making the parameters’ values prediction.

S.F.R.4 The con�guration validation mechanism, which will �nd out, whether the parameter

ranges are not violated by the selected values (�at validation), and whether for all selected

values the dependent (exposed) parameters are selected properly as well (deep validation).

• In the prediction models:

P.F.R.1 The model encapsulation mechanism, which should aggregate and hide the level-wise

approach of the search space traversal and the feature ignorance as well. On the contrary, it

should rely on underlying models for making the prediction.

P.F.R.2 The model uni�cation mechanism, which is required for the system variability in terms

of the learning and sampling algorithms.

P.F.R.3 The information forgetting mechanism, which is required to follow only the recent

trends among the parameter values dependencies.

3.4 Low-Level Heuristics

As we stated in Section 2.2.5, hyper-heuristics are built of two main components — the high-level

heuristic (HLH) and the low-level heuristic (LLH). Please note, the used solver type term in this chapter

is nothing else but the LLH in hyper-heuristic. The previous two sections were dedicated to the search

space and prediction models description, which form the logical components of the HLH. No hyper-

heuristic could work without LLH, therefore, in this section we discuss the requirements for the low-level

heuristics.

The proposed idea of the MAPE-K reinforcement learning application implies the usage of anytime al-

gorithms (see classi�cation of solvers in Section 2.1.2). They may be implemented in various frameworks

or even programming languages, the only requirement is to expose a common interface.

Firstly, we want these algorithms to continue their solving process from the previously found solution

but not to start the process from scratch. Before the start, they should accept the predicted by HLH

hyper-parameters, and the previously reached solution(s) (possibly, by the other solver).

Secondly, after the algorithm execution, the solution quality should be estimated and reported to the

HLH to proceed with the RL.

Both actions should be performed in the implementation-independent way, therefore, following a pre-

de�ned shared interface described above. We discuss it in Section 4.4, dedicated to LLH implementation.
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3.5 Conclusion of Concept

When the requirements, speci�ed for the search space and the prediction process are ful�lled, it

provides a certain level of overall system �exibility in the following use-cases:

1. The parameter tuning case is possible, if one builds a search space of the single LLH, its hyper-

parameters, and disables the solution transfer between the iterations.

2. The parameter control case is possible, if one builds a search space of the single LLH, its

hyper-parameters, and enables the solution transfer between the iterations.

3. The o�ine selection hyper-heuristic is possible, if one builds a search space of the multiple

LLHs, and disables the solution transfer between iterations. In this case, the LLHs will be used

with the static hyper-parameters.

4. The online selection hyper-heuristic is possible, if one builds a search space of the multiple

LLHs, and enables the solution transfer between iterations. In this case, the LLHs will be used

with the static hyper-parameters as well, but initialized with the obtained in previous external

iteration solutions.

5. The online selection hyper-heuristic with parameter control is possible by building the

search space of multiple LLHs, their hyper-parameters and enabling the solution transfer between

iterations.

Please note that the o�ine cases estimate the solution quality directly, while the online cases use the

relative solution quality improvement.

It is worth mentioning that the proposed structure of search space representation is similar to the

feature model, used to describe the software product lines (SPL) [104]. In Figure 3.1 and Figure 3.2

we used the notions from SPL feature models to denote alternative parameter values. The process of

con�guration construction within a search space can be treated as the staged con�guration in SPL.

36



4 Implementation Details

In this Chapter we dive into the development description of listed in Chapter 3 requirements.

The best practice in software engineering relies on an implementation e�ort minimization with the

help of already existing and well-tested code reuse. With this idea in mind, we select one of the reviewed

in Section 2.3.1 open-source parameter tuning frameworks as the code basis for the desired RL-based

hyper-heuristic. We also reuse the low-level heuristics (LLH) implementation from other meta-heuristics

frameworks. The LLH basis may be used almost out-of-box, but the HLH basis requires changes to

utilize the reinforcement learning approaches.

In Section 4.1 we analyze the parameter tuning frameworks from a perspective of required adaptation

e�ort to implement listed in Section 3.3 HLH characteristics. We conclude the analysis selecting the

best-suited HLH code basis in Section 4.1.2. Afterwards, we split the HLH adaptation process on two

similar to presented during the concept description logical parts: in Section 4.2 we discuss the search

space development, while Section 4.3 is dedicated to the prediction process. Finally, in Section 4.4 we

perform a code basis selection for LLH, present a set of reused meta-heuristics, their adaptations and

the importing process into our hyper-heuristic.

4.1 Hyper-Heuristics Code Base Selection

To begin with the analysis of frameworks, we outline important characteristics from the implementa-

tion perspective.

The �rst two crucial criteria are variability and extensibility of framework. Since we are planning to

use a possibly (but not obligatory) di�erent models for the LLH selection and parameters control, the

code basis should be variable in terms of models usage for each prediction level (see Figure 3.2). The

desired HH and speci�cally HLH should be easily extensible in terms of not only the surrogate models,

but also other features such as termination criteria, information �ltering, data preprocessing and so

forth.

The next criterion is the support for online optimization. It is a slightly complex system characteristic,

which we are willing to distinguish. As it turns out, many parameter tuning systems require full

evaluation of target system, others expose early termination mechanisms, but all of them are forcing

TS to start solving the problem at hand each time from scratch. In the case of our hyper-heuristic, we

treat the LLH con�guration evaluation as a trial to improve the problem solution results. It implies an

important LLH ability to tackle the (OP) using reinforcement learning approaches (Section 3.1).

The �nal characteristic is the conditional parameters support. This complex feature in�uence on not

only the search space representation mechanisms, but also the prediction process. Therefore, we pay a

close attention to both of them from the conditional parameters support perspective.

4.1.1 Parameter Tuning Frameworks Analysis

SMACv3 We begin our review with the implementation of Sequential Model-based Algorithm Con�g-

uration framework, distributed under the BSD-3 license. The idea of SMACv3 lays in an enhancement of

the ROAR mechanism with a model-based sampling algorithm. ROAR is a derivative from the FocusedILS
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algorithm (solver in the parameter tuning framework ParamILS [59]), where each evaluation of a new

solution candidate on a problem instance was performed sequentially and in isolation. Therefore, since

the ROAR evaluation strategy is also used in SMACv3, we have found that it requires a considerable

e�ort to synchronize the progress between di�erent runs for the online problem-solving.

As we have mentioned in Section 2.3.2, the underlying surrogate model in SMACv3 is selected

statically among random forest or Gaussian process kernel density estimator. Both models could �t to

complex dependencies among parameters. In the next con�guration sampling process the one-exchange
neighborhood of the best found so far con�guration is traversed using the created surrogate model and

the expected improvement estimations. The ability of both surrogates to �t a sparse search space is

promising, and the usage of expected improvement guarantees to converge the search process to the

global optimum given enough time. However, the major drawback in this system is a lack of abilities to

include the conditional dependencies between parameters into the sampling process. Since, to the best of

our knowledge, the one-exchange neighborhood is unaware of the dependencies, it violates them while

sampling and results in illegal parameter values combinations. Those cases are naturally controlled

and rejected by the search space representation framework Con�gSpace [78], but we believe in case

of sparse search spaces it could lead to ine�ective sampling and system predictive abilities struggling.

Unfortunately, we did not �nd any o�cially published empirical studies of such cases and could only

make guesses based on own intuition, but the advises of SMACv3 developers for such use-cases
1

may

serve as evidence to the correctness of our assumptions. One of the possible solutions here can be the

implementation from scratch of a conditional-aware one-exchange neighborhood de�nition and for

sampling process, which requires much implementation e�ort.

IRACE This framework implements the iterated racing algorithm to evaluate a set of con�gurations

during the parameter tuning session (Section 2.3.2). The software is distributed under the GNU General

Public License with an open source code.

The framework uses a Friedman test [28], or paired t-test as an alternative for statistical analysis of

racing in parallel con�gurations. As the surrogate models, IRACE uses the probability distributions of

those parameter values, which proved to be good during the racing step. The con�guration prediction

process is de�ned as a step-wise sampling on previously constructed distributions. It elegantly handles

the conditions among parameters and illuminates a possibility of invalid con�guration appearance.

Unfortunately, this solution is static in terms of variability and extensibility on the learning mechanisms.

From the perspective of parallel evaluations, the framework utilizes all available resources at the

beginning of each racing step, but as the process continues, fewer evaluations are executed simultane-

ously, therefore, part of available resources is idling and not utilized completely at all stages of IRACE

execution.

For the online problem solving support, let us discuss the racing algorithm. As mentioned in Sec-

tion 2.3.2, this step is executed on (1) a set of TS con�gurations sampled for evaluation and (2) a

benchmark set of optimization problems. Multiple instances of TS are initializing with the provided

con�gurations and starting to solve the problem set, while the racing algorithm terminates the worst-

performing settings. In case of hyper-heuristic, it is possible to de�ne the benchmark set as a single

problem instance divided into parts of TS running time. At each pause we may perform the synchro-

nization of current solutions to proceed with the best found results. By doing so, we adapt the system to

online problem-solving cases, however, the granularity of parameter control will be reduced. The reason

for such reduction is the amount of information obtained after each race: only the best con�gurations

are reported leaving the performance evidence of others behind, but we believe this information may be

used to create a more precise surrogate model.

1

Visit SMACv3 repository https://github.com/automl/SMAC3/issues/403
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HpBandSter As we discussed in Section 2.3.2, HpBandSter is an implementation of BOHB algorithm,

which turns to be a hybridization of Hyperband and Bayesian optimization approaches.

A role of Hyperband in this duet is the con�guration evaluation and comparison, while the Bayesian

Tree Parzen Estimator (TPE) suggests which con�guration to evaluate next. The idea behind this

combination lays in elimination of each algorithm weak sides with strengths of the other. For instance,

in original Hyperband the con�guration sampling is made uniformly at random, which results in a slow

converge of an optimization process. On the contrary, a drawback of BO TPE lays in a con�guration

evaluation process. Naive Bayesian optimization approaches do not take into account the TS performance

early evidences. Thus, even when the proposed con�guration results in a poor TS initial and intermediate

performance, which may be an evidence of a weak �nal performance, BO still continues the TS execution.

These facts motivated authors to merge those two algorithms and create one for parameter tuning

with strong anytime (HB) and �nal (BO) performance. The resulting hybrid e�ectively uses available

computational resources in parallel (HB) in combination with robust learning mechanisms (BO).

Let us discuss the process of handling the conditions between parameters. HpBandSter as well uses

Con�gSpace framework for the search space representation. As we discussed during the SMACv3

review, Con�gSpace naturally allows encoding the dependencies and conditions among parameters.

TPE learning models are also able to �t these dependencies by means of implemented impuration
mechanism [75]. In short, in order to �ll ‘sparse’ con�gurations with data, the disabled parameters

are replaced with their default values. Later, while building the surrogate models those default values

are ignored, therefore, the probability density estimations still represent a proper parameter values

distributions. However, consider a case of two con�gurations families appearance: C1 and C2, such

that some parameter Pi is forbidden in C1 but required in C2. On the contrary, another parameter Pj

is required in C1 but forbidden in C2. If these con�guration families are turning to be superior, the

resulting probability densities will be biased towards Pi and Pj values. As a consequence, the utilized in

HpBandSter prediction mechanism will sample non-default parameter values for both Pi and Pj , which

results in the con�gurations with violated parameter dependencies. The sparser the search space is, the

more harming an e�ect will be in a prediction performance. The possible treatment here is to change

the sampling process by an intermediate layer addition, which will perform the parameter prediction in

level-wise approach suggested in Section 3.3.

BRISEv2 BRISEv2 is a software product line (SPL), created with an aim at solving the expensive

optimization problems in general and for the parameter tuning in particular (Section 2.3.2).

The advantage of BRISEv2 over other systems comes from its main-node modular design. It is a

set of cooperating core entities (Experiment, Search Space and Con�guration) with other non-core

entities, exposed to user for variability. The prediction models, termination criteria, outliers detectors,

repetition strategies, etc. are representatives of these non-core and variable components. A number of

implementations are provided out-of-the-box for all variable entities, but we focus our attention only on

the implemented sampling process. The reason for such a greedy review is that the underlying search

space representation is carried out by the same Con�gSpace. The provided surrogate models here are

ridge regression model with polynomial features and Bayesian Tree Parzen Estimator (TPE). We are

not going to repeat ourselves reviewing the Con�gSpace + TPE combination, but we have to put a few

words about the ridge regression.

Ridge is the linear regression model with regularization [55], often used in machine learning �eld.

Being a linear model, its abilities to �t sparse search spaces is poor and, therefore, a machine learning

community suggested treating such cases with conditional linear regression models [24]. The underlying

idea is to split the search space into sub-spaces and to build separate regression models in each of them.

Unfortunately, this approach was not built-in into the ridge regression model used in BRISEv2.
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As for the online problem solving support, the routine of an optimization process implemented in

BRISEv2 is very similar to the reinforcement learning. After each new obtained evidence (con�guration),

a new surrogate model is built to react to the learning process by predicting the next con�guration.

This facilitates the implementation of problem solving with runtime system adaptations, presented in

Section 3.1.

4.1.2 Conclusion on Code Base

Most of the reviewed parameter tuning systems share the same SMBO approach for problem solving.

They utilize rather similar techniques for the surrogate models creation and predictions making, however,

the di�erent system architectures are implemented. To sum up our review, we utilize the term quality to

aggregate both (1) provided out-of-the-box the desired characteristic support and (2) the required e�ort

to adapt it, if necessary. For the visual representation, we collect the reviewed characteristic qualities of

each software framework into Table 4.1 and quantize them into three ordinal values:

1. Poor quality denotes a weak characteristic support and much e�ort required to improve it.

2. Average quality indicates a weak characteristic support, which requires less amount of e�ort to

provide it.

3. Good quality means a good characteristic support out-of-the-box and requires minor or no

changes at all.

Table 4.1 Code basis candidate systems analysis.

Characteristic SMACv3 IRACE HpBandSter BRISEv2
Variability & extensibility Average Poor Average Good
Online optimization Average Average Average Good
Conditional parameters Poor Good Poor Poor

Most of the reviewed software systems were created as an implementation of some concrete algorithm

(or combination of algorithms), which results in a system �exibility reduction. Every reviewed framework

requires much adaptation e�ort and the preparation steps should be performed in di�erent parts of a

system. Between such features as a proper support of conditional parameters and variability-extensibility,

the former plays a settled role in our case. Therefore, we conclude that the BRISEv2 framework is the

most promising candidate for the hyper-heuristic with parameter control creation.

4.2 Search Space

Previously, in Section 3.2 we presented a set of structural requirements for the search space repre-

sentation: parent-child relationships should be presented explicitly to allow combinations of di�erent

parameter types. For the prediction process support, in Section 3.3 we listed the functional requirements

in a form of mechanisms: data �ltering, sampling propagation, parameter description and con�gura-

tion veri�cation. In this section we analyze the available Con�gSpace framework, how it �ts to our

requirements and decide, whether to use it or to set aside in order to perform our own search space

representation implementation.
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4.2.1 Base Version Description

From the structural point of view, in Con�gSpace
1

the parameter coupling is made implying parent-

child relationship, which �st into our requirements. The set of parameter types suite the most of

use-cases and the value-speci�c dependencies are supported as well. Thus, the structural requirements

S.R.1, S.R.2 and S.R.3 are perfectly met.

When it comes to the functional requirements, Con�gSpace samples random con�gurations in a

completion manner. In other words, there is no step-wise process of con�guration construction, but

only the �nal and valid results are produced. To the best of our knowledge, there is no straightforward

way to expose the underlying parent-child dependencies among parameters and investigate a tiered

search space structure, which is required for the prediction models. As a consequence, the data �ltering

mechanism should be implemented on a side and the sampling propagation as well. The framework

exposes an ability to validate a fully created con�guration but not a partial one (�at validation). It is

also worth mentioning that the used in Con�gSpace con�guration is a proprietary class. As for the

parameter description, the amount of exposed knowledge is satisfying. Here we conclude that the

functional requirements, except S.F.R.3, are not met.

As the conclusion, we decided to set aside the 3rd party Con�gSpace framework. The reason for

doing so is mostly motivated by the amount of required adaptation e�ort and partially by involvement

of obligatory external dependencies.

4.2.2 Search Space Implementation

From the structural requirements we know that the parameters in search space should be treated

uniformly. The desired feature tree structure is handled by the composite design pattern. With this

idea in mind, we construct the search space as a composite Hyperparameter object with four possible

hyper-parameter types: integer and �oat as a numerical parameter family, nominal and ordinal as a

categorical family. This ful�lls speci�ed in Section 3.2 S.R.2.

With the code snippets provided through the explanation, we highlight the signatures of implemented

methods, which ful�ll speci�ed in Chapter 3 requirements.

Search space construction. The S.R.3 (parent-child relationship) implementation is performed by

adding a construction method add_child_hyperparameter in the Hyperparameter class (Listing 4.1). It

should be called on a parent object, specifying the activation value(s) (activation_categories argument)

of parent hyper-parameter which should expose the child.

1 class Hyperparameter:
2 ...
3 def add_child_hyperparameter(self, other: Hyperparameter, activation_categories: Iterable[

CATEGORY]) -> Hyperparameter
4 ...

Listing 4.1 S.R.1 implementation.

Please note, currently we require the support of composite construction only by means of categorical

parameters, therefore, add_child_hyperparameter requires a list of activation categories. We postpone

an enhancement of composition on numerical ranges for future work.

Search space role in prediction. Imagine several con�gurations were evaluated and their relative

improvement is already estimated. For making the prediction in a tiered approach, the parameter

1

Con�gSpace GitHub repository: https://github.com/automl/ConfigSpace
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values on a current level should be selected before moving to the next one. In order to do so, we �rstly

�lter data, which �ts to this level by means of S.F.R.1. It is implemented in form of recursive hyper-

parameter method are_siblings, presented in Listing 4.2. The �lter accepts already selected parameter

values and iterates over the available con�gurations. At each iteration it �nds out, whether the already

chosen parameter values (base_values) form a sub-feature-tree of the target con�guration parameter

values (target_values). For instance, if the selected LLH type in base_values is not the same as one in

target_values, the result will be negative.

1 class Hyperparameter:
2 ...
3 def are_siblings(self, base_values: MutableMapping, target_values: MutableMapping) -> bool
4 ...

Listing 4.2 S.F.R.1 implementation.

After data �ltering, the time comes to �nd out the values of which parameters we must predict. In

order to do so, the search space must expose those parameters by means of S.F.R.2 implemented in

generate method with signature presented in Listing 4.3. Since we always interact with a search space

root object, the call to generate is executed recursively. If a callee �nds itself in values argument (which

depicts the current parameter name→ parameter value mapping), it redirects a call to all activated
children. If it does not, it adds itself a to the values and terminates the recursion.

1 class Hyperparameter:
2 ...
3 def generate(self, values: MutableMapping) -> None
4 ...

Listing 4.3 S.F.R.2 implementation.

A randomly sampled for the current level values are then used to obtain the level description. It is

then used to (1) cut-o� the data from levels above and below (simply selecting the required key-value

pairs from the parameter mapping), to (2) build the surrogate models and to (3) make the prediction of

parameter values on current level.

The creation of surrogate model requires an available data (parameters) description. Thus, the S.F.R.3

implementation is performed in method describe with signature presented in Listing 4.4. This is once

again a recursive call, which terminates, when the parameter object cannot �nd the activated children

or himself in the provided values. The resulting description is a mapping from the parameter name

to its type and range of possible values: either a set of categories for categorical, or lower and upper

boundaries for numerical types.

1 class Hyperparameter:
2 ...
3 def describe(self, values: MutableMapping) -> MutableMapping[Name: [Type, Values]]
4 ...

Listing 4.4 S.F.R.3 implementation.

This description is then used by the prediction models for building surrogates and making the

parameter values predictions, which replace obtained after generate method call randomly sampled

values.

The process described above is controlled by means of S.F.R.4, implemented as method validate
(signature in Listing 4.5). The control occurs in two places. Firstly, before starting a new loop of

filter → propagate→ describe→ predict we check whether the construction process is not �nished

(deep validation), meaning all parameter values were chosen, and we have a valid con�guration. Secondly,

after making the prediction by models (�at validation), it veri�es if the parameter boundaries are not
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violated. In case of violation, the prediction is discarded and the randomly sampled values are used

instead. Since the implemented in search space sampling process (generate method) guarantees to

provide valid parameter values, after maximally N loops mentioned above, we derive a new and valid

con�guration, where N is a maximal depth in the de�ned search space.

1 class Hyperparameter:
2 ...
3 def validate(self, values: MutableMapping, recursive: bool) -> bool
4 ...

Listing 4.5 S.F.R.4 implementation.

4.3 Prediction Process

The next step is an investigation and planning of the prediction logic adaptation. In Section 4.1.1 we

learned that BRISEv2 provides two learning models: Bayesian TPE and ridge linear regression. Both of

them could be used as surrogates within a tiered sampling, however, this process should be generalized.

P.F.R.1 implies the addition of entity, which encapsulates the prediction process, described in Sec-

tion 4.2.2. We also make this entity responsible for the forgetting strategy, therefore, reaching P.F.R.3.

Both requirements are not ful�lled in BRISEv2 yet, hence, we must implement them from scratch.

As for P.F.R.2, the current implementation of BRISEv2 already provides some level of model uni�cation

with a required interface. However, during the implementation we found that it implies three logical

steps binding: data preprocessing, surrogate models creation and surrogates optimization to predict a

next con�guration.

The following parts of this Section are dedicated to (1) P.F.R.1 and P.F.R.3 implementation in form of

Predictor entity, P.F.R.2 ful�llment in form of the data preprocessing mechanisms decoupling from the

prediction models. Please note, we postpone the implementation of an elegant surrogate optimization

mechanism for future work. Instead, we utilize a simple random search over the surrogate models, since

as mentioned in Section 2.3.1, given enough evaluations the random search results become comparable

to model-based algorithms. Due to a cheap cost of con�guration evaluation on surrogate models, we are

allowed to do so.

4.3.1 Predictor Entity

In addition to presented logic during the search space description, a role of predictor also lays in

decoupling of the learning models from: (1) feature-tree search space shape, (2) other core entities such

as Con�guration. Besides the static search space, the input for predictor is available at the moment

data (evaluated con�gurations), while the desired output is a con�guration. Listing 4.6 provides a

pseudo-code of the predictor implementation.

To implement the information forgetting mechanism, we utilize the similar idea of sliding window,

used in hyper-heuristics [42]. According to it, the predictor should use a speci�c number of the latest

con�gurations as information for surrogate models creation. We modify this logic, allowing user to

specify not only a static number, but also a percentage of the latest con�gurations (line 4). It ful�lls the

P.F.R.3. Naturally, more exotic approaches may arise such as a statistical analysis of diversi�cation or

the other types of meta-learning, but we leave it for the future work.

The next step is a prediction models decoupling from the search space structure by means of ful�lling

P.F.R.1. As discussed in Section 4.2.2, to predict parameter values on each level, the models should be

built on only related to this level information. For this, after �ltering the data (Listing 4.6, line 11),

predictor propagates the sampling from a previous level to current (line 14) and derives a description for
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the obtained parameters on current level (line 17-18). Independently, it instantiates a speci�ed in settings

surrogate model for this level and �ts it with the obtained information (lines 21-23). Afterwards, it

requests a prediction from the model (will be discussed later) and forwards the prediction for validation

by the search space entity (lines 27-28). If either the model cannot properly �t the data, or the prediction

is invalid, we keep the sampled randomly parameter values (lines 29-31).

1 class Predictor:
2 def predict(measured_configurations):
3 # Filter data according to sliding learning window
4 level_configurations = trim_in_window(measured_configurations)
5 prediction = Mapping()
6

7 # Continue prediction until get a valid configuration (Deep validation)
8 while not search_space.validate(prediction, recursive=True):
9

10 # Filtering the data for current level
11 level_configurations = filter(search_space.are_siblings(prediction, x), level_configurations)
12

13 # Propagate the prediction
14 randomly_generated = search_space.generate(prediction)
15

16 # Derive the level description
17 full_description = search_space.describe(randomly_generated)
18 level_description = trim_previous_levels(description, prediction)
19

20 # Cut-off data and build model
21 data = trim_accodring_to_description(level_configurations, level_description)
22 model = get_current_level_model()
23 model.build(data, level_description)
24

25 # Predict current level and validate prediction (flat validation)
26 if model.is_built():
27 level_prediction = model.predict()
28 if not search_space.validate(level_prediction, recursive=False):
29 level_prediction = randomly_generated
30 else:
31 level_prediction = randomly_generated
32

33 return Configuration(prediction)

Listing 4.6 P.F.R.1 + P.F.R.3 implementation pseudo-code.

For the sake of simplicity, we omit some minor implementation details and provide the description of

the data preprocessing and available surrogate models below.

4.3.2 Data Preprocessing

The data preprocessing concepts may be split into two complementary parts: an obligatory data

encoding and optional data transformation. The �rst is required to make the underlying model compatible

with the provided data. Imagine the parameters values to be simple strings. Having a surrogate model,

which is constructed as the parameter values probability densities (TPE), one should derive a numerical

data by encoding those string values into numbers. The second concept is applied on data, which is

already suitable. This is usually done to improve an available surrogate model accuracy by reducing

the bias (learning complex dependencies in data), variance (generalization to the unforeseen data) or

both. An encoding example could be simple indexing of all possible string values. It is performed
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as a replacement of strings by their indexes during the data preprocessing. On the contrary, for the

transformation one may try to add the polynomial degrees of available features with an aim to disclose

more complex dependencies. The decision on encoding type is often de�ned by the learning model. In

contrast, the decision on data transformation is carried out by the user and depends on the concrete

use-case and experience.

All reviewed in Section 2.3.2 parameter tuning systems implement the data preprocessing only by

means of an obligatory encoding and omitting the possible data transformation. In most cases it is

implemented as a simple label enumeration and is not encapsulated at all (as an example, check Con-

�gSpaces’ Con�guration method get_array1
). Being the most straightforward approach, this encoding

may introduce non-existing patterns in categorical data. For instance, having 3 possible LLH types:

genetic algorithm, simulated annealing and evolution strategy, it will encode such parameter values to

numbers 0, 1 and 2 respectively. When such encoded data is passed to the surrogates for learning, some

models may interpret it as follows: in the search space, GA could be closer to SA than ES, the distances

from SA to two others algorithms are equal within a search space. To prevent this, the other type of

preprocessing should be used, for instance, binary encoding.

In any case, the intent of this discussion is to provide an insight of data preprocessing importance for

the reader, but the discussion of possible causes and their in�uence is out of this thesis scope. Here we

decided to gain a certain level of �exibility by providing a uniformed wrapper for the preprocessing

routines implemented in Scikit-learn machine learning framework [91]. We omit the details of wrapper

implementation since it is a single object decorator, instantiated with the provided preprocessing unit.

The wrapper is executed each time before the actual surrogate performs learning and after making the

prediction to inverse the transformation.

To make the models and data preprocessing units interfaces compatible, we store the data in form of

DataFrames — tabular data representation carried by Pandas framework
2
. In Listing 4.6, line 21 denotes

a step of con�guration objects transformation to DataFrame, keeping only the current level features.

4.3.3 Prediction Models

As a derivative of predictor implementation, the underlying prediction models should expose a uni�ed

interface and behavior. Due to tiered prediction process, the surrogate models are acting on the search

space levels without forbidding dependencies. This enables us to use in addition to previously discussed

surrogates a vast range of other learning algorithms, for instance, linear regression models. In fact, a

previously used in BRISEv2 ridge regression with polynomial features is nothing else, but a combination

of data preprocessing step with the ridge regression model from Scikit-learn framework. Later in this

Section we discuss an implementation of a uni�ed wrapper for Scikit-learn linear models.

As a step further, we also add the implementation of multi-armed bandit (MAB): a selection strategy

proposed in [4]. It is motivated by a promising performance of the reviewed in [4] selection hyper-

heuristics built on MAB. Please note, MAB is applicable only to categorical parameters types.

We also decouple the previously available in BRISEv2 Bayesian TPE from the data preprocessing

logic, however, no other major changes except refactoring are required. Thus, there is no reason for the

detained TPE implementation discussion here.

Scikit-learn Linear Model Wrapper

Scikit-learn is one of the most popular open-source machine learning frameworks. As a consequence of

�exible architecture, Scikit-learn often plays a central role in other products providing implementations

1

Con�gSpace documentation https://automl.github.io/ConfigSpace/master/API-Doc.html
2

Pandas Github repository https://github.com/pandas-dev/pandas
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of numerous building blocks for machine learning pipelines. This advantage in combination with a

comprehensive documentation resulted to a large and active framework community
1
.

All available in Scikit-learn linear regressors implement the same interface and usage routines. For

instance, before making a prediction, the regression model should be trained on preprocessed data,

providing features and labels. Afterwards, one may use model to make a prediction for unforeseen

features and the surrogate will produce a corresponding label according to the learned dependencies. This

implies that for �nding the best parameter combination, one should still solve the original optimization

problem but with the reduced evaluation cost.

To reuse the available in framework surrogate models, we create the wrapper as an object decorator,

implementing the required in Predictor Model interface. The pseudo-code of this wrapper is presented

in Listing 4.7.

During the model creation, we �rstly instantiate features and labels preprocessors, and transform the

input data (lines 4-6). The creation process includes also a model accuracy veri�cation step, which is

performed by means of cross-validation: splitting the set of data into k disjoint folds, training k model

each time excluding one fold for accuracy veri�cation (line 9). If the potential model average accuracy

is less than a prede�ned threshold, the model is considered to be not precise enough and, therefore,

rejected (line 15), forcing the predictor to use random parameter values. However, if the model is able to

perform well, we train it on an entire dataset and store it for further usage (lines 12-13).

Later, for making the prediction by means of random search (if the model was built successfully), we

�rstly sample parameter values of this level uniformly at random (line 20). Afterwards, we transform

them using the same preprocessors, applied during the model construction (line 21). Then, we make a

prediction for randomly sampled features using the surrogate model and transform those predictions

back into original labels (lines 23-24). Finally, we select the best features (encoded parameter values) by

means of the predicted labels, reverse it transformation and return to Predictor (lines 27-28).

1

Scikit-learn GitHub repository https://github.com/scikit-learn/scikit-learn
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1 class SklearnModelWrapper(Model):
2 def build_model(features, labels, features_description):
3 # Execute data preprocessing
4 features_preprocessors, labels_preprocessors = build_preprocessors()
5 transformed_features = features_preprocessors.transform(features)
6 transformed_labels = labels_preprocessors.transform(labels)
7

8 # Build model and check its accuracy
9 accuracy = cross_validation(model, transformed_features, transformed_labels)

10 if accuracy > threshold:
11 # Training on all available data
12 model.fit(transformed_features, transformed_labels)
13 model_is_built = True
14 else:
15 model_is_built = False
16 return model_is_built
17

18 def predict():
19 # Solving surrogates optimization problem by means of random search
20 features = random_sample(features_description)
21 features_transformed = features_preprocessors.transform(features)
22

23 labels_predicted_transfored = model.predict(features_transformed)
24 labels_predicted = labels_preprocessors.inverse_transform(labels_predicted_transfored)
25

26 # Select those parameter values, which maximize RI
27 prediction_transformed = select_by_labels(features_transformed, labels_predicted)
28 prediction = features_preprocessors.inverse_transform(features_transformed_chosen)
29 return prediction

Listing 4.7 Scikit-learn linear model wrapper pseudo-code.

Multi-Armed Bandit

Originally, the multi-armed bandit (MAB) problem was introduced in [98] and de�ned as follows: for

a given set of choices ci with unknown stochastic reward values ri, which are distributed normally with

variance vi, the goal is to maximize the accumulated reward, sequentially selecting several times among

available choices ci. The problem obtained its name as an analogy to one-hand slot machines in casino

and naturally denotes the well-known exploration versus exploitation dilemma.

In most cases, MAB is solved by reinforcement learning (RL) approaches, which analyze the already

available evidences before performing each next step. It perfectly �ts our requirements of sequential

LLH to tackle the problem at hand, therefore, those choices are nothing else, but LLH types (categories

of categorical parameter). In [4] the authors proposed the Upper Con�dence Bound algorithm as an

intuitive MAB solution: in iteration k, among available categories select one with a maximal UCB value.

The UCB for each category is calculated according to Equation (4.1), where �rst componentQ is a quality

of category under evaluation and represents the exploitation portion of UCB. The second component

estimates the exploration portion and evaluates the number of times each category was selected. The

multiplier C is a balancing coe�cient.

UCB = Q+ C ·

√
2 log

∑i
1 n

i
k

nk
(4.1)

In this work we implement a proposed in [76] Fitness-Rate-Average-based MAB (FRAMAB) with two
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reasons: (1) it is an intuitive and robust approach, (2) according to the benchmarks in [42] it outperforms

other MAB algorithms. In FRAMAB, nik denotes the overall number of categories, while nk is a number

of times the category under evaluation was selected. The quality estimationQ in FRAMAB is the average

improvement, obtained by the underlying category.

As for the balancing coe�cient C , the authors in [42] were evaluating a range of values between

10−4...10−1
. The dominance of C values for various problem types was di�erent, therefore we expose

it to user for con�guration.

In addition to the statically de�ned C value, we propose a mechanism for C estimation as a standard

deviation in improvement values. The motivation for this is the following: if there exists an uncertainty

in category domination, the deviation will be high and it should encourage the exploration portion of

UCB values. We do not provide a pseudo-code for this model implementation, since it straightly repeats

the algorithm description provided above.

4.4 Low Level Heuristics

When our HLH is ready to solve an OP, the time comes to provide the tools for solving. A role

of LLH in our hyper-heuristic (HH) may play every algorithm starting from a single heuristic and

ending with meta-heuristic (MH) or even other HH. As we discussed in Section 2.2.2, nowadays the MH

research is referred to as the framework growth time. Therefore, we are able not only to reuse a single

meta-heuristic but to instantiate a set of underlying heuristics among available in relative frameworks.

Thus, in this Section we present a review of several meta-heuristic frameworks with an intent to select

the best suited one, implement a facade for framework usage and utilize the available algorithms as

LLHs in our hyper-heuristic.

Before diving into a description, we brie�y outline the LLHs characteristics with respect to which we

analyze each framework:

1. Set of meta-heuristics, which we will be able to use as LLHs in our HH.

2. Exposed hyper-parameters, which are required for LLH tuning. We point it out explicitly, since

it happens so that the parameters of an algorithm are exposed not fully.

3. Set of supported optimization problems, which will de�ne the applicability of our HH. The

wider this set is, the more use-cases developed HH is able to tackle.

4. Warm-startup, which is required to continue the problem solving from a previously reached

solution. The underlying LLH should not only report the �nally found solution(s), but also accept

them as the starting points.

5. Termination criteria, which are needed to control the intermediate results of optimization

process by HH. In our system we use the wall-clock time termination to stop the LLH and report

the results.
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4.4.1 Low Level Heuristics Code Base Selection

We distinguish the following frameworks as the LLH code basis candidates: Solid
1
, mlrose

2
, pyTSP

3
,

LocalSolver
4
, jMetalPy

5
and jMetal

6
.

Solid. A framework for gradient-free optimization. It comprises a wide range of MH skeletons with

exposed hyper-parameters: genetic algorithm, evolution algorithm, simulated annealing, particle swarm

optimization, tabu search, harmony search and stochastic hill climbing. The support of warm-startup is

not provided and it requires changes in each algorithm as a consequence of the shared base class absence.

Available algorithms do not provide times-based termination criteria and have only evaluation-based

and quality-based stop criteria.. Once again, to add a new criterion, one should modify the code of all

algorithms. The framework does not provide the problem instances, nor domain-dependent parts of

algorithms, therefore, to use it one will need to carry out not only a domain-speci�c adaptation, but also

a problem description.

mlrose. A framework with implementation of various well-known stochastic optimization algorithms,

such as: naive and randomized hill climbing, simulated annealing, genetic and mutual-information-

maximizing input clustering (MIMIC) algorithms. Each listed solver is implemented with an exposed

set of hyper-parameters. It is possible to control an initial state, which is handy in our case. As for

the implemented OPs, the framework comprises a large set of di�erent types: one max, �ip-�op, four

and six peaks, continuous peaks, knapsack, traveling salesman, n-queens and max-k color optimization

problems. The proposed termination criteria are represented only by one criterion controlling the

number of TS evaluations. As in the previous framework, here the algorithms do not share the same

code basis, therefore, it may require much e�ort for their adaptation in general and to introduce a new

termination criterion in particular.

pyTSP. A system, specially designed to tackle the traveling salesman problem. Together with visual-

ization techniques, it also provides a wide bunch of di�erent algorithms. Here, they are divided into four

groups. First group consists of construction heuristics with nearest neighbor, nearest insertion, farthest

insertion and cheapest insertion algorithms. Second one is a linear programming algorithm. Third

group consists of are perturbation heuristics among which pairwise exchange, also known as 2-opt,

node insertion and edge insertion. Fourth group is formed from meta-heuristics and represented by the

genetic algorithm. As one may expect, the only supported problem type here is the TSP, moreover, the

representation of problem does not follow a broadly used in research community manner. The other

drawbacks of this framework are partial hard-coding of hyper-parameters and an absence of exposed

termination criteria. Also, the construction heuristics by their nature do not expose the possibility to

feed them with the initial solutions. However, in some other algorithms the functionality to specify the

initial solution is provided.

LocalSolver. A commercial optimization tool with free academic license. It is implemented in C++,

and the API is exposed to such programming languages as Python, C++, Java and C#. The software

implements a local search programming paradigm [7, 8], therefore, the algorithm itself and its parameters

1

Solid GitHub repository https://github.com/100/Solid
2

mlrose GitHub repository https://github.com/gkhayes/mlrose
3

pyTSP GitHub repository https://github.com/afourmy/pyTSP
4

LocalSolver website https://localsolver.com
5

jMetalPy GitHub repository https://github.com/jMetal/jMetalPy
6

jMetal GitHub repository https://github.com/jMetal/jMetal
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are not exposed. It is required from the user to provide a solver-speci�c problem description. Thanks to a

detailed documentation, the desired TSP example could be found among numbers of other optimization

problems. Two possible termination criteria are exposed: a wall-clock time and a number of solver

iterations. Also, the framework supports a possibility to set an initial solution for the solver, therefore,

it looks like a good candidate for the LLH. Unfortunately, our trial to use the tool showed up that

the provided academic license could not be easily used within BRISEv2 containerized architecture. A

possible work-around is to deploy a license server on a host machine and force workers to register

themselves, but we found this to be an expensive task requiring much implementation e�ort.

jMetalPy. An open-source meta-heuristic framework for multi- and single-objective optimizations.

Among the provided single-objective algorithms one will �nd genetic algorithm, evolution strategy, local

search (hillclimber) and simulated annealing. Even if the list of proposed heuristics is not the largest in

comparison to other reviewed frameworks, every implemented algorithm exposes its hyper-parameters

for tuning. We also found the code to be well-structured, therefore, in case of required changes they could

be made with less e�ort. A functionality for heuristic solver warming-up is available out-of-the-box.

The various termination criteria are ready as well, among which the wall-clock time-based and the

number of TS evaluations-based criteria. The list of supported single-objective optimization problems

consists of knapsack, traveling salesman and four other synthetic problems: one max, sphere, Rastrigin

and subset sum.

jMetal. A meta-heuristic framework implemented in Java is an alternative to previously reviewed

Python-based jMetalPy. This framework also provides meta-heuristics for multi- and single-objective

OP. For SO OP, jMetal developers implemented the following algorithms: naive and covariance matrix

adaptation evolution strategies (CMA-ES), genetic, particle swarm (PSO), di�erential evolution and coral

reef optimization algorithms. It is worth to mention that not all solvers are universally applicable to a

wide range of OPs. For instance, CMA-ES, PSO and di�erential evolution can be applied only to OPs

with continuous numeric input such as synthetic mathematical problems. In contrast to implemented in

Python jMetalPy, jMetal supports only one termination criterion, based on number of TS evaluations,

and does not support algorithm warming-up at all.

To sum up our discussion, we aggregate the described characteristics in Table 4.2, which is similar

to Table 4.1, presented during the HLH code basis selection. Once again, the characteristics qualities

are scored into three ordinal values: poor, average and good with respect to provided functionality and

required e�ort for adaptation.

Table 4.2 Meta-heuristic frameworks characteristics.

Characteristic Solid mlrose pyTSP LocalSolver jMetalPy jMetal
Set of heuristics Poor Poor Good N/A Average Good
Exposed hyper-parameters Good Good Poor Poor Good Good
Provided OPs Poor Good Poor Good Average Average
Warm-startup support Poor Good Poor Good Good Average
Termination criteria Average Average Poor Good Good Average

Our ultimate goal is not to reach the best performance in provided solution, but to investigate, whether

a proposed concept is able to outperform the baseline performance measures. Thus, while selecting

LLH, the quality of provided heuristics and their hyper-parameters are playing a crucial role. For our
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experiments we decided to use three LLHs: two MHs from Python-based jMetalPy (simulated annealing

and evolution strategy) and one from Java-based jMetal (evolution strategy).

4.4.2 Scope of Low Level Heuristics Adaptation

The selected frameworks propose many algorithm implementations. Since the same people are

developing both jMetal and jMetalPy, the overall architecture of both frameworks is similar. Nevertheless,

the proposed features are slightly di�erent. For instance, jMetal does not provide time-based termination,

nor warming-up the solver by initial solutions. Therefore, we split the adaptation of frameworks onto

two parts, one is dedicated to jMetalPy and in the other we discuss jMetal.

jMetalPy. During the analysis above, we have found that the provided features greatly �t our require-

ments. Even if the lists of implemented MHs and supported OPs are not that wide, we could simply

reuse the provided out-of-box implementations. In order to do, we implement a framework wrapper

(see Listing 4.8), which creates a desired optimization problem instance, MH solver instantiate with

the provided hyper-parameters (line 3). Later, we call this wrapper to start a solver execution and

report the results in a framework-independent way (line 5). To prevent an expensive problem instances

loading within one optimization session, we cache it in memory (lines 8-9). Also, we cache expensive

I/O introspection calls, which are used to �nd framework components: algorithms, termination criteria

or di�erent algorithm operators such as mutation, selection, crossover, etc. (lines 11-15).

1 class JMetalPyWrapper(ILLHWrapper):
2

3 def construct(hyperparameters: Mapping, scenario: Mapping, warm_startup_info: Mapping) -> None
4 # Constructing meta-heuristics initialization arguments, attach initial solutions
5 def run_and_report() -> Mapping
6

7 # jMetalPy framework introspection helper methods
8 @lru_cache()
9 def _get_problem(problem_name, init_params)

10

11 @lru_cache()
12 def _get_algorithm_class(mh_name)
13

14 @lru_cache()
15 def _get_class_from_module(name, module)

Listing 4.8 jMetalPy framework wrapper pseudo-code.

While experimenting with the framework, we found several implementation �aws in algorithms

or their components. The �xes for these bugs were submitted as contributions
12

to implemented

open-source framework.

jMetal. In contrast to jMetalPy, this framework is implemented in Java, therefore, we cannot perform

the software instantiating straightforwardly, since BRISEv2 workers are based on Python. There are

several libraries, which allow executing a Java code within Python: JPype
3
, Py4J

4
or PyJNIus

5
. The usage

of one among listed modules enables us to build the same framework wrapper, as we did in previous

1

jMetalPy PR 1: https://github.com/jMetal/jMetalPy/pull/67
2

jMetalPy PR 2: https://github.com/jMetal/jMetalPy/pull/80
3

JPype GitHub repository: https://github.com/jpype-project/jpype/
4

Py4J GitHub repository: https://github.com/bartdag/py4j
5

PyJNIus GitHub repository: https://github.com/kivy/pyjnius
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Figure 4.1 The low-level heuristic execution process.

case. Since currently we are planning to use only one meta-heuristics, the implementation of such

wrapper will be unreasonable. Thus, to use a provided in jMetal evolution strategy, we pack it into an

executable �le with exposed parameters and call it from worker script, providing hyper-parameters

settings and warming-up solutions.

4.4.3 Low Level Heuristic Runner

When the MH wrappers are ready, we use them as di�erent execution strategies of low level heuristic

with uni�ed ILLHWrapper interface. To operate these wrappers we implement a separate entity: LLH
runner. It forwards the construction and execution commands to the wrapper, tracks the state, makes

general information logging and passes the results after execution back to HLH. This enables us to

easily scale workers horizontally, since they are homogeneous and state-less (not taking into account

the caching mechanisms). The resulting process of LLH execution from the worker perspective is

represented as a sequence diagram in Figure 4.1. Please note, within an implemented approach the

meta-heuristics are reinitialized at each external iteration (between each task execution). Therefore,

algorithms as simulated annealing are restarting between tasks dropping such internal parameters as

temperature (in SA) to its initial state.

4.5 Conclusion

The performed implementation of proposed in Chapter 3 concept was done dy reusing the existing

frameworks. The hyper-heuristic is mostly based on the modular BRISEv2 framework for parameter

tuning. We utilize BRISEv2 prediction models in the form of reinforcement learning as a HLH, while

several homogeneous workers are carrying out the optimization process using their LLHs. For the

LLHs implementation we reuse the existing meta-heuristic frameworks jMetalPy and jMetal. Despite

the selected code basis, the proposed approach could be implemented in most of the parameter tuning
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systems following SMBO methodology, however, requiring the adaptation according to our review in

Section 4.1.

While adapting BRISEv2, we were forced to set aside the previously used search space representation

and implement our own to handle the tiered con�guration prediction process and the sparseness issue.

An intermediate entity predictor was added to decouple the search space shape from the learning-

prediction process. It allowed us to extend the previously available models with the several others:

�tness-rate-average based multi-armed bandits (FRAMAB) for categorical parameter selection and linear

regressors from Scikit-learn framework as surrogates models. We also decoupled data preprocessing

steps by reusing the respective tools from Scikit-learn framework.

We believe the proposed implementation will serve well not only as a hyper-heuristic, but also as

already well-known and used parameter tuning framework.
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The concepts of search space representation and prediction processes were proposed in Chapter 3.

Based on them, in Chapter 4 we implemented a generalized parameter control for meta-heuristics,

selection hyper-heuristic and the hyper-heuristic with parameter control approaches. In this Chapter

we propose a broad evaluation of the implemented approaches. Experiments may be performed in a

number of investigation directions, starting from the developed RL performance comparison to the

baseline and ending with the scalability to di�erent problem sizes.

We start this Chapter with a brief presentation of the optimization problem at hand in Section 5.1 and

short environment description in Section 5.2. We perform a parameter tuning of low-level heuristics in

Section 5.3, which will be used later through our tests for comparison.

The evaluation presented in this thesis could be divided into two main parts:

The �rst part (Section 5.4) is dedicated to the developed concept analysis in comparison to the baseline.

We start the concept evaluation with planning in Section 5.4.1 and proceed �rstly reviewing the baseline

in Section 5.4.2, secondly the generic parameter control is presented in Section 5.4.3, followed by the

selection hyper-heuristic with static hyper-parameters in low-level heuristics review in Section 5.4.4

and ending with the selection hyper-heuristic with parameter control in low-level heuristics review

presented in Section 5.4.5.

In the second part (Section 5.5), we investigate an in�uence of hyper-heuristic with parameter control

settings on its performance. In order to do so, once again we �rstly perform the experiment planning in

Section 5.5.1. Afterwards, in Section 5.5.2 we investigate an in�uence of a learning granularity on the

HH-PC performance. In Section 5.5.3 we check learning models con�gurations and in Section 5.5.4 we

verify the in�uence of inter-LLH communication con�guration.

Finally, Section 5.6 concludes our evaluation with a discussion of the obtained results.

5.1 Optimization Problem

In this thesis we are tackling a vehicle routing problem — the traveling salesman OP. We present

its short de�nition here, including the related to benchmark details, however, the detailed explanation

could be found in Section 2.1.1: “Given a set of cities and the distances among them, �nd the shortest

path, which visits all cities”. It is a combinatorial OP with a number n = N ! of possible solutions. In

our benchmarks we use several instances of symmetric TSP (distances xi → xj and xj → xi are equal)

from a publicly available and broadly used in research TSP benchmark set TSPLIB95
1
. The advantage

of choosing this benchmark set lays in a broad compatibility of solvers and frameworks (including

jMetal and jMetalPy) with this standardized TSP instance description. The TSP in this case is de�ned as

a set of city coordinates. Therefore, before starting to solve a problem, the distance matrix is usually

built by heuristic, calculating the Euclidean distances between each pair of cities. For a more detailed

explanation of the problem instance description proposed in TSPLIB95, please refer to [95].

For our benchmarks we select four problem instances: kroA100, pr439, rat783 and pla7397 of sizes

100, 439, 783 and 7397 cities respectively. The optimal tours for each of these problem instances were

1

TSPLIB95 website: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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previously obtained by the exact solvers and reported in aforementioned library. We present the optimal

solutions in Table 5.1.

Table 5.1 TSP instances optimal tour length.

TSP instance Optimal tour length
kroA100 21282

pr439 107217
rat783 8806

pla7397 23260728

5.2 Environment Setup

We run our experiments with an enhanced by our approach BRISEv2 and deploy it in Docker containers

on host machine with the following characteristics:

• Hardware: Fujitsu ESPRIMO P958 computer with 64GB 2667MHz RAM (16GB * 4 pcs), Intel Core

i7-8700 CPU @ 3.2 GHz (6 cores * 2 threads) and Samsung 1TB SSD.

• Software: GNU/Linux Fedora 29 host OS and installed Docker engine version 1.13.1.

We deploy 6 homogeneous BRISEv2 workers with LLHs on the same host machine and run each

experiment 9 times to gather the statistics. Each execution was performed with wall-clock-based

termination criterion con�gured to shut down the optimization session after 15 minutes.

5.3 Meta-heuristics Tuning

As we conclude in Section 2.3.4, the goal of parameter control is at least to reach the parameter tuning

approaches results quality. Therefore, before running the major set of evaluation experiments, we have

to perform a parameter tuning for the underlying LLHs.

5.3.1 Parameter Tuning System Configuration.

As a tuning system, we use our concept implementation in the tuner mode. As mentioned in Section 3.5,

to enable the parameter tuning mode we built a search space based on a single LLH with its parameters

and disable the solution transfer between con�gurations. In our particular case we de�ne three search

spaces for each underlying meta-heuristic. We run the tuning for 8 hours on 10 deployed worker nodes

and give three minutes for each task (con�guration) evaluation. The underlying prediction mechanism

was con�gured to use TPE with 100% window size. We disable the repetition strategy and outliers

detection leaving each con�guration evaluated only once, since our preliminary experiments showed

that the variance among evaluations is negligible.

5.3.2 Target Optimization Problem and Search Space of Parameters.

The role of optimization problem at hand is played by one of the selected TSP instances: rat783.

We base the algorithms tuning on this instance, since it is a middle-size problem among the instances

selected for evaluation.
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jMetalPy evolution strategy. This meta-heuristic is implemented as a naive evolution strategy,

however, we found an important recombination mechanism missing, therefore, the heuristic is acting

mostly by means of mutation operations. As a con�guration, it requires several hyper-parameters

of di�erent types. Integer parameter µ (mu), which denotes a number of parents in the population.

Integer parameter λ (lambda) de�nes a number of o�spring. We tune both parameters in range [1..1000].
Boolean parameter elitist de�nes a selection strategy, where true value enables elitist selection (µ+ λ),
while false value disables it (µ, λ) (more details in Section 2.2.2). Also, the framework proposes two

possible mutation types for combinatorial OPs: permutation swap and scramble mutation. The mutation

probability is tuned in range [0..1] respectively.

jMetalPy simulated annealing. In this meta-heuristic authors de�ned the solution neighborhood

by means of the same aforementioned mutation operators. Thus, we use them and similar mutation

probability range for tuning the SA. Unfortunately, the authors did not provide other, but exponential

cooling schedule and did not expose temperature or alpha (cooling rate) parameters. This is the reason

for a such tiny parameter space for this MH.

jMetal evolution strategy. In this meta-heuristic a set of exposed hyper-parameters is almost the

same, as for previously described Python-based evolution strategy implementation. The only di�erence

is that the mutation type is �xed, therefore, we exclude it from the parameter space, but leaving the

mutation probability and elitist parameters. All the other parameter ranges are the same as for the

de�ned above ES.

5.3.3 Parameter Tuning Results.

The process of parameter tuning is depicted in Figure 5.1. 8 hours of tuning on 10 workers with 3

minutes for each con�guration resulted in at least 1500 evaluated parameter combinations.

Figure 5.1 The low level heuristics parameter tuning process on rat783 TSP instance.

In the �gures below, we propose a visual analysis of the results. We separately present the numerical

and categorical parameters for each meta-heuristic.

The numeric hyper-parameters are presented as scattered points of parameter value (x-axis) and

the respective objective function result (y-axis), obtained for con�guration with this parameter value.

Although, such an isolated approach to analyze data may be error-prone. But still, it is enough to get a

birds-eye view on the existing dependencies. To represent trends among the numeric parameter values

we draw the regression line (4th degree) in green. At the top and to the right side of the plot value

densities are presented. From the top density one can derive, which parameter values were sampled

more often, while densities on the right side show, which objective values and how often were obtained.
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As for the categorical parameters, we plot their values in violin plots. It is a combination of box plot

and kernel density plot. Since all categorical parameters of underlying algorithms have only two values,

each site of violin plot shows, which objective results and how often was obtained for the respective

category. We also distinguish values by di�erent colors, while the violin shape shows an expected

probability of the respective result value. Inside the �gure we also draw three dashed lines. A middle

line with long dashes is a median, while lower and upper lines with short dashes show �rst and third

distribution quartiles respectively.

jMetalPy evolution strategy parameters. In Figure 5.2 one may clearly see an explicit dependency

between the number of parents (parameter mu) and the objective function: by setting lower number

of parents, better results are obtained more often. However, the o�spring number dependency is not

that clear (parameter lambda). We may see that a high o�spring number does not tend to provide good

results, but the number of performed estimations for low lambda is not enough to be strongly ensured

that this value is better. Yet, even with a small number of observations we may guess that a low lambda
is a good parameter value choice. With respect to the mutation probability, it may be observed that

higher rates tend to produce better results.

As for the categorical parameters presented in Figure 5.3, one may see a strong bias towards good

results appears when using elitist algorithm version. Concerning the mutation type, the dominance is

not obvious, but permutation mutation slightly outperforms scramble type.

Figure 5.2 jMetalPy evolution strategy numeric hyper-parameters tuning.

Figure 5.3 jMetalPy evolution strategy categorical parameters tuning.

jMetalPy simulated annealing parameters. In this meta-heuristic only two parameters were tuned:

categorical mutation type, the results of which are presented in Figure 5.4b and numerical mutation

probability depicted in Figure 5.4a. One may see a strong dominance of permutation mutation type,

while scramble produces average, but rather stable results. The mutation probability trends are also clear:
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higher parameter values produce better results. Indeed, the dependency on the mutation probability is

obvious, since the underlying algorithm is performing the search space traversal by means of solution

mutation. The two clear lines of results, which can be viewed in Figure 5.4a are correlated with the

mutation types: lower corresponds to permutation mutation type usage, while upper is the result of

scramble mutation usage.

a) Mutation probability. b) Mutation type.

Figure 5.4 jMetalPy simulated annealing parameters tuning.

jMetal evolution strategy parameters. The �nal heuristic under investigation is a Java-based

implementation of evolution strategy. At the �rst glance, the regression lines are not looking the same

as for jMetalPy.ES, but the overall trends are similar: lower values of mu parameter result in better

objective, while the mutation probability should be high. In contrast to jMetalPy.ES, here the middle-

range values of lambda parameter tend to produce the best results. The di�erence may be explained

by the performance degradation of Python-based algorithm with large o�spring number: the required

computational e�ort for accomplishing the iteration increases, while Java-based version could handle a

larger number of o�spring. A dominance of elitist algorithm version is not obvious, but comparing the

�rst quartiles positions, one will agree that elitist ES version is better.

Figure 5.5 jMetal evolution strategy numeric parameters tuning.

We collect the best performing con�gurations of each meta-heuristic in Table 5.2. We also highlight

here the default values for each parameter, which were selected with the motivation of being in the

values ranges middle.

59



5 Evaluation

Table 5.2 Static hyper-parameters of low-level meta-heuristics.

Hyper-parameter Default value Tuned value Parameter values range
jMetalPy evolution strategy

µ 500 5 [1..1000]
λ 500 22 [1..1000]

elitist False True {True, False}
mutation type Permutation Permutation {Permutation, Scramble}

mutation probability 0.5 0.99 [0..1]
jMetalPy simulated annealing

mutation type Permutation Permutation {Permutation, Scramble}
mutation probability 0.5 0.89 [0..1]

jMetal evolution strategy
µ 500 5 [1..1000]
λ 500 605 [1..1000]

elitist False True {True, False}
mutation probability 0.5 0.99 [0..1]

5.4 Concept Evaluation

5.4.1 Evaluation Plan

Figure 5.6 jMetal ES elitist parameter tuning.

To evaluate the developed approach perfor-

mance, at �rst we need to de�ne the baseline. In

most cases it is an isolated meta-heuristics, which

are solving the OP using static hyper-parameters.

However, to evaluate the applied generic parame-

ter control to meta-heuristic, we must take a closer

look on the respective meta-heuristic results with

tuned in o�ine and controlled in online hyper-

parameters. For the selection hyper-heuristic anal-

ysis, we compare the performances of all underly-

ing MHs running separately and united together

within our hyper-heuristic. Please note, in this

case the hyper-parameters are static. To evaluate

the selection hyper-heuristic with parameter control in low-level heuristics, we compare it to separately

running underlying meta-heuristics with tuned parameters. In order to organize the evaluation plan, we

distinguish two stages of con�guration construction. At the �rst stage, the LLH selection occurs, while

at the second stage, our system selects the respective hyper-parameters. At either stage we may use

di�erent prediction approaches.

To select the LLH, apart from random and static selection we also use FRAMAB and Bayesian ridge

regression model (BRR) from Scikit-learn framework (see Section 4.3.3). Please note, for the Bayesian

ridge regression we use default parameters, which could be found in the framework documentation
1
.

The accuracy threshold for BRR construction equals to 0.5 (see details in Section 4.3.3). We set a single

FRAMAB parameter C to be equal to STD (see details in Section 4.3.3).

To select the LLHs hyper-parameters, apart from static default and tuned values we also use random

1

https://scikit-learn.org

60

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html


5.4 Concept Evaluation

selection, a previously available in BRISEv2 TPE with default values (split size equals to 30%) and the

mentioned above BRR. To perform a random search-based surrogate optimization, we sample 96 (default

BRISEv2 con�guration) parameter values combinations for each search space level.

The set of used sampling techniques is presented in Table 5.3.

Table 5.3 Sampling techniques used for the concept evaluation.

LLH selection LLH parameters selection
1. Random 1. Default
2. Multi-armed bandit 2. Tuned beforehand
3. Bayesian ridge regression 3. Random
4.1. Static jMetalPy.ES 4. Tree Parzen Estimator (TPE)
4.2. Static jMetalPy.SA 5. Bayesian ridge regression (BRR)
4.3. Static jMetal.ES

With this table we pick a set of sampling techniques to form a desired system con�guration, which

leads to di�erent operation modes. For instance, baseline mentioned above could be formed by code

4.1.1 for jMetalPy evolution strategy, used with the default hyper-parameters, or by code 4.3.2 for jMetal

evolution strategy, used with the hyper-parameters tuned in o�ine.

Our benchmark plan for the concept evaluation looks like a set of following experiment groups:

• Baseline (MH). We evaluate each meta-heuristic separately with the default and tuned hyper-

parameters: 4.1.1 and 4.1.2 for jMetalPy evolution strategy; 4.2.1 and 4.2.2 for jMetalPy simulated

annealing; 4.3.1 and 4.3.2 for jMetal evolution strategy respectively.

• Meta-heuristics with parameter control (MH-PC). This set of experiments is dedicated to

verify an impact of the generic parameter control on meta-heuristics’ performance and includes ex-

periments: 4.1.3, 4.2.3, 4.3.3 to investigate the in�uence of random parameter allocation; 4.1.4, 4.2.4,
4.3.4 to verify TPE-based parameter control and 4.1.5, 4.2.5, 4.3.5 to probe BRR-based parameter

control.

• Selection hyper-heuristic with static parameters in LLH (HH-SP). These benchmarks are

dedicated to the implemented online selection HH performance investigation. It implies the LLHs

usage with static parameters, therefore, we evaluate HH-SP performance with the default and

tuned beforehand LLH parameters. The experiment codes are following: 2.1, 2.2 for FRAMAB-

based HH-SP and 3.1, 3.2 for BRR-based HH-SP with default and tuned parameters respectively.

• Selection hyper-heuristic with parameter control in LLH (HH-PC). It is a �nal set of bench-

marks for concept evaluation. Here we evaluate an in�uence of simultaneous online LLH selection

and parameter control on optimization results. The benchmark set is encoded with the following

experiments: 1.3, 2.4, 2.5, 3.4, 3.5.

The aggregated concept benchmark plan is presented in Table 5.4. The required running time

approximately equals to 9 days and 18 hours on a single machine. Please note, the environment setup is

presented in Section 5.2.

5.4.2 Baseline Evaluation

As we discussed previously, the comparison of obtained results should be performed with the de�ned

baseline. In this section we review the meta-heuristics performance out-of-the-box on di�erent problem
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Table 5.4 Concept benchmark plan.

Experiment group Related codes

MH
4.1.1., 4.2.1, 4.3.1
4.1.2, 4.2.2, 4.3.2

MH-PC
4.1.3, 4.2.3, 4.3.3
4.1.4, 4.2.4, 4.3.4
4.1.5, 4.2.5, 4.3.5

HH-SP
1.1, 1.2
2.1, 2.2
3.1, 3.2

HH-PC
1.3
2.4, 2.5
3.4, 3.5

sizes and parameter settings. For the visibility reasons, here and on we plot the intermediate and

�nal performance evidence for each problem instance separately. All underlying TSP instances were

previously solved by other exact solvers, therefore, we also present an optimal solution, available for

each instance as a green dotted line, however, if it appears in a range of interest.

kroA100 and pr439 TSP instances. Both 100 and 439 cities TSPs are relatively small problem in-

stances. Therefore, all underlying MHs reach a local optimum after a few �rst external iterations. A

di�erence between the external and internal iterations is the following: the �rst ends, when the main

node sends the selected con�guration and receives its results from the worked node. On the contrary,

an internal iteration occurs inside LLH itself. Therefore, since the MHs quickly reach a local optimum

on these TSP instances, there is no reason to spend much time on their results review. We put a visual

representation of benchmarks for kroA100 and pr439 into the thesis appendix (Appendix A.1.1).

The only observation that is worth mentioning is SA result with tuned parameters. They are worse in

contrast to default values on kroA100 TSP instance. It is explained by the fact that for algorithm tuning

we used a di�erent problem instance (rat783). It only con�rms a motivation of the parameter control

approaches: tuning is a problem-dependent technique.

rat783 TSP instance. This is an average size problem reviewed in the thesis. The bold lines in

Figure 5.7 is a statistical mean for all 9 experiment runs with default (blue line) and tuned parameter

values (orange line). A shadow around these lines is a con�dence interval derived from 9 repeated runs.

Figure 5.7 Intermediate results of meta-heuristics with static parameters on rat783.
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One may observe how parameter setting di�erently a�ects MHs: in evolution strategies the changes

in performance is dramatic, while the results of simulated annealing (py.SA) are almost not a�ected.

We also observe a decreased performance stability of tuned jMetalPy ES meta-heuristic (py.ES). It is

re�ected in a large con�dence interval not only of the intermediate results, but also in a �nal solution

quality statistics (Section 5.4.2).

Figure 5.8 Final results of meta-heuristics with
static parameters on rat783.

jMetal.ES (j.ES) with default parameters per-

forms extremely slowly. However, using an op-

timized hyper-parameters it quickly reaches a local

optimum (after 50 external iterations) with the best

produced results among other heuristics (Figure 5.7

and Section 5.4.2). Analyzing the performance ev-

idence of Python-based solvers, we may conclude

that they almost reached local optima in given 15

minutes using tuned parameters, and their �nal

results are slightly worse than the ones produced

by j.ES (Section 5.4.2).

Please note, the trends’ perturbation at the end

of presented tuned py.ES is caused by the di�er-

ence in number of external iterations among all

runs (left �gure in Figure 5.7, tuned parameters).

This number varies, since we used the wall-clock

BRISEv2 termination criterion, but in some cases

due to our implementation �aws LLHs reported with the delay or too hastily, ignoring given 15 seconds

running time. Thus, the system managed to perform di�erent numbers of external iterations. The used

in this thesis visualization software
1

estimates results average and deviation at each external iteration

over all 9 performed runs. Thus, if one (or several) experiment execution(s) managed to perform more

iterations than the majority of others, trends on this exceeding iterations will be respectively changed.

Unfortunately, this perturbation appears in most of the progress charts, therefore, we perform the

comparison of the �nal results by means of separately presented box-plots.

pla7397 TSP instance. The largest TSP instance investigated in this thesis for a 7.4 thousand of

cities is, however, referred to as a middle-size OP in used TSPLIB95. With this instance, the performance

evidence were changed the most, therefore, we discuss each MH behavior separately.

Python-based version of ES provides the worst results with both default and tuned parameters.

Please note, the number of performed iterations by this MH with default parameters is less 50. It is

caused by several reasons. Firstly, the amount of time required to perform an internal LLH iteration

increased dramatically. Thus, with speci�ed 15 seconds for one task run, it actually takes much more

time (up to 1 minute). It may be caused by the algorithm code basis implementation. To implement

generic termination criteria (and some other features) the authors utilized a push-observer design

pattern [6], according to which the underlying algorithm triggers its observers after �nishing internal

iteration. Therefore, the stopping criteria are evaluated only after �nishing the iteration, which in case

of running py.ES with TSP instance for 7.4 thousand cities takes a while depending on the algorithm

con�guration. For instance, with parameters {mu=5, lambda=10} termination happens in time, while

setting {mu=500, lambda=500} the required number of computations is much higher, therefore, we

observe the ES algorithm termination after a very �rst internal iteration. This also causes a poor solution

quality improvements. Naturally, there is also overhead in the results sending through the network, but

1

Python Seaborn data visualization framework web page: seaborn.pydata.org
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comparing the performance of Java-based ES with default parameter values, this overhead caused the

decrease only in 50 external iterations. We also eliminate a possible issue in a required time for problem

loading (building the TSP distance matrix), since using problem instance caching (see Section 4.4.2),

the worker node does it only once. In any case, this issue requires a deeper investigation that we

postpone to the future work due to the time limits. With tuned parameters for py.ES, the issue with task

reporting delays disappears and, therefore, the number of external iterations is higher, but the solution

improvements are still weak (see left picture on the Figure 5.9).

Figure 5.10 Final results of meta-heuristics with
static parameters on pla7397.

As in the previous case, py.SA produces good

results quality improvements at each external it-

eration, least depending on the hyper-parameter

values. Even with a default con�guration, py.SA

outperforms the �nal results of py.ES after the �rst

50 external iterations. Setting the tuned parameter

values, the performance of the algorithm increases,

but not dramatically. A resulting progress curve,

presented in the middle of Figure 5.9, shows that

py.SA requires more time to converge that it was

provided and still far from its potential local optima

on pla7397 after 15 minutes.

j.ES is a perfect candidate to show, how impor-

tant is a parameter setting. With default con�gu-

ration j.ES is weak in making improving steps and

cannot compete with other algorithms. Our guess

here is the same as for the Python-based version:

the number of internal iterations is extremely low for making a good search space traversal. However, a

tuned version of j.ES outperforms all other solvers in intermediate (Figure 5.9) and �nal performance

terms (Section 5.4.2).

Discussion. The observed results of meta-heuristics execution con�rmed the algorithm parameter

setting problem importance, discussed in Section 2.3. An e�ect of proper parameter selection is di�erent

among available algorithms. In our case, the performance of two out of three solvers is highly dependent

on the hyper-parameter settings (ESs). Thus, an application of the proposed in Chapter 3 generic

parameter control approach to these algorithms is rather intriguing and may reveal the proposed

methodology bene�ts.

From the other side, we observe the domination of only one algorithm among the others with static

parameters. See how all MHs were solving each TSP instance with default parameters: in each case

Figure 5.9 Intermediate results of meta-heuristics with static parameters on pla7397.
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Figure 5.11 Intermediate results of MH-PC on kroA100.

SA outperforms two other ESs. The usage of all three MHs in a selection hyper-heuristic with static

hyper-parameters will reveal is applicability. On the contrary, when we switch to the tuned parameter

usage, j.ES is preferred. We see it clearly when the MHs are applied to the largest TSP instance and,

therefore, we expect to observe this MH dominance in a selection hyper-heuristic with tuned LLHs.

5.4.3 Generic Parameter Control (MH-PC)

As discussed in Section 2.3.3, the goal of dynamic parameter setting is a maximization of underlying

algorithm performance measurements at runtime. In this part of evaluation we compare the performance

of algorithms with statically de�ned hyper-parameters (default and tuned) to performance of the same

algorithms with enabled generic RL-based parameter control.

kroA100 TSP instance. Generic parameter control on a small problem instance is able to outperform

the results of static parameters after �rst 50 iterations on all MHs (Figure 5.11). We may observe that even

the random changes hyper-parameters at runtime result in better solutions, comparing with statically

de�ned parameters (Figure 5.12). It is mainly caused by the changes in a neighborhood de�nition

(mutation type) and traversal process (mutation probability). In most cases, given enough time the

learning-based parameter assignment outperforms random allocation.

Please note, the number of performed by j.ES iterations in Figure 5.11. According to our plan, time for

optimization session equals 15 minutes. We de�ne 15 seconds for running one con�guration (external

iteration). We run 6 workers in parallel, which in the most optimistic case should perform
15·60·6

15 = 360
external iterations. However, we observe even more than 400. After an investigation, we have come to

the conclusion that it is caused by an implementation �aw of j.ES. While adding time-based termination

Figure 5.12 Final results of MH-PC on kroA100.
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Figure 5.13 Intermediate results of MH-PC on rat783.

criterion, we did not remove the previously existing iteration-based. For the iteration counter in jMetal

meta-heuristics a regular Java integer is used, which we set to its maximal value when using a time-based

criterion. Given a ‘light’ algorithm con�guration (low µ, λ and mutation probability) and a relatively

small OP, MH is able to reach the maximal number of iteration in less than 15 seconds, therefore,

terminating earlier and triggering a new external iteration. Certainly, it is our implementation �aw,

which should be �xed in a future work.

pr439 and rat783 TSP instances. In these two cases, the behavior of solvers was similar, therefore,

we decided to join their discussion and present only the plots for a larger instance (rat783). Still, the

intermediate and �nal performance representation for pr439 TSP instance can be found in Appendix A.1.2.

When the parameter control is applied to a larger problem instance, it starts to require more evidence

(external iterations) for �nding good-performing settings for py.ES. Concretely, the TPE-based parameter

control was the closest in approaching the quality of tuned parameters. All techniques produced highly

unstable intermediate and �nal results: please, draw your attention to the left side of Figure 5.13, and

�lled with blue boxes in Figure 5.14 respectively.

The results of parameter control application to less sensitive py.SA are the following: randomized pa-

rameter sampling settled on the level of default parameters quality. BRR-based parameter control yielded

a slightly better results, while TPE model approached the quality of tuned parameters (Figure 5.14).

On the contrary, generic parameter control in j.ES MH leads to results quality comparable with tuned

parameters (Figure 5.14). Please note, as for previous problem instance, even a random-based parameter

sampling outperforms default parameters when given enough time.

Figure 5.14 Final results of MH-PC on rat783.
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Figure 5.15 Intermediate results of MH-PC on pla7397.

pla7397 TSP instance. For the �nal problem instance we omit the results for py.ES, because it did

not manage to perform even the slightest improvement, compared with the default parameter values.

It is caused by the fact that in early stages our approach acts as a random search, since not enough

evidence were obtained to build prediction models.

As in previous cases, the least con�guration-sensitive py.SA shows an ability to perform almost

equally with any parameter settings (Figure 5.15). Neither among used control techniques was able to

outperform the results obtained by the tuned in o�ine algorithm (Figure 5.16).

As for j.ES, the model-based MH-PC outperforms the randomized parameter values allocation. More-

over, TPE-based control reached and outperformed even the results of hyper-parameters tuned in

o�ine.

Discussion. In general, the review of meta-heuristic performance on di�erent problem instances

showed that the proposed generic parameter control approach is able to yield not only the near-tuned

parameters quality, but in some cases even outperforming results.

Taking into account the results with random parameter allocation we make two conclusions. Firstly,

even randomized parameters changes are able to improve a potentially bad static hyper-parameter

setting (j.ES case). Secondly, the learning mechanisms should and must be improved further by means

of di�erent surrogate models usage. The proper technique for surrogate optimization should be used.

Leaving the improvement steps for future work, we conclude that the developed in this thesis generic

parameter control concept may be proposed as a replacement of the parameter tuning for meta-heuristics.

Figure 5.16 Final results of MH-PC on pla7397.
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Figure 5.17 Intermediate performance of HH-SP on rat783 (single experiment).

5.4.4 Selection Hyper-Heuristic with Static LLH Parameters (HH-SP)

The second mode of the developed approach is the RL-based selection hyper-heuristic, which descrip-

tion can be found in Section 3.5. Here we group three available LLHs (aforementioned py.ES, py.SA and

j.ES) with static parameter (default and tuned) into selection hyper-heuristic (HH-SP).

We present the problem-solving process in two forms. Firstly, we distinguish the selected at each

external iteration LLH. In order to do so, we visualize only the �rst repetition (out of 9 available).

Secondly, we present the �nal results of all runs in the form of box-plots and compare them with

the performance of underlying LLHs used executed separately (baseline). The left group of box-plots

presents the �nal solution quality obtained with the default parameter values, while on the right site

the results of tuned parameters are outlined.

kroA100, pr439 and rat783 TSP instances. Once again, we group relatively small problem instances

on which the implemented HH-SP performs similarly. To analyze this group, we selected the largest

instance among them: rat783, while the �gures depicting kroA100 and pr439 TSP instances may be

found in Appendix A.1.3.

We would like to draw the readers’ attention to HH-SP cases, in which the LLHs were used with the

default parameter values (upper row in Figure 5.17). According to baseline evaluation, there is only

one algorithm with a strong performance dominance: py.SA. Therefore, in Figure 5.17 we observe a

Figure 5.18 Final results of HH-SP on rat783 (statistic of 9 runs).
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Figure 5.19 Intermediate performance of HH-SP on pla7397 (single experiment).

high frequency of py.SA sampling by both learning-based selection strategies. One may distinguish

a repetitive pattern in LLH allocation with FRAMAB (middle column). It is caused by a deterministic

essence of the algorithm. Reaching a critical point, where other heuristics should be veri�ed, the

FRAMABs’ exploration mechanism fully guides a selection. Due to the time-based LLH termination

usage, all workers are starting the next round (mostly) in bunches. Thus, when a new round starts,

FRAMAB operates on static information and allocates all next con�gurations with the same LLH, which

turns to be the second best performing algorithm: j.ES. Therefore, we conclude that FRAMAB behaves

slightly inertly in our setup. One may argue this will cause a decrease in performance, which is a rather

logical conclusion. However, it requires further investigation, which we postpone for a future work.

In the case of BRR usage (right column in Figure 5.17), the bias is strongly shifted towards py.SA. It

de�nitely may cause the performance issues due to the lack of exploration. According to presented in

Figure 5.18 �nal results statistics, given at least one dominating LLH, HH-SP utilizes it enough times to

obtain a good �nal solution quality.

The next setup is LLHs with tuned parameters (lower row in Figure 5.17 and right side of Figure 5.17).

According to the baseline evaluation, all among available LLHs are able to tackle the problem instance

producing comparable solution quality, however, the performance di�erence still exists (Figure 5.18).

As a consequence, FRAMAB HLH learns it and frequently utilizes the best performing j.ES (lower row,

middle plot in Figure 5.17). On the contrary, BRR and random-based approaches sample all LLH types

evenly. We conclude that BRR is not as sensitive to the performance evidence and was ‘confused’, since

the process quickly converged into a local optimum. The quality of all HP-SP �nal results presented in

Figure 5.18 are at least as good, as the solution quality provided by the best underlying LLH.

pla7397 TSP instance. Our observations of HH-SP performance on the largest problem instance is

as follows. During the baseline evaluation, py.ES with default parameters had the worst performance,

while the tuned algorithm version was able to outperform only default j.ES. On the contrary, j.ES with

tuned parameters produced the best results, outperforming py.SA. The best meta-heuristic with default

parameters was py.SA. Therefore, we observe an expected behavior of HH-SP with default LLHs (upper

row in Figure 5.19): the most frequently sampled by learning-based HLH was py.SA. However, the

number of py.ES usages is suspiciously high in BRR case. Referring to the �nal results presented in

Figure 5.20, we observe a high diversity in quality when py.ES is allocated frequently (codes 1.1. and

3.1), which is expected behavior, when the performance of py.ES with default parameters is taken into

account.
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Talking about the tuned LLHs usage, we observe almost equal performance of all LLH sampling

approaches, comparable to the baseline results. The solution quality of random-based HLH is slightly

worse, in comparison to the results of FRAMAB- and BRR-based HH-SP due to their j.ES preference (see

right chart in Figure 5.20).

Discussion. According to our observations of the developed HH-SP performance, we conclude that the

proposed concept implementation operates as expected: HH-SP provides similar to the best underlying

LLH results. Two implemented selection HLH are performing slightly di�erently when reaching a

local optimum. We claim the FRAMAB is a more perspective HLH, since it starts to balance between

previously good performing LLH exposing good exploration abilities. In the cases when an advantage

of one LLH changes to another, BRR may need more time to learn this.

The observed issues call not only for a thorough investigation (pla7397 code 1.1, 3.1), but also for a

generic approach to handle potential �aws in the LLH implementation that may cause issues in overall

execution process.

5.4.5 Selection Hyper-Heuristic with Parameter Control (HH-PC)

The �nal evaluation is dedicated to the performance analysis of the suggested approach of merging

the online selection hyper-heuristic with the generic parameter control technique. A minimal goal is to

reach the best underlying LLH performance with tuned hyper-parameters. In this evaluation set we

follow the used for HH-SP method of intermediate results visualization, distinguishing allocated LLH

types at each iteration for single repetition. We compare the quality of �nal results in relation to all

repetitions with a baseline using box-plots.

kroA100, pr439 and rat783 TSP instances. The decision of joining all three TSP instances is moti-

vated by a similar to aforementioned reasons: the intermediate and �nal performance are rather similar

among problem instances and do not require separate review, therefore, here we present only a single

case (rat783). The results for all other problems may be found in Appendix A.1.4.

During the solving process similar to HH-SP patterns of algorithm allocation may be observed for both

FRAMAB-based (codes 2.4, 2.5) and BRR (codes 3.4, 3.5) HLHs. However, in this case the intermediate

results are slightly di�ering, since the parameter control started to search for a good LLHs con�guration

(Figure 5.21).

Let us �rstly draw the readers’ attention to HH-PC with FRAMAB-based LLH selection and TPE-based

parameter sampling (code 2.4 in Figure 5.21). At the beginning of solving process, j.ES was performing

Figure 5.20 Final results of HH-SP on pla7397 (statistic of 9 runs).
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extremely well, for this reason FRAMAB was sampling it with a higher frequency. When a solving

process reached its local optima (nearly 50th iteration), FRAMAB switched to exploration of the other

algorithms. An appeared ‘noise’ in the results of both ES heuristics is caused by a boolean parameter

elitist, which de�nes the selection strategy and may result in the solution quality degradation (more

details in Section 2.2.2). From an absence of the noise in later stages of 2.4 and 3.4, we may conclude

that TPE has found elitist=True parameter value to be perspective. On the contrary, BRR-based

parameter controller did not �nd these parameters and glancing on the �nal results quality (Figure 5.22)

we conclude the BRR �nds statistically worse performing parameters, in comparison to TPE. Also,

we must not ignore the fact of early reaching a local optimum by the search processes (see shapes of

progress curves in Figure 5.21). In such case, the parameter search may be biased towards exploration.

For that we need to introduce the other progress metrics, such as stagnation detection (used in EA

parameter control approaches [65]) and perform multi-objective surrogate optimization, maximizing

improvement and minimizing stagnation. Since it is a rather considerable amount of e�ort, we postpone

this enhancement for the future work.

In Figure 5.22 we clearly see the dominating j.ES MH with tuned parameters (code 4.3.2). The quality

of the �nal solution, produced by HH-PC is slightly lower than the best performing tuned j.ES. This may

be explained by a lack of performance evidence obtained for the learning models, since the optimization

reached its local optima too quickly.

pla7397 TSP instance. During these benchmarks, the issue with py.ES made a crucial change in the

overall number of iterations where it was used many times (codes 1.3, 3.4, 3.5 in Figure 5.23). While the

case of fully randomized HH-PC (code 1.3) is clear, a BRR LLH selection did use this LLH frequently,

because it may have produced good quality solutions as a result of parameter control. On the contrary,

FRAMAB LLH selection in combination with TPE parameter tuning (code 2.4) managed to �nd good

parameters for py.SA, therefore, utilized it most often. When the FRAMABs’ exploration component

weight reached critical point, the other LLHs usage was triggered and as a result, HH-PC switched to

j.ES usage. This switch later gave dramatic result improvements (code 2.4 Figure 5.23). The FRAMAB

LLH selection with BRR parameter control (code 2.5) at the beginning was using the mixture of mainly

two j.ES and py.SA, but later switched to the simulated annealing-only usage. As we may see, it gave

fast coarse-grained solution improvements at the beginning, and stable, but rather slow �ne-grained

improvements in the later stage.

Figure 5.21 Intermediate performance of HH-PC on rat783 (single experiment).
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Figure 5.22 Final results of HH-PC compared with MH on rat783 (statistic of 9 runs).

Figure 5.23 Intermediate performance of HH-PC on pla7397 (single experiment).

The �nal results quality charts (Figure 5.24) depict a dominance of FRAMAB-based LLH selection

(codes 2.4, 2.5) over BRR-based and TPE-based parameter control (codes 2.4 and 3.4) over BRR-based

(codes 2.5, 3.5). line, the obtained results with BRR-based parameter control are more stable than

provided by TPE-surrogates. The quality of �nal results did not reach the best performing tuned j.ES

(code 4.3.2) due to the issue with py.ES. However, since the optimization process did not settle in the

local optima, we have a doubt that HH-PC will not outperform j.ES given the same number of external

iterations. For a better intuition, let us draw the readers’ attention to Figure 5.25. Please note, how

HH-PCs are approaching j.ES progress curve. If it were not for the issue with a number of external

iterations, the results would be better and, probably, outperforming the best available tuned j.ES.

Discussion. The observed results of tackling the united APSP problem by HH-PC are encouraging.

Our approach managed to reach and in some cases even outperform the results of the best underlying

LLH with tuned hyper-parameters on small problem instances (kroA100, pr439, rat783). When the

problem size signi�cantly grows (pla7397), the gap between HH-PC and the best performing LLH started

to increase. An explanation for this is simple: the system needs to build surrogate models not for single,

but for multiple LLHs parameters and, therefore, requires more performance evidence in comparison to

MH-PC or HH-SP. line, an amount of information only decreases as a consequence of an issue with py.ES.

Since the parameter values are not selected to properly re�ect the LLHs performance, the algorithm
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selection process also straggles. To overcome the problem with lack of information we (1) need to �x

the aforementioned issue and (2) may execute an additional meta-learning step before the beginning of

optimization session. An investigation of this rather intriguing idea is postponed for the future work.

5.4.6 Concept Evaluation Results Discussion

We aggregate the results of each implemented mode in Tables 5.5 and 5.6. In each of them the baseline

is de�ned as the best results obtained by the underlying meta-heuristics used separately with static

parameters. As an example, the baseline for kroA100 TSP instance is de�ned by jMetalPy.SA with

default parameters, while tuned jMetal.ES produced the best solutions for pla7397. The results for each

experiment separately are presented in Appendix A.2.

In Table 5.5 we compare the baseline with the best results in each mode. For instance, consider MH-PC.

Statistically, the best average results for kroA100 (27178) were produced by jMetal.ES with TPE control

(code 4.3.4), while the baseline is 39560. Therefore, the average result of the best MH-PC equals to 0.687

of the baseline. We perform a similar aggregation for HH-SP, excluding the experiments, where LLHs

were used with tuned parameters (therefore, selecting the best among 1.1, 2.1 and 3.1 codes). As for

HH-PC, we pick the best averaged results in all available experiments, for instance, on kroA100 it was

code 3.4 (HH-PC with FRMAB LLH selection and TPE parameter control) with 30396 average result.

Our conclusion on Table 5.5 is as follows: if one knows which among available meta-heuristics

statistically produces better results (with properly selected parameters), the preference is to use the

proposed generic parameter control (MH-PC) approach.

Table 5.5 The best solution quality obtained by each mode compared with the best underlying
meta-heuristic (baseline) on four TSP instances (lower is better).

TSP Instance Baseline MH-PC HH-SP HH-PC
kroA100 1 0.687 0.961 0.768

pr439 1 0.973 1.072 0.988
rat783 1 1.081 1.448 1.064

pla7397 1 0.985 2.228 1.546

However, the situation changes dramatically if one does not know, which meta-heuristic is the best

among available. In Table 5.6 we aggregate the average results over all experiments in each mode. It

means that the results of all meta-heuristics with parameter control are taken into account to estimate

averaged MH-PC gain. However, we need to exclude several experiments to perform a fair comparison.

Figure 5.24 Final results of HH-PC compared with MH on pla7397 (statistic of 9 runs).
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Figure 5.25 HH-PC and tuned jMetal ES solving process comparison on pla7397 (statistic of 9 runs).

Table 5.6 Average solution quality obtained by each mode compared with the best underlying
meta-heuristic (baseline) on four TSP instances (lower is better).

TSP Instance Baseline MH-PC HH-SP HH-PC
kroA100 1 0.841 0.975 0.773

pr439 1 1.106 1.1 1.017
rat783 1 2.034 1.45 1.1

pla7397 1 2.139 2.36 1.93

For MH-PC we exclude the random-based parameter selection (4.1.3, 4.2.3, 4.3.3 codes). For both HH-SP

and HH-PC modes we similarly exclude the random-based LLH and parameter selection (1.1 and 1.3

codes). Also, for HH-SP we ignore the experiments with tuned in o�ine meta-heuristics (1.2, 2.2, 3.2).

Therefore, our conclusion for cases, when one has several meta-heuristics, but does not know, which

is the best among them, the complex approach of simultaneous online algorithm selection and parameter

tuning (HH-PC) should be preferred due to its strong dominance over MH-PC and HH-SP modes.

5.5 Analysis of HH-PC Settings

The second benchmark is dedicated to the evaluation of system settings’ in�uence on the solving

process. Due to limited time we decided to perform the parameter analysis only for the most complex

system mode: online selection hyper-heuristic with parameter control in low-level heuristics (HH-PC).

5.5.1 Evaluation Plan

Similarly to the concept evaluation, we start this set of benchmarks from the planning. For comparison

basis we selected one statistically better performing HH-PC setup, in which FRAMAB was used for

the algorithm selection, and TPE for parameter control respectively. Implemented FRAMAB algorithm

exposes only one hyper-parameter: the balancing coe�cient C. In Section 4.3.3 we discussed it values and

also proposed an approach to replace this static value by dynamically derived from results deviation. In

all previous tests we used exactly this approach. TPE implementation exposes split size parameter, which

de�nes the percentage of available data, used to create a distribution of good-performing parameter

values (see TPE description during HpBandSter framework review in Section 2.3.2). In the previous

experiments we used 1/3 of available data to construct a good distribution. The overall amount of

information, used to construct the surrogate models was controlled by a shared parameter window
size. In our evaluations we were using 80% of available information at each point in time. As one may
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remember, we did not implement an elegant algorithm for surrogates optimization, but used the random

search instead to select the best parameter set by means of their results on surrogates. Thus, we used a

prede�ned number (96, the default value in BRISEv2) of randomly sampled parameter values on each

level (more details in Section 4.3.3). Also, our setup included 6 workers and task execution time was

set to 15 seconds. The implemented RL approach implies the iterative solving process, therefore, the

workers were sending a complete bunch of obtained solutions to main node after accomplishing a task.

All aforementioned characteristics form three groups of experiments:

1. Learning granularity group is designed to investigate the in�uence of performance evidence

amount and quality to optimization process. It is formed by such parameters as window size, task
time and number of workers.

2. Learning models con�guration group of experiments is dedicated to investigate the in�uence

of HLH parameters on the quality of the results and includes FRAMAB C coe�cient, TPE split size
and random search size.

3. Amount of warming-up information is a self-describing experiment, dedicated to investigate

an in�uence of warming-up solutions numbers to initialize LLH at each external iteration.

We de�ne the estimation values for the proposed parameters in Table 5.7.

Table 5.7 Prediction techniques used for the concept evaluation.

Parameter Investigated values Default value
Learning granularity

Window size 30%, 50%, 100% 80%
Task time 5, 10, 30 seconds 15 seconds

Number of workers 3, 9, 12 6
Learning models configuration

TPE split size 10%, 50%, 70% 30%
FRAMAB C coe�icient Static 0.001, 0.01, 0.1 STD-based

Random search size 50, 200 96
Amount of warming-up information

Warming-up solutions one all

We set all other parameters as they were con�gured during HH-PC evaluation: the experiment

running time is set to 15 minutes, the number of experiment repetitions is 9 and the search space is

unchanged.

The idea of performing the full factorial design was quickly abandoned, since it requires 46 days of

non-stop experiment running. Therefore, the performed one-exchange benchmark design resulted in 18

experiments, which needed 40,5 hours to perform 9 repetitions.

5.5.2 Learning Granularity

In this experiment we investigate the in�uence of RL routines con�guration on learning process. The

idea is as follows. Changing the window size, task time and number of workers, the underlying surrogate

models may learn a di�erent dependencies picture. For instance, if we increase a task time, each sampled

con�guration will be measured more thoroughly, however, given the same experiment running time,

the overall number of iteration will be decreased. On the contrary, by increasing a number of workers, a

portion of investigated APSP space will be increased, therefore, the underlying learning models will

construct more precise surrogates.
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Please note, the perturbations at the end of progress charts are caused by the same issue with the

number of performed iterations, discussed in Section 5.4.2.

Figure 5.26 Influence of HH-PC (code 2.4) window size on pla7397 TSP instance solving process.

Window size. According to our expectations in Section 3.3, this parameter is responsible for the

forgetting mechanism, which is required to follow possibly changing trends in optimization process.

In Figure 5.26 we presented the results obtained with four di�erent window sizes. We observe that

the best results are obtained, when the learning models were used all the available information, in other

words, with disabled forgetting mechanism. On the contrary, with the smallest window size the quality

of �nal results is expectedly the worst. A trend could be observed, according to which HH-PC provides

a better quality of results with larger window size. In our previous benchmarks we were using 80% of

the available information, which corresponds to the middle-quality parameter value.

Our conclusion is the following: with this problem instance and system setup, changes in the learning

process and parameter preference are mostly negligible, therefore, the forgetting mechanism should be

disabled. In the future, it would be rather intriguing to investigate this parameter in�uence on other,

potentially dynamic problem instances.

Figure 5.27 Influence of HH-PC (code 2.4) task time on pla7397 TSP instance solving process.

Task time. Varying the time for one task evaluation (external iteration), one will dramatically change

the granularity of obtained results. For instance, in our experiments with the least task time (5 seconds)

HH-PC performed more than 600 external iterations, while with the largest budged (30 seconds), this

number was approximately 150 (Figure 5.27). As we previously observed, more information does not

necessarily imply better surrogate models creation. Used during the concept evaluation 15 seconds task

time provided the worst results. Boundary cases of 5 and 30 seconds of task time gave rather unstable

results (see box-plots in Figure 5.27). The former is full of too approximately evaluated parameters,

while the later simply did not manage to perform enough iterations. Balancing between results stability

and quality, we conclude that for the current setup statistically better choice would be to set a task
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running time equal 10 seconds.

Figure 5.28 Influence of HH-PC (code 2.4) workers number on pla7397 TSP instance solving process.

Number of workers. The in�uence of workers’ number was a surprise to us. According to our

expectations, with a growing number of LLH runners, the proportion of estimated parameter space

increases. However, instead of getting better quality surrogate models and, as a result, improving sampled

parameters performance, we observe the opposite behavior. For increasing number of workers the results

became worse and worse (see box-plots in Figure 5.28). Currently, we do not have a comprehensive

explanation of the observed behavior, except for the possible surrogate models over-�tting. It is a

broadly studied problem in the ML �eld, according to which the model learns too complex hypothesis,

which cannot generalize well to unforeseen data. Thus, in our case it is possible that being over-�tted,

surrogates did not adequately predict results for sampled parameters and, therefore, guided prediction

process in a wrong direction. In any case, this behavior requires more comprehensive investigation in

the future work.

5.5.3 Learning Models Configuration

We perform this set of experiments for getting an intuition about the underlying high-level heuristic

con�guration in�uence on a general performance.

TPE split size. The internals of Bayesian TPE approach for parameter sampling were described in

Section 2.3.2. With small split size, only elite parameter values form a good distribution, therefore, an

overall sampling process happens to be more greedy or, in other words, biased towards exploitation.

According to our observations, visualized in Figure 5.29, the more greedy parameter allocation produces

statistically better results (10%), while usage of 70% split showed the worst potential.

Figure 5.29 Influence of HH-PC (code 2.4) TPE split size on pla7397 TSP instance solving process.
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a) Statistical results comparison.

b) One run distinguishing di�erent LLHs allocation.

Figure 5.30 Influence of HH-PC (code 2.4) FRAMAB C coe�icient on pla7397 TSP instance solving
process.

FRAMAB C coe�icient. As the reader remembers from FRAMAB description, presented in Sec-

tion 4.3.3, the role of coe�cient C is to control the EvE balance while selecting the LLH. In our imple-

mentation we proposed to replace C with the improvements standard deviation, therefore, in �rst set of

benchmarks we exclusively used this, STD-based FRAMAB regime.

The results of performed benchmarks with di�erent C values are presented in Figure 5.30. More

concretely, in Figure 5.30a we compare statistics of all repetitions with di�erent parameter values.

We conclude, the proposed parameter-less (STD-based) FRAMAB version produces similar results in

comparison to other cases. When C (or STD) is large, the exploration-related component of FRAMABs’

UCB value is increased, therefore, more di�erent algorithms are used for optimization. However, when

the C value is decreased, only several switches may be observed (Figure 5.30b). An intriguing idea arises

to introduce the technique for FRAMAB parameter control, according to which, the entire LLH portfolio

is utilized at the beginning with high C value, while approaching the end C is increased to concentrate

on the best-performing LLH.

Random search size. This HLH parameter con�gures the random search process, performed over the

created surrogate models. According to our expectations, the increased random search size should result

in a more precise parameter values prediction and as a consequence, to performance gain. However,

evaluating random search sizes of 50 and 200 samples respectively, the obtained results happen to be

not as we expected. In general, we observe a quality �uctuation, which is caused by the randomized

processes. It only motivates us to implement a proper surrogate optimization technique for improving a

robustness of the prediction process.
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Figure 5.31 Influence of HH-PC (code 2.4) random search size for surrogate optimization on pla7397
TSP instance solving process.

5.5.4 Amount of Warming-up Information

Figure 5.32 Influence of HH-PC (code 2.4) warming-up solution number on pla7397 TSP instance
solving process.

Here we evaluate how the number of warming-up solutions a�ects the search. Our intuition during

the implementation was following: we should initialize the solver with all previously obtained solutions

not to lose the derived optimization trajectory and traversal velocity. However, it is relevant only to the

population-based algorithms, such as evolution strategy or potential genetic algorithm.

After changing this behavior to only one warming-up solution usage, we surprisingly found out that

the quality of the results was almost not a�ected: please, pay attention to overlapping progress curves

in a left side of Figure 5.32. Moreover, by passing only one solution between LLHs we dramatically

increased the overall number of external iterations (for more than 50%). It is caused by the reduced

overhead for information processing and sending through the network. We conclude that changing the

behavior to only one warming-up solution usage provides a positive impact on the quality of the �nal

results and does not a�ect the intermediate performance of meta-heuristics.

5.6 Conclusion

The evaluation of proposed concept was presented in this Chapter and performed in two stages. At

the �rst stage an analysis of the implemented concept applicability was performed. We compared it with

a baseline, de�ned by the executed in isolation underlying meta-heuristics with static hyper-parameters.

Our conclusions on the concept applicability are following:

• Firstly, the proposed reinforcement learning-based generic parameter control approach (MH-PC)
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is able to signi�cantly improve the performance of meta-heuristics’ static hyper-parameters and

in some cases even outperform the quality of tuned at the design time parameters.

• Secondly, the developed heuristic selection technique (HH-SP) is able to reach a quality of the

best performing underlying low-level heuristic.

• Finally, the approach for simultaneous online algorithm selection and parameter tuning (HH-

PC) outperforms the best underlying algorithm with tuned parameters on rather small problem

instances (kroA100, pr439). With growing complexity, HH-PC only approaches the quality of the

best available algorithm with tuned parameters.

Our conclusions on the implemented concept usage are the following: when the dominance among

meta-heuristics is known beforehand, one should consider the MH-PC usage with this MH; if the

dominance is not known, but the parameters of meta-heuristics are already tuned (which may be rare

use-case), one should consider HH-SP usage; but if the dominance of MHs is not known and proper

parameter values are unknown as well, one should naturally utilize the proposed HH-PC concept to

tackle the optimization problem at hand.

In the second part of evaluation we investigated the HH-PC con�guration in�uence on its performance.

The impact of some among evaluated parameters was not as we expected, which only motivates the

importance of a proper parameter values search and usage. More concretely, an insertion of the relatively

light forgetting mechanism instead of improving only made the results statistically slightly worse. The

increased number of workers only decreased surrogate models accuracy. The decision on all available

solutions usage for LLH initialization introduced a redundant overhead, but did not improve �nal

results quality, therefore, it should be reconsidered. Nevertheless, a set of experiments from the second

evaluation stage should also be performed over the other system operating modes (MH-PC and HH-SP)

and problem instances. By doing so, we will be able to make a con�dent conclusion about the stability

and impact of di�erent parameter values. Up until now, it revealed the system adaptation ability with

help of exposed parameters and helped us �nd several incorrect decisions.

80



6 Conclusion

Before making a �nal conclusion, let us brie�y remind our objective. The task of this thesis was

de�ned as follows: using an existing parameter tuning software proposes a concept to (1) perform

the parameter control in meta-heuristics on a generic level and (2) make both algorithm selection and

parameter control solve the optimization problem at hand. In our research the complex objective was

split into several compound tasks, which were formulated in three research questions (Section 1.2). Here

we provide explicit answers to each of them.

The proposed in this thesis generic parameter control approach relies on two aspects. Firstly, it should

be possible to evaluate the performance of the system under control with speci�ed con�guration at any

time. The ideal option is to limit the system execution with the budget speci�ed beforehand (number

of iterations, wall-clock time, etc). Secondly, it should be possible to change the target algorithm

con�guration and proceed with the execution basing on previously obtained results. We use the

reinforcement learning methodologies to traverse the parameter space, evaluating the performance

of unforeseen con�gurations iteratively, while solving the problem at hand. The proposed concept of

generic parameter control was examined in Section 5.4.3 with three meta-heuristics: two Python-based

algorithms, namely, simulated annealing and evolution strategy and one Java-based evolution strategy.

The proposed approach revealed its applicability by reaching, and in some cases even outperforming the

results of tuned in o�ine algorithm parameters. Therefore, we answer the RQ1: it is indeed possible

to perform the algorithm con�guration at runtime on the generic level. Please note, the use-cases of

our concept are de�ned by the algorithms, in which execution time is much larger than time spent to

parameter control routines (see Section 3.1).

RQ2 Is it possible to simultaneously perform algorithm selection and parameters adaptation while solv-
ing an optimization problem?

Our idea of merging those two problems lays in treating the algorithm type as a regular categorical

parameter in the search space. By utilizing the parent-child relationships we de�ne dependent parameters

in such search space and perform the selection by means of �rstly sampling the independent parameters

and hiding the children, and secondly �xing the selected for parents’ values and exposing the activated
children parameters. The proposed stepwise process of con�guration construction provides a possibility

to utilize a wide range of surrogate models for learning the dependencies among parameter values on

each level in isolation. The requirements and use-cases of the proposed approach remain the same as

for the generic parameter control technique de�ned above.

RQ3 What is the e�ect of selecting and adapting algorithms while solving an optimization problem?
The performed in Section 5.4.5 evaluation and analysis of the simultaneous online algorithm selection

and parameter control revealed its applicability. More speci�cally, given the same wall-clock time

and environment setup, HH-PC was able to outperform the best underlying tuned meta-heuristics for

kroA100 TSP instance. For a slightly larger pr439 example, HH-PC results were comparable with the best

tuned in o�ine meta-heuristic. With problem size growing further, the gap between HH-PC and the best

available solver, used in isolation with tuned parameters increases. However, comparing the averaged

quality of all available solvers used in isolation with the results of our approach, we observe a strong
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domination of later. Therefore, our answer to RQ3 is the following: HH-PC constantly produces good

quality results and should be considered if the meta-heuristics domination and their hyper-parameters

are unknown beforehand. However, a considerable amount of solution quality is sacri�ced to tackle

APSP problem, in comparison to the best underlying algorithm usage with tuned parameters.

An explicit list of this thesis contributions is the following:

1. The concept of reinforcement learning-based generic parameter control in meta-heuristics was

proposed and empirically evaluated.

2. The uni�cation of both online algorithm selection and generic parameter control approaches

into single APSP is performed. The approach to tackle APSP is proposed by means of rein-

forcement learning-based online selection hyper-heuristic with parameter control in low-level

meta-heuristics.

3. The usability of an existing parameter tuning SPL BRISEv2 was extended with aforementioned

use-cases without losing the �exibility of a wide range of learning models usage. Moreover, the

concept of data preprocessing was encapsulated.

We consider the task of this thesis accomplished and the proposed reinforcement learning-based

generic parameter control and algorithm selection approaches useful for solving the optimization

problems with the help of meta-heuristics.
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In this chapter we discuss the investigations, postponed for future work. We organized them into

several groups and sort each of them in the descendant order by means of urgency and importance.

Section 7.1 is dedicated to the prediction process and learning models used in HLH of developed approach.

In Section 7.2 we discuss a set of enhancements for the search space that should be performed for better

usability. Finally, in Section 7.3 we discuss benchmark experiments, required to obtain better evidence

about the proposed approach applicability and HH-PC in particular.

7.1 Prediction Process

Surrogate optimization generalization. In Section 4.3 we discussed the process of parameter values

prediction based on surrogate models. A classical approach of optimization with surrogates implies

two steps. Firstly, the models should be constructed and evaluated by means of their accuracy. If the

model is not accurate enough, it could result in a wrong prediction and as a consequence in wrong

optimization guidance. After getting a proper model, the second step should be performed, namely,

surrogate optimization. It is an actual process of prediction making, which is bases on construction

of con�guration and using surrogate to estimate its quality. In our work we used a random search

surrogate optimization technique instead of implementing a more sophisticated algorithm due to the

lack of time. However, the evaluation of random search intensity (Figure 5.31) revealed the urgency of

this question, since the quality of random search results is not stable. Therefore, one of the �rst steps in

future work should be the implementation of proper algorithm for surrogate model optimization.

Process metrics for reinforcement learning. The proposed concept of reinforcement learning-

guided parameter space traversal is based on the estimation of relative improvement, performed by the

selected parameters (Section 3.1). However, the amount of obtained information may not be enough

to truly estimate the con�guration quality. We would like to emphasize that it is not a problem of the

surrogates, but of the reinforcement learning. Thus, the possible improvement of results may be obtained

from adding additional RL metrics. For instance, a RL-based parameter control for EAs [65] besides

algorithm-dependent metrics, such as genotypic and phenotypic diversity, �tness standard deviation

(in population) used also algorithm-independent metrics such as �tness improvement and stagnation

counter. While improvement estimation is already used in our concept, the later, namely, a stagnation

estimation is a possible candidate for additional learning metrics. Please note, using several such metrics,

the surrogate optimization process turns to be a multi-objective OP.

Meta-/o�line learning phase. Relying fully on the online learning, in early stages (while surro-

gate models cannot be constructed properly due to lack of information) our concept behaves like a

random search. However, many studies somehow related to proposed technique reported a signi�cant

performance boost in early stages, if the o�ine or in other words meta-learning was performed. More

speci�cally, in [44] (also discussed in Section 2.4) the authors performed meta-learning to pre-train

their surrogate models for guiding the search at the beginning. In [115] the authors developed selection

hyper-heuristic with mixed learning type, therefore, before an actual run, the o�ine phase was executed
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to guide the online selection at early stages. In our system we could use the results of previously executed

experiments for similar scenario case to guide right from the start not only the LLH selection, but also

the parameter control.

Separately we would like to highlight a recent study [13], in which the authors also suggest to

use reinforcement learning approach to solve a similar dynamic algorithm con�guration problem. In

their work the problem was enclosed in Markov decision processes, which include meta-learning step:

learning across the problem instances.

7.2 Search Space

Composition on numerical parameters. In current implementation of the search space we high-

light that it is able to form the parent-child relationship only when parent is of the categorical type

( Section 4.2.2). However, it may happen, when the dependencies among parameters are based on their

numeric values. As an example, imagine the algorithm in which for one parameter values range the

�rst child type should be exposed, while for the other range — another child. As a possible solution we

propose utilizing an approach, similar to the one used in categorical parameters, but instead of a single

activation value, use ranges. Thus, during the prediction propagation step the parameter entity will

check all ranges and expose the related children (for more details see description of the Listing 4.6).

Constraints among parameters. Sometimes, the prohibitions for speci�c values may arise with

respect to other parameters. For instance, the value of one numeric parameter should be at least as high

as the value of the other. In this case, along with activation values the notion of deactivation values may

be introduced.

7.3 Evaluations and Benchmarks

The presented in Chapter 5 evaluation contains only the coarse-grained set of experiments, however,

the proposed in this thesis concept of merging algorithm selection and parameter control comprises

several building blocks, each of which should be thoroughly evaluated separately. Therefore, here we

propose a set of �ne-grained directions for future evaluation.

7.3.1 Use-Case Evaluation

Optimization problems. The advantage of hyper-heuristics lays in their ability to tackle a family
or class of optimization problems, de�led by underlying low-level heuristics. Due to this �exibility of

hyper-heuristics in general and the proposed concept in particular, by changing the domain-dependent

components of low-level heuristics one will be able to tackle numbers of other optimization problems. Our

evaluation in Chapter 5 is performed only on a traveling salesman problem. However, the combinatorial

problems also include other types such as �ow-shop scheduling [53], nurse rostering [26], knapsack [99],

n-queens [97] and many other real-life and synthetic optimization problems. Used in our implementation

jMetalPy framework [6] out of the box includes domain-dependent components for aforementioned

knapsack problem, but thanks to its �exibility it is relatively easy to add other problem types.

Construction hyper-heuristics. The idea discussed in Section 2.2.5 of construction hyper-heuristics

implies the algorithm creation from the building blocks. In our work we treated the mutation, crossover,
selection types as the categorical parameters of underlying LLHs. However, in used jMetal and jMetalPy

frameworks these parameters are implemented as separate operators that should be speci�ed during
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the algorithm instantiation. Therefore, the proposed concepts of search space and RL-based parameter

assignment may be evaluated also for the construction hyper-heuristic cases.

Automatic machine learning. Making a step further from construction hyper-heuristic, an orthog-

onal research direction of an automatic machine learning �eld is exposed. The framework reviewed

in Section 2.4 deals with the construction of machine learning pipelines that operate on datasets. In

our approach, the proposed representation of the search space may be used to de�ne the ML pipeline

structure. For instance, the �rst several levels of our search space may encode the data preprocessing in

ML pipeline. The successive level denotes the ML algorithm instances, while the �nal level is dedicated

to validation technique. This system use-case should be evaluated against the already proposed solutions

in automatic machine learning �eld, for instance, AutoSklearn [44], TPOT [88] and many others.

7.3.2 System Configuration Evaluation

The benchmark set, presented in Section 5.5 is dedicated to the implemented concept con�guration

evaluation. Due to the time constraints, we were able to probe only a few system modes and settings.

Nevertheless, a vast bunch of experiments should be conducted urgently.

Modes of operation. In Section 5.5 only to HH-PC mode was benchmarked. However, it includes

two other modes, namely MH-PC and HH-SP, which con�guration should be evaluated separately

by means of (1) underlying surrogate models settings, (2) adding more LLHs. While the in�uence of

the �rst direction was partially relieved in Section 5.5, the second direction, which is relevant only to

HH-SP and HH-PC modes requires more clari�cation. By extending the search space with more LLHs,

the RL will require more information (in terms of external iterations) for tuning available LLHs and

di�erentiating among them by means of their performance. It is clear that with LLH number growth,

the �nal performance gap between the best performing (tuned) LLH and HH-PS (HH-PC) will increase.

The goal of these experiments will lay in a dependency estimation between search space complexity

and the introducing RL-based search overhead.

Reinforcement learning configuration. Another worth-to-mention course of investigation is the

in�uence of currently implemented RL-based optimization approach. The experiments with di�erent

TSP instances showed ine�ciency of strictly de�ned time-based external iterations. For instance, with

kroA100 TSP most of the used LLHs reached the local optimum after a couple of �rst external iterations

and settled there till the end of optimization process. Thus, the adaptive external iteration time should

be introduced, which analyze the process stagnation and thus, be able to terminate the optimization

session earlier.

On the contrary, instead of time-based mechanism for external iteration termination, one may also

limit the number of internal iterations performed by LLH. Using this mechanism the set of use-cases

may be extended, with the expensive for evaluation optimization problems.
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A Evaluation Results

A.1 Results in Figures

A.1.1 Baseline

Figure A.1 Intermediate results of meta-heuristics with static parameters on kroA100.

Figure A.2 Intermediate results of meta-heuristics with static parameters on pr439.
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A Evaluation Results

a) kroA100 TSP instance. b) pr439 TSP instance.

Figure A.3 Final results of meta-heuristics with static parameters.

A.1.2 Parameter Control

Figure A.4 Intermediate results of meta-heuristics with parameter control on pr439.

Figure A.5 Final results of meta-heuristics with parameter control on pr439.

A.1.3 Selection Hyper-Heuristic with Static LLH Parameters
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A.1 Results in Figures

Figure A.6 Intermediate performance of on-line selection hyper-heuristic with static
hyper-parameters on kroA100 (single experiment).

Figure A.7 Final results of on-line selection hyper-heuristic with static hyper-parameters on kroA100
(statistic of 9 runs).
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A Evaluation Results

Figure A.8 Intermediate performance of on-line selection hyper-heuristic with static
hyper-parameters on pr439 (single experiment).

Figure A.9 Final results of on-line selection hyper-heuristic with static hyper-parameters on pr439
(statistic of 9 runs).
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A.1 Results in Figures

A.1.4 Selection Hyper-Heuristic with Parameter Control

Figure A.10 Intermediate performance of HH-PC on kroA100 (single experiment).

Figure A.11 Final results of HH-PC compared with MH on kroA100 (statistic of 9 runs).
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A Evaluation Results

Figure A.12 Intermediate performance of HH-PC on pr439 (single experiment).

Figure A.13 Final results of HH-PC compared with MH on pr439 (statistic of 9 runs).
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A.2 Results in numbers

A.2 Results in numbers

Table A.1 Found paths distances for kroA100 TSP instance (optimal path length is 21282). The best
result in experiment group is highlighted in bold, while the best result found for problem instance is

also underscored.

Solver Results
Group Code Best found Average STD

Baseline

4.1.1 131075 133596 1249
4.1.2 33809 39572 3738
4.2.1 36368 39560 3191
4.2.2 38216 42819 3149
4.3.1 131453 134141 1634
4.3.2 36522 39905 2242

MH-PC

4.1.3 33160 35219 1760
4.1.4 27563 35265 4836
4.1.5 31223 34790 2727
4.2.3 34902 37986 2548
4.2.4 32264 37145 3008
4.2.5 31481 36497 3575
4.3.3 24415 29768 5202
4.3.4 23855 27178 1851
4.3.5 24567 28793 3209

HH-SP

1.1 35853 40057 2585
1.2 33692 39261 3431
2.1 33868 39135 3132
2.2 35312 38920 2711
3.1 33704 38019 2237
3.2 36818 40461 2565

HH-PC

1.3 27741 32404 4133
2.4 24019 30652 3958
2.5 25160 30764 2869
3.4 23132 30396 5407
3.5 22345 30564 5826
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A Evaluation Results

Table A.2 Found paths distances for pr439 TSP instance (optimal path length is 107217). The best
result in experiment group is highlighted in bold, while the best result found for problem instance is

also underscored.

Solver Results
Group Code Best found Average STD

Baseline

4.1.1 1625689 1663522 22427
4.1.2 278214 319803 18705
4.2.1 316973 340823 12546
4.2.2 285220 325721 23970
4.3.1 1685919 1713684 14766
4.3.2 301964 338969 22113

MH-PC

4.1.3 423043 450570 20626
4.1.4 327995 354661 18535
4.1.5 425453 445088 20507
4.2.3 316908 337100 15007
4.2.4 308850 351326 55555
4.2.5 324957 343358 12607
4.3.3 264713 316496 27886
4.3.4 289704 317360 15600
4.3.5 273744 311078 19442

HH-SP

1.1 332095 351533 13784
1.2 308913 332514 24001
2.1 331487 360533 25971
2.2 288830 313859 19735
3.1 311906 342915 19211
3.2 306461 334998 15175

HH-PC

1.3 309552 334987 18995
2.4 295015 324616 21519
2.5 291299 315932 18866
3.4 299884 333992 17465
3.5 293607 325887 21150
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A.2 Results in numbers

Table A.3 Found paths distances for rat783 TSP instance (optimal path length is 8806). The best
result in experiment group is highlighted in bold, while the best result found for problem instance is

also underscored.

Solver Results
Group Code Best found Average STD

Baseline

4.1.1 150799 156314 4157
4.1.2 30350 39203 12357
4.2.1 31873 35157 2825
4.2.2 27215 30094 1393
4.3.1 164349 165617 644
4.3.2 23015 23964 724

MH-PC

4.1.3 57003 94429 49422
4.1.4 38223 78434 59507
4.1.5 62964 96369 48767
4.2.3 32459 34229 1305
4.2.4 30335 31545 749
4.2.5 31475 33691 1784
4.3.3 23607 26183 1353
4.3.4 24517 25916 952
4.3.5 25202 26450 796

HH-SP

1.1 34490 36637 1132
1.2 23341 24233 741
2.1 33029 34794 1444
2.2 22816 24324 1007
3.1 32006 34693 1507
3.2 22927 24149 797

HH-PC

1.3 23292 26921 2430
2.4 23512 25500 1334
2.5 25388 26721 908
3.4 23488 26129 1801
3.5 25105 27114 1233
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A Evaluation Results

Table A.4 Found paths distances for pla7397 TSP instance (optimal path length is 23260728). The
best result in experiment group is highlighted in bold, while the best result found for problem

instance is also underscored.

Solver Results
Group Code Best found Average STD

Baseline

4.1.1 2730074917 2737831472 4225616
4.1.2 2421486544 2432905011 7405688
4.2.1 1360505168 1380256720 13657387
4.2.2 1162583357 1171728906 5239671
4.3.1 2633785765 2648540705 8181262
4.3.2 761509264 775957737 10846169

MH-PC

4.1.3 2729415229 2738113236 7383459
4.1.4 2712114799 2734298124 9381522
4.1.5 2723433962 2732529772 5694368
4.2.3 1354022277 1369131424 11698311
4.2.4 1186230750 1407196180 292371422
4.2.5 1255612025 1271166341 14802252
4.3.3 933923318 1109347363 85835240
4.3.4 663489188 764140101 108747262
4.3.5 903993065 1048196489 109819327

HH-SP

1.1 1777658580 2203819260 437999367
1.2 794461798 832754319 22848007
2.1 1569150086 1728591281 364476875
2.2 775887027 794478412 13501812
3.1 1475527859 1934187052 449660041
3.2 777931654 791768317 14578963

HH-PC

1.3 1687855495 1815721794 87307521
2.4 912264049 1199738016 205533985
2.5 1354196166 1460681037 57770764
3.4 1026880309 1579805637 375451837
3.5 1629147332 1736442893 89413787
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