5,143 research outputs found

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G){1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of dNd\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33

    Bounds on the Game Transversal Number in Hypergraphs

    Get PDF
    Let H=(V,E)H = (V,E) be a hypergraph with vertex set VV and edge set EE of order \nH = |V| and size \mH = |E|. A transversal in HH is a subset of vertices in HH that has a nonempty intersection with every edge of HH. A vertex hits an edge if it belongs to that edge. The transversal game played on HH involves of two players, \emph{Edge-hitter} and \emph{Staller}, who take turns choosing a vertex from HH. Each vertex chosen must hit at least one edge not hit by the vertices previously chosen. The game ends when the set of vertices chosen becomes a transversal in HH. Edge-hitter wishes to minimize the number of vertices chosen in the game, while Staller wishes to maximize it. The \emph{game transversal number}, τg(H)\tau_g(H), of HH is the number of vertices chosen when Edge-hitter starts the game and both players play optimally. We compare the game transversal number of a hypergraph with its transversal number, and also present an important fact concerning the monotonicity of τg\tau_g, that we call the Transversal Continuation Principle. It is known that if HH is a hypergraph with all edges of size at least~22, and HH is not a 44-cycle, then \tau_g(H) \le \frac{4}{11}(\nH+\mH); and if HH is a (loopless) graph, then \tau_g(H) \le \frac{1}{3}(\nH + \mH + 1). We prove that if HH is a 33-uniform hypergraph, then \tau_g(H) \le \frac{5}{16}(\nH + \mH), and if HH is 44-uniform, then \tau_g(H) \le \frac{71}{252}(\nH + \mH).Comment: 23 pages

    Absorption Time of the Moran Process

    Get PDF
    The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n^4) on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we show that the expected absorption time is Omega(n log n) and O(n^2). We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.Comment: minor change

    Evolutionary Games on Networks and Payoff Invariance Under Replicator Dynamics

    Full text link
    The commonly used accumulated payoff scheme is not invariant with respect to shifts of payoff values when applied locally in degree-inhomogeneous population structures. We propose a suitably modified payoff scheme and we show both formally and by numerical simulation, that it leaves the replicator dynamics invariant with respect to affine transformations of the game payoff matrix. We then show empirically that, using the modified payoff scheme, an interesting amount of cooperation can be reached in three paradigmatic non-cooperative two-person games in populations that are structured according to graphs that have a marked degree inhomogeneity, similar to actual graphs found in society. The three games are the Prisoner's Dilemma, the Hawks-Doves and the Stag-Hunt. This confirms previous important observations that, under certain conditions, cooperation may emerge in such network-structured populations, even though standard replicator dynamics for mixing populations prescribes equilibria in which cooperation is totally absent in the Prisoner's Dilemma, and it is less widespread in the other two games.Comment: 20 pages, 8 figures; to appear on BioSystem
    corecore