324 research outputs found

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    Choice degrees in decision-making: A comparison between intuitionistic and fuzzy preference relations approaches

    Get PDF
    Preference modelling based on Atanassov’s intuitionistic fuzzy sets are gaining increasing relevance in the field of group decision making as they provide experts with a flexible and simple tool to express their preferences on a set of alternative options, while allowing, at the same time, to accommodate experts’ preference uncertainty, which is inherent to all decision making processes. A key issue within this framework is the provision of efficient methods to rank alternatives, from best to worse, taking into account the peculiarities that this type of preference representation format presents. In this contribution we analyse the relationships between the main method proposed and used by researchers to rank alternatives using intuitionistic fuzzy sets, the score degree function, and the well known choice degree based on Orlovsky’s non-dominance concept for the case when the preferences are expressed by means of fuzzy preference relations. This relationship study will provide the necessary theoretical results to support the implementation of Orlovsky’s non-dominance concept to define the fuzzy quantifier guided non-dominance choice degree for intuitionistic fuzzy preference relations

    AN EXTENDED SINGLE-VALUED NEUTROSOPHIC AHP AND MULTIMOORA METHOD TO EVALUATE THE OPTIMAL TRAINING AIRCRAFT FOR FLIGHT TRAINING ORGANIZATIONS

    Get PDF
    Aircraft’s training is crucial for a flight training organization (FTO). Therefore, an important decision that these organizations should wisely consider the choice of aircraft to be bought among many alternatives. The criteria for evaluating the optimal training aircraft for FTOs are collected based on the survey approach. Single valued neutrosophic sets (SVNS) have the degree of truth, indeterminacy, and falsity membership functions and, as a special case, neutrosophic sets (NS) deal with inconsistent environments. In this regard, this study has extended a single-valued neutrosophic analytic hierarchy process (AHP) based on multi-objective optimization on the basis of ratio analysis plus a full multiplicative form (MULTIMOORA) to rank the training aircraft as the alternatives. Moreover, a sensitivity analysis is performed to demonstrate the stability of the developed method. Finally, a comparison between the results of the developed approach and the existing approaches for validating the developed approach is discussed. This analysis shows that the proposed approach is efficient and with the other methods

    Modified EDAS Method Based on Cumulative Prospect Theory for Multiple Attributes Group Decision Making with Interval-valued Intuitionistic Fuzzy Information

    Full text link
    The Interval-valued intuitionistic fuzzy sets (IVIFSs) based on the intuitionistic fuzzy sets combines the classical decision method is in its research and application is attracting attention. After comparative analysis, there are multiple classical methods with IVIFSs information have been applied into many practical issues. In this paper, we extended the classical EDAS method based on cumulative prospect theory (CPT) considering the decision makers (DMs) psychological factor under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, the original EDAS method based on the CPT under IVIFSs (IVIF-CPT-MABAC) method is built for MAGDM issues. Meanwhile, information entropy method is used to evaluate the attribute weight. Finally, a numerical example for project selection of green technology venture capital has been given and some comparisons is used to illustrate advantages of IVIF-CPT-MABAC method and some comparison analysis and sensitivity analysis are applied to prove this new methods effectiveness and stability.Comment: 48 page

    New Trends in Neutrosophic Theory and Applications Volume II

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Single valued neutrosophic sets have found their way into several hybrid systems, such as neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert set, rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful applications of single valued neutrosophic sets have been developed in multiple criteria and multiple attribute decision making. This second volume collects original research and application papers from different perspectives covering different areas of neutrosophic studies, such as decision making, graph theory, image processing, probability theory, topology, and some theoretical papers. This volume contains four sections: DECISION MAKING, NEUTROSOPHIC GRAPH THEORY, IMAGE PROCESSING, ALGEBRA AND OTHER PAPERS. First paper (Pu Ji, Peng-fei Cheng, Hongyu Zhang, Jianqiang Wang. Interval valued neutrosophic Bonferroni mean operators and the application in the selection of renewable energy) aims to construct selection approaches for renewable energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed

    An ε-Constraint Method for Multiobjective Linear Programming in Intuitionistic Fuzzy Environment

    Get PDF
    Effective decision-making requires well-founded optimization models and algorithms tolerant of real-world uncertainties. In the mid-1980s, intuitionistic fuzzy set theory emerged as another mathematical framework to deal with the uncertainty of subjective judgments and made it possible to represent hesitancy in a decision-making problem. Nowadays, intuitionistic fuzzy multiobjective linear programming (IFMOLP) problems are a topic of extensive research, for which a considerable number of solution approaches are being developed. Among the available solution approaches, ranking function-based approaches stand out for their simplicity to transform these problems into conventional ones. However, these approaches do not always guarantee Pareto optimal solutions. In this study, the concepts of dominance and Pareto optimality are extended to the intuitionistic fuzzy case by using lexicographic criteria for ranking triangular intuitionistic fuzzy numbers (TIFNs). Furthermore, an intuitionistic fuzzy epsilon-constraint method is proposed to solve IFMOLP problems with TIFNs. The proposed method is illustrated by solving two intuitionistic fuzzy transportation problems addressed in two studies (S. Mahajan and S. K. Gupta's, "On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions," Ann Oper Res, vol. 296, no. 1, pp. 211-241, 2021, and Ghosh et al.'s, "Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem," Complex Intell Syst, vol. 7, no. 2, pp. 1009-1023, 2021). Results show that, in contrast with Mahajan and Gupta's and Ghosh et al.'s methods, the proposed method guarantees Pareto optimality and also makes it possible to obtain multiple solutions to the problems.MCIN/AEI PID2020-112754GB-I00FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-TIC-640-UGR2

    Matrix Game with Payoffs Represented by Triangular Dual Hesitant Fuzzy Numbers

    Get PDF
    Matrix Game with Payoffs RepresentedDue to the complexity of information or the inaccuracy of decision-makers’ cognition, it is difficult for experts to quantify the information accurately in the decision-making process. However, the integration of the fuzzy set and game theory provides a way to help decision makers solve the problem. This research aims to develop a methodology for solving matrix game with payoffs represented by triangular dual hesitant fuzzy numbers (TDHFNs). First, the definition of TDHFNs with their cut sets are presented. The inequality relations between two TDHFNs are also introduced. Second, the matrix game with payoffs represented by TDHFNs is investigated. Moreover, two TDHFNs programming models are transformed into two linear programming models to obtain the numerical solution of the proposed fuzzy matrix game. Furthermore, a case study is given to to illustrate the efficiency and applicability of the proposed methodology. Our results also demonstrate the advantage of the proposed concept of TDHFNs
    corecore