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Abstract—Preference modelling based on Atanassov’s intu-
itionistic fuzzy sets are gaining increasing relevance in the field
of group decision making as they provide experts with a flexible
and simple tool to express their preferences on a set of alternative
options, while allowing, at the same time, to accommodate
experts’ preference uncertainty, which is inherent to all decision
making processes. A key issue within this framework is the
provision of efficient methods to rank alternatives, from best
to worse, taking into account the peculiarities that this type of
preference representation format presents. In this contribution
we analyse the relationships between the main method proposed
and used by researchers to rank alternatives using intuitionistic
fuzzy sets, the score degree function, and the well known choice
degree based on Orlovsky’s non-dominance concept for the case
when the preferences are expressed by means of fuzzy preference
relations. This relationship study will provide the necessary
theoretical results to support the implementation of Orlovsky’s
non-dominance concept to define the fuzzy quantifier guided
non-dominance choice degree for intuitionistic fuzzy preference
relations.

I. INTRODUCTION

Intuitionistic fuzzy sets (IFSs), which are characterised
by three functions expressing degrees of membership, non-
membership, and hesitation (or indeterminacy) have received
increasing attention since they were proposed by Atanassov
[2]. This is mainly due to their flexibility in handling vague-
ness and uncertainty. For this reason, intuitionistic fuzzy set
theory has been extensively used in many research areas, such
as virtual medical diagnosis [12], pattern recognition [23],
clustering analysis [28] and decision making [21], [24]–[26].

In any decision making process, after the opinions of the
experts have been fused using an appropriate aggregation
operator, the aggregated Intuitionistic Fuzzy Numbers (IFNs)
are compared to produce a final ranking of the alternatives.
However, according to Yager [30], the comparison of Fuzzy
Numbers (FNs) is a problem that has been extensively studied
but no unique best approach has been found yet. Most of
the time, the choosing of the comparison method to use is a
matter of preference or might be context dependent. Indeed a
widely used ranking approach, which was originally proposed

by Zadeh in [31], translates the FNs into a representative crisp
value, and performs the comparison on them [19], [30]. Recall
that a FN is particular type of IFN. Thus, the same conclusion
applies to the latter. Consequently, an important research topic
regards the development of methodologies to make possible
the comparison of criterion values that are expressed by IFSs
in order to produce a ranking of them. Among the existing
comparison approaches of IFNs, it worth highlighting the
predominantly use of methods based on the score and accuracy
degree functions. A comprehensive comparative analysis of
existing score degree and accuracy degree functions has been
reported in [7].

An alternative ranking methodology is the one based on the
concept of non-dominance degree [14] of one alternative over
the fuzzy majority of the rest of the alternatives, which extends
the original non-dominance degree of preference introduced
by Orlovsky’s in [18]. This methodology is well used and de-
veloped in a framework where opinions are represented using
fuzzy preference relations and/or fuzzy linguistic preference
relations [1], [15].

Although a substantial number of studies have examined
decision approaches using score functions in the context of
intuitionistic fuzzy preference relations and dominance and
non-dominance degrees for fuzzy preference relations, the
issue of comparing the solutions yielded by means of both
approaches has not been explored yet. Therefore, the main
objective of this contribution is to analyse the relationship
between both types of ranking approaches when working
with intuitionistic fuzzy preference relations. To carry out
this study, the mathematical equivalence between the set of
reciprocal intuitionistic fuzzy preference relations and the
set of asymmetric fuzzy preference relations pointed out by
the authors in [22] will be exploited, as well as the score
fuzzy preference relation associated to an intuitionistic fuzzy
preference relation proposed in [24].

The rest of the paper is set out as follows: Section II
presents the main mathematical frameworks for representing
preferences and the basics concepts needed throughout the
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rest of the paper. The one-to-one correspondence between the
set of intuitionistic fuzzy preference relations and the set of
asymmetric fuzzy preference relations is revisited as well in
this section. Section III briefly reviews the extensive research
on ranking functions by means of score and accuracy degrees
and also by means of fuzzy quantifier guided dominance and
fuzzy quantifier non-dominance selection approaches. This
section also revisits the reciprocal score fuzzy preference
relation associated to an intuitionistic fuzzy preference rela-
tion. The comparative analysis of the ranking approaches for
intuitionistic fuzzy preference relations and fuzzy preference
relations is provided in Section IV. This study will provide
the mathematical foundation to introduce Orlovsky’s non-
dominance concept to define the fuzzy quantifier guided non-
dominance choice degree for intuitionistic fuzzy preference
relations. Finally, Section V draws conclusions and presents
some future work.

II. PREFERENCE RELATIONS IN DECISION MAKING

In group decision making problems, once the set of feasible
alternatives (X) is identified, experts are called to express their
opinions or preferences on such set. Different preference elici-
tation methods were compared in [17], where it was concluded
that pairwise comparison methods are more accurate than non-
pairwise methods because they allow the expert to focus on
two alternatives at a time. A comparison of two alternatives by
an expert can lead to the preference of one alternative to the
other or to a state of indifference between them. Obviously,
there is the possibility of an expert being unable to compare
them. Two main mathematical models based on the concept
of preference relation can be used in this context. In the first
one, a preference relation is defined for each one of the above
three possible preference states mentioned above (preference,
indifference, incomparability) [11], which is usually referred
to as a preference structure on the set of alternatives [20]. The
second one integrates the three possible preference states into
a single preference relation [3]. In this paper, we focus on the
second one as per the following definition:

Definition 1 (Preference Relation). A preference relation P
on a set X is a binary relation µP : X ×X → D, where D is
the domain of representation of preference degrees provided
by the decision maker.

A preference relation P may be conveniently represented
by a matrix P = (pi j) of dimension #X , with pi j = µP(xi,x j)
being interpreted as the degree or intensity of preference
of alternative xi over x j. The elements of P can be of a
numeric or linguistic nature, i.e., could represent numeric or
linguistic preferences, respectively. The main types of numeric
preference relations used in decision making are: crisp pref-
erence relations, additive preference relations, multiplicative
preference relations, interval-valued preference relations and
intuitionistic preference relations. A comprehensive survey of
them have been reported on [27], which the reader is encour-
aged to consult for further particulars. In this contribution, the

focus is on fuzzy preference relations and intuitionistic fuzzy
preference relations.

A. Fuzzy Set and Fuzzy Preference Relation

Definition 2 (Fuzzy Set). Let U be a universal set defined in
a specific problem, with a generic element denoted by x. A
fuzzy set X in U is a set of ordered pairs:

X =
{
(x,µX (x))|x ∈U

}
where µX : U → [0,1] is called the membership function of A
and µX (x) represents the degree of membership of the element
x in X .

The degree of non-membership of the element x in X is
here defined as νX (x) = 1−µX (x). Thus, µX (x)+νX (x) = 1.

Definition 3 (Fuzzy Preference Relation). A fuzzy preference
relation R = (ri j) on a finite set of alternatives X is a fuzzy
relation in X × X that is characterised by a membership
function µR : X×X −→ [0,1] with the following interpretation:
• ri j = 1 indicates the maximum degree of preference for

xi over x j
• ri j ∈]0.5,1[ indicates a definite preference for xi over x j
• ri j = 1/2 indicates indifference between xi and x j

When
ri j + r ji = 1 ∀i, j ∈ {1, . . . ,n}

is imposed the fuzzy preference relation is called reciprocal.

B. Intuitionistic Fuzzy Set and Intuitionistic Fuzzy Preference
Relation

The concept of an Intuitionistic Fuzzy Set (IFS) was intro-
duced by Atanassov in [2]:

Definition 4 (Intuitionistic Fuzzy Set). An intuitionistic fuzzy
set X over a universe of discourse U is given by

X =
{(

x,〈µX (x),νX (x)〉
)∣∣x ∈U

}
where µX : U → [0,1], and νX : U → [0,1] verify

0≤ µX (x)+νX (x)≤ 1 ∀x ∈U.

µX (x) and νX (x) represent the degree of membership and
degree of non-membership of x in X, respectively.

An intuitionistic fuzzy set becomes a fuzzy set when
µX (x) = 1− νX (x) ∀x ∈ U . However, when there exists at
least one value x ∈U such that µX (x) < 1− νX (x), an extra
parameter has to be taken into account when working with
intuitionistic fuzzy sets: the hesitancy degree, τX (x) = 1−
µX (x)−νX (x), that represents the amount of lacking informa-
tion in determining the membership of x to X . If the hesitation
degree is zero, the reciprocal relationship between membership
and non-membership makes the latter one unnecessary in the
formulation as it can be derived from the former.

Szmidt and Kacprzyk in [21] defined the intuitionistic fuzzy
preference relation as a generalisation of the concept of fuzzy
preference relation.



Definition 5 (Intuitionistic Fuzzy Preference Relation). An
intuitionistic fuzzy preference relation B on a finite set of
alternatives X = {x1, . . . ,xn} is characterised by a membership
function µB : X ×X → [0,1] and a non-membership function
νB : X×X → [0,1] such that

0≤ µB(xi,x j)+νB(xi,x j)≤ 1 ∀(xi,x j) ∈ X×X .

with µB(xi,x j) = µi j interpreted as the certainty degree up to
which xi is preferred to x j; and νB(xi,x j) = νi j interpreted as
the certainty degree up to which xi is non-preferred to x j.

An intuitionistic fuzzy preference relation can also be
represented by a matrix B = (bi j) with bi j = 〈µi j,νi j〉 ∀i, j =
1,2, . . . ,n, and it is referred to as reciprocal when the following
additional conditions are impossed:
• µii = νii = 0.5 ∀i ∈ {1, . . . ,n}.
• µ ji = νi j∀i, j ∈ {1, . . . ,n}.
Notice that when the hesitancy degree function is the null

function in a reciprocal intuitionistic fuzzy preference relation,
B = (bi j) = (

〈
µi j,νi j

〉
), then it is µi j +νi j = 1 ∀i, j, and B is

mathematically equivalent to the reciprocal fuzzy preference
relation R = (ri j) = (µi j).

C. Reciprocal Intuitionistic Fuzzy Preference Relations and
Asymmetric Fuzzy Preference Relations

Let us denote with B the set of reciprocal intuitionistic
fuzzy preference relations:

B =
{

B = (bi j)|∀i j : bi j =< µi j,νi j >, µi j,νi j ∈ [0,1],

µii = νii = 0.5 µi j = ν ji, 0≤ µi j +νi j ≤ 1
}

and with R the set of fuzzy preference relations

R =
{

R = (ri j)|∀i j : ri j ∈ [0,1]
}

Let us define the following mapping f : B −→R

f (B) = ( f (bi j)) = (µi j) = (ri j) = R.

We have:
• Function f is well defined, i.e. given B∈B it is true that

f (B) ∈R.
• Function f is an injection. Indeed, let B1 and B2 two

reciprocal intuitionistic fuzzy preference relations such
that f (B1) = f (B2). Then we have that

f (r1
i j) = f (r2

i j)⇔ µ
1
i j = µ

2
i j ∀i, j.

Because µ1
i j = ν1

ji and µ2
i j = ν2

ji then it is obvious that

ν
1
i j = ν

2
i j ∀i, j.

Therefore we have that

b1
i j =< µ

1
i j,ν

1
i j >=< µ

2
i j,ν

2
i j >= b2

i j ∀i, j.

Consequently, it is concluded that

B1 = B2.

• Function f is not a surjection as not all fuzzy preference
relations R ∈R verify 0 ≤ ri j + r ji ≤ 1. Thus the range
of function function f is the set of asymmetric fuzzy
preference relations.

Summarising:
There exists a one-to-one correspondence between the set of
reciprocal intuitionistic fuzzy preference relations and the set
of asymmetric fuzzy preference relations.

This result can be exploited to define concepts for an
intuitionistic fuzzy preference relation via the equivalent
known ones of the associated asymmetric fuzzy preference
relation. In particular, a methodology to derive a priority
vector for an intuitionistic fuzzy preference relation via its
corresponding fuzzy preference relation based on the concept
of non-dominance degree and to tackle the issue of incomplete
information in intuitionistic fuzzy preference relations in the
framework of group decision making was presented in [22].

III. RANKING APPROACHES

Ranking fuzzy numbers is often a necessary step in many
mathematical models specially in decision making under un-
certainty where the best alternative from all the available
ones needs to obtained. There are various approaches in the
literature to rank fuzzy numbers. As it was already mentioned,
a widely used approach to rank fuzzy numbers consists in
converting them into a representative crisp value, and performs
the comparison on them, a methodology originally proposed
by Zadeh in [31]. This approach has been proposed and used
in the selection process of decision making problems under
uncertainty where ranking of fuzzy or intuitionistic fuzzy sets
is a must to arrive at a decision [30]. Recently, a study
by Brunelli and Mezei [4] that compares different ranking
methods for fuzzy numbers concludes that ‘it is impossible
to give a final answer to the question on what ranking method
is the best. Most of the time choosing a method rather than
another is a matter of preference or is context dependent.’ Two
defuzzification methods widely used in fuzzy set theory are:
the centre of area method (COA) and the mean of maximum
method (MOM). The first one computes the centre of mass
of the membership function of the fuzzy set (the centroid),
whereas the second one computes the mid-point of the 1–level
set of the fuzzy set. In a fuzzy linguistic framework, the COA
method maintains the usually assumed underlying semantic
ranking relation within the set of fuzzy linguistic labels used
to assess preferences, i.e. given two fuzzy linguistic labels li, l j
such that COA(li) < COA(l j) then it is li < l j, and therefore
it is frequently used in such context. It is worth mentioning
that Brunelli and Mezei’s correlation study, and their centrality
analysis associated to the corresponding correlation network
representation, shows the centre of area method as one of
the highest central defuzzification methods. For a trapezoidal



fuzzy number Ã = (t1, t2, t3, t4) with membership function

µÃ(u) =



u− t1
t2− t1

if t1 < u < t2;

1 if t2 ≤ u≤ t3;
t4−u
t4− t3

if t3 < u < t4.

0 otherwise.

with base lengths a(= t3− t2) and b(= t4− t1) and left and
right side lengths c and d, it is

COA(Ã) =
b
2
+

(2a+b)(c2−d2)

6(b2−a2)
.

Under the assumed property of internal symmetry of the fuzzy
linguistic labels, i.e. for isosceles trapezoids with equal left and
right side lengths, it is

COA =
t4− t1

2
=

t3− t2
2

= MOM.

Later in the paper it is shown the apparent resemble between
this last expression of COA(Ã) and the score function for an
IFN.

In this section, we focus on the ranking methods more
extensively used in group decision making for the case when
the experts preferences have been expressed by means of fuzzy
preference relations and/or intuitionistic fuzzy preference re-
lations.

A. Ranking Approaches for Intuitionistic Fuzzy Sets

When working with IFSs there are two evaluation dimen-
sions: one for a positive outcome expectation (membership
degree) and one for a negative outcome expectation (non
membership degree). The score function can be viewed as the
net predisposition to signify the aggregated effect of positive
and negative evaluations.

The score function was first introduced and used by Chen
and Tan [6] to measure a vague value for multi-criteria fuzzy
decision making. In this case, given a Vague Set (VS) [13],
the score function was defined as the degree of membership
minus the degree of non-membership for such type of set.
Notice that since Bustince and Burillo proved in [5] that VSs
are IFSs, score functions can also be applied to measure the
degree of suitability of each alternative with respect to a set
of criteria presented in terms of intuitionistic fuzzy values.

Definition 6 (Chen and Tan’s IFS score function [6]). Given
an IFS A over X, with IFNs A(x) = {[µA(x),µA(x)+τA(x)]|x∈
X}, the score degree function of A is represented by

SCT (A) : X → [0,1]

SCT (A)(x) = µA(x)−νA(x) (1)

Later, Hong and Choi [16] introduced the accuracy func-
tion as the sum of the membership function and the non-
membership function of a vague number, pointing out that
the relationship between the score function and the accuracy
function is similar to the one between the mean and the
variance in statistics.

Definition 7 (Hong and Choi’s accuracy functions [16]).
Given an IFS A over X, with IFNs A(x) = {[µA(x),µA(x)+
τA(x)]|x∈X}, the accuracy degree function of A is represented
by

ACT (A) : X → [0,1]

AHC(A)(x) = µA(x)+νA(x) (2)

Notice that SCT (α)∈ [−1,1] while AHC(α)∈ [0,1], and that
both functions are related as follows:

AHC(A)(x) = SCT (A)(x)+2 ·νA(x) (3)

Thus, the following result is proved:

Proposition 1. Given an IFN α = 〈µ,ν〉, the following
inequality holds:

SCT (A)≤ AHC(A) (4)

Notice that when hesitancy is the null function, accuracy
does not play any role because it is always equal to 1.

Due to the fact that the score function is increasing with
respect to the degree of membership and decreasing with
respect to the degree of non-membership, from the point of
view of experts’ preferences about alternatives, the score value
can be interpreted as the degree of suitability/satisfaction of
x with the decision maker’s requirement. Thus, given a set of
alternatives X = {x1, . . . ,xn} evaluated by a decision maker
against a particular criterion using an IFS A over X , the
score evaluations associated to the alternatives {SCT (A)(xi); i=
1, . . . ,n} can be used to rank them using the following ordering
criterion rule:

xi ≺ x j⇔ SCT (A)(xi)< SCT (A)(x j). (5)

Wu and Chiclana proposed in [24] a new score function
that allows the derivation of a fuzzy preference relation (FPR)
from an intuitionistic fuzzy preference relation (IFPR).

Definition 8 (Wu and Chiclana’s IFS score function). Given
an IFS A over X, with IFNs A(x) = {[µA(x),µA(x)+τA(x)]|x∈
X}, the following score function can be computed

SWC(A) : X → [0,1]

SWC(A)(x) = µA(x)+
τA(x)

2
(6)

This new score function can be re-written as follows:

SWC(A)(x) =
µA(x)−νA(x)+1

2
. (7)

This means that SWC(A) and SCT (A) are ordering mathemat-
ically equivalent and so they will lead to the same ordering of
alternatives when the previous ordering rule (5) is applied.



B. Score FPR Associated to an IFPR

Wu and Chiclana present in [24] a method to derive a
FPR from an IFPR B = (bi j) via the application of the score
function SWC(A) (6), which it is called the score FPR (SFPR).

Proposition 2 (Score FPR (SFPR)). Let B= (bi j) be an IFPR.
Then P = (pi j) where

pi j = SWC(bi j) (8)

is a reciprocal FPR. P is called the score FPR (SFPR)
associated to the IFPR B.

Proof. Indeed, it is

pi j+ p ji = SWC(bi j)+SWC(b ji) =
µi j−νi j +1

2
+

µ ji−ν ji +1
2

.

Because B = (bi j) is an IFPR then µi j = ν ji and νi j = µ ji, and
therefore it is true that

pi j + p ji = 1 ∀i, j ∈ {1, . . . ,n}.

The following result proves that this method is consistent
with the case when the IFPR reduces to be a FPR, in which
case the SFPR coincides with the original FPR.

Corollary 1. Let B = (bi j) be an IFPR and P = (pi j) its
associated SFPR. If the hesitancy degree function is the null
function then B = P.

C. Fuzzy Quantifier Guided Selection Approaches based on
Dominance and Non-dominance Degree for Fuzzy Sets

Yager presented in [30] a methodology to formulate lin-
guistic expressions using ordered weighted average (OWA)
operators guided by fuzzy linguistic quantifiers [32].

A fuzzy linguistic quantifier is modelled by means of basic
unit-monotonic (BUM) function, Q, i.e.

Q : [0,1]→ [0,1]

Q(0) = 0

Q(1) = 1

Q(x)≥ Q(y) i f x≥ y.

The OWA operator weights are calculated as follows:

wi = Q
(

i
n

)
−Q

(
i−1

n

)
, i = 1, . . . ,n.

These non-decreasing relative fuzzy linguistic quantifiers have
been modelled in the literature with the following BUM
function Q

Q(x) =


0 0≤ x < a

x−a
b−a a≤ x≤ b
1 b < x≤ 1

a,b ∈ [0,1]. Notice that the election of different values for
the parameters a and b could lead to different types of fuzzy
quantifiers, for instance the fuzzy linguistic quantifier ‘most

of’ has been usually implemented by choosing the values
(a,b) = (0.3,0.8). Other membership functions are possible
though, and the parameterised family of regular increasing
monotone (RIM) quantifiers Q(r) = ra (a ≥ 0) suggested for
by Yager in [29] is one of them. This family of functions
guarantees that: (i) all the experts contribute to the final aggre-
gated value (strict monotonicity property), and (ii) associates,
when a ∈ [0,1], higher weight values to the aggregated values
with associated higher importance values (concavity property)
[10]. In particular, the value a = 1/2 is suggested to be used
to represent the fuzzy linguistic quantifier ‘most of’.

Based on this methodology, a fuzzy quantifier guided non-
dominance degree, which extends Orlovsky’s non-dominance
concept, for a FPR was presented in [8].

Given a fuzzy preference relation R = (ri j)|∀i j : ri j ∈ [0,1] :
1) The Fuzzy Quantifier Guided Dominance Degree

(QGDD) for the alternative xi quantifies the dominance
that alternative xi has over the fuzzy majority of the
remaining alternatives:

QGDDi = φQ (ri j, j = 1, . . . ,n) ,

with φQ being an OWA operator guided by the fuzzy
linguistic quantifier represented by the BUM function Q.

2) The Fuzzy Quantifier Guided Non Dominance Degree
(QGNDD) for the alternative xi quantifies the degree up
to which such alternative is not dominated by a fuzzy
majority of the remaining alternatives:

QGNDDi = φQ
(
1− rs

ji, j = 1, . . . ,n
)
,

with rs
ji = max

{
r ji− ri j,0

}
representing the degree up to

which xi is strictly dominated by x j [9].

IV. COMPARATIVE ANALYSIS OF THE RANKING
APPROACHES FOR IFPR AND FPR

The score degree plays a key role in multi-attribute decision
making problems where the experts’ preferences are expressed
by means of intuitionistic fuzzy information since they allow
the comparison of an alternative with respect to a criterion or
with respect to another alternative using intuitionistic fuzzy
sets. In the same way, dominance and non-dominance based
approaches are relevant to obtain a ranking of the alternatives
when the expert’s preferences are given by means of fuzzy
preference relations. In the previous section we have demon-
strated the existence of a one-to-one relationship between
the set of IFPS and the subset of the sort of FPRs that are
asymmetric. With this in mind, in this section we analyse the
relation between the main ranking approaches proposed for
both types of preference relations.

A. IFPR Score and Accuracy Degrees in Terms of Asymmetric
FPR

In the following we analyse the relation between the score
and accuracy functions defined for the case of intuitionistic
fuzzy preference relations and the asymmetric fuzzy prefer-
ence relations, taking into consideration the two score degrees
presented in the previous section.



Theorem 1. Let B = (bi j) with bi j = 〈µi j,νi j〉 be an IFPR
with equivalent asymmetric fuzzy preference relation R= (ri j).
Then:

• Chen and Tan’s score value, SCT (B), can be represented
as follows:

SCT (bi j) = ri j− r ji ∀i j (9)

• Hong and Choi’s accuracy value, AHC(B), is expressed
as follows:

AHC(bi j) = ri j + r ji ∀i j (10)

Proof. According to the one-to-one correspondence between
the set of intuitionistic fuzzy preference relations and the set of
asymmetric reciprocal fuzzy preference relations ri j = µi j and
under reciprocity < µi j,νi j >=< µ ji,ν ji > and so νi j = µ ji
and νi j = r ji.

B. Non-dominance Degree and Score Degree Relationships

In the following the analysis of the relationships between
the non-dominance degrees used to rank the fuzzy preference
relations and the score degrees for the case of intuitionistic
fuzzy preference relations is carried out.

1) Relationship between the Non-dominance Degree and
Cheng and Tan’s Score Degree.
Theorem 2 (Non-dominance via Cheng and Tan’s score
function). Let B = (bi j) with bi j = 〈µi j,νi j〉 be an IFPR
with equivalent asymmetric fuzzy preference relation R =
(ri j). The non-dominance degree associated to R can be
represented in terms of the Chen and Tan’s score value,
SCT , associated to B, as follows:

QGNDDi = φQ (1+min{SCT (bi j),0}, j = 1, . . . ,n) ,
(11)

Proof. Recall that

QGNDDi = φQ
(
1− rs

ji, j = 1, . . . ,n
)
,

with
rs

ji = max
{

r ji− ri j,0
}

Taking into consideration the one-to-one correspondence
between the set of intuitionistic fuzzy preference relations
and the set of asymmetric fuzzy preference relations, rs

ji
can be expressed by means of the membership and non
membership values in a intuitionistic fuzzy preference
relation as follows:

rs
ji = max

{
ν ji−µi j,0

}
Given that

SCT (bi j) = µi j−νi j,

the degree up to which xi is strictly dominated by x j can
be expressed in terms of the score value SCT as follows:

rs
ji = max

{
−SCT (bi j),0

}

Under reciprocity −SCT (bi j) = SCT (b ji). Therefore

1− rs
ji = 1−max{SCT (b ji),0}= min{1−SCT (b ji),1}
= min{1+SCT (bi j),1}= 1+min{SCT (bi j),0}

2) Relationship between the Non-dominance Degree and Wu
and Chiclana’s Score Degree.
Theorem 3 (Non dominance via Wu and Chiclana’s
score FPR associated to an IFPR). Let B = (bi j) with
bi j = 〈µi j,νi j〉 be an IFPR with equivalent asymmetric
fuzzy preference relation R = (ri j). The fuzzy quantifier
guided non-dominance degree associated to R can be
represented in terms of Wu and Chiclana’s score value,
SWC, associated to B, as follows:

QGNDDi = φQ (1−Ss
WC(b ji),0}, j = 1, . . . ,n) , (12)

with Ss
WC(b ji) = max

{
SWC(b ji)−SWC(bi j),0

}
Proof. The following holds:

SWC(bi j)−SWC(b ji) =
µi j−νi j +1

2
−

µ ji−ν ji +1
2

=
(µi j +ν ji)− (µ ji +νi j)

2
Because B= (bi j) is an IFPR then µi j = ν ji and νi j = µ ji,
and therefore it is

SWC(bi j)−SWC(b ji) =
2µi j−2µ ji

2
= µi j−µ ji

Taking that µi j = ri j, it is

rs
ji = max

{
r ji− ri j,0

}
= max

{
SWC(b ji)−SWC(bi j),0

}
Summarising

rs
ji = Ss

WC(b ji)

C. Fuzzy Non-dominance Degree for Intuitionistic Fuzzy Pref-
erence Relations

Let B = (bi j) with bi j = 〈µi j,νi j〉 be an IFPR. It has been
proved that two FPRs can be associated to the IFPR:
• The asymmetric FPR: R = (ri j) = (µi j).
• The score FPR: P = (pi j) = (SWC(bi j)).

Notice that in preference modelling, given an asymmetric
FPR, it is always possible to derive a reciprocal FPR. When
this procedure is applied, P is the reciprocal FPR that derives
from R.

A procedure to rank alternatives assessed via an IFPR B
could therefore be performed by applying the fuzzy quantifier
guided non-dominance degree to one of its two associated
FPRs given above. The issue that arises here is that the
ranking of alternatives could be different depending on which
FPR is used, i.e. the fuzzy quantifier guided non-dominance
degree obtained via FPR R could be different to the fuzzy
quantifier non-dominance degree obtained via FPR P and
ultimately could result in different ranking of alternatives.



This, obviously, is an undesirable outcome that does not
happen as Theorem 3 proved.

Indeed, let us denote by IQGNDDI and IQGNDDS the
fuzzy quantifier guided non-dominance degree of an IFPR
computed via its equivalent asymmetric FPR and score FPR,
respectively, i.e.

IQGNDDI
i = φQ

(
1− rs

ji, j = 1, . . . ,n
)

IQGNDDS
i = φQ

(
1− ps

ji, j = 1, . . . ,n
)

with rs
ji = max

{
r ji− ri j,0

}
and ps

ji = max
{

p ji− pi j,0
}

.
In Theorem 3, it was proved that

rs
ji = max

{
r ji− ri j,0

}
= max

{
SWC(b ji)−SWC(bi j),0

}
and therefore it is

ps
ji = rs

ji.

Consequently,

IQGNDDI
i ≡ IQGNDDS

i .

This result motivates the following definition of the fuzzy
quantifier guided non-dominance degree of an IFPR.

Definition 9. Let B = (bi j) with bi j = 〈µi j,νi j〉 be an IFPR.
The fuzzy quantifier guided non-dominance degree of alterna-
tive xi measures the degree up to which such alternative is not
dominated by a fuzzy majority of the remaining alternatives,
and it is expressed as follows:

IQGNDDi = φQ
(
1−µ

s
ji, j = 1, . . . ,n

)
,

with µ
s
ji = max

{
µ ji−µi j,0

}
.

The fuzzy quantifier guided dominance degree when applied
to the equivalent asymmetric FPR, R, is different to the fuzzy
quantifier guided dominance degree obtained when applied to
the score FPR, P. These only coincide when hesitancy degree
is the null function, i.e, τ ≡ 0. As dominance is based on the
level of degree of preference of an alternative over another
one, it makes sense in the case of an IFPR to define its
corresponding fuzzy quantifier guided dominance degree as
that of its equivalent asymmetric FPR.

Definition 10. Let B = (bi j) with bi j = 〈µi j,νi j〉 be an IFPR.
The fuzzy quantifier guided dominance degree of alternative xi
measures the degree up to which such alternative dominates a
fuzzy majority of the remaining alternatives, and it is expressed
as follows:

IQGDDi = φQ (µi j, j = 1, . . . ,n) .

V. CONCLUSIONS

Ranking fuzzy numbers is indispensable in group decision
making methodologies so as to obtain the best alternative from
the experts’ opinions. In this contribution we have compared
the methodologies proposed for intuitionistic fuzzy preference
relations (based on score and accuracy functions) and for fuzzy
preference relations (based on dominance and non dominance
degrees).

This study has been based on the proved one-to-one corre-
spondence between the intuitionistic fuzzy preference relations
and asymmetric fuzzy preference relations [22]. It has also
covered previous proposal to derive a reciprocal fuzzy prefer-
ence relation from an intuitionistic fuzzy preference relation
via the application of score function provided in in [24]. It has
been proved that the fuzzy quantifier guided non-dominance
degree of both the asymmetric fuzzy preference relation and
score fuzzy preference relation associated to an intuitionistic
fuzzy preference relation coincide.

The significance of this result resides in that in practice it
allows for the introduction of the fuzzy quantifier guided non-
dominance degree concept for intuitionistic fuzzy preference
relations in an unique and appropriate way.
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