376,857 research outputs found

    Stable laws and domains of attraction in free probability theory

    Full text link
    In this paper we determine the distributional behavior of sums of free (in the sense of Voiculescu) identically distributed, infinitesimal random variables. The theory is shown to parallel the classical theory of independent random variables, though the limit laws are usually quite different. Our work subsumes all previously known instances of weak convergence of sums of free, identically distributed random variables. In particular, we determine the domains of attraction of stable distributions in the free theory. These freely stable distributions are studied in detail in the appendix, where their unimodality and duality properties are demonstrated.Comment: 38 pages, published versio

    Asymptotic tail behavior of phase-type scale mixture distributions

    Get PDF
    We consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable YY and a nonnegative but otherwise arbitrary random variable SS called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable SS has discrete support --- such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.Comment: 18 pages, 0 figur

    Anomalous scaling due to correlations: Limit theorems and self-similar processes

    Full text link
    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, justify their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance.Comment: Through text revision. 15 pages, 3 figure

    Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions

    Get PDF
    We study the asymptotic laws for the spatial distribution and the number of connected components of zero sets of smooth Gaussian random functions of several real variables. The primary examples are various Gaussian ensembles of real-valued polynomials (algebraic or trigonometric) of large degree on the sphere or torus, and translation-invariant smooth Gaussian functions on the Euclidean space restricted to large domains
    corecore