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Abstract

We consider phase-type scale mixture distributions which correspond to distributions of a prod-
uct of two independent random variables: a phase-type random variable Y and a nonnegative
but otherwise arbitrary random variable S called the scaling random variable. We investigate
conditions for such a class of distributions to be either light- or heavy-tailed, we explore subex-
ponentiality and determine their maximum domains of attraction. Particular focus is given to
phase-type scale mixture distributions where the scaling random variable S has discrete sup-
port — such a class of distributions has been recently used in risk applications to approximate
heavy-tailed distributions. Our results are complemented with several examples.
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1 Introduction

In this paper, we consider the class of nonnegative distributions defined by the Mellin–Stieltjes
convolution (Bingham et al., 1987) of two nonnegative distributions G and H, given by

F (x) =

∫ ∞
0

G(x/s)dH(s), x ≥ 0. (1.1)

A distribution of the form (1.1) will be called a phase-type scale mixture if G is a (classical)
phase-type (PH) distribution (cf. Latouche and Ramaswami, 1999) and H is a proper nonnegative
distribution that we shall call the scaling distribution. A phase-type scale mixture distribution can
be seen as the distribution of a random variable X := S ·Y where S ∼ H and Y ∼ G; accordingly,
S is referred as the scaling random variable. This terminology is also explained using conditional
arguments: observe that (X|S = s) ∼ Gs where Gs(x) := G(x/s) corresponds to the distribution
of the (scaled) random variable s · Y which is itself a PH distribution, so the distribution F can
be thought as a mixture of the scaled PH distributions in {Gs : s > 0} with respect to the scaling
distribution H.

Our motivation for studying the tail behavior of phase-type scale mixtures is their use for ap-
proximating heavy-tailed distributions in risk applications (Bladt et al., 2015). To introduce such
an approach, we shall first recall that the family of (classical) phase-type (PH) distributions, which
corresponds to distributions of absorption times of Markov jump processes with one absorbing
state and a finite number of transient states. The PH class is particularly attractive since it is
tractable and possesses many desirable properties (densities, cumulative distributions, moments
and integral transforms have closed-form expressions in terms of matrix exponentials; it is a closed
class under scaling, finite mixtures and finite convolutions (cf. Assaf and Levikson (1982); Maier
and O’Cinneide (1992)). The PH class is popular for modelling purposes because it is dense in the
nonnegative distributions (cf. Asmussen, 2003), so one could in principle approximate any non-
negative distribution with an arbitrary precision. This classical approach has been widely studied
and reliable methodologies for approximating nonnegative distributions are already available (cf.
Asmussen et al., 1996).
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However, distributions in the PH class are light-tailed and belong to the Gumbel domain of
attraction exclusively (Kang and Serfozo, 1999). Therefore, the PH class cannot correctly capture
the characteristic behavior of a heavy-tailed distribution in spite of its denseness. In fact, this
approach may deliver unreliable approximations for important quantities of interest, such as the
ruin probability of a Cramér–Lundberg risk process with heavy-tailed claim size distributions
(Vatamidou et al., 2014). As an alternative, the PH class has been extended to distributions
of absorption times having a countable number of transient states (this approach is attributed
to Neuts, 1981). The later class, which goes under the name of infinite dimensional phase-type
distributions (IDPH), is known to contain heavy-tailed distributions. Nevertheless, the IDPH class
is no longer mathematically tractable and it is not fully documented yet (to the best of the authors’
knowledge, one of the few published references available outlining its mathematical properties is
Shi et al. (1996); another reference of interest is Greiner et al. (1999), who consider infinite mixtures
of exponential distributions to approximate power-tailed distributions).

To address this issue, Bladt et al. (2015) propose the use of phase-type scale mixtures hav-
ing discrete scaling distributions to approximate heavy-tailed distributions. Such a class forms a
structured subfamily of the IDPH class that contains the PH class, so it is trivially dense in the
nonnegative distributions. Two important advantages over the more general IDPH class are that
the class of phase-type scale mixture distributions is mathematically tractable and that it contains
a rich variety of heavy-tailed distributions.

The class of phase-type scale mixture distributions has great potential in applications in en-
gineering, finance and specifically in insurance. As an example of the later, Bladt et al. (2015)
provide renewal results that can be applied to obtain exact expressions for the ruin probability
of a classical Cramér–Lundberg risk process having claim sizes distributed according to a phase-
type scale mixture distribution with discrete scaling. This approach is further explored in Peralta
et al. (2016), where a systematic methodology for approximating arbitrary heavy-tailed distribu-
tions via phase-type scale mixtures is provided; such a formulation provides simplified formulas for
approximating ruin probabilities with arbitrary claim size distributions. Furthermore, Bladt and
Rojas-Nandayapa (2017) provide statistical inference procedures based on the EM algorithm to
adjust phase-type scale mixtures to heavy-tailed data/distributions. Other references of interest
that apply similar ideas to risk models include Hashorva et al. (2010) and Vatamidou et al. (2013).

In spite of the denseness and the mathematically tractability of the class of phase-type scale
mixtures, the tail properties of the proposed class are not fully understood yet; this paper con-
centrates on this issue. In particular, a key aspect in the successful approximation of heavy-tailed
distributions via phase-type scale mixtures is the appropriate selection of the scaling distribution.
This paper focuses on the theoretical foundations justifying the selections made in some of the
applications mentioned above, as well as on providing general guidelines for selecting appropriate
scaling distributions. We collect and adapt some known results which are available in different con-
texts, and we prove new results that will allow us to provide a characterization of the tail behavior
of phase-type scale mixtures, as well as a classification of their maximum domains of attraction.
We expect our results to be useful for modelling purposes by providing a better understanding
of the advantages and limitations of such an approach, as well as providing criteria for selecting
appropriate scaling distributions for approximating general heavy-tailed distributions. Our results
are summarized below.

Firstly, we concentrate on classifying light- and heavy-tailed distributions. A phase-type scale
mixture is heavy-tailed if and only if its scaling distribution has unbounded support. An interesting
heuristic interpretation of this result is as follows: a PH random variable multiplied with a random
variable S is heavy-tailed iff S has unbounded support. We provide a simple proof of this fact but
we remark that a proof (unknown to us until recently) was already provided in a different context
(cf. Su and Chen, 2006; Tang, 2008).

Secondly, we focus on the maximum domains of attraction and subexponential properties of
the class of phase-type scale mixtures. A classical result for the Fréchet case is Breiman’s lemma
(Breiman, 1965), which implies that a phase-type scale mixture with a regularly varying scaling
distribution remains regularly varying with the same index (hence subexponential). An analogue
closure property exists for the class of Weibullian distributions (Arendarczyk and Dȩbicki, 2011).
In addition, we investigate analogue results for scaling distributions in the Gumbel domain of
attraction. We show that if a certain higher order derivative of the Laplace–Stieltjes transform of
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the reciprocal of the scaling random variable L1/S(θ) is a von Mises function, then F ∈ MDA(Λ);
in addition, we provide a verifiable condition for subexponentiality.

We then specialize in phase-type scale mixture distributions having discrete support. Such a
class of distributions is of critical importance in applications due to its mathematical tractability,
as these correspond to distributions of the absorption time of a Markov jump process having an
infinite number of transient states. We outline a simple methodology which allows us to determine
their asymptotic behavior by constructing a phase-type scale mixture distribution with continu-
ous scaling and having an asymptotically proportional tail probability. This methodology can be
reverse-engineered so we can construct discrete scaling distributions for approximating the tail
probability of some arbitrary target distributions.

The rest of the paper is organized as follows. In Section 2, we set up notations and summarize
some of the standard facts on heavy-tailed, phase-type and related distributions. Then we introduce
the class of phase-type scale mixtures and examine some of its asymptotic properties. Our main
results are presented in Section 3 and 4. Section 3 is devoted to the general case, while Section 4
is specialized in discrete scaling distributions. In Section 5, we present our conclusions.

2 Preliminaries

In this section we provide a summary of some of the concepts needed for this paper. Most results
in this section are standard. A reader familiar with phase-type distributions and extreme value
theory can safely skip to subsection 2.1.

First we consider the class of phase-type (PH) distributions. When a distinction is needed, we
will refer to this class of distributions as classical, in order to make a clear distinction from the class
of phase-type scale mixture distributions. A classical phase-type distribution corresponds to the
distribution of the absorption time of a Markov jump process {Xt}t≥0 with a finite transient state
space E = {1, 2, · · · , p} and one absorbing state 0 (cf. Asmussen, 2003; Latouche and Ramaswami,
1999). Phase-type distributions are characterized by a p-dimensional row vector β = (β1, · · · , βp)
(corresponding to the probabilities of starting the Markov jump process in each of the transient
states), and an intensity matrix

Q =

(
0 0
λ Λ

)
,

where Λ is a p × p sub-intensity matrix. Since rows in a intensity matrix must sum to 0, we also
have λ = −Λe, where e is the p−dimensional column vector of 1s. Phase-type distributions are
denoted PH(β,Λ), and their cumulative distribution functions are given by

G(x) = 1− βeΛxe, ∀x > 0.

In this paper, we are particularly interested in distributions of scaled phase-type random vari-
ables s · Y where Y ∼ PH(β,Λ) and s > 0. From the expression above, it follows easily that
s · Y ∼ PH(β,Λ/s), so the class of phase-type distributions is closed under scaling transforma-
tions. The following is a well known result describing the tail behavior of phase-type distributions
(cf. Asmussen, 2003):

Proposition 2.1. Let Gs ∼ PH(β, Λ/s). The tail probability of Gs can be written as

G s(x) =

m∑
j=1

ηj−1∑
k=0

(x
s

)k
e<(−λj)x/s

[
c
(1)
jk sin(=(−λj)x/s) + c

(2)
jk cos(=(−λj)x/s)

]
.

Here m is the number of Jordan blocks of the matrix Λ, {−λj : j = 1, . . . ,m} are the corresponding

eigenvalues and {ηj : j = 1, . . . ,m} the dimensions of the Jordan blocks. The values c
(1)
jk , c

(2)
jk are

constants depending on the initial distribution β, the dimension of the j-th Jordan block ηj and
the generalized eigenvectors of Λ.

All eigenvalues of a sub-intensity matrix Λ have negative real parts and the one with the
largest absolute value is always real. Therefore, the asymptotic behavior of a scaled phase-type
distribution is determined by the largest eigenvalue and the largest dimension among the Jordan
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blocks associated to the largest eigenvalue (see also Asimit and Jones, 2006; Asmussen, 2003).
It is also well known that if the sub-intensity matrix Λ is irreducible, then the tail probabilities
of phase-type distributions decay exponentially (cf. Proposition IX.1.8 Asmussen and Albrecher,
2010). The assumption that the matrix Λ is not irreducible can be further relaxed if all eigenvalues
are real. Also notice that if all the eigenvalues of Λ are real (=(−λj) = 0), then

G s(x) =

m∑
j=1

ηj−1∑
k=0

cjk

(x
s

)k
e−λjx/s. (2.1)

Next, we introduce the class of heavy-tailed distributions that will be used in this paper (various
other definitions of heavy-tailed distributions are available in the literature) and discuss several
important subfamilies of heavy-tailed distributions. We also provide a brief summary of results
connecting extreme value theory with heavy-tailed distributions and subexponentiality.

We say that a nonnegative distribution H is heavy-tailed if

lim sup
s→∞

H(s)eθs =∞, ∀θ > 0,

where H(s) = 1 −H(s) is the tail probability of the distribution H. Otherwise, we say that H is
a light-tailed distribution. The definition of light/heavy-tailed distributions is often considered too
general for most practical purposes and it is more common to work instead with certain families of
distributions. For instance, the so-called Embrechts–Goldie class of distributions (Embrechts and
Goldie, 1980), denoted L(λ), consists of nonnegative distributions H having the property

lim
s→∞

H(s− t)
H(s)

= eλt, λ ≥ 0,∀t.

Distributions in the class L(0) are heavy-tailed and these are known as long-tailed distributions.
In contrast, if λ > 0 then a distribution in the class L(λ) is light-tailed. From Proposition 2.1, it
is clear that a PH distribution is in L(λ) where −λ is the largest eigenvalue of the sub-intensity
matrix Λ.

An important subclass of heavy-tailed distributions is that of subexponential distributions (cf.
Foss et al., 2011). Such a class of distributions contains practically all the heavy-tailed distributions
commonly used. We say thatH belongs to the class of subexponential distributions, denotedH ∈ S,
if

lim sup
s→∞

H
∗n

(s)

H(s)
= n,

where H
∗n

is the tail probability of the n-fold convolution of H.
Another important subclass of subexponential distributions that is widely applied in actuarial

sciences is the class of regularly varying distributions. A distribution H is regularly varying with
index α > 0 if

lim
s→∞

H(st)

H(s)
= t−α, t > 0, (2.2)

and it is denoted H ∈ R−α. Otherwise, if the limit above is 0 for all t > 1, then we say that H is
a distribution of rapid variation and it is denoted H ∈ R−∞ (cf. Bingham et al., 1987).

2.1 Phase-type scale mixtures

Next we introduce the class of phase-type scale mixture distributions which is central for this paper.
We say a distribution F (x) is a phase-type scale mixture with scaling distribution H and phase-type
distribution G ∼ PH(β,Λ), if the distribution F can be written as the Mellin–Stieltjes convolution
of H and G (see equation (1.1) for a definition). For this definition to be valid, it is implicit that H
must be nonnegative without an atom at 0. Particularly, when the scaling distribution H is discrete
and supported over a countable set of nonnegative numbers {si : i ∈ N}, then the Mellin–Stieltjes
convolution in (1.1) reduces to the following infinite series:

F (x) =

∞∑
i=1

p(i)G(x/si),
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where p(i) := H(si)−H(si−1) is the probability mass function of H with s0 = 0. It is not difficult
to see that a phase-type scale mixture distribution is absolutely continuous and its density function
can be written as

f(x) =

∫ ∞
0

g(x/s)

s
dH(s),

where g is the density of the phase-type distribution. The tail probability of a phase-type scale
mixture F := 1− F can also be written as a Mellin–Stiltjes convolution of H and G:

F (x) = 1−
∫ ∞
0

G(x/s)dH(s) =

∫ ∞
0

(1−G(x/s))dH(s) =

∫ ∞
0

G (x/s)dH(s).

Therefore, using proposition 2.1 it is straightforward to see that there exist constants c′jk and c′k,
such that

F (x) ≤
m∑
j=1

ηj−1∑
k=0

c′jk

∫ ∞
0

(x
s

)k
e<(−λj)x/sdH(s) ≤

η−1∑
k=0

c′k

∫ ∞
0

(x
s

)k
e−λx/sdH(s).

Hence, only the largest real eigenvalue determines the asymptotic behavior of a phase-type scale
mixture distribution.

In this paper, we are particularly interested in providing sufficient conditions for a phase-type
scale mixture to be subexponential. However, the task of determining whether a given heavy-
tailed distributions is subexponential or not can be very challenging. We will resort to extreme
value theory to address this issue, since there exist a variety of results relating the subexponential
property with maximum domains of attraction.

The Weibull domain of attraction is composed of distributions with support bounded above,
so a phase-type scale mixture cannot belong to such domain. The Fréchet domain of attraction is
characterized by regular variation (de Haan, 1970):

H ∈ R−α ⇐⇒ H ∈ MDA(Φα).

This characterisation is relevant to us because regularly varying distributions are subexponen-
tial. The Gumbel domain of attraction is more involved. It contains both light- and heavy-tailed
distributions. A number of results exist for determining the Gumbel domain of attraction and
subexponentiality of a certain distribution. We have listed these in the Appendix since these will
be used later.

3 Tail behavior of scaled random variables

This section is devoted to characterising the tail properties of the class of phase-type scale mix-
ture distributions. Firstly, we collect some relevant results about the asymptotic tail behavior of
products of random variables, which provide sufficient conditions on the scaling random variable
S for its associated phase-type scale mixture distribution to be either light- or heavy-tailed. In
addition, we extend this result to provide a criteria for more general distributions; we also provide
a simplified proof (Theorem 3.1).

Secondly, in Subsection 3.2 we focus on determining the maximum domain of attraction of a
phase-type scale mixture distribution according to its scaling distribution. In the Fréchet case,
Breiman’s lemma implies that a phase-type scale mixture distribution remains in the Fréchet
domain of attraction (hence regularly varying) if the scaling distribution is in the same domain.
The converse of Breiman’s lemma does not hold true in general, and finding sufficient conditions
and counterexamples is considered challenging (cf. Damen et al., 2014; Denisov and Zwart, 2007;
Jacobsen et al., 2009; Jessen and Mikosch, 2006). For the Gumbel case, we provide conditions on
the Laplace transform of reciprocal of the scaling random variable 1/S so the associated phase-
type scale mixture distribution belongs to the Gumbel domain of attraction, as well as to further
determine if it is subexponential. We illustrate with examples that such conditions are verifiable in
some important cases. In addition, we also analyse the important class of Weibullian distributions
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(for a definition see Remark 3.11 below) which posseses a closure property under multiplication
(Arendarczyk and Dȩbicki, 2011). The result in that paper allows to determine the exact tail
behavior of a phase-type scale mixture having a Weibullian scaling distribution.

3.1 Asymptotic tail behavior

The tail behavior of the distribution of a product of nonnegative random variables has attracted
a considerable amount of research interest. For instance, Su and Chen (2006) show that if two
random variables S1 and S2 are such that the distribution of S1 is in L(λ) with λ > 0 and S2 has
unbounded support, then the distribution of S1 · S2 is in L(0) (long-tailed), and thus heavy-tailed
(see also Tang, 2008). If one further assumes that S2 is Weibullian with parameter 0 < p ≤ 1, then
Liu and Tang (2010) show that the product S1 ·S2 is subexponential. A result which extends beyond
the class L(γ) is in Arendarczyk and Dȩbicki (2011), where it is shown that the product of two
Weibullian random variables with parameters p1 and p2 is Weibullian with parameter p1p2/(p1+p2)
and thus proving that the product of Weibullians can be either light- or heavy-tailed.

These results imply that a phase-type scale mixture distribution is heavy-tailed if and only if
the scaling distribution has unbounded support. This conclusion can also be obtained from our
Theorem 3.1 below, where we provide sufficient conditions under which a product of two general
random variables can be classified either as light- or heavy-tailed. The simplified proof provided
here is elementary.

Theorem 3.1. Consider S1 and S2 two nonnegative independent random variables with unbounded
support, where S1 ∼ H1 and S2 ∼ H2. Let H be the distribution of the product S1 · S2.

1. If there exist θ > 0 and ξ(x) a nonnegative function such that

lim sup
x→∞

eθx
(
H1(x/ξ(x)) +H2(ξ(x))

)
= 0, (3.1)

then H is a light-tailed distribution.

2. If there exists ξ(x) a nonnegative function such that for all θ > 0 it holds that

lim sup
x→∞

eθxH1(x/ξ(x)) ·H2(ξ(x)) =∞, (3.2)

then H is a heavy-tailed distribution.

Proof. For the first part consider

lim sup
x→∞

H(x)eθx = lim sup
x→∞

eθx
∫ ∞
0

H1(x/s)dH2(s)

= lim sup
x→∞

[
eθx
∫ ξ(x)

0

H1(x/s)dH2(s) + eθx
∫ ∞
ξ(x)

H1(x/s)dH2(s)

]
≤ lim sup

x→∞

[
eθxH1(x/ξ(x)) + eθxH2(ξ(x))

]
= 0.

The last equality holds by the hypothesis (3.1). Hence H is light-tailed. For the second part consider

lim sup
x→∞

H(x)eθx = lim sup
x→∞

[
eθx
∫ ξ(x)

0

H1(x/s)dH2(s) + eθx
∫ ∞
ξ(x)

H1(x/s)dH2(s)

]
≥ lim sup

x→∞

[
eθxH1(x/ξ(x))H2(ξ(x))

]
=∞.

The last equality holds by hypothesis (3.2). Hence H is heavy-tailed.

The conditions in Theorem 3.1 can be easily verified and enables us to provide a classifica-
tion of the asymptotic tail behavior of products of random variables with more general distribu-
tions. Notice that the distributions considered in Su and Chen (2006) correspond to distributions
with log-tail probabilities decaying at a linear rate, i.e. − logH1(s) = O(s), while the distribu-
tions in Arendarczyk and Dȩbicki (2011) have log-tail probabilities decaying at a power rate, i.e.
− logHi(s) = O(spi), i = 1, 2. The following example considers distributions with log-tail proba-
bilities decaying at an exponential rate, i.e. − logHi(s) = O(es).
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Example 3.2 (Gumbellian products). Let Hi(x) = 1−exp{−ex+1}, x > 0. We choose ξ(x) = xγ ,
with 0 < γ < 1. Then

lim
x→∞

H(x)eθx = lim
x→∞

eθx+1
(

exp{−ex
1−γ
}+ exp{−ex

γ

}
)

= 0, ∀θ > 0.

Then the product of two random variables with Gumbellian-type distributions is always light-
tailed. The same holds true if we replace H2 with a Weibullian distribution with shape parameter
p > 1. Choose ξ(x) = xγ , with 1

p ≤ γ < 1 and observe that

lim
x→∞

H(x)eθx = lim
x→∞

eθx
(

exp{−ex
1−γ

+ 1}+ xδe−x
γp
)

= 0, for θ ∈ (0, 1).

3.2 Maximum domains of attraction and subexponentiality

The scenario in the Fréchet domain of attraction is well understood. Breiman’s lemma (Breiman,
1965) implies that a phase-type scale mixture distribution is in the Fréchet domain of attraction
if its scaling distribution is in the same domain:

Lemma 3.3 (Breiman (1965)). If H ∈ R−α and MG(α+ ε) <∞ for some ε > 0, then F ∈ R−α
and

F (x) = MG(α)H(x)(1 + o(1)), x→∞, (3.3)

where MG(α) is the α-moment of G.

Phase-type distributions are light-tailed so all their moments are finite. Therefore, a phase-
type scale mixture distribution with a scaling distribution in the Fréchet domain of attraction
remains in the same domain. Furthermore, the norming constants for a phase-type scale mixture
distribution F can be chosen as the norming constants of H divided by the α-moment of the
phase-type distribution G, that is

dn = 0, cn =
1

MG(α)

(
1

H

)←
(n).

Moreover, when the conditions of Breiman’s lemma are satisfied, then the scaling and the phase-
type scale mixture distributions are regularly varying with the same index of regular variation, thus
implying that the tail probabilities of both distributions are asymptotically proportional (with the
reciprocal of the α-moment of the phase-type distribution being the proportionality constant).
This implies that the class of phase-type scale mixture distributions can provide exact asymptotic
approximations of the tail probabilities of regularly varying distributions.

It is interesting to note that the converse of Breiman’s lemma does not hold true in general.
Such a problem is considered to be challenging and has attracted considerable research interest,
thus resulting in a rich variety of results proving sufficient conditions and counterexamples; for
instance, Jessen and Mikosch (2006) provide a comprehensive list of earlier references; the most
general results are given in Jacobsen et al. (2009) and Denisov and Zwart (2007) (see also Damen
et al. (2014) for a multivariate version). It is not difficult to verify that some subclasses (for instance,
exponential, Erlang and hyperexponential) of PH distributions satisfy the sufficient conditions for
the converse of Breiman’s lemma provided in Jacobsen et al. (2009). We also conjecture that in
general PH distributions satisfy the above conditions but a proof remains unknown to us.

The situation is less understood in the Gumbel domain of attraction. We start by noting that
in the Gumbel case, a phase-type scale mixture F and its scaling distribution H will have very
different tail behaviors (this is contrast to the Fréchet case where Breiman’s lemma implies that
these have asymptotically proportional tail behavior). In particular, the tail probability of a scaling
distribution in the Gumbel domain of attraction is tail equivalent to a von Mises functions, hence
rapidly varying. In such a case the tail distribution of the phase-type scale mixture will be much
heavier than its scaling distribution:

Proposition 3.4. If H ∈ R−∞, then

lim sup
x→∞

H(x)

F (x)
= 0. (3.4)
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Proof. To show this we take t > 1 and observe that there exists a constant C such that

F (x) = P[SY > x] ≥ P[SY > x, Y ≥ t] ≥P[S > x/t]P[Y ≥ t] = H(x/t)C,

Then

lim sup
x→∞

H(x)

F (x)
≤ 1

C
lim sup
x→∞

H(x)

H(x/t)
= 0, t > 1.

The lognormal and Weibullian distributions are rapidly varying.

Remark 3.5. This result fleshes out a limitation of the aforementioned approach for approximating
distributions in the Gumbel domain of attraction. The tail probability of a phase-type scale mixture
distribution will be much heavier than its target distribution, if the scaling distribution is chosen
within the same family of target distributions and with similar parameters. We show later that in
some cases we are able to construct phase-type scale mixture distributions with the same asymptotic
behavior as their target distributions if we vary the value of parameters. Such is the case of
Weibullian distributions.

Next we look for sufficient conditions of the scaling distribution so its corresponding phase-type
scale mixture will belong to the Gumbel domain of attraction and be subexponential. We restrict
our focus to phase-type distributions with sub-intensity matrices having only real eigenvalues.

Theorem 3.6. Let V (x) = (−1)η−1L(η−1)
1/S (x) where η is the largest dimension among the Jor-

dan blocks associated to the largest eigenvalue of the sub-intensity matrix. If V (·) is a von Mises
function, then F ∈ MDA(Λ). Moreover, F is subexponential if

lim inf
x→∞

V (tx)V ′(x)

V ′(tx)V (x)
> 1, ∀t > 1.

Proof. We can write that

F (x) =

m∑
j=1

ηj−1∑
k=0

∫ ∞
0

cjk

(x
s

)k
e−λjx/sdH(s) =

m∑
j=1

ηj−1∑
k=0

cjk
(−1)kxk

λkj
L(k)
1/S(λjx).

Since V (x) = (−1)η−1L(η−1)
1/S (x) is a von Mises function, then V (x) is of rapid variation (Bing-

ham et al., 1987). This implies that

F (x) ∼ cx
η−1

λη−1
V (λx), (3.5)

where c is some constant, −λ is the largest eigenvalue of the sub-intensity matrix and η is the
largest dimension among the Jordan blocks associated to −λ. Then it is not difficult to see that

lim
x→∞

F (x)F ′′(x)

(F ′(x))2
= lim
x→∞

V (λx)(−V ′′(λx))(
− V ′(λx)

)2 = −1.

This holds true because by hypothesis V (x) = (−1)η−1L(η−1)
1/S (x) is a von Mises function. Hence

F ∈ MDA(Λ) and the first part result follows. For the second part, we observe that the auxiliary
function a(x) = F (x)/F ′(x) obeys the following asymptotic equivalence

a(x) =
F (x)

F ′(x)
∼ V (λx)

−λV ′(λx)
.

The distribution F is subexponential if

lim inf
x→∞

a(tx)

a(x)
= lim inf

x→∞

V (λtx)V ′(λx)

V ′(λtx)V (λx)
> 1, ∀t > 1,

hence subexponentiality of F follows.
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Theorem 3.6 can be applied to the lognormal case:

Example 3.7 (Lognormal scaling). Assume H ∼ LN(µ, σ2), then F is a subexponential distribu-
tion in the Gumbel domain of attraction.

Proof. W.l.o.g. we can assume µ = 0 since eµ is a scaling constant. In such a case the symmetry
of the normal distribution implies that the Laplace–Stieltjes transform of 1/S is the same as that
of S, i.e.

L1/S(x) = LS(x).

An asymptotic approximation of the k-th derivative of the Laplace–Stieltjes transform of the
lognormal distribution is given in Asmussen et al. (2016):

L(k)
S (x) = (−1)kLS(x) exp{−kω0(x) +

1

2
σ0(x)2k2}(1 + o(1)),

where

ωk(x) =W(xσ2ekσ
2

), σk(x)2 =
σ2

1 + ωk(x)
,

and W(·) is the Lambert W function. Hence we verify that

lim
x→∞

V (x)(−V ′′(x))

(−V ′(x))2
= lim
x→∞

e−(η−1)ω0(x)+
1
2σ0(x)

2(η−1)2 ·
(
−e−(η+1)ω0(x)+

1
2σ0(x)

2(η+1)2
)

e−2ηω0(x)+σ0(x)2η2

= − lim
x→∞

exp{σ0(x)2} = − lim
x→∞

exp

{
σ2

1 + ω0(x)

}
.

As ωk(x) is asymptotically of order log(x) as x→∞, then σ2(1 + ω0(x))−1 → 0 as x→∞. Then
the last limit is equal to −1, so we have shown that F (x) ∈ MDA(Λ). Furthermore,

lim
x→∞

a(tx)

a(x)
= lim
x→∞

(−1)η−1L(η−1)
1/S (tx) · (−1)η−1L(η)

1/S(x)

(−1)η−1L(η)
1/S(tx) · (−1)η−1L(η−1)

1/S (x)

= lim
x→∞

e−(η−1)ω0(xt)+
1
2σ0(xt)

2(η−1)2 · e−ηω0(x)+
1
2σ0(x)

2η2

e−ηω0(xt)+
1
2σ0(xt)2η2 · e−(η−1)ω0(x)+

1
2σ0(x)2(η−1)2

= lim
x→∞

exp

{
−ω0(x) + ω0(xt) +

1

2
σ0(xt)2(2η − 1) +

1

2
σ0(x)2(1− 2η)

}
= lim
x→∞

exp
{
−ω0(x) + ω0(x) + ω0(t) + O(ω0(x)−1)

}
= t > 1.

Thus F is a subexponential distribution.

Example 3.8 (Exponential scaling). Let H ∼ exp(β). Then F is a subexponential distribution in
the Gumbel domain of attraction.

Proof. Observe that 1/S has an inverse gamma distribution with a Laplace–Stieltjes transform
given in terms of a modified Bessel function of the second kind (Ragab, 1965):

L1/S(x) =

∫ ∞
0

e−x/sβe−βsds = 2
√
βxBesselK(1, 2

√
βx).

Furthermore, its n-th derivative can be calculated explicitly also in terms of a modified Bessel
function of the second kind:

L(n)
1/S(x) =

∫ ∞
0

(
−1

s

)n
e−x/sβe−βsds = (−1)n · 2β

n+1
2 x−

n−1
2 BesselK(n− 1, 2

√
βx).

Asymptotically it holds true that

L(n)
1/S(x) ∼ (−1)n

√
πβ

2n+1
4 x−

2n−1
4 e−2

√
βx, x→∞.

9



Hence, it follows that

lim
x→∞

V (x)(−V ′′(x))

(−V ′(x))2
= −1.

Therefore, V (x) is a von Mises function and F ∈ MDA(Λ). Moreover, if t > 1 then

lim
x→∞

a(tx)

a(x)
= lim
x→∞

V (tx)V ′(x)

V ′(tx)V (x)
=
√
t > 1.

Thus F is a subexponential distribution.

Remark 3.9. Notice that it is possible to generalize the result of the previous example for a gamma
scaling distribution, because an expression for the Laplace–Stieltjes transform of an inverse gamma
distribution is known and given in terms of a modified Bessel function of the second kind. However,
it involves a number of tedious calculations and therefore omitted. Note as well that in such a case it
is possible to test directly if F is a von Mises function, but the calculations become cumbersome.
Finally, we remark that the results of Liu and Tang (2010) imply the subexponentiality of the
exponential case.

Remark 3.10. If H is a discrete scaling distribution, then we can obtain an analogue result to
that of of Theorem 3.6. Define

DL1/S(x) =

∞∑
i=1

e−x/ip(i)

as the Laplace–Stieltjes transform of discrete scaling random variable S with probability mass
function p(i). Then the tail probability of the phase-type scale mixture is:

F (x) =

m∑
j=1

ηj−1∑
k=0

∞∑
i=1

cjk

(x
i

)k
e−λjx/ip(i) =

m∑
j=1

ηj−1∑
k=0

cjk
(−1)kxk

λkj
DL(k)

1/S(λjx).

If V (x) = (−1)η−1DL(η−1)
1/S (x) is a von Mises function, then F ∈ MDA(Λ).

We close this section with an important remark regarding Weibullian scalings.

Remark 3.11 (Weibullian scaling). A nonnegative distribution H is said to be Weibullian with
shape parameter p > 0 (Arendarczyk and Dȩbicki, 2011) if

H(s) = Csδ exp(−λsp)(1 + o(1)), λ, C > 0, δ ∈ R.

A Weibullian distribution with parameter p is heavy-tailed if 0 < p < 1, while it is light-tailed
if p ≥ 1. Notice that a phase-type distribution is Weibullian with shape parameter equal to 1.
Therefore, Lemma 2.1 of Arendarczyk and Dȩbicki (2011) implies that a phase-type scale mixture
having a Weibullian scaling distribution with scale parameter p will be Weibullian with shape
parameter p1(1 + p1)−1 < 1, thus heavy-tailed. Furthermore, Lemma 2.1 in Arendarczyk and
Dȩbicki (2011) provides exact expressions for each of the parameters C, δ and λ, so in principle
one can use this result to replicate exactly the tail behavior of a Weibullian distribution via a
phase-type scale mixture distribution.

4 Discrete scaling distributions

Next we focus on the case of phase-type scale mixture distributions having scaling distributions
supported over countable sets of strictly positive numbers. These distributions are particularly
tractable since these correspond to distributions of absorption times of Markov jump processes
with an infinite number of transient states. This class of distributions is of great importance for
applications involving heavy-tailed phenomena, since a variety of quantities of interest can be
calculated exactly. Such is the case of ruin probabilities in the Crámer-Lundberg process having
claims sizes distributed according to a phase-type scale mixture (cf. Bladt et al., 2015; Peralta et al.,
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2016). Notice for instance, that such exact results are not available for the case of continuous scaling
distributions.

We remark however, that some of the methodologies for determining domains of attraction and
subexponentiality described in the previous section are not always implementable in a straight-
forward way for discrete scaling distributions. One of the main difficulties is the calculation of
asymptotic equivalent expressions for the infinite series defining the tail probabilities. Below we
describe a simple methodology which can be used to extend results for continuous scaling dis-
tributions to their discrete scaling distributions counterparts; such a methodology provides mild
conditions under which the asymptotical behavior of an infinite series is asymptotically equivalent
to that of a certain function defined via a definite integral.

Proposition 4.1. Let Iu : Z+ → R+ be collection of functions indexed by u ∈ (0,∞). Suppose
that for each u > 0 there exists a measurable and bounded function I ′u : R+ → R such that
I(u; k) = I ′(u; k) for all k ∈ Z+ and∫ ∞

0

I ′(u; y)dy −M(u) ≤
∞∑
k=0

I(u; k) ≤
∫ ∞
0

I ′(u; y)dy +M(u),

where M(u) ≥ max{I ′(u; y) : y > 0} is some upper bound for the function I ′(u; y). If

lim
u→∞

M(u)∫∞
0
I ′(u; y)dy

= 0,

then the following asymptotic relationship holds

lim
u→∞

∑∞
k=0 I(u; k)∫∞

0
I ′(u; y)dy

= 1.

The method provides a verifiable condition under which the infinite series can be replaced by
an asymptotic integral. The next example is taken from Bladt et al. (2015).

Example 4.2 (Zeta scaling). Let α ≥ 2 and assume H ∼ Zeta(α). Such a distribution is deter-
mined by p(i) = i−α/ζ(α), i ∈ N and ζ(·) is the Riemann zeta function. Then F is in the Fréchet
domain of attraction.

We remark that Breiman’s lemma could have been used instead to determine the exact asymp-
totic behavior because the tail probability H(i), i = 1, 2, . . . forms a regularly varying sequence,
so H ∈ R−α (Bingham et al., 1987). Nevertheless, this example is included here to illustrate the
simplicity of the method proposed.

Proof. H is supported over all the natural numbers, so the tail probability of corresponding phase-
type scale mixture can be written as

F (x) =

∞∑
i=1

p(i)G (x/i).

Recall that the expression of G (·) has been given in (2.1), then we have

F (x) =

∞∑
i=1

m∑
j=1

ηj−1∑
k=0

cjk

(x
i

)k
e−λjx/i

i−α

ζ(α)
=

m∑
j=1

ηj−1∑
k=0

∞∑
i=1

cjkx
k

ζ(α)
i−(α+k)e−λjx/i.

Consider the functions I ′jk(x; y) = xky−(α+k)e−λjx/y and note that each of these functions attains

their single local maximum at ŷ = λjx(α+ k)−1 > 0, for all x > 0. Therefore,∫ ∞
0

I ′jk(x; y)dy −Mjk(x; ŷ) ≤
∞∑
i=1

xki−(α+k)e−λjx/i ≤
∫ ∞
0

I ′jk(x; y)dy +Mjk(x; ŷ).
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Observe that

Mjk(x; ŷ) = xke−(α+k)
(

λj
α+ k

)−(α+k)
x−(α+k) = cx−α,

and

I ′jk(x) := xk
∫ ∞
0

y−(α+k)e−λjx/ydy =
Γ(α+ k − 1)

λα+k−1
x−α+1,

so Mjk(x; ŷ) is of negligible order with respect to I ′jk(x). Then it follows that

F (x) ∼
m∑
j=1

ηj−1∑
k=0

cjk
ζ(α)

I ′jk(x) =

m∑
j=1

ηj−1∑
k=0

cjkΓ(α+ k − 1)

ζ(α)λα+k−1
x−α+1, x→∞.

Thus F (x) ∈MDA(Φα−1). Let C =
m∑
j=1

ηj−1∑
k=0

cjkΓ(α+ k − 1)

ζ(α)λα+k−1
, then the norming constants can be

chosen as

dn = 0, cn =

(
1

F

)←
(n) =

(
C

n

) 1
α−1

.

Example 4.3 (Geometric scaling). Let H ∼ Geo(p) and G be PH distribution whose sub-intensity
matrix has only real eigenvalues. Then F is a subexponential distribution in the Gumbel domain
of attraction.

Proof. Let p(i) = pqi where q = 1 − p. Since the geometric distribution has unbounded support,
then the associated phase-type scale mixture is heavy-tailed. We next verify that it belongs to the
Gumbel domain of attraction.

F (x) =

∞∑
i=1

G (x/i) pqi.

Let I ′(x; y) = G (x/y)p exp{−| log q|y} satisfies the conditions in Proposition 4.1. Since the sine
and cosine functions are bounded, then it is not difficult to use Proposition 2.1 to show that there
exists a constant c1 such that

M(x) := I(x; ŷ) ≤ x k2 e−2
√
xλ| log q|(c1 + o(1)), x→∞,

where λ is the largest eigenvalue in absolute value and k is its largest multiplicity. If the sub-
intensity matrix has real eigenvalues then by using Lemma 2.1 in (Arendarczyk and Dȩbicki, 2011)
we obtain that∫ ∞

0

I ′(x; y)dy = p

∫ ∞
0

G (x/y)e−y| log q|dy = xk/2+1/4e−2
√
xλ| log q|(C1 + o(1)), x→∞.

So, the value of M(x) is asymptotically negligible with respect to the value of the integral and we
conclude that

F (x) ∼ p
∫ ∞
0

G (x/y)e−y| log q|dy =
p

| log q|

∫ ∞
0

G (x/y)dH(y),

where H ∼ exp(| log q|). Hence, by tail equivalence, the distribution F inherits all the asymptotic
properties of its continuous counterpart, namely, a phase-type scale distribution with exponential
scaling distribution with parameter | log q|.

Remark 4.4. We shall recall that the geometric version can be seen as the discrete counterpart of
the exponential distribution obtained as a discretization. More precisely, the geometric distribution
can be seen as a distribution supported over Z+ and defined by

H(k) = H(k), k = 0, 1, 2, · · · ,
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where H ∼ exp(| log q|). The probability mass function of H is given by h(k) = H(k)−H(k − 1).
This idea can be extended in order to select scaling distributions for approximating heavy-

tailed distributions in the Gumbel domain of attraction. Suppose we want to approximate the
tail probability of an absolutely continuous distribution H supported over (0,∞) via a discrete
phase-type scale mixture distribution. One way to proceed is to construct a discrete distribution
supported over N defined by h(k) = H(k)−H(k−1); we refer to this construction as a discretization
of H. Moreover, the density of H can be used to construct a function I ′(u; k). In such a case the
tail behavior of a phase-type scale mixture having a discretized scaling distribution inherits the
asymptotic properties of its continuous counterpart.

This idea is better illustrated with the following example, which suggests a methodology for
approximating the tail probability of a lognormal distribution.

Example 4.5 (Lognormal discretization). Let H be a discrete lognormal distribution with pa-
rameters µ, σ and supported over {0, 1, 2, · · · }. Assume µ = 0. The tail probability F is given
by

F (x) =

∞∑
i=1

G (x/i) [H(i)−H(i− 1)] =

∞∑
i=1

G (x/i)

∫ i

i−1
h(y)dy,

where h(·) is the density of lognormal distribution. Since G (x/y) is increasing in y, then we can
easily find a lower bound:

F (x) =

∞∑
i=1

∫ i

i−1
G (x/i)h(y)dy ≥

∫ ∞
0

G (x/y)h(y)dy.

For the upper bound, we have

F (x) ≤
∞∑
i=1

∫ i

i−1
G (x/(y + 1))h(y)dy =

∞∑
i=1

∫ i

i−1
G (x/(y + 1))[h(y)− h(y + 1) + h(y + 1)]dy

≤
∫ ∞
0

G (x/y)h(y)dy +

∫ ∞
0

G (x/(y + 1))[h(y)− h(y + 1)]dy.

For the second integral in the above, we have∫ ∞
0

G (x/(y + 1))[h(y)− h(y + 1)]dy

=

∫ 1

0

G (x/(y + 1))[h(y)− h(y + 1)]dy +

∫ ∞
1

G (x/(y + 1))[h(y)− h(y + 1)]dy

≤c1G (x/2) + c2

∫ ∞
1

G (x/(y + 1))
h(y + 1)

(y + 1)β
dy,

where c1, c2 > 0 are some constants and 0 < β < 1.
It is not difficult to obtain this upper bound: firstly, it is easy to prove for y ≥ 1, log(y + 1)−

log(y) ≤ 1/y, consequently, log2(y + 1)− log2(y) ≤ 2 log(y + 1)/y; then we have

h(y)

h(y + 1)
− 1 =

y + 1

y
exp

{
log2(y + 1)− log2(y)

2σ2

}
− 1

≤ exp

{
1

y
+

log(y + 1)

σ2y

}
− 1

≤ c
(

1

y
+

log(y + 1)

σ2y

)
,where c > 0 is some constant,

≤ c2
(y + 1)β

.

Define

I ′jk(x) := xk
∫ ∞
0

y−ke−λjx/yh(y)dy.
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From Example 3.7, we know that∫ ∞
0

G (x/y)h(y)dy =

m∑
j=1

ηj−1∑
k=0

cjk

∫ ∞
0

(x/y)ke−λjx/yh(y)dy =

m∑
j=1

ηj−1∑
k=0

cjk
(−1)kxk

λkj
L(k)
Y (λjx)

=

m∑
j=1

ηj−1∑
k=0

cjk
xk

λkj
LY exp{−kω0(λjx) +

1

2
σ0(λjx)2k2}.

So

I ′jk(x) =

(
x

λj

)k
LY exp{−kω0(λjx) +

1

2
σ0(λjx)2k2}.

It is obvious that c1G (x/2) vanishes faster than I ′jk(x), so we can define

Mjk(x) := xk
∫ ∞
0

y−k−βe−λjx/yh(y)dy,

since

c2

∫ ∞
1

G (x/(y + 1))
h(y + 1)

(y + 1)β
dy = c2

∫ ∞
2

G (x/y)
h(y)

yβ
dy

≤
m∑
j=1

ηj−1∑
k=0

cjk

∫ ∞
0

(x/y)ky−βe−λjx/yh(y)dy.

By a similar approximation as in Example 3.7, we can see

Mjk(x) = (−1)k+β
xk

λk+βj

L(k+β)
Y (λjx)

=
xk

λk+βj

LY exp{−(k + β)ω0(λjx) +
1

2
σ0(λjx)2(k + β)2}.

So Mjk(x) is negligible compared to integral I ′jk(x). Thus, the phase-type scale mixture distribution
with discrete lognormal scaling has the same asymptotic behavior as the phase-type scale mixture
distribution with lognormal scaling.

4.1 Non-lattice supports

The examples in the previous subsection may suggest that a phase-type scale mixture having a
discretized scaling distribution will inherit the asymptotic properties of its continuous counterpart.
However, such a discretization cannot be made arbitrarily. The following example illustrates this
fact.

Example 4.6. Let H ∈ R−α be a continuous distribution and S be a discrete random variable
supported over {s1, s2, · · · } satisfying

P(S = si) = H(si)−H(si−1), i = 1, 2, · · · .

Suppose there exists ε > 0 and i0 ∈ N such that ∀i > i0, it holds that si+1 > si(1 + ε). Then

lim sup
x→∞

P[S > (1 + ε)x]

P[S > x]
= lim sup

i→∞

P[S > (1 + ε)si]

P[S > si]
= lim sup

i→∞

P[S > si]

P[S > si]
= 1.

Then S does not have a regularly varying distribution. Suppose that Y ∼ Erlang(λ, k). According
to Example 4.4 in Jacobsen et al. (2009), the distribution of phase-type scale mixture random
variable S · Y is not regularly varying.
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Nevertheless, such a discretization will provide a reasonable approximation to a regularly vary-
ing distribution. The following is a continuation of our previous example and it shows that such a
distribution satisfies an analogue of Breiman’s lemma.

Example 4.7. Let K > 0 and define HK a discrete distribution supported over {si : i ∈ Z+},
where si = exp(i/K), and determined by

HK(si) = 1− s−αi , ∀i ∈ Z+.

The distribution HK can be seen as a discretization over a geometric progression of a Pareto
distribution having tail probability H(x) = x−α supported over [1,∞). The following argument
shows that HK is no longer a regularly varying distribution. Notice that for all t > 1 there exist
n ∈ Z+ such that sn < t ≤ sn+1, hence

lim inf
x→∞

HK(xt)

HK(x)
= s−αn+1, lim sup

x→∞

HK(xt)

HK(x)
=

{
s−αn t < sn+1

s−αn+1 t = sn+1.

Thus, according to Example 4.4 in Jacobsen et al. (2009), the Mellin–Stieltjes convolution of an
Erlang distribution G with the distribution H given above is no longer of regular variation (the
conditions described in Proposition 4.1 are not satisfied for this example either). In spite of this, we
can still analyse certain aspects of the asymptotic behavior of such a Mellin–Stieltjes convolution.
For that purpose, note that the following inequalities hold for all w > 1

e−α/KH(w) < HK(w) ≤ H(w),

hence we obtain that

e−α/K
∫ ∞
0

H(x/s)dG(s) <

∫ ∞
0

HK(x/s)dG(s) ≤
∫ ∞
0

H(x/s)dG(s).

Using Breiman’s lemma we find that

e−α/K < lim inf
F (x)

MG(α)H(x)
≤ lim sup

F (x)

MG(α)H(x)
≤ 1.

A heuristic interpretation of the inequalities above is that aysmptotically the tail probability F
oscillates between two regularly varying tails, so this example illustrates a behavior similar to that
described by Breiman’s lemma. Notice that the range of oscillation collapses as K →∞, which is
consistent with the fact that HK → H weakly. A better asymptotic approximation in the following
argument is particularly sharp for numerical purposes. Consider

F (x) =

∫ ∞
0

G (x/s) dHK(s) = (1− e−α/K)

∞∑
i=0

G (xe−i/K)e−αi/K .

Let I(x; i) = G (xe−i/K)e−αi/K . The infinite series can be approximated via the integral∫ ∞
0

I(x; y)dy =

∫ ∞
0

G
(
xe−y/K

)
e−αy/Kdy = K

∫ ∞
1

G
( x
w

)
w−(α+1)dw =

K

α

∫ ∞
1

G
( x
w

)
dH(w).

Since G is such that MG(α+ ε) <∞ for all ε > 0, then Breiman’s lemma implies that

F (x) ≈ 1− e−α/K

α/K
MG(α)H(x).

This approximation is consistent with the bounds found above, since for all w > 0 it holds that

e−w ≤ 1− e−w

w
≤ 1.

Hence, the asymptotic approximation suggested is contained in between the asymptotic bounds
previously found.
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The previous example demonstrates that the tail behavior of a phase-type scale mixture distri-
bution having a discretized scaling distribution is clearly affected by the selection of the support.
Naturally, better approximations will be obtained by taking a finer partition of the support.

The natural choice is to use a discretization of the target distribution over some lattice. However,
this approach is not always suitable for numerical purposes, because in practice there is only a finite
number of terms of the infinite series that can be computed, so these series are typically truncated.
By selecting a discretization over a geometric progression, we will obtain infinite series that converge
at faster rates, so these can be truncated earlier. More importantly, such geometric progressions
still provide reasonable approximations of the tail probability as shown above. This approach
has been tested successfully in Peralta et al. (2016), where they considered discretizing a Pareto
distribution over a geometric progression and used the corresponding phase-type scale mixture
distribution to approximate Pareto claim size distributions in ruin probability calculations. This
selection of the scaling distribution is of critical importance in Bladt and Rojas-Nandayapa (2017)
for estimating the parameters of a phase-type scale mixture distribution via the EM algorithm.
Such an estimation procedure is iterative, so in each step it is necessary to compute a number of
sufficient statistics involving these infinite series. The selection of a geometric support allows us to
compute the estimators within a reasonable time.

5 Conclusion

We considered the class of phase-type scale mixtures. Such distributions arise from the product of
two random variables S ·Y , where S ∼ H is a nonnegative random variable and Y ∼ G is a phase-
type random variable. Such a class is mathematically tractable and can be used to approximate
heavy-tailed distributions.

We provided a collection of results which can be used to determine the asymptotic behavior of a
distribution in such a class. For instance, if the scaling distribution H has unbounded support, then
the associated phase-type scale mixture distribution is heavy-tailed. We also provided verifiable
conditions which can be employed to classify the maximum domains of attraction and determine
subexponentiality. In particular, we were able to find phase-type scale mixture distributions with
equivalent asymptotic behavior for regularly varying and Weibullian distributions. It is not the
case for the lognormal for which it is more difficult to suggest an appropriate scaling distribution.

We considered the case of phase-type scale mixture distributions having discrete scaling distri-
butions since these are of critical importance in applications. We described a simple methodology
which allows to establish the asymptotic proportionality of these distributions with respect to their
continuous counterparts. We exhibited important advantages and limitations of this approach to
approximate heavy-tailed distributions and analysed several important examples.

We remark that most of the results obtained here can be extended to an analogue class of
matrix exponential scale mixture distributions without too much effort. We note that some of our
results were proven under the assumption that the phase-type distribution has a sub-intensity
matrix having only real eigenvalues. Nevertheless, we conjecture that such results holds for general
phase-type and matrix-exponential distributions. We also conjecture that a phase-type distribution
is α-regularly varying determining but this remains an open problem.
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6 Appendix

In this appendix we revise some classical results providing conditions for determining if a distri-
bution belongs to the Gumbel domain of attraction and if it is subexponential.

A main result in extreme value theory indicates that a distribution H belongs to the Gumbel
domain of attraction iffH is tail-equivalent to a von Mises function. The following provides sufficient
conditions for a distribution to be a von Mises function.

Theorem 6.1 (de Haan (1970)). Let H be a twice differentiable nonnegative distribution with

unbounded support. Then H is a von Mises function iff there exists s0 such that H
′′
(s) < 0 for all

s > s0, and

lim
s→∞

H(s)H
′′
(s)(

H
′
(s)
)2 = −1. (6.1)

Moreover, von Mises functions are functions of rapid variation (cf. Bingham et al., 1987).

Goldie and Resnick (1988) provide a sufficient condition for an absolutely continuous distribu-
tion H ∈ MDA(Λ) to be subexponential:

Theorem 6.2 (Goldie and Resnick (1988)). Let H ∈ MDA(Λ) be an absolutely continuous function
with density h, then H ∈ S if

lim inf
s→∞

H(ts)

h(ts)

h(s)

H(s)
> 1, ∀t > 1. (6.2)

Therefore, since a phase-type scale mixture distribution is not only absolutely continuous but
twice differentiable and its second derivative is negative, then we can verify if it belongs to the Gum-
bel domain of attraction by just checking the condition (6.1) in Theorem 6.1. Subexponentiality
can be checked via condition (6.2) in Theorem 6.2.
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