7,505 research outputs found

    CML: the commonKADS conceptual modelling language

    Get PDF
    We present a structured language for the specification of knowledge models according to the CommonKADS methodology. This language is called CML (Conceptual Modelling Language) and provides both a structured textual notation and a diagrammatic notation for expertise models. The use of our CML is illustrated by a variety of examples taken from the VT elevator design system

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    A BIM-based PSS approach for the management of maintenance operations of building equipment

    Get PDF
    The service-centered economy has grown considerably in the last few years, shifting from product-based solutions towards service centered offerings, i.e., Product-Service System (PSS) solutions. Such an approach is also emerging in the context of building equipment, where maintenance activities play a fundamental role in facility management. In this field, Building Information Modeling (BIM) based tools are diffusely used to improve the performances of facility management. However, few studies have addressed the above issues while considering a shift from product-based approaches in favor of more advanced servitization models. The study aims at integrating BIM based approaches in a PSS context for the improvement of the management of maintenance operations of building equipment. A general framework for maintenance management has been developed, merging the implementation of the PSS components in a BIM model for the definition of maintenance management. A first application of this methodology to a real case study concerning the elevators of an existing building has shown the efficacy of the proposed approach. The study highlighted the benefits that can be achieved, especially in terms of reduced periods of equipment unavailability, reduced costs and augmented customer satisfaction, while enhancing the information exchange between the PSS actors. Hence, although further research is still needed for its validation, the proposed approach can offer practical insights for the development of promising BIM-based PSS solutions for facility management in the construction industry

    Ontology-based methodology for error detection in software design

    Get PDF
    Improving the quality of a software design with the goal of producing a high quality software product continues to grow in importance due to the costs that result from poorly designed software. It is commonly accepted that multiple design views are required in order to clearly specify the required functionality of software. There is universal agreement as to the importance of identifying inconsistencies early in the software design process, but the challenge is how to reconcile the representations of the diverse views to ensure consistency. To address the problem of inconsistencies that occur across multiple design views, this research introduces the Methodology for Objects to Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design (OSSD), as a common information model to integrate specification knowledge and design knowledge in order to facilitate the interoperability of formal requirements modeling tools and design tools, with the end goal of detecting inconsistency errors in a design. The methodology, which transforms designs represented using the Unified Modeling Language (UML) into representations written in formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented concepts in order to take advantage of the benefits that both approaches can provide. The OSSD model is a hierarchical decomposition of software development concepts, including ontological constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans. The methodology includes a consistency checking process that defines a consistency framework and an Inter-View Inconsistency Detection technique. MOA enhances software design quality by integrating multiple software design views, integrating object-oriented and agent-oriented concepts, and defining an error detection method that associates rules with ontological properties

    Advances in knowledge-based software engineering

    Get PDF
    The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems
    • …
    corecore