
 Eindhoven University of Technology

MASTER

Towards an object-oriented analysis and design method for hardware/software systems : a
case study

Hansen, Erik

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3e48f0ac-480c-48a7-9f74-677c09d149e9

Technische Universiteit tG3 Eindhoven

Faculty of Electrical Engineering
Section of Digital Information Systems

Master's Thesis:

Towards an Object-Oriented
Analysis and Design Method
for Hardware/Software
Systems. A Case Study.

Erik Hansen

Coach

Supervisor

Period

: Ing. P.H.A. van der Putten

Ir. J.P.M. Voeten

: Prof. M.P.J. Stevens

: Sept 1994 - June 1995

The Faculty of Electrical Engineering of Eindhoven University ofTechnology does not
accept any responsibility regarding the contents of Master's Theses.

Towards an Object-Oriented
Analysis and Design method for

Hardware/Software Systems.
A Case Study.

Erik Hansen

coaches: ing. P.H.A. van cler Putten
ir. J.P.M. Voeten

superVIsor: prof. M.P.J. Stevens

June 22, 1995

Abstract

For several years now, the Digital Information Systems Group of Eindhoven University of
Technology is doing research on structured specification, analysis and design methods for
embedded systems. Part of the research focuses on an object-oriented method for hard­
ware/software systems. This analysis and design method-SHE-consists of models and a
framework to guide modeling activities. Research is assisted with practical input from this
masters project. In this masters project existing ideas and theories are tried out and new
ones are applied to a real-world problem and evaluated.

Research to currently available object-oriented approaches indicated OMT-Object-oriented
Modeling Technique-of Rumbaugh et.al. [14] as a relative suitable method. OMT is cited
by many prominants in the field of system design and is taught on several universities. OMT
models show three different but related views of a system: object, dynamic and functional
view. OMT's design framework is divided in four phases: analysis, system design, object
design and implementation.

As part of this masters project, OMT is applied to an elevator problem. The elevator
problem contains considerable dynamic behavior and physical and abstract hierarchies. Ap­
plying OMT to the elevator problem showed that it was not as suitable for analysis and
design of hardware/software systems as expected. Experiences with OMT were used to build
a requirements list for a method for software/hardware engineering. The new method SHE­
Software/Hardware Engineering-was checked with the requirements when it became avail­
able in a first form.

This thesis describes SHE as far as it has evolved. SHE is applied to the elevator problem
as well. SHE showed to tackle several problems that were encountered with OMT, but has
some problems of its own as well. These problems are analyzed and described in this thesis.
They may serve as input for discussions and future research. SHE seems to be a very promising
object-oriented method for analysis and design of complex hardware/software systems.

1

Contents

1 Introduction
1.1 Why structured analysis and design?
1.2 Masters project
1.3 How to read this thesis .

2 The elevator problem
2.1 A narrative description.

7
7
8
9

11
11

3 Object modeling technique summary 14
3.1 Introduction......... 14
3.2 Object modeling concepts . . 14
3.3 Dynamic modeling concepts . 17
3.4 Functional modeling concepts 20
3.5 Design methodology 21
3.6 Comments after reading OMT 22

3.6.1 Conceptual remarks 22
3.6.2 Modeling remarks ... 23

4 An OMT model of the elevator problem 25
4.1 Initial elevator model. 25

4.1.1 Identifying object classes 26
4.1.2 Identifying associations . 27
4.1.3 Refining the object model 29
4.1.4 Dynamic model. . 32
4.1.5 Functional model. 34

4.2 Review............... 37
4.2.1 Not enough notion about the difference between essence and implemen-

tation . 38
4.2.2 Class template view of the system is difficult to built 39
4.2.3 Complicated hierarchy . 40
4.2.4 Unclear relation between the object, dynamic and functional model 41
4.2.5 Many iterations necessary 41
4.2.6 Ambiguity in the models. 42

5 Software/hardware engineering requirements 43
5.1 Modeling requirements . . 44
5.2 Framework requirements 45

2

CONTENTS

6 Software/hardware engineering summary
6.1 SHE overview .
6.2 Essential behavior model and architecture structure model. . .

6.2.1 Initial requirements description and the object class model
6.2.2 Object instance model .
6.2.3 POOSL description.
6.204 Requirements catalogue . . .
6.2.5 Architecture structure model

6.3 Implementation structure model and extended behavior model

7 A SHE model of the elevator problem
7.1 Model overview
7.2 The architecture structure model
7.3 The essential behavior model ..

7.3.1 Message flow diagrams ..
7.3.2 Instance structure diagrams
7.3.3 POOSL description

704 Heuristics with the SHE method .
704.1 Phase 1 and 2 in building the essential behavior model.
704.2 Phase 3 in building the essential behavior model
704.3 Phase 4 in building the essential behavior model
70404 Phase 5 in building the essential behavior model

7.5 Review .
7.5.1 Four framework quadrants.
7.5.2 Modeling the environment.
7.5.3 Mixing analysis and design
7.504 Functionality distribution
7.5.5 Object class model
7.5.6 Instance approach
7.5.7 Hierarchy issues
7.5.8 Boundary issues .
7.5.9 Formal versus informal .
7.5.10 Channels in an essential model

8 Conclusions

A POOSL description of the elevator problem

B OMT notation

3

47
47
49
49
50
58
59
60
60

62
62
63
65
66
71
74
76
78
78
79
79
80
80
81
82
82
83
84
84
84
85
86

87

91

118

List of Figures

3.1 Class and objects. . . 15
3.2 Simple class diagram. 16
3.3 A qualified association 16
3.4 Multilevel inheritance 17
3.5 Multiple inheritance . 18
3.6 One-shot state diagram for chess game. 19
3.7 Vending machine model 19
3.8 Dispense item activity of vending machine 20
3.9 Select item transition of vending machine 20
3.10 Data flow diagram for windowed graphics display 21

4.1 Identifying object classes. 26
4.2 Initial object model. . . . 30
4.3 Refined object model. . . 31
4.4 Inheritance part of the object model 31
4.5 State diagrams of object classes with simple dynamic behavior 33
4.6 Computer: ElevatorCage state 34
4.7 Computer: summon and destination requests 34
4.8 Computer: pending summon or destination requests 35
4.9 Computer: no pending summon or destination requests 35
4.10 Computer: expanded actions: initiate elevator movement and start movement 36
4.11 Functional model of the elevator problem 37
4.12 Expansion of the scheduler 38

6.1 SHE framework. 48
6.2 Example object class model 51
6.3 Message flow primitives .. 52
6.4 Message flow examples . . . 53
6.5 Message flow from a single object to a multiple object 54
6.6 Example of a cluster and a composite object. 55
6.7 Example of an instance structure diagram 57

7.1 Architecture structure model 64
7.2 Level 0 of the message flow diagram 66
7.3 Level 1 of the message flow diagram 69
7.4 Level 2 of the message flow diagram 70
7.5 Level 0 of the instance structure diagram 72

4

LIST OF FIGURES 5

7.6 Levell of the instance structure diagram 73
7.7 Level 2 of the instance structure diagram 74
7.8 States of the ElevatorMaintenanceControl and the ElevatorMechanism 75
7.9 The information flow when building the models that comprise the essential

behavior model .. 77

List of Tables

4.1 Candidate object classes
4.2 Initial object classes .
4.3 Candidate associations .
4.4 Initial associations ...
4.5 Inputs and outputs for the functional model.

7.1 Objects of the flat object instance model.
7.2 Name abbreviations of leaf objects

6

26
27
28
29
36

65
72

Chapter 1

Introduction

1.1 Why structured analysis and design?

Today's information processing systems are very complex and involve a mix of both hardware
and software. The customer requests high quality at a reasonable price. Time to market is a
key factor for the success or failure of a product in the market. Development time must be
minimized and the ability of reuse of previously developed modules is necessary. Therefore, a
structured analysis and design method for hardware/software co-design is required. This the­
sis describes the results of a masters project that is part of the research in modeling techniques
at the Digital Information Systems Group of the Eindhoven University of Technology.

There are several reasons to analyze and design a system in a structured way with a
particular method. In general, models of a system that are build according a method are an
abstraction of the real-world. They enable communication with customers and engineers by
highlighting the relevant aspects of a system and suppressing the insignificant ones. During
analysis and specification, models help to understand the problem domain. During design,
models help to build a correct design. Four of the most important reasons are:

• Models help to understand the problem domain.

• Models of a system are a communication aid.

• Models serve as a specification of the desired system.

• Operations on models enable correctness-preserving manipulations on a system specifi­
cation.

A structured analysis and design method consists of: 1) means to build models, 2) a framework
that guides how to use the models.

A method must cover all phases from specification to design. Phase transitions must
be seamlessly from one phase to another. A system design starts with specification. From
requirements of the customer, models of the desired system are build. The models enable
communication with the customer. We can distinguish informal models and formal models.
Informal models are easy to understand and easy to learn. However, informal models are
often ambiguous, hard to keep consistent and allow context sensitive and discipline sensitive
interpretation. On the other hand, a formal model is unambiguous, allows verification, sim­
ulation and correctness-preserving transformations. A method should have both formal and
informal models.

7

CHAPTER 1. INTRODUCTION 8

Concepts like hierarchy, distribution and parallelism are very important to be able to
handle complex systems. It is impossible to understand and manipulate a complex system in
its entirety. Hierarchy offers a way to partition a system into smaller subsystems. Partitioning
may be physical and logical. These smaller subsystems may operate in parallel with each
other. A modeling technique must be able to describe parallelism between subsystems and
within subsystems. For communication between subsystems, a variety of communication
primitives are required.

Besides complexity management issues, a design method for complex systems has means
for project management. Project management allows a team of engineers to work on a single
system simultaneously. This should speed up system development. Another way to speed up
system development and to reduce costs is reuse of previously designed modules.

1.2 Masters project

Before developing an analysis and design method for embedded information processing sys­
tems with a mix of both hardware and software existing methods have been studied at the
Digital Information Systems Group of the Eindhoven University of Technology. This study
learns us about a variety of methods and whether or not a new method is necessary. Existing
methods can be categorized in their formal or informal basis, their approach as being data
analysis, a functional approach, or an object oriented approach.

Encapsulation of operations and data into objects is one of the most powerful object
oriented concepts to simplify models. It makes the object oriented paradigm very useful. Ex­
amples of currently available informal object oriented analysis methods that have been studied
are Jacobson's OOSE [7], OMT of Rumbaugh et.al. [14], Hayes and Coleman [6], the Fusion
method of Coleman [3]. Examples of formal approaches that have been studied are ObjLog
[2], FOOPS [5], Maude [8], ROOA [10] and SYSDAX [11]. All of these methods are suitable
for pure software. Currently, there are no object oriented methods for hardware/software
co-design available.

Developing an analysis and design method involves a lot of study, creative thinking and
fruitful discussions with colleagues. Besides theory, another very important input is practical
experience with existing methods and new theories. This masters project supplies the research
at the Digital Information Systems Group with practical input. As a starting point I studied
OMT of Rumbaugh et.al. [14] and applied it to the elevator problem of Yourdon [18].

OMT-Object-Oriented Modeling Technique-is selected for our case study for the fol­
lowing reasons. This method is cited by many prominents in the field of system design and is
taught on several universities. It is an analysis and design method for software systems. Its
models show three different views of the system: A static structural view, a dynamic view and
a functional view. OMT has a four phase design framework from analysis to implementation.
The four phase are: analysis, system design, object design and implementation. Especially
the existance of a system design phase makes OMT a suitable method for our case study.

We chose the elevator problem of Yourdon [18] for our case study because it has some very
important properties. It is a problem with significant dynamic behavior. Hierarchy is a very
important factor in the system, especially physical and logical hierarchies. It is a problem
with enough complexity to be useful, and yet it still is very common system. Everybody
knows what an elevator looks like, how it operates and what its prime functions are. And
last but not least, it is an embedded system that combines both hardware and software.

CHAPTER 1. INTRODUCTION 9

Application of OMT on the elevator problem showed it is not as suitable for hard­
ware/software systems as initially was thought. This experience lead to the development
of a new specification, analysis and design method SHE-Software/Hardware Engineering-.
SHE got shape through study to existing methods together with practical input from this
masters project.

Pillar of SHE is communicating objects. SHE focuses on instances that send messages to
each other. This instance approach is more appropriate for hardware/software co-design than
a class approach. Hardware has a static structure and is not dynamically allocated like data
objects in software. High level dynamic behavior of the system is embedded in message flows
and their sequence. Functionality of a system is divided among objects in the system's model.
Every object provides part of the functionality. Objects send messages as service requests or
to transport information. Modeling a system integrates both formal and informal techniques.
The SHE method falls apart in a framework with four quadrants:

• Essential behavior model

• Architecture structure model

• Implementation structure model

• Extended behavior model

The essential behavior model is in the first quadrant. This quadrant catches the essence
of the system to be designed. Although many correct models of the same problem can be
build, only one model will be built. It must be suitable for design and implementation. To
find this model, iteration between the essential behavior model and the architecture structure
model-the second quadrant-is necessary. High level structuring requirements are graph­
ically represented in the architecture structure model. It describes structure and timing
requirements, but no behavior. The acceptance of the specification, as modeled in these two
quadrants, should be confirmed by a sign off by all relevant parties and experts. After the
sign off, design starts in the third quadrant with the implementation structure model. This
model visualizes the implementation that must be designed before the behavior description
can be extended accordingly. The implementation topology is visualized and design decisions
are motivated and described. The design decisions will result in additional objects and com­
munications. The extended behavior model is based on the essential behavior model, but
contains the additional objects and communications.

SHE described in [13] shows the state of SHE at februari 1995. SHE at this state is applied
to the elevator problem as well. This application is an excercise of new ideas and theories.
They have been evaluated and compared to experiences with OMT.

Summarizing, this thesis presents the results of the OMT exercise on the elevator prob­
lem. It describes what we learned and formulates requirements for the new method for
software/hardware co-design of embedded systems. SHE is explained as far as it has evolved.
It still is under development. SHE is applied to the elevator problem as well. An essential
behavior model of the elevator problem is presented. Finally, SHE is reviewed. This review
presents weak and strong points of SHE which may serve as input for future research.

CHAPTER 1. INTRODUCTION

1.3 How to read this thesis

10

This chapter-contains an introduction to the masters project and shows you how to read
this report. The second chapter contains the elevator problem. It is almost an exact copy
of the elevator problem in [18]. The method OMT is applied to the elevator problem in the
succeeding two chapters. Chapter 3 contains a summary of OMT [14]-Object Oriented
Modeling Technique-. It is intended for those readers unfamiliar with OMT. Notation is
explained in Appendix B. For more information see [14]. Chapter 4 describes the OMT
model of the elevator problem and how it is build. The model is analyzed according the
heuristics and guidelines of Rumbaugh et.al. It concludes with a review. Chapter 5 formu­
lates the requirements for a new method. It is build on requirements from the experiences
with building the OMT model of the elevator.

Chapter 6 describes SHE-Software/Hardware Engineering-. Chapter 7 contains the
application of SHE on the elevator problem. The review section of this chapter evaluates
SHE and its application on the elevator problem. The POOSL description of the model is in
Appendix A. The last chapter of this thesis draws conclusions of the case study.

Chapter 2

The elevator problem

2.1 A narrative description

The elevator problem is an example in [18]. This section presents the unmodified elevator
problem from [18]. The problem gives rise to some hierarchy and substantial dynamic behav­
ior. This makes the problem complex enough to test OMT's suitability for the analysis and
design of embedded hardware/software systems.

The general requirement is to design and implement a program to schedule and control
four elevators in a building with 40 floors. The elevators will be used to carry people from
one floor to another in the conventional way.

The program should schedule the elevators efficiently and reasonably. For example, if
someone summons an elevator by pushing the down button on the fourth floor, the next
elevator that reaches the fourth floor traveling down should stop at the fourth floor to ac­
cept the passenger(s). On the other hand, if an elevator has no passengers-no outstanding
destination requests-, it should park at the last floor it visited until it is needed again. An
elevator should not reverse its direction of travel until its passengers who want to travel in its
current direction have reached their destinations. As we will see below, the program cannot
really have information about an elevator's actual passengers; it only knows about destina­
tion button presses for a given elevator. For example, if some mischievous or sociopathic
passenger boards the elevator at the first floor and then presses the destination buttons for
the fourth, fifth, and twentieth floor, the program will cause the elevator to travel to and stop
at the fourth, fifth, and twentieth floors. The computer and its program have no information
about actual passengers boarding and exiting. An elevator that is filled to capacity should
not respond to a new summon request. There is an overweight sensor! for each elevator. The
computer and its program can interrogate these sensors.

The interior of each elevator is furnished with a panel containing an array of 40 buttons,
one button for each floor, marked with the floor numbers 1 to 40. These destination buttons
can be illuminated by signals sent from the computer to the panel. When a passenger presses
a destination button not already lit, the circuitry behind the panel sends an interrupt to the
computer. There is a separate interrupt for each elevator. When the computer receives one
of these vectored interrupts, its program can read the appropriate memory mapped eight-bit
input register that contains the floor number corresponding to the destination button that
caused the interrupt. There is one input register for each interrupt, hence one for each elevator.

lit is actually a "filled to capacity" sensor.

11

CHAPTER 2. THE ELEVATOR PROBLEM 12

Of course, the circuitry behind the panel writes the floor number into the appropriate memory
mapped input register when it causes the vectored interrupt. Since there are 40 floors in this
application, only the first six bits of each input register will be used by the implementation;
but the hardware would support a building with up to 256 floors.

As mentioned earlier, the destination buttons can be illuminated by bulbs behind the
panels. When the interrupt service routine in the program receives a destination button
interrupt, it should send a signal to the appropriate panel to illuminate the appropriate
button. This signal is sent by loading the number of the button into the appropriate memory
mapped output register. There is one such register for each elevator. The illumination of a
button notifies the passenger(s) that the system has taken note of his or her request and also
prevents further interrupts caused by additional (impatient?) pressing of the button. When
the controller stops an elevator at a floor it should send a signal to its destination button
panel to turn off the destination button for that floor.

There is a floor sensor switch for each floor for each elevator shaft. When an elevator is
within eight inches of a floor, a wheel on the elevator closes the switch for that floor and sends
an interrupt to the computer. There is a separate interrupt for the set of switches in each
elevator shaft. When the computer receives one of these vectored interrupts, its program can
read the appropriate memory mapped eight-bit input register that contains the floor number
corresponding to the floor sensor switch that causes the interrupt. There is one input register
for each interrupt, hence one for each elevator.

The interior of each elevator is furnished with a panel containing one illuminable indicator
for each floor number. This panel is located just above the doors. The purpose of this panel is
to tell the passengers in the elevator the number of the floor at which the elevator is arriving
and at which it may be stopping. The program should illuminate the indicator for a floor
when it arrives at the floor and extinguish the indicator when it arrives at a different floor.
This signal is sent by loading the number of the floor indicator into the appropriate memory
mapped output register. There is one output register for each elevator.

Each floor of the building is furnished with an panel containing summon button(s). Each
floor except the ground floor-floor i-and the top floor-floor 40-is furnished with a panel
containing two summon buttons, one marked UP and one marked DOWN. The ground floor
summon panel has only an UP button. The top floor summon panel has only a DOWN
button. Thus, there are 78 summon buttons altogether, 39 UP buttons and 39 DOWN
buttons. Would-be passengers press these buttons in order to summon an elevator. Of course,
the would-be passenger cannot summon a particular elevator. The scheduler decides which
elevator should respond to a summon request. These summon buttons can be illuminated by
signals sent from the computer to the panel. When a passenger presses a summon button not
already lit, the circuitry behind the panel sends a vectored interrupt to the computer. There
is one interrupt for UP buttons and another for DOWN buttons. When the computer receives
one of these two vectored interrupts, its program can read the appropriate memory mapped
eight-bit input register that contains the floor number corresponding to the summon button
that caused the interrupt. Of course, the circuitry behind the panel writes the floor number
into the appropriate memory mapped input register when it causes the vectored interrupt.

The summon buttons can be illuminated by bulbs behind the panels. When the summon
button interrupt service routine in the program receives an UP or DOWN button vectored
interrupt, it should send a signal to the appropriate panel to illuminate the appropriate button.
This signal is sent by the program's loading the number of the button in the appropriate
memory mapped output register, one for the UP buttons and one for the DOWN buttons.

CHAPTER 2. THE ELEVATOR PROBLEM 13

The illumination of a button notifies the passenger(s) that the system has taken note of his or
her request and also prevents further interrupts caused by additional pressing of the button.
When the controller stops an elevator at a floor, it should send a signal to the floor's summon
button panel to turn off the appropriate UP or DOWN button for that floor.

There is a memory mapped control word for each elevator motor. Bit 0 of this word
commands the elevator to go up, bit 1 commands the elevator to go down, and bit 2 commands
the elevator to stop at the floor whose sensor switch is closed. The elevator mechanism will
not obey any inappropriate or unsafe commands. If no floor sensor switch is closed when the
computer issues a stop signal, the elevator mechanism ignores the stop signal until a floor
sensor switch is closed. The computer program does not have to worry about controlling
an elevator's doors or stopping an elevator exactly at a level-home position-at a floor.
The elevator manufacturer uses conventional switches, relays, circuits, and safety interlocks
for these purposes so that the manufacturer can certify the safety of the elevators without
regard for the computer controller. For example, if the computer issues a stop command for
an elevator when it is within eight inches of a floor so that its floor sensor switch is closed,
the conventional, approved mechanism stops and levels the elevator at that floor, opens and
holds its doors open appropriately, and then closes its door. If the computer issues an up
or down command during this period, the manufacturer's mechanism ignores the command
until its conditions for movement are met. Therefore, it is safe for the computer to issue an
up or down command while an elevator's door is still open. One condition for an elevator's
movement is that its stop button not be depressed. Each elevator's destination button panel
contains a stop button. This button does not go to the computer. Its sole purpose is to hold
an elevator at a floor with its door open when the elevator is currently stopped at a floor.
A red emergency stop switch stops and holds the elevator at the very next floor it reaches
irrespective of computer scheduling. The red switch may also turn on an audible alarm. The
red switch is not connected to the computer.

The elevator scheduler and controller may be implemented for any contemporary micro­
computer capable of handling this application.

Chapter 3

Object modeling technique
summary

3.1 Introduction

This chapter gives a summary of the object modeling technique as presented in [14]. To
preserve the intentions of the authors of [14], definitions and figures are kept unmodified.

A model is an abstraction of something for the purpose of understanding it before building
it. Because a model omits nonessential details, it is easier to manipulate than the original
entity. Abstraction is isolating those aspects that are important for some purpose and suppress
those aspects that are unimportant. The goal of abstraction is the selective examination of
certain aspects of a problem. Many different abstractions of the same thing are possible,
depending on the purpose for which they are made. There is no single "correct" model of a
situation, only adequate and inadequate ones.

The Object Modeling Technique [14]-OMT-is the name for a software development
methodology that combines three different but related viewpoints of a system:

• Object model

• Dynamic model

• Functional model

The object model represents the static, structural, "data" aspects of a system. The dynamic
model represents the temporal, behavioral, "control" aspects of a system. The functional
model represents the transformational, "function" aspects of a system. Each model contains
references to entities in other models. Each of the three models evolves during the development
cycles. During analysis, a model of the application domain is constructed without regard for
eventual implementation. During design, solution domain constructs are added to the model.
During implementation, both application domain and solution domain constructs are coded.

3.2 Object modeling concepts

An object model captures the static structure of a system by showing the objects in the sys­
tem, relationships between the objects, and the attributes and operations that characterize

14

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 15

Person

name: string
age: integer

(Person)
Joe Smith
24

(Person)
Mary Sharp
52

Class with Attributes Objects with Values

Figure 3.1: Class and objects

each class of objects. The object model is the most important of the three models. OMT
emphasizes building a system around objects rather than around functionality, because an
object oriented model more closely corresponds to the real world. An object is a concept,
abstraction, or thing with crisp boundaries and meaning for the problem at hand. Decompo­
sition of a problem into objects depends on judgment and the nature of the problem. Objects
are distinguished by their inherent existence.

An object class describes a group of objects with similar properties (attributes) and com­
mon behavior (operations). A class serves as a template for a group of objects. Common
definitions are stored once per class. An object is an instance of a class. An attribute is a
data value held by the objects in a class. Different object instances may have the same or
different values for a given attribute. An attribute should be a pure data value, not an object.
Figure 3.1 shows some examples.

As you may have noticed, OMT has a different definition of class from what is generally
referred to as class in the 00 community. A class in OMT is a class template. In general, a
class refers to the group of instances of a single class template.

An operation is a function or transformation that may be applied to or by objects in a
class. Each operation has a target as an implicit argument. An operation may have arguments
in addition to its target object.

Links and associations are the means for establishing relationships among objects and
classes. A link is a physical or conceptual connection between object instances. A link shows
a relationship between two (or more) objects. The link is not part of either object itself,
but depends on both them together. An association describes a group of links with common
structure. Associations are inherently bidirectional. The name of an association usually
reads in a particular direction, but the binary association can be traversed in either direction.
Multiplicity specifies how many instances of one class may relate to a single instance of an
associated class. Multiplicity constrains the number of related objects. A link attribute is a
property of the links in an association. A role is one end of an association. Each role on a
binary association identifies an object or set of objects associated with an object at the other
end. Use of role names provides a way of traversing associations from an object at one end,
without explicitly mentioning the association. Figure 3.2 shows a simple class diagram.

Usually the objects on the "many" side of an association have no explicit order, and can
be regarded as a set. Sometimes, however, the objects are explicitly ordered. In these cases,
the ordering is an inherent part of the association and is indicated by writing "{ ordered
}" on the many end of the association. A qualified association relates two object classes
and a qualifier. The qualifier is a special attribute that reduces the effective multiplicity of

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 16

Works-for
Person \) Company
name name
social security no. salary

address

"I address job title

Tworker
ges \

I IIperformance rating I

Mana

Figure 3.2: Simple class diagram

Company
. Lorganization

office r officer j Il Person

Figure 3.3: A qualified association

an association. The qualifier distinguishes among the set of objects at the many end of an
association. Figure 3.3 shows a qualified association.

Aggregation is the "part whole" or "part of" relationship in which objects representing
the components of something are associated with an object representing the entire assembly.
The most significant property of aggregation is transitivity. It is antisymmetric as well.
Some properties of the assembly propagate to the components, possibly with some local
modifications. Unless there are common properties of components that can be attached to
the assembly as a whole, there is little point in using aggregation.

Generalization and inheritance are powerful abstractions for sharing similarities among
classes while preserving their differences. Generalization is the relationship between a class
and one or more refined versions of it. The class being refined is called the superclass and
each refined version is called a subclass. Each subclass is said to inherit the features-Leo the
attributes and operations-of its superclass. Generalization is sometimes called the "is a"
relationship because each instance of a subclass is an instance of the superclass as well. The
term ancestor and descendant refer to generalization of classes across multiple levels. Each
subclass not only inherits all the features of its ancestors but adds its own specific attributes
and operations as well. A subclass may override a superclass feature by defining a feature with
the same name. The overriding feature refines and replaces the overridden feature. There
are several reasons why you may wish to override a feature: to specify behavior that depends
on the subclass, to tighten the specification of a feature, or for better performance. Multiple
inheritance permits a class to have more than one superclass and to inherit features from all
parents. A class with more than one superclass is called a join class. A feature from the same
ancestor class found along more than one path is inherited only once; it is the same feature.

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY

Equipment
name
manufacturer
weight
cost

/""- eauioment tvoe
I I I

Pump Heat exchanger ..
suction pressure surface area
discharge pressure tube diameter
flow rate tube length

tube pressure -

~ pumptvp.

shell pressure

I I I
Centrifugal pump Plunger pump ...
impeller diameter plunger length
number of blades plunger diameter
axis of rotation number of cylinders

Figure 3.4: Multilevel inheritance

Figure 3.4 shows multilevel inheritance, while Figure 3.5 shows multiple inheritance.

3.3 Dynamic modeling concepts

17

The dynamic model captures those aspects of a system that are concerned with time and
changes. The major dynamic modeling concepts are events, which represent external stimuli,
and states, which represent values of objects. The attribute values and links held by an object
are called its state. Over time, the objects stimulate each other, resulting in a series of changes
to their states. An individual stimulus from one object to another is an event. The response
to an event depends on the state of the object receiving it, and can include a change of state
or the sending of another event to the original sender or to a third object. The pattern of
events, states and state transitions for a given class can be abstracted and represented as a
state diagram. The dynamic model consists of multiple state diagrams, one state diagram for
each class with important dynamic behavior. Each state machine executes concurrently and
can change state independently. The state diagrams for the various classes combine into a
single dynamic model via shared events and thus shows the pattern of activity for an entire
system.

An event is something that happens at a point in time. An event has no duration. Of
course, nothing is really instantaneous; an event is simply an occurrence that is fast compared

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY

Figure 3.5: Multiple inheritance

18

to the granularity of the time scale of a given abstraction. An event is a one-way transmission
of information from one object to another. It is not like a subroutine call that returns a
value. Some events are simple signals, but most event classes have attributes indicating the
information they convey. Event classes group events and give each event class a name to
indicate common structure and behavior. This structure is a generalization hierarchy with
inheritance of event attributes.

A state is an abstraction of the attribute values and links of an object. Sets of values
are grouped together into a state according to properties that affect the gross behavior of
the object. A state specifies the response of the object to input events. The response of an
object to an event may include an action or a change of state by the object. A state is often
associated with a continuous activity, or an activity that takes time to complete.

A state diagram relates events and states. The state diagram specifies the state sequence
caused by an event sequence. If an object is in a state with more than one transition leaving
it, then the first event to occur causes the corresponding transition to fire. If an event occurs
that has no transition leaving the current state, then the event is ignored. State diagrams can
represent one-shot life-cycles or continuous loops. One-shot diagrams represent objects with
finite lives. See Figure 3.6. A one shot diagram has initial and final states. The initial state
is entered on creation of an object; entering the final state implies destruction of the object.

A condition is a boolean function of object values. Conditions can be used as guards on
transitions.

Operations attached to states or transitions are performed in response to the correspond­
ing states or events. An activity is an operation that takes time to complete. An activity
is associated with a state. Activities include continuous operations as well as sequential
operations that terminate by themselves after an interval of time. A state may control an
continuous activity that persists until an event terminates it by causing a transition from the
state. If an event causes a transition from a state before a sequential activity is complete,
then the activity is terminated prematurely. The lack of event labels at transitions indicate
that the transition fires automatically when the activity in the state is complete. An action
is an instantaneous operation. An action is associated with an event. An action represents

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 19

Draw

Black wins

l--c.,-he-c..,....km-a--:-te--3><· White wins

checkmate •

Wh~Q
moves stalemate v

black
moves

Start

Figure 3.6: One-shot state diagram for chess game

[change<O]select(item)[item empty]

coins in(amount)/set balance > Collecting money
;..<:;c:---ca-n-c-el:-:-/r-ef=-u-nd--,---co-,i-ns----\ coins in(amountYladd to balance

do: test item and compute change

[change=O] [change>O]

'----------------1 do: dispense item do: make change

Figure 3.7: Vending machine model

an operation whose duration is insignificant compared to the resolution of the state diagram.
An action could be setting attributes or generating other events.

An activity in a state can be expanded as a lower-level state diagram, each state rep­
resenting one step of the activity. Nested activities are one-shot state diagrams with input
and output transitions, similar to subroutines. Events can also be expanded into subordinate
state diagrams. See Figure 3.7, 3.8 and 3.9.

A dynamic model describes a set of concurrent objects, each with its own state and state
diagram. Concurrency within the state of a single object arises when the object can be
partitioned into subsets of attributes or links, each of which has its own subdiagram. The
state of the object comprises one state from each subdiagram. A transition to a state outside
the composite state terminates all concurrent subdiagrams. However, merging of concurrent
control is possible as well. For this purpose a forked arrow indicates the merged transition.
Each subdiagram terminates as soon as its part of the transition fires, but all parts of the
transition must fire before the entire transition fires and the composite state is terminated.
The events need not be simultaneous.

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 20

do: move arm
to correct row

1-------3>(do: move arm
to correct column

Figure 3.8: Dispense item activity of vending machine

Figure 3.9: Select item transition of vending machine

The dynamic model of a class is inherited by its subclasses. The subclasses inherit both
the states of the ancestor and the transitions. If the superclass state diagrams and the subclass
state diagrams deal with disjoint sets of attributes, there is no problem. The subclass has
a composite state composed of concurrent state diagrams. If, however, the state diagram of
the subclass involves some of the same attributes as the state diagram of the superclass, a
potential conflict exists. The state diagram of the subclass must be a refinement of the state
diagram ofthe superclass. Usually, the state diagram of a subclass should be an independent,
orthogonal, concurrent addition to the state diagram inherited from a superclass, defined on
a different set of attributes.

3.4 Functional modeling concepts

The functional model describes computations within a system. The functional model specifies
what happens, the dynamic model specifies when it happens, and the object model specifies
what it happens to. It shows how output values in a computation are derived from input
values, without regard for the order in which the values are computed. The functional model
consists of multiple data flow diagrams. A data flow diagram is a graph showing the flow
of data values from their sources in objects through processes that transform them to their
destinations in other objects. A data flow diagram contains processes that transform data,
data flows that move data, actor objects that produce and consume data, and data store
objects that store data passively.

A process transforms data values. Each process has a fixed number of inputs an outputs.
A process can have more than one output. A high level process can be expanded into an
entire data flow diagram. A process is implemented as one or more methods of operations
on object classes. The target object is usually one of the input flows, especially if the same
class of object is also an output flow. A data flow connects the output of an object or process
to the input of another object or process. It represents an intermediate data value within a
computation. The value is not changed by the data flow. A data flow may generate an object
that is used as a target of another operation.

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY

Window

21

icon name 5
location

Icon
definitions

Screen
Buffer pixel

operations

size

convert
to pixels

location

screen
vector
list

Figure 3.10: Data flow diagram for windowed graphics display

An actor is an active object that drives the data flow graph by producing or consuming
values. In a sense, the actors lie on the boundary of the data flow graph but terminate the
flow of data as sources and sinks of data, and so are sometimes called terminators. Actors
are explicit objects in the object model. A data store is a passive object within a data flow
diagram that stores data for later access. Data stores are also objects in the object model,
or at least fragments of objects, such as attributes. Unlike an actor, a data store does not
generate any operations on its own but merely responds to requests to store and access data.

The functional model shows what "has to be done" by a system. The leaf processes are the
operations on objects. The object model shows the "doers"-the objects. Each leaf process
is implemented by a method on some object. The dynamic model shows the sequences in
which the operations are performed. The three models come together in the implementation
of methods. The functional model is a guide to the methods.

3.5 Design methodology

The steps of software production are usually organized into a life cycle consisting of several
phases of development. The complete software life cycle spans from initial formulation of the
problem, through analysis ,design, implementation, and testing of the software, followed by
an operational phase during which maintenance and enhancement are performed. The OMT
methodology supports the entire software life cycle. Although the description of the Object
Modeling Technique is of necessity linear, the actual development process is iterative. The
methodology has the following stages:

1. Analysis: Starting from a statement of the problem, the analyst must work with the
requester to understand the problem because problem statements are rarely complete
or correct. The analysis model is a concise, precise abstraction of what the desired
system must do, not how it will be done. The analysis model should not contain any
implementation decisions.

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 22

2. System design: The system designer makes high-level decisions about the overall archi­
tecture. During system design, the target system is organized into subsystems based on
both the analysis structure and the proposed architecture. The system designer must
decide what performance characteristics to optimize.

3. Object design: The object designer builds a design model bases on the analysis model
but containing implementation details. The designer adds details to the design model
in accordance with the strategy established during system design. The focus of object
design is the data structures and algorithms needed to implement each class.

4. Implementation: The object classes and relationships developed during object design
are finally translated into a particular programming language, database, or hardware
implementation. Programming should be a relatively minor and mechanical part of the
development cycle, because all of the hard decisions should be made during design.

3.6 Comments after reading OMT

3.6.1 Conceptual remarks

The OMT model consists of three different views of a system: the object model, the dy­
namic model and the functional model. OMT is quite clear about the relation between the
object model and the dynamic model. There is dynamic behavior description for every class
template! in t,he object model. The functional model describes the functions that are per­
formed by the system. The processes in the functional model are implemented as methods
of operations in the object model. The mapping from processes in the functional model to
methods of operation of class templates in the object model and operations/events in the
dynamic model however, is not very clear. It may take several methods of operations on
different class templates to implement a process. The relation between the functional model
and object/dynamic model is not very clear.

During system design, the overall structure and style are decided. The system architecture
is the overall organization of the system into subsystems. The decomposition of systems into
subsystems may be organized as a sequence of horizontal layers and/or vertical partitions.
The layers are an ordered set of virtual worlds at different levels of abstraction. The partitions
vertically divide a system into several independent or weakly-coupled subsystems. Usually
only the top and bottom layers are specified by the problem statement: The top is the desired
system, the bottom is the available resources. If the disparity between the two is too big,
then the system designer must introduce intermediate layers to reduce the conceptual gap
between adjoining layers. The usefulness of a design method depends on its ability to support
the system designer in filling the gap. OMT, however, only gives a list of suggestions how to
divide a system into subsystems. Though the authors pretend to present a seamless design
method, they do not use the three models made during analysis. Instead, totally out of the
blue, the system design of a very important example in [14]-the automatic teller machine-is
presented. Maybe the example is a very simple one, but to divide system into subsystems
the system designer must be able to determine what the effect of his decisions are on, for
example, performance. OMT does not show how to calculate or guess system performance.

1 A class in OM T is a class template

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 23

These major limitations indicate that OMT can not be used as a combined hardware/software
design tool yet.

The object model captures the static structure of a system. It is a diagram that contains
class templates instead of objects. The dynamic model describes aspects of a system that are
concerned with time and changes. There is a state diagram for every class template. The
functional model describes computations within a system. The functional model is a guide
to the implementation of methods. The models are built on class templates. OMT does not
model a particular system, but a class of systems, because there are no instances of class
templates in the system model. The three models serve as a system template. A real system
however, consists of objects which perhaps have finite life time. A model of a particular
system should therefore contain instances of class templates and a concept to model objects
with finite life time. The OMT object model shows how to create an instance and what its
possible links are to other instances. OMT has two types of object diagrams: class template
diagrams and instance diagrams. OMT does not allow both class templates and objects in a
single diagram.

3.6.2 Modeling remarks

Here is a list of some modeling remarks on OMT:

• OMT supplies two concepts two model a hierarchy in the object model. One is the
inheritance hierarchy and the other is the aggregation hierarchy. Aggregation is the
"part of" relationship in which objects representing the components of something are
associated with an object representing the entire assembly. Unless there are common
properties of components that can be attached to the assembly as a whole, there is little
point in using aggregation. Unfortunately, the authors do not show how these common
properties are modeled except for propagation of operations.

• An object is defined as a concept, abstraction, or thing with crisp boundaries and
meaning for the problem at hand. Each object has its own state diagram. An event
generated at one object could trigger state transitions of several other objects. The
dynamic interaction between objects is through the use of the same event name at
different locations in the dynamic model. This way, events are globally defined. The
dynamic model does not have crisp boundaries as the object model has. The collection
of state diagrams with globally used event names make it difficult to understand the
dynamic behavior of a system.

• An individual stimulus from one object to another is an event. The attribute values
and links held by an object are called its state. In the ATM example of [14] however,
the authors use a broader definition of event and state. The dynamic model of the class
template ATM contains many transitions, triggered by events from the userinterface,
though the userinterface is not defined in the object model. Secondly, the state diagram
of class template ATM contains more states then can be accounted for by differences in
attribute values and links. Incomplete examples in [14], make OMT as a methodology
hard to understand.

• The functional model consists of multiple data flow diagrams. A data flow diagram is
a graph showing the flow of data values from their sources in objects through processes
that transform them to their destinations in other objects. A data flow diagram does

CHAPTER 3. OBJECT MODELING TECHNIQUE SUMMARY 24

not show control information. Decisions and sequencing are control issues that are
part of the dynamic model. A decision affects whether one or more functions are
even performed, rather than supplying a value to the functions. Even though the
functions do not have input values from these decision functions, it is sometimes useful
to include them in the functional model so that they are not forgotten and so their data
dependencies can be shown. This is done by including control flows in the data flow
diagram. So, sometimes a data flow diagram does show control information even though
the functional model should not contain control information. Control information in
the functional model duplicates information of the dynamic model and will be prone to
inconsistencies.

Chapter 4

An OMT model of the elevator
problem

4.1 Initial elevator model

Analysis, the first step of the OMT methodology, is concerned with devising a precise, concise,
understandable, and correct model of the real world. Before building anything complex, the
builder must understand the requirements and the real-world environment in which it will
exist. Analysis cannot always be carried out in a rigid sequence. Large models are build
iteratively. First a subset of the model is constructed, then extended, until the complete
problem is understood.

The first step in analyzing the requirements is to construct an object model. The object
model describes real-world object classes and their relationships to each other. The object
model precedes the dynamic model and functional model because static structure is usually
better defined, less dependent on application details, more stable as the solution evolves, and
easier for humans to understand. Information for the object model comes from the problem
statement, expert knowledge of the application domain, and general knowledge of the real­
world. It is best to get ideas down on paper before trying to organize them too much, even
though they may be redundant and inconsistent, for not to loose important details. The
following steps are performed in constructing an object model:

• Identify objects and classes

• Prepare a data dictionary

• Identify associations between objects

• Identify attributes of objects and links

• Organize and simplify object classes using inheritance

• Iterate and refine the model

• Group classes into modules

25

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 26

Re uirements
Statement

extract nouns Tentative
Object classes

Figure 4.1: Identifying object classes

Destination
DestButton
Dest But Pa nel
DestButPanCircuitry
DestButlnputReg
DestButOutputReg
Summons
SumButton
SumButPanel
SumButPanCircuitry
SumButlnputReg
Sum ButOutput Reg
UpButton

Down Button
Stop Button
StopSwitch
Arrival Light
ArrLightOutputReg
ArrLightPanel
Building
TopFloor
Floor
Bottom Floor
FloorSensor
FloorSensl nput Reg
TargetMachine

Manufacturer
Passenger
Program
Computer
ControlWord
Door
OverweightSensor
ElevatorCage
ElevatorMechanism
AudibleAlarm
Interrupt
IntServiceRoutine

Table 4.1: Candidate object classes

4.1.1 Identifying object classes

Objects include physical entities as well as concepts, such as trajectories, seating assignment,
and payment schedules. All classes must make sense in the application domain; computer
implementation constructs must be avoided.

Classes often correspond to nouns. Searching for classes really is a search for objects.
Every object belongs to some class. A class can have many instances or even just the one
object found. Without being too selective, Table 4.1 contains a list of object classes that
comes to mind when reading the problem statement.

This list probably isn't complete, because it only contains classes that appear directly
in the problem statement. Some classes may be overlooked or it may be necessary to put
classes in the object model that come from common knowledge of the problem domain. This
should not be a problem, since modeling is an iterative process. The next step is to discard
unnecessary and incorrect classes.

This list shows what classes are discarded and why:

• DestButPanCircuitry is redundant. The distinction between DestButPanCircuitry and
DestButPanel doesn't seem to effect analysis. DestButPanCircuitry is merged into Dest­
ButPanel. SumButPanCircuitry is merged into SumButPanel as well.

• DestButlnputReg, DestButOutputReg, SumButlnputReg, SumButOutputReg, ArrLightOut­
putReg, FloorSenslnputReg, ControlWord, Interrupt and IntServiceRoutine are implemen­
tation specific and should be eliminated from the analysis model. They may be needed

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 27

Destination
DestButton
DestButPanel
Summons
SumButPanel
UpButton

DownButton
StopButton
StopSwitch
ArrivalLight
ArrLightPanel
Floor

FloorSensor
Passenger
Computer
OverweightSensor
ElevatorCage
ElevatorMechanism

Table 4.2: Initial object classes

later during design, but not in this stage of analysis.

• Sum Button is an abstract class. SumButton is a generalization of UpButton and Down­
Button. Inheritance is postponed until a more stable version of the object model is
present.

• Building and TargetMachine are redundant. They are objects representing an assembly in
an aggregation. Their components have no common properties in the problem domain,
so there is no point in using an aggregation.

• Manufacturer is irrelevant. It has little to do with the problem.

• TopFloor and BottomFloor are specializations of Floor. At this time there is no need
to make a distinction between an "ordinary" floor and a top or bottom floor. Also,
inheritance is postponed until a more stable version of the object model is present.

• Door and AudibleAlarm are irrelevant. They are encapsulated in the object ElevatorMech­
anism. Door and AudibleAlarm are invisible for the Computer and its program. Therefore,
they have no effect on the analysis.

• Program is redundant. The distinction between Program and Computer doesn't seem to
effect analysis. Program is merged into Computer.

Table 4.2 shows the resulting initial object class list.

4.1.2 Identifying associations

Any dependency between two or more classes is an association. A reference from one class to
another is an association. Associations show dependencies between classes at the same level
of abstraction as the classes themselves. Associations often correspond to stative verbs or
verb phrases. These include physical location, directed actions, communications, ownership,
or satisfaction of some condition. Candidate associations can be extracted from the problem
statement or directly by examining the relationship between classes from the class list. In
the elevator problem, the latter is preferred since the number of classes is small. Table 4.3
contains a list of candidate associations.

Next step is to discard unnecessary and incorrect associations, but let us first take a
closer look at the classes StopButton, StopSwitch and Passenger. The classes Stop Button and
StopSwitch are irrelevant. They are connected directly to the ElevatorMechanism and have
nothing to do with the problem of designing and implementing a program to schedule and

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 28

DestButPanel, Destination

DestButPanel, DestButton
Computer, OverweightSensor
Computer, DestButPanel
Computer, ElevatorCage
Computer, ElevatorMechanism
Computer, Summons
Computer, Sum But Panel
Computer, FloorSensor
Computer, ArrLightPanel
ElevatorCage, Destination

ElevatorCage, DestButPanel
ElevatorCage, ElevatorMechanism

ElevatorCage, Stop Button
ElevatorCage. StopSwitch
ElevatorCage, Passengers
ElevatorCage, Floor
ElevatorCage, FloorSensor
ElevatorCage, ArrLightPanel
ElevatorMechanism, StopButton
ElevatorMechanism, StopSwitch
StopSwitch, AudibleAlarm
SumButPanel, DownButton
Sum But Panel, UpButton
SumButPanel, Summons

Passenger, Destination
Passenger, DestButton
Passenger, Summons
Passenger, SumButton
Floor, Summons
Floor, SumButPanel
Floor, Passenger

Floor, FloorSensor
ArrLightPanel, ArrivalLight

The passenger uses the panel to supply the sys­
tem with his destination
Aggregation
Computer interrogates the sensor
Computer reads destinations from the panel
Computer controls the movement of the cage
Computer issues commands to the mechanism
Computer keeps a list of summons
Computer reads summons from the panel
Sensor sends interrupts to the computer
Computer sends signals to the panel
Destinations of a passenger automatically be­
comes a destination of the cage
Aggregation
Aggregation: The mechanism is part ofthe cage.
The mechanism controls the movement of the
cage
Aggregation
Aggregation
There are passenger in the cage
Cage stops at a floor
Cage closes floorsensor
Aggregation
Button is connected to the mechanism
Switch is connected to the mechanism
Switch turns alarm on
Aggregation
Aggregation
The passenger uses the panel to supply the sys­
tem with his summons
Passenger has a destination
Passenger depresses button
Passenger summons elevator
Passenger depresses button
There is a summon request at a particular floor
Aggregation
A passenger is at a floor and wants to travel to
a different floor
A floorsensor goes with a particular floor
Aggregation

Table 4.3: Candidate associations

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 29

DestButPanel, Destination
DestButPanel, DestButton
Computer, ElevatorCage
Computer, Summons
ElevatorCage, OverweightSensor
ElevatorCage, Destination
ElevatorCage, DestButPanel
ElevatorCage, ElevatorMechanism
ElevatorCage, Floor

ElevatorCage, FloorSensor
ElevatorCage, ArrLightPanel
SumButPanel, DownButton
SumButPanel, UpButton
SumButPanel, Summons
Floor, Summon
Floor, SumButPanel
Floor, FloorSensor
ArrLight Panel, Arrival Light

Table 4.4: Initial associations

control four elevators. The class Passenger seems to be very important. If it wasn't for
the passengers there would be no elevator at all. However, the program cannot really have
information about an elevator's actual passengers; it only knows about destination button
presses for a particular elevator and summon button presses. Therefore, the class Passenger
doesn't effect analysis. It can be discarded to simplify the model.

This list shows what associations are discarded and why:

• If one of the classes in the association has been eliminated, then the association must
be eliminated. All associations with class StopButton, StopSwitch and Passenger must
be eliminated.

• Computer, OverweightSensor: is a derived association if we give ElevatorCage a boolean
attribute which shows if it is filled to capacity. The Computer can query this attribute.

• Computer, DestButPanel: is a derived association. The Computer communicates with
ElevatorCage. DestButPanel is a part of ElevatorCage.

• Computer, ArrLightPanel: is a derived association. The Computer communicates with
ElevatorCage. ArrLightPanel is a part of ElevatorCage.

• Computer, ElevatorMechanism: is a derived association. The Computer communicates
with ElevatorCage. ElevatorMechanism is a part of ElevatorCage.

• Computer, SumButPanel: is a derived association. The Computer communicates with
Floor. SumButPanel is a part of Floor.

• Computer, FloorSensor: is a derived association. The Computer communicates with
Floor. F1oorSensor is a part of Floor.

Table 4.4 shows what is left. Figure 4.2 shows the initial object model.

4.1.3 Refining the object model

The elevator object model doesn't feel right. There is an asymmetry in associations between
Computer, Summons and Destination. It is a good idea to model Destination as an association
between ElevatorCage and Floor instead as an object. An ElevatorCage has zero, one or many

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM

ElevatorMechanismf-------1

Figure 4.2: Initial object model

30

Floors as its destination. Another association between ElevatorCage and Floor is the "is at"
relationship. Summons can not be modeled as an association. It is an object associated with a
particular Floor. A Summons is a request for an elevator. The scheduler decides which elevator
should respond to a summon request. The association between Computer and Summons can
be discarded. It is a derived association. Computer communicates with Floor to see if there
are any summon requests pending at a floor.

Refining the object model includes adding attributes of objects and associations, add
multiplicity to associations, identify aggregations, qualifications. These small changes in the
object model don't need a detailed explanation. Figure 4.3 reflects the object model up to
this point.

Next step is to organize classes by using inheritance to share common structure. In­
heritance can be discovered by searching for classes with similar attributes, associations, or
operations. In the elevator problem, the object classes FloorSensor and OverweightSensor are
both sensors with boolean output. Class BooleanSensor can serve as a generalization of FloorS­
ensor and OverweightSensor. Similarly, class ButPanel is a generalization of DestButPanel and
SumButPanel, and class Button is a generalization of UpButton, DownButton and DestButton.
Figure 4.4 shows the generalization tree. Usually, the generalization tree is drawn in the
object model, together with "ordinary" associations and aggregations. Because inheritance is
a distinct type of associations, it is presented here in a separate figure. Notice that with the
generalization tree, the association between DestButPanel and DestButton is not clear from
the diagram. This applies for SumButPanel and its Buttons as well. It is probably best to
leave inheritance out of the object model, because it does not add relevant or descriptive
information to the models.

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 31

.----------1 FloorSensor r----~~--,

is at

ElevatorCage Floor

DirOfMovement number
FilledToCapacity

4

Elevator
number Computer

Summons
Direction

Figure 4.3: Refined object model

[OVMweiQhlSenSor

Figure 4.4: Inheritance part of the object model

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 32

4.1.4 Dynamic model

The dynamic model shows the time-dependent behavior of the system and the objects in it.
First step is to prepare scenarios of typical dialogs. Even though these scenarios may not
cover every contingency, they at least ensure that common interactions are not overlooked.
Extract events from the scenarios. Organize the sequences of events and states into a state
diagram. Finally compare state diagrams for different objects to make sure that the events
exchanged by them match. The resulting set of state diagrams constitute the dynamic model.
In summary, the following steps are performed in constructing the dynamic model:

• Prepare scenarios of typical interaction sequences

• Identify events between objects

• Prepare an event trace for each scenario

• Build a state diagram

• Match events between objects to verify consistency

Most object classes in the elevator problem have little dynamic behavior. There state
diagrams are very simple. The state diagrams of these object classes can be constructed
without the use of scenarios. Figure 4.5 shows the state diagrams. The dynamic model of a
class is inherited by its subclasses. Subclass DestButton inherits the state diagram of Button.
Subclasses FloorSensor and OverweightSensor inherit the state diagram of BooleanSensor. Note
however that the inherited statediagrams differ in event and state names, and additional
actions are attached to transactions.

There is not a dynamic model for class ElevatorMechanism. The dynamic behavior of
class ElevatorMechanism is invisible. The manufacturer of the ElevatorMechanism designed
and guarantees the internal dynamic behavior. The ElevatorMechanism accepts commands to
control the movement of the elevator. These commands are predefined events.

SumButPanel is a "part-whole" class of an aggregation. Its state is composed of the states
in the sub state diagrams. Class DestButPanel, ArrLightPanel, Floor and ElevatorCage are
"part-whole" classes as well. Their state diagrams aren't drawn because they are simple
aggregations, without additional dynamic behavior for the "part whole". Classes UpButton
and DownButton inherit the state diagram of Button. Object class Summons does not have
any dynamic behavior except for its one shot life cycle.

Most of the dynamic complexity is in the object class Computer. The Computer accepts
summon and destination requests, schedules the elevators and issues control commands to
them. The model of an ElevatorCage inside the Computer has an idle state. In this state the
ElevatorCage is waiting at a Floor with its doors open. If a passenger depresses a Sum Button
or DestButton a transition may occur from the idle state to a state in which the ElevatorCage
is moving with pending summon or destination requests in its direction of movement. If all
requests in the direction of movement have been handled, the Computer checks to see if there
are requests in the opposite direction. The ElevatorCage changes direction or stays at a Floor
with its doors opened. Figure 4.6 shows a sketch of the state diagram. The Computer state
diagram is composed of this state diagram and two state diagrams to handle summon and
destination requests as in Figure 4.7. In the state diagrams event generalization is used. The
event "sum. or dest. button depressed" is the ancestor of "sum. button up depressed" and
"sum. button down depressed" .

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 33

turn
light
on

BooleanSensor

FloorSensor

turn
light
on

ArrivalLight

OverweightSensor

SumButUp
depressedl
create
summon up

Button

depressl
create
dest(NRlr -----",

DestButton

SumButPanel

remove
summon
down

Figure 4.5: State diagrams of object classes with simple dynamic behavior

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 34

sum. or dest.
button depressed!
initiate elevator
movement

sum. or dest. in opposite direction/
reverse elevator movement

no sum. or dest. in direction
of movement

no sum. or dest. at all

Figure 4.6: Computer: ElevatorCage state

create summon(NR)

do: add summon
do: turn light on

create destination(NR)

do: add destination
do: turn light on

Figure 4.7: Computer: summon and destination requests

Figure 4.8 shows the sub state diagram of the state with pending summon or destination
requests in the direction of movement. Figure 4.9 shows the sub state diagram of the state
when all summon or destination requests in the direction of movement are handled.

The dynamic model of class Computer is a rough sketch which is not complete. It is
however, a good starting point. Since the functional model serves as a guide to the methods
in the dynamic model it may help to construct and refine the dynamic model. Because of the
complexity of the dynamic behavior of the Computer it is a good idea to start working on the
functional model before refining the dynamic model.

4.1.5 Functional model

The functional model shows how values are computed, without regard for sequencing, deci­
sions, or object structure. The functional model shows which values depend on which other
values and the functions that relate them. The following steps are performed in constructing
a functional model:

• Identify input and output values

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 35

do: check
destinations

at floor NR

dest. exist

do: dest. light off
do: remove dest.
do: check summons

no dest.

do: check summons

no sum. in
direction or
[filled to capacity]

dest. or sum. in
direction of movement!
start movement

sum. in
direction and
[not filled to capacity]

do: check if pending
sum. or dest. in direction 1-->-3"Q
of movement \J

do: sum. light off
do: remove sum.

sum. in direction
no sum.
in direction

no dest. or sum.
in direction of
movement

Figure 4.8: Computer: pending summon or destination requests

do: check if sum. or
dest. in direction of
movement

dest. or sum. in
direction of movement

no dest. or sum.
in direction of
movement

• •
Figure 4.9: Computer: no pending summon or destination requests

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM

do: determine
di recti on of
movement

Istart movement

36

initiate elvator
movement

start movement

Figure 4.10: Computer: expanded actions: initiate elevator movement and start movement

INPUTS
Summon requests
Destination requests
Elevator direction
Elevator at floor
Efficiency rules
Filled to capacity

OUTPUTS
Commands
Summons request accepted
Destination request accepted
Elevator position

Table 4.5: Inputs and outputs for the functional model

• Build data flow diagrams showing functional dependencies

• Describe functions

• Identify constraints

• Specify optimization criteria

First step is to identify input and output values. Table 4.1.5 contains a list of inputs and
outputs.

Starting with the inputs and outputs list, a functional model is build. Figure 4.11 shows a
first sketch of the functional model. The functional model contains two levels of abstraction.
The top level is shown in Figure 4.11 and the bottom level in Figure 4.12. Figure 4.12 is the
expansion of the scheduler process.

Summons requests and destination requests result in summons and destinations inside the
system. When they are added to their corresponding list, displays are updated as well. A
scheduler queries the lists and determines the commands to send to the elevator mechanisms.
Function elevator control translates commands from the scheduler into commands for the
elevator mechanism. Whenever an elevator reaches a floor, elevator cage status is updated

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM

summons Summons
summons

request accept SummonsList

destinationsdestination Destination
request accept DestinationList

Efficiency rules

37

ElevatorMechanism IE-----{

ElevatorAtNewFloor FloorHandling I----~ ArrlightPanel

Figure 4.11: Functional model of the elevator problem

and the display inside the elevator is updated. The scheduler consists of two major parts: a
summons part and a destinations part. Each part determines a desired elevator command
according its request list and efficiency rules. The actual command that is send to the elevator
mechanism is determined from these two desired commands.

As you can see the functional model contains the object Destination which is modeled as an
association in the object model. This is inconsistant. Objects SummonsList and DestinationList

in the functional model are not modeled in the object model. Both of these irregularities
indicate that the OMT model of the elevator is not consistent or not complete yet. It may
take one or more iterations to get the model right.

4.2 Review

The OMT model of the elevator problem is not entirely complete nor correct yet. At this
stage, correcting the model requires at least another iteration through the object, dynamic
and functional model. This will take a significant amount of time but won't learn us much
new about modeling with OMT. We have already learned a lot. The main causes for the
encountered problems are:

• Not enough notion about the difference between essence and implementation

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 38

DestinationList

Efficiency rules

determine
desired elevator
movement

Elevator position
Elevator direction
Filled to capacity

SummonList

Elevator direction

Figure 4.12: Expansion of the scheduler

• Class template view of the system is difficult to built

• Complicated hierarchy

• Unclear relation between the object, dynamic and functional model

• Many iterations necessary

• Ambiguity in the models

This section will explain each item in more detail.

4.2.1 Not enough notion about the difference between essence and imple­
mentation

Given that a system must function in a specific environment and given that it has a purpose
to accomplish, it is possible to describe the system so that the description is true regardless
of the technology to implement the system. This "description" is called an essential model.
It is also possible to describe a system as actually realized by a particular technology. This
is called an implementation model. Ward and Mellor [17] note the importance of separating
essence from implementation.

During analysis an essential model of the system is build. The analysis of the elevator
problem in this chapter should have resulted in an essential model. It contains however some
implementation specific information. The choice of the class Computer is really a matter
of implementation. A computer is a technology which is capable of performing the control

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 39

task. Instead of this class, classes like SummonsHandler, DestinationsHandler, Scheduler etc.
would be more appropriate. What about ArrivalLights, DestButton or DestButPanel? Are they
implementations?

Whether or not ArrivalLights, DestButton or DestButPanel are implementations depends on
the definition of the system. If, for example, the system definition only refers to the schedule
and control part of the problem with the classes ArrivalLights, DestButton and DestButPanel
in the environment, these classes are essential. If, however, the system definition refers to
transporting people between floors, these objects are definitely implementations. We could
have used parrots instead of buttons and lights to communicate with the passenger. It all
depends on the system boundary. I quote Ward and Mellor [17], volume 1, page 10:

It is impossible to distinguish between the essentials of a problem and the formu­
lation of a solution unless the system boundary is carefully defined.

Unfortunately, OMT doesn't stress enough the importance of a system boundary. In fact,
there is only one system boundary in [14] in one picture without any explanation. The absence
of a system boundary in the elevator model caused several problems. Classes could not be
judged if they are essential or implementation. The notion of the difference between essence
and implementation was lost. The entire system is one class, class Computer, with all other
classes in the environment. The complexity of the system is concentrated in class Computer.

4.2.2 Class template view of the system is difficult to built

People are not used to thinking in class templates. Instead, we think of objects and sub­
consciously we transform them into class templates. This transformation complicates the
process of finding the right class templates. But that is not all. One of OMT's heuristics is to
start looking for class templates in the requirements statement. The requirements statement
contains information about the system and its environment. Most, if not all, of the class
templates that will be found are templates for real-world objects. They belong in the envi­
ronment, or they belong inside the system but are implementation biased. That the initial
class template list needs a lot of editing is of no surprise. Even so, some of the necessary
abstract class templates will be very hard to find.

Any dependency between two or more classes is an association. This implies that a lot
associations will exist. Most of the association are derived associations. In this case, class
templates are not related directly, but indirectly through one or more other class templates.
For example the association between Computer and DestButPanel is indirect. The Computer is
related to the ElevatorCage and the ElevatorCage is related to the DestButPanel. But doesn't
the Computer gets its input from the DestButPanel? Is this relation really an indirect one?
Because the the relation between ElevatorCage and DestButPanel is a part-of relation it is not
hard to see that the relation between Computer and DestButPanel is indirect. However, it will
not always be this obvious. Keeping the right associations and discarding the rest is difficult.

We have to choose to model something as a class template, an association or an attribute.
OMT is very flexible at this point. It is for example allowed to transform an association into a
class template or to transform an association into an attribute. How should the destinations
be modeled in the elevator problem? Is it a class template associated with ElevatorCage and
DestButPanel as in Figure 4.2, or should be an attribute of ElevatorCage? A destination could
also be modeled as an association between ElevatorCage and Floor as in Figure 4.3. A choice
must be made. It is needless to say that this choice has great impact on the object and

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 40

dynamic models. OMT's flexibility is a strong modeling tool, but has as disadvantage that it
may require additional iterations if a wrong choice is made. For an unexperienced modeler,
flexibility gives him a feeling of uncertainty. Did he make the right choice? This problem
is always there with a flexible modeling tool, but as the modeler becomes more experienced,
flexibility gives him a lot of freedom.

4.2.3 Complicated hierarchy

OMT supports six types of hierarchy:

• Aggregation hierarchy (object model)

• Inheritance hierarchy (object model)

• Dynamic hierarchy within states and events (dynamic model)

• State generalization hierarchy (dynamic model)

• Event generalization hierarchy (dynamic model)

• Functional hierarchy (functional model)

The title of this section-complicated hierarchy-refers to the aggregation, inheritance and
dynamic hierarchy of the models.

In OMT an aggregation is a special type of association, namely the part-of relation. It
relates a class template acting as a whole with class templates being components of it. Because
an aggregation is a special type of association, aggregation does not involve any encapsulation.
Therefore, aggregation does not simplify a complex model with hiding of information.

Inheritance hierarchy relates class templates and more refined versions of it. It is an
abstraction for sharing similarities, while preserving the differences. It's main purpose is
in reuse of previously defined class templates. A descendant class template inherits the
operations and attributes of its ancestor, while adding attributes and operations that refines
it from its ancestor. I quote Rumbaugh et.al. [14], page 111:

The dynamic model of a class is inherited by its subclasses. The subclasses inherit
both the states of the ancestor and the transitions .
... The state diagram of the subclass must be a refinement of the state diagram
of the superclass.

However, inheritance of dynamic behavior isn't alway possible. Lets take for example class
template Airship. It has two descendants: Balloon and Helicopter. Inheritance of attributes is
no cause for problems, but their dynamic behavior is very different. Their dynamic behavior
is not a refinement of the dynamic behavior of class template Airship but are totally differ­
ent state diagrams. This inability of reuse is commonly known as the inheritance anomaly.
Inheritance does not simplify the understanding of dynamic behavior of class templates.

The dynamic model in OMT allows nesting within states and events. This nesting does
not support encapsulation of dynamic behavior and all events are global. An event generated
in one class template at a particular level in the dynamic hierarchy could cause a transition
in any other class template at any level in the dynamic hierarchy. The models do not directly
show which class templates interact. The lack of encapsulation and the fact that events are
global make the dynamic models hard to understand and maintain.

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 41

4.2.4 Unclear relation between the object, dynamic and functional model

There exists a strong relationship between the object and dynamic model. There is a dynamic
behavior description for each class template. The dynamic model specifies allowable sequences
of changes of the instances of class templates. It is however unclear, which class templates
interact. Associations do not help here, because OMT allows interactions between class
templates without actually having an association between them.

The relation between the functional model and the object and dynamic model is vague.
This is what Rumbaugh et.al. [14] say:

The functional model shows what has to be done by the system. The leaf processes
are the operations on the objects. The object model shows the "doers". Each
process is implemented as a method on some object. The dynamic model shows
the sequence in which the operations are performed. The three models come
together in the implementation of methods. The functional model is a guide to
the methods.

There is not a direct relation between the functional model and the object and dynamic model.
Instead, the processes of the functional model are implemented as operations, scattered over
the class templates in the object model. Not even the names of processes in the functional
model will be found in the object or dynamic model. It seems, that the object and dynamic
model contain all the information to describe the system, but the functional model helps to
explain these models. The functional model also helped to find abstract classes in the elevator
problem.

4.2.5 Many iterations necessary

OMT builds models iteratively. The first step in building the object model is identifying
candidate class templates. Of this list an initial selection is made. Next step is to identify
associations between class templates. This results in a long list of candidate associations of
which also an initial selection must be made. While looking for and selecting class templates
and associations other classes "and associations will be found. The object model is build
iteratively looking for class templates and associations. As mentioned in 4.2.2, making the
right selections at this stage is difficult. This will cause several iterations.

The dynamic model is build after the object model. Building the dynamic model is an
iterative process as well. Preparing scenario's, identifying events and building a state diagram
with hierarchy. Building the state diagrams is difficult because most of the operations are not
defined yet. This will cause several iterations. If the dynamic behavior of a class template
is too complex, iterations must be made through the object model again to remodel it to
reduce dynamic behavior complexity. The dynamic model cannot be completed at this point,
because not all of the operations are already defined and maybe some of the necessary class
templates are missing.

The functional model is build after the dynamic model. The functional model contains
information about "what has to be done" by the system-see quotation in previous section-.
However, this information was already needed building the previous two models. At this stage
additional class templates and operations are found. This is cause for iterations concerning the
object and dynamic model. It is of no surprise that iterations at this stage cost a significant
amount of additional time to build the models. Building the models of the elevator problem
took many iterations and are still not finished yet.

CHAPTER 4. AN OMT MODEL OF THE ELEVATOR PROBLEM 42

4.2.6 Ambiguity in the models

OMT models are informal. An informal approach is relatively easy to learn and understand.
This is a big advantage. On the other hand, informal models may be ambiguous and hard to
keep consistent. This is exactly the case with the models of the elevator problem.

The functional model contains several processes that will be implemented as methods
of objects. The functional model is loosely related to the object and dynamic model. It is
difficult to keep these models consistent, because consistency is not defined in OMT. Changing
a process in the functional model causes changes in several methods over different objects. It
is easy to overlook one of them, especially because the relation between functional model and
object and dynamic model is vague.

In OMT, dynamic behavior is modeled as state diagrams and events. Events are an
unbuffered asynchronous way of communication between interacting class templates. This
type of communication is prone to ambiguities. The elevator model for example, contains an
ambiguity in the dynamic behavior. See Figure 4.5 and Figure 4.6. A button press could cause
the Computer to send a command to the ElevatorCage to start moving. At the same time,
destinations lists and summons list are updated. However, the Computer needs information
from the updated lists to compose its command. Are the lists updated in time before the
Computer queries them?

Chapter 5

Software/hardware engineering
requirements

This chapter shows and explains requirements for a new method. These requirements are
based on the experiences with building the OMT model ofthe elevator problem. This wish-slip
is divided into two parts: a modeling part and a framework part. The modeling part describes
all requirements related to modeling issues. The framework part describes all the requirements
related to building and manipulating the models. The items in this list are numbered and
are referenced to in next chapter where the actual new method will be explained.

1. Modeling requirements

(a) Allow specification, analysis, design and implementation

(b) Type of system: embedded, real-time, combined hardware and software

(c) Minimal, but sufficient concepts

(d) Graphic representation of models for human understandability

(e) Hierarchy, with encapsulation to conquer and divide complexity

(f) Ability to model concurrency

(g) Ability to model response times

(h) Ability to model topology

(i) Concepts to model dynamic visibility

(j) Concepts for dynamic creation/deletion of objects

(k) Models must have a formal basis

(1) Verification must be possible

(m) Transformation must be possible

(n) Simulation must be possible

2. Framework requirements

(a) Specification, analysis, design and implementation

(b) Separating essence from implementation

(c) Close relation between system functionality and models

43

CHAPTER 5. SOFTWARE/HARDWARE ENGINEERING REQUIREMENTS 44

(d) Equal emphasis on both environment and system model

(e) Minimizing iterations

(f) Communication with the customer at all stages

(g) Change development phase seamlessly

(h) Complexity management

(i) Project management

(j) Heuristics

5.1 Modeling requirements

The new method must support all development phases from analysis and specification to
design and implementation. Development starts with an initial requirements description
from the customer. It describes what the system must do in an informal way. A require­
ments description may be ambiguous and is usually far from complete. During analysis and
specification, models of the system and its environment are build. Models should give an
understanding of the problem domain. They specify the system and its environment in a
rigorous manner. Once agreement exists with the customer about these essential models,
design may take place. Design involves manipulating, modifying, extending or transforming
models. During design, information about design decisions and their consequences are added
to the models. Design in the new method must end with an implementation blueprint. The
implementation blueprint is a model, that contains enough information for an engineer for
final stage design and implementation.

The new method must be able to model the type of systems we are interested in. These
systems are embedded and real-time, which may be implemented in hardware, software or
both. Concepts to model this type of system should be sufficient, but minimal. Minimal,
because the learning curve of a method is directly related to the number and complexity of
its concepts. Sufficient, because all relevant aspects of a system and its environment must be
modeled.

Whenever two engineers are discussing a complex problem they usually resort to drawing
each other pictures in order to explain the concepts involved. A graphic representation is
usually easier to understand by humans than a textual representation. Therefore, graphic
representations in the new method are required to allow at least communication with the
customer. Graphic representation of the new method must be based on a, perhaps textual,
formal basis to enhance rigor.

The new method must handle systems of great complexity gracefully. Since human limita­
tions prevent us from keeping all the details of complex systems in our head at one time, the
models must allow partitioning into a large number of chunks. However, it is also necessary to
be able to perceive in some sense the system as a whole [17]. This implies representations at
various levels of detail, together with a bookkeeping scheme to show the relationship between
the different levels of representation. Encapsulation is required in this hierarchy. It allows us
to understand the model at a particular level in the hiearchy without the necessity to dig into
lower levels of representation. In order to handle complex systems models of the new method
must allow the concept of hierarchy with encapsulation. The object-oriented paradigm with
powerfull concepts to encapsulate operations and corresponding data into objects might be
suitable [13].

CHAPTER 5. SOFTWARE/HARDWARE ENGINEERING REQUIREMENTS 45

To model real-time, embedded systems properties like concurrency, topology and response
times are very important concepts. Models of the new method should show which parts op­
erate concurrent. Response times are closely related to concurrency. A model may require
concurrent parts. Several response times may be essential. In an essential model, concur­
rency and response times are independent. In the implementation view ofthe models however,
concurrency may be simulated by an sequential implementation with sufficient fast enough
response times. Topology shows the physical distribution of a system. Topology imposes con­
straints on both essential and implementation models. Topology requires additional modeling
constructs to model separated system parts.

Usually, modeling techniques separate the static structure of a system from its dynamic
behavior. However, the static structure of a system and its environment may not be as
static as it seems. In the elevator problem for instance, passengers are dynamic objects.
They encounter the system's environment if he/she wants to be transported between floors.
The passenger notifies his summons request to the system. When an elevator arrives, the
passenger enters the elevator cage and notifies his destination request. When he arrives at his
destination floor, the passenger leaves the system's environment. The passenger physically
moves and his communications and relations with the system moves with him accordingly.
From the system's point of view a passenger comes into existence, moves and dies. This
example shows two different concepts: 1) dynamic "visibility" of model parts and 2) dynamic
creation/deletion of model parts. The new method must support both. Note that these
concepts apply to both environment and system.

The informal approach of OMT was cause for ambiguities and in general makes a model
susceptible for context sensitive interpretation. Therefore, the new method must have a formal
basis. The rigor of a formal model description forces an engineer to understand "every corner"
of the problem in order to build the model [13]. Other major advantages of a formal description
over an informal one are ability for verification and correctness-preserving transformations.
A formal description is also well suited for simulation.

5.2 Framework requirements

A methodology consists of modeling techniques and a framework that guides the designer
how to use these modeling techniques. A methodology framework must support specification,
analysis, design and implementation. A requirements description is the first step towards
a working system. This description usually is ambiguous, far from complete and has an
implementation bias. The designer should analyze the essentials of problem and build a
model of it. The essential model serves as a specification. Analysis and specification is one
major part of the methodology. The other major part is design. Design may take place when
agreement with the customer about the essentials ofthe system is achieved. The starting point
of design is the essential model. This model will be manipulated and extended during design.
The result is a model that serves as an implementation blueprint. The methodology must not
restrict the designer in the sequential order of analysis/specification before design. It should
also be possible to start design on an abstraction level of which already agreement exists
about the model before the entire essential model is finished. This will speed up development
time.

A methodology must force the designer to separate essence from implementation. The
objective of the designer is to build the "optimum" implementation(blueprint) of the system.

CHAPTER 5. SOFTWARE/HARDWARE ENGINEERING REQUIREMENTS 46

It is therefore not permitted to include design decisions in the specification as this limits the
number of solutions to the problem. During design the designer may optimize for one or more
properties. This will usually be system properties, but optimizing for development time is
also allowed.

A system "must do" something. A system is its functionality. For many years, engineers
used design methods based on functional approaches. It is very natural to think about a
system in functions. When a feature is added to the system, many functions may change a
little and/or new functions are added. Models of these functional approaches are not very
stable when modified in practice. Since a system's functionality is what it is all about, the
new method must show how functionality is distributed across the system. It must not only
show how functionality is distributed, but also guides the designer to distribute in a way that
is stable when requirements change.

In the OMT model of the elevator problem the environment is poorly modeled. It does
not show how passengers move and change their visibility for different parts of the system.
It does not model that a passenger can only enter an elevator when the elevator is at the
correct floor with its doors open, nor does it model that an elevator always arrives at floors
in an up or down sequence instead of randomly. Yet, this information is used building the
dynamic models. In a new methodology, any specific information about environment and
system that is used to model must be modeled. This will require an equal emphasis on both
environment and system model. Only when the environment is understood in every detail, a
correct system can be build for this environment.

As already mentioned in previous section, modeling is an iterative process. To reduce time
spend building the models, the number of iterations must be minimized. A new method must
guide the designer to make the right choices to limit iterations. Development phases must
follow each other seamlessly. A seamless phase change does not require model transformations
which are cause for errors and loss of information. While building the models, communication
with the customer about the system is required. The method must allow communication with
the customer, who may not be an expert or has knowledge of this method.

A new method must be able to handle systems of great complexity. A new method must
guide the designer to divide and conquer system complexity. This is complexity management.
Complexity management helps to partition a system and spots in an early stage model parts
of which complexity is too great. A model with unbalanced complexity will be hard to
understand and is difficult to manipulate.

Complex systems are usually build with a team of engineers. To allow several engineers
to work on a single systemdesign simultaneously, the new method must support project
management. Project management helps to divide the work to be done over several persons.
The method must allow parallel development activities as many as possible.

At this point several requirements for a new method have been described. They are
mostly based on experiences with the application of OMT on the elevator problem, but on
literature research as well. Next chapter describes the new method. It is called SHE­
Software/Hardware Engineering-. Next chapter describes SHE as far as it has evolved at
the moment this thesis is made.

Chapter 6

Software/hardware engineering
summary

6.1 SHE overview

Software/hardware engineering-SHE-is an object-oriented method, developed to support
the co-design of complex hardware/software embedded systems-requirement 1b-. The
method integrates both formal and informal techniques. SHE is composed of a method
framework and modeling concepts. This section describes the general overview of SHE, while
succeeding sections describe parts of SHE in more detail. This chapter is not a SHE manual,
but a description of the current state of SHE. SHE is still under development. In this chapter
references are inserted to requirements in previous chapter where appropriate.

Figure 6.1 shows SHE's framework. It offers specific views on the system to be de­
signed and enables awareness of the activities on hand in the modeling process from anal­
ysis/specification to design. The framework is designed to limit the number of iterations
between development phases. The top half of the framework focusses on system essentials,
mixed with high level system design. The bottom half focusses solely on implementation.
SHE separates essence from implementation-requirement 2b-. Essentials of the system are
captured into models in the analysis/specification phase. If agreement with the customer
about the essentials is achieved, design may take place. The design phase-the bottom half
of the framework-results in an implementation blueprint. SHE's framework offers possi­
bilities to anchor analysis/specification and design activities so that they can be performed
concurrently or sequentially.

The framework falls apart into four quadrants, grouped as two pairs:

• Essential part of the framework

Essential behavior model

Architecture structure model

• Implementation part of the framework

- Implementation structure model

- Extended behavior model

47

CHAPTER 6. SOFTWARE/HARDWAREENGINEEIDNGSUMMARY 48

Initial Object Architecture
Requirements Class Structure
Description Diagrams Diagrams

Object Class Model

POOSL Architecture
Description Decisions

Message Statement
Flow
Diagrams

Requirements Instance Architecture
Catalogue Structure Response Time

Diagrams Requirements

Object Instance Model

Essential Behavior Model Architecture Structure Model

Additional Architecture
Requirements Structure
Description Diagrams

POOSL Implementation
Description Decisions
(extended) Message Statement

Flow
Diagrams

Requirements Instance Implementation
Catalogue Structure Response Time
(extended) Diagrams Requirements

Object Instance Model
(extended)

Extended Behavior Model Implementation Structure Model

Figure 6.1: SHE framework

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY 49

6.2 Essential behavior model and architecture structure model

Figure 6.1 shows that the essential behavior model consists of the following parts:

• Initial requirements description (section 6.2.1)

• Object class model (section 6.2.1)

• Object instance model (section 6.2.2)

• POOSL description (section 6.2.3)

• Requirements catalogue (section 6.2.4)

and the Architecture structure model consists of the following parts:

• Architecture structure diagrams (section 6.2.5)

• Architecture decisions statement (section 6.2.5)

• Architecture response time requirements (section 6.2.5)

Each of these items will be explained in more detail together with the relations between them.
Starting point of SHE is the initial requirements description. It is the customer's descrip­

tion of the system to be designed. It is used to build the object class model. This model shows
a graphical representation-requirement 1d-of object classes from the problem domain and
their relationships. The object class model is intended as an initial study of the problem
domain. Next step is to build the object instance model. It shows communicating objects of
system and environment. The object instance model is a graphic representation, that incorpo­
rates boundaries. Boundaries show architecture structure. The architecture structure model
describes high level structuring requirements and high level system design decisions, for ex­
ample logic layering and topology may be imposed by the initial problem description and by
physical geographical constraints. A specific topology may be a high level design decision of
the system and will be modeled in the architecture structure model as well. Structure imposed
by the architecture structure model is formalized in terms of boundaries and object choices in
the object instance model. Therefore, the object instance model will be build in conjunction
with the architecture structure model.

Formalization-requirement 1k-in POOSL is performed when the object instance model
becomes stable. The POOSL description formalizes the object instance model and describes
dynamic behavior. A requirements catalogue collects information to be stored during analysis
and specification. It contains a data dictionary, object to boundary maps, traceability data
and environmental conditions.

6.2.1 Initial requirements description and the object class model

First step in developing a system is to state requirements. The customer supplies the initial
requirements description. It should state what the system "must do", and not how it is
to be done. It should be a statement of needs, not a proposal for a solution [14]. The
customer must state what is mandatory and what is optional. Performance specification,
standards like modular construction, logic layering and provisions for future extension are also

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY 50

legitimate requirements. The initial requirements description should describe the essentials
of the system.

In practice, an initial requirements description often contains both essentials and imple­
mentation specific information. Implementation specific information is in fact a collection
premature design decisions, that limits the set of possible solutions. The analyst must be
aware of this problem and should seperate essence from implementation. Other problems of
the initial requirements description are its possible ambiguities, incompleteness or even its
inconsistentness. The analyst works with the customer-requirement 2f-to refine the re­
quirements so they represent the customer's true intent. The analyst does so when he builds
the essential behavior model and the architecture structure model. The elevator problem of
chapter 2 is an example of an initial requirements description.

SHE is able to handle systems of great complexity. These systems may require an initial
study to get enough understanding of the problem domain. Building the object class model
serves as an initial study of the problem domain and the result is a first inventory of candidate
objects for the object instance model. The object class model shows object classes of system
and environment and their relationships. It is much like the object model of OMT [14], there is
one difference however. SHE object class model separates generalization-specialization trees
from aggregation trees. SHE incorporates the Object Model approach used in the Fusion
Method of Coleman et.al. [3], that shows aggregation hierarchically. Figure 6.2 shows an
example object class model. It is the same model as Figure 4.3 and 4.4.

The object class model is build according heuristics and guidelines of OMT, but with
notation of the Fusion method [3]. Here, SHE incorporates the good work that has been done
by Rumbaugh and many others. OMT offers a comprehensive description of object modeling
along with useful heuristics. The object class model will be used as an initial study of the
problem domain and serves as a first inventory of candidate objects for the object instance
model.

6.2.2 Object instance model

Pillars of SHE models are the object instance model and a formal POOSL description. The
object instance model visualizes objects, their collaboration and message flows between them.
It shows structure, boundaries and gives a first impression of dynamic behavior. The object
instance model consists of two types of diagrams:

• Message flow diagrams

• Instance structure diagrams

Message flow diagrams

The message flow diagrams show process objects and message flows. A process object en­
capsulates data objects and dynamic behavior. Collaborating process objects perform some
coherent part of the system behavior, called a scenario. The collection of all scenarios de­
scribes essential system behavior completely. Functionality is partitioned over process objects.
Each process object provides a part of system functionality with its encapsulated data objects,
dynamic behavior and communication with its collaborators.

Collaborating process objects communicate through messages. A message transports in­
formation from one process object to another. Information send may be the message itself

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY 51

ElevlltorCage

OirOfMovement
FilledToCapacity

ArrLightPanel

40 IArrivalLightI
I I

ElevatorMechanis

ButPanel

DeslBulPanel

40 IDestButton I
I I

OverloadSensor

Floor

SumBulPanel

Figure 6.2: Example object class model

CHAPTER 6. SOFTWARE/HARDWAREENGINEERINGSUMMARY

~ One-way synchronous message passing

~~ Synchronous message passing with reply

0 ~ Asynchronous bullerd message passing

~~ Continuous message passing

~~ Interrupt message passing

Figure 6.3: Message flow primitives

52

and/or time it is send, but it may also transport additional information in its parameters.
Therefore, each message has a name and may have zero or more paramaters.

SHE has five message flow primitives, see Figure 6.3. The first message flow primitive is
one-way synchronous message passing. Information flow is in one direction only and infor­
mation transfer will take place at the instant both sender and receiver are willing to perform
a rendez-vous. If for instance the sender is willing to send, but the receiver is not willing to
receive, the sender will wait until the receiver is willing to accept the message. This applies
the other way around as well. This synchronous communication is based on the rendez-vous
principle. Information will never be lost.

Second message flow primitive is synchronous message passing with reply. It occurs often
that a process object requires information from another process object. Communication in
this situation is divided into two parts. In the first part the initiating process object sends
a message requesting for information. This is one-way synchronous message passing. In the
second part, the receiving process object will answer the information request with another
one-way synchronous message passing mechanism, with a message containing the requested
information. SHE has a shorthand for this message pair, the synchronous message passing
with reply symbol.

In asynchronous buffered message passing there exist no synchronization between sender
and receiver. The message is send, gets in the message buffer and sits there until the receiver
is ready to receive. This mechanism always allows sender to send immediately. Buffer size
is unlimited. If the receiver is ready, but the buffer is still empty, it waits until a message
arrives. With asynchronous buffered message passing, information is never lost.

Some occasions require emergency communications. The sending process object requires
immidiate message passing, whether the receiving process object is ready or not. SHE has
the interrupt message passing for this purpose. Whenever an interrupt message is send, the
receiving process object accepts this message, no matter what it was doing, and behaves
accordingly.

Continuous message passing is used to model continuous information flows. Take for
example a clock. The arms of a clock continuously display the current time. If someone wants
to know the time, all it takes is to take a look at the clock. Though the clock continuosly
transmits information, the contents and availability of the information is only important at
the instant the person looks at the clock-is ready to receive information-. This is exactly
what the continuous message passing models. Whenever this symbol is drawn, it means the
sender is continuously ready to send the latest information. However, the actual information

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY

SetAlarm
Person GetAlarmSettina Clock.......

.... CurrentTime-..-..
.... Alarm-.. -..

Figure 6.4: Message flow examples

53

transfer takes place at rendez-vous.
Except for the asynchronous bufferd message passing, Figure 6.4 contains all types of

message passing mechanisms. The example shows two process objects: Person and Clock. A
person may set the clock alarm by sending the SetAlarm message to the clock with the alarm
time as its parameters. He may check the alarm setting with the GetAlarmSetting message.
The clock will reply with the alarm time. The current time is always available. All a person
needs to do is read the CurrentTime message. This message contains the current time in its
parameters. If the alarm fires, the clock sends the Alarm message to the person. Whatever
the person was doing, this message will always come through.

Building a message flow diagram involves adding process objects and message flows. Pro­
cess objects may be real-world or abstract and may belong to the system or environment.
The object class model serves as a candidate object list. This list will have a tendency towards
real-world environment objects, as the OMT model of the elevator did. This is not a problem,
because it is only a starting point. New objects must be found. The analyst must keep in
mind that he is building an essential model. Therefore all objects and message flows must
be essential. Ward and Mellor [17] offer a comprehensive description how to separate essence
from implementation.

While new objects and communications are added to the model, system functionality is
distributed among process objects. Each process object performs part of system or environ­
ment functionality. When building a message flow diagram, we only have to think about
the "outside" of an object. What it should do and what communications with collaborating
process objects are necessary to perform its task. Objects help to find message flows. At
some time a message flow as a request for service of another process object is known, but the
collaborating object does not exist yet. This is how message flows help to find new objects.
There is a strong interaction between finding objects and message flows. This process of
thinking about the "outside" of objects, finding and adding objects and communication feels
very natural. Message flow diagrams evolve quickly. Note however that the object instance
model is build in conjunction with the architecture structure model. How this is done will be
explained in section 6.2.5.

Message flows of an object will give a first impression of its dynamic behavior, without
going into detail. Message flow diagrams will give an idea about dynamic behavior and
functionality of system and environment. Each message flow diagram models one or more
scenarios, all scenarios model the problem domain.

Before describing hierarchy, messages from a single object to multiple objects need expla­
nation. See Figure 6.5. Object A is a single object, object B is a multiple object. A multiple
object is in fact a collection of instances of an object class. Each process object has its own

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY

MessaaeA ..
A ... B

~ MessaaeB
~

Figure 6.5: Message flow from a single object to a multiple object

54

private data objects and operates separate from other process objects in the multiple object.
Each of these objects is unique and may be identified in some way. MessageA is a message
from a single object to a multiple object. Every object of the multiple object "hears" the
message, but only one is allowed to receive it. Which of the ready receiving objects will
actually rendez-vous with the sending object is nondeterministically determined.

Whether or not an object is willing to receive a message depends on its current state of
operation, but may also depend on parameters of the message to receive. It is a message
selection mechanism. This mechanism may be used to send messages from a single object to
another object of a multiple object. In this situation, one of the message parameters could
identify a particular object of the multiple object. Remember, identification and selection
is not limited to a single parameter, but is an evaluation of a boolean expression on all
parameters. When an object of the multiple object sends a message to a single object, the
single object does not automatically "know" where this message came from. The sending
object may however identify itself in the parameters of the message. More information about
messages, rendez-vous and identification can be found in Voeten's POOSL [16].

The last important concepts of the message flow diagrams to discuss are clusters and
composite objects. Both add hierarchy-requirement Ie-to the message flow diagrams. Fig­
ure 6.6 shows a cluster of objects B and a composite object C. They both contain objects
and messages. Inner objects are hidden from the outside world. All messages except to ones
to the box boundary are hidden for the outside world as well. The outside world of clusters
or composite objects only "sees" the communications to the box boundary. Objects outside
cluster B only see the messages a, band e. Objects outside composite object C only see
messages d, c and e. In a cluster any object may export messages, while in a composite only
one object exports messages.

In a composite object the object that exports messages plays a central role in the compos­
ite. The central object provides the composite's functionality to the outside. To accomplish
its task, it collaborates with other objects inside the composite. To get an abstract descrip­
tion of the composite, only an abstraction of the central object of the composite needs to
be taken. Generally, getting an overall abstraction is much more complicated. Functionality
is provided by interaction of all objects inside a cluster. To get a cluster's abstraction, all
interacting objects as whole needs to be abstracted. The resulting abstract description will
be more complicated than in the case of the composite object.

Both clusters and composites add hierarchy to the message flow diagrams. SHE does
not prescribe a bottom-up or top-down approach to build the hierarchy. Instead, objects are
placed in a flat model initially. While finding new objects, complex objects are expanded
to lower levels or collections of objects are grouped to form clusters or composites. Starting
at some intermediate level in the hierarchy and extending the model in both direction is a
very flexible method which does not hinder the analyst if he cannot determine the level of

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY

a ~ c..
A

b d

~ ,r
B e ~ C...

Level 0

55

B ~ ~
0 h E....

.4l n.

I 9
~.

,r i

F
e ~...

c
~ i

e ~... G
~ .- I

j
k

" ,Ir

H m I... ..

Level 1

Figure 6.6: Example of a cluster and a composite object

CHAPTER 6. SOFTWARE/HARDWAREENGINEEIDNGSUMMARY 56

abstraction of an object yet.
Message flow diagrams are build starting with the object class model and using it as a

first list of candidate objects. The object class model should have given an understanding of
the problem domain, so at least a few communication can already be added between objects.
Communications help you find new objects and new objects will require new communications.
Continuously check objects and communications for essence. See Ward and Mellor [17] how to
do this. Besides the difference between essence and implemenation, the architecture structure
model must be taken into account. How this is done is shown in section 6.2.5. Add hierarchy
as the model evolves.

Instance structure diagrams

The object instance model contains a lot of information. Instead of putting it al together in
one model, the object instance model is seperated in two parts: message flow diagrams and
instance structure diagrams. Instance structure diagrams are a basis for showing architecture
structure. The diagrams present instances-process objects-interconnected by simple static
channels. The object hierarchy is exactly the same as in the message flow diagrams.

Figure 6.7 shows an example instance structure diagram which with Figure 6.6 forms an
object instance model. A channel is responsible for the transport of one or more messages
identified in the message flow diagrams. Each channel has a unique name. Channel hiding
philosophy in the instance structure diagrams is the same as message hiding in the message
flow diagrams. Channels inside a cluster or composite are invisible, except for the ones
connected to the box boundary.

Architecture structure is represented by drawing boundaries. SHE identifies four different
types of boundaries necessary for complex hardware/software systems:

• Abstraction boundaries

• Concurrency boundaries

• Distribution boundaries

• Implementation boundaries

Abstraction boundaries encapsulate collections of objects. Examples are clusters and compos­
ite objects. Abstraction boundaries contain a group of objects to form an object of a higher
level of abstraction. Abstraction boundaries are drawn as solid line boxes, just like objects.

Concurrency boundaries-requirement If-identify concurrent operating model parts. In­
side a concurrency boundary, operation is sequential. Areas, each surrounded with a concur­
rency boundary, operate concurrent.

Synchronous/asynchronous operation of model parts and visibility of objects are impor­
tant concepts in hardware/software systems. They are modeled as distribution boundaries.
Currently, these concepts are researched and did not reach a final state yet. This applies to
imlementation boundaries as well. Implementation boundaries-requirement 1h-show the
allocation of objects to implementations. Ideas exist not to draw a separate type of border
for each type of boundary, but to have one type of border and to attach attributes to it.

CHAPTER 6. SOFTWARE/HARDWAREENGINEERINGSUMMARY

A
-

ad ae ag

B la C

Level 0

57

B ad I ae

0 de E

dl

el

F
In

C
ag I

10
G -

-

gh gi

H hi I

Level 1

Figure 6.7: Example of an instance structure diagram

CHAPTER 6. SOFTWARE/HARDWAREENGINEERINGSUMMARY 58

6.2.3 POOSL description

POOSL [15] is an acronym for Parallel Object-Oriented Specification Language. It is a formal
language for the specification of hardware/software systems. POOSL is the formal basis of
SHE. The object instance model is formalized in POOSL when dynamic behavior is added. A
specification in POOSL consists of a fixed number of statically interconnected proces objects
which are able to execute in parallel. Proces objects are connected to a fixed network of
channels, through which they can communicate by sending messages. These messages may
carry parameters in the form of data objects. Note the correspondence between the object
instance model and the POOSL description.

The communication mechanism POOSL uses is based upon the synchronous-rendez­
vous-pair-wise message passing mechanism of CCS [9]. When a process wants to send a
message it explicitely states to which channel this message has to be sent. It also explicitely
states when and from which channel it wants to receive a message. Here is an example process
definition:

initial method call
instance methods

Init
ch1!MessageACp1);
ch2?MessageBCp1, p2);
if p1=IVar1 then

ch3!MessageC

process class name
instance variable names
communication channels
message interface

fi

CHame
IVar1, IVar2
ch1, ch2, ch3
ch1!MessageACp1)
ch2?MessageBCp1,
ch3!MessageC
Init

p2)

Note that a process class is described instead of a process-instance-. Each process class has
a unique name. Instance variables are data objects local to the process class. A data object
incorporates both data and operations. The communications channels and message interface
part state all channels and messages known to the process class. The instance methods part
defines the dynamic behavior of the process class.

Besides process classes, POOSL supports clusters. A cluster is built from other process
classes, which can be either basic or clusters themselves. A process class definition of a
cluster consists of a name, communication channels and a message interface. It also specifies
a behavior description. The behavior description states the inner process classes ofthe cluster,
hides channels and renames channels.

Besides process classes a POOSL description defines a system behavior and data object
classes. A data object class definition defines data and operations. Process object classes
use instances of data object class as local data or parameters for communications. A system
behavior description uses instances of process object classes to define a system.

POOSL supports distribution and implementation boundaries via clusters. It does not
support however, the fiexibili ty concurrency boundaries have in the object instance model. The
first step in formalizing the object instance model is to model all process objects. An process

CHAPTER 6. SOFTWARE/HARDWAREENGINEEIDNGSUMMARY 59

object in the object instance model becomes a process object in the POOSL description and
a cluster or composite object becomes a cluster. All declarations of messages and channels
are made according the object instance model. The POOSL hierarchy will resemble the object
instance model hierarchy.

Next step is to add dynamic behavior to process objects in the POOSL description. When
building the object instance model the analyst thought about dynamic behavior at a high level
of abstraction. Choosing objects and messages, he partitioned overall dynamic behavior.
Defining an object's dynamic behavior requires thorough investigation of the object itself,
but of its collaborating objects only interfaces need to be understood. Objects have very
little influence on dynamic behavior descriptions of objects other than its collaborators.

Messages must be modeled with POOSL's rendez-vous mechanism. Modeling one-way syn­
chronous message passing is the easiest. It can be directly mapped to a send and receive mes­
sage pair in the dynamic behavior descriptions of the objects. The sending object would have
a ch!Message(parameters) and the receiving object would have a ch?Message(parameters)
in its dynamic behavior description. Modeling synchronous message passing with reply re­
quires two consecutive send/receive message pairs. Modeling asynchronous buffered message
passing and continuous message passing is much more complicated. Both mechanisms force
the process object to be modeled as a cluster with additional proces objects inside to perform
the communication task. Interrupt message passing is explicitely modeled in POOSL through
a dedicated interrupt method description.

The analyst may discover that dynamic behavior of an object may be too complex to
describe. This will require remodeling the object instance model at the location of the object
and its collaborators. He could move functionality to collaborators, add new objects or decide
to make a complex object a composite one. Of course this will have effect on the POOSL
description, but in all cases changes remain local-requirement 2h-. An object instance
model with a homogeneous distribution of messages, modeled maximizing independence will
minimize iterations back to the object instance model-requirement 2e-.

6.2.4 Requirements catalogue

A requirements catalogue collects information to be stored during analysis and design. It
contains a data dictionary, object to boundary maps, tracebility data and environmental
conditions [13].

The requirements catalogue is a textual document. Its data dictionary explains the es­
sential behavior model in an informal way. About the object class model it states meaning of
every class and association and their relation to the problem domain. Of the object instance
model it contains a short description of functionality and intent of every object, message and
boundary. It also describes how static structure of the object instance model is mapped to
the POOSL description. This makes the requirements catalogue a lengthy document, but it
is necessary for another person besides the analyst to understand the models.

SHE models are build starting from the initial requirements description. It is usually far
from complete and while building the models new requirements appear. This new information
is stated in the requirements catalogue. Most of the information in the initial requirements
description will find its way in one of the SHE models, but some items cannot be modeled
directly. Examples are preparations for future system expansion, test scenarios, accuracy
requirements, environmental conditions such as temperature etc. They are stated in the
requirements catalogue.

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY

6.2.5 Architecture structure model

60

The architecture structure model describes structure and timing requirements, but no behav­
ior. The model consists of three parts:

• Architecture structure diagrams

• Architecture decisions statement

• Architecture response time requirements

Architecture structure diagrams are free style drawings of architecture structures that are
imposed by the initial problem description, by physical geographical constraints and by ar­
chitecture design decisions. An examples is the OSI-reference model for open systems inter­
connection. The OSI-model consists of seven layers. Therefore, the OSI-model imposes an
abstraction hierarchy constraint on the object instance model of the essential behavior model.
Choosing objects, messages and defining a hierarchy must be conform the architecture struc­
ture diagrams. Structure imposed by the architecture structure diagrams has to be formalized
in terms of boundaries in the object instance diagrams. The analyst must build the object
instance model in conjunction with the architecture structure model. An example of a physical
geographical constraint could be physical separation of elevators from each other and from a
central controller.

Because response times are important in hardware/software systems, they must be spec­
ified. Response times between environment and system are essential. These response time
impose response time requirements between parts of the architecture structure. The ar­
chitecture response time requirements description is the place to state all essential response
times-requirement Ig.

Analysis and design are activities that cannot be separated completely. Architectural
constraints, as previously described, impose addition constraints on the problem domain.
Design decisions to support these constraints are stated and motivated in the architecture
design decisions. The essential behavior model is build in conjunction with the architecture
structure model. Choosing objects and defining boundaries must be done according constraints
in the architecture structure model. When the essential behavior model is build-analysis-it
is biased with high level design decisions from the architecture structure model.

The essential behavior model and architecture structure model must be evaluated inten­
sively with the customer. Especially the graphical models of SHE are designed for this goal.
The formal POOSL description, can be used by an expert to explain the message flows and
object interaction of the informal object instance model to the customer. The essential be­
havior model and architecture structure model are relatively implementation independent and
freeze the specification of the product.

6.3 Implementation structure model and extended behavior
model

Once agreement exists about the essentials, design may take place. The implementation
structure model visualizes implementation structure that must be designed before the behavior
description can be extended accordingly. The implementation structure diagrams are just
like the architecture structure diagrams free style drawings. In the implementation decisions

CHAPTER 6. SOFTWARE/HARDWARE ENGINEERING SUMMARY 61

statement decisions are described about hardware or software implementation, concurrency,
communication protocols, bus-structures etc. The implementation response time requirements
state all response time requirements, both essential and implementation specific.

Design and implementation decisions add information. This requires an extension of the
essential behavior model. Because the essential behavior model captures the essence, design
and implementation decisions are added to a separate model, the extended behavior model.
The extended behavior model is based on the essential behavior model, but contains additional
objects, communications, boundaries etc. Architecture structure decisions are formalized in
the essential behavior model, while implementation structure decisions are formalized in the
extended behavior model. The extended behavior model serves as an implementation blueprint.
However, this does not mean that design ends here. An implementation blueprint is a model
which is detailed enough to describe system and environment the way the customer intended
them to be. Further design before actual implementation is done according the implementa­
tion blueprint without further input from the customer.

At this moment not much more about the implementation structure model and extended
behavior model can be said. It was not part of this masters project and this part of SHE is
still under development.

Chapter 7

A SHE model of the elevator
problem

7.1 Model overview

Previous chapter showed the principles ofthe SHE-Software/Hardware Engineering-method.
This chapter describes how the SHE method is applied to the elevator problem. It shows the
essential behavior model and architecture structure model of the elevator problem. The es­
sential behavior model consists of five parts:

• Initial requirements description

• Object class model

• Object instance model

- Message flow diagram

- Instance structure diagram

• POOSL description

• Requirements catalogue

The architecture structure model consists of three parts:

• Architecture structure diagrams

• Architecture structure decisions statement

• Architecture structure response times requirements

The initial requirements description is the problem statement as stated in chapter 2.
The architecture structure model contains initial requirements together with high level design
decisions concerning architecture structure. The second part of the essential behavior model
is the object class model. It is much like the object class model of OMT. This object class
model serves as an initial study of the problem domain in the SHE method. It shows a first
inventory of candidate objects for the object instance model. The OMT study of the object

62

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 63

class model is used to build the SHE object class model. Figure 6.2 shows the object class
model.

With the initial requirements description, the object class model and architecture structure
model at hand, the object instance model can be built. It is a process of adding objects and
communications between objects to achieve system functionality as described in the initial
requirements description. The essential behavior model must only contain essential objects.
The object class model does not contain all the object classes necessary for the object instance
model, but while adding communications between the objects the necessary additional objects
will be found. You may for instance need information from another object that does not exist
yet, or you may need a service of it. Communications help you find new objects and objects
on their turn will result in new communications.

Next step is to build the POOSL description. The object instance model forms the basic
structure the POOSL description. Every object is described with its dynamic behavior.

The requirements catalogue collects information during analysis and design. It contains a
data dictionary, object to boundary maps and environmental conditions. This chapter does
not contain the requirements catalogue because focus has been mostly on the object instance
model. However, some of this information will be described along with the description of the
subsequent models in the following sections.

7.2 The architecture structure model

Figure 7.1 shows the architecture structure model of the elevator problem. This model
consists of modules connected through communication channels. Two main parts can be
distinguished:

• Control part

• Elevator part

Elevators are controlled by the control part. Because the system must handle summons
requests and destination requests, control is divided into two parts: Central Control and
Individual Control. Central Control is responsible for correct handling of summons requests. It
accepts summons requests from Floor Passenger and efficiently schedules each elevator through
communications with each the Individual Control.

Each Individual Control is responsible for the operation of an elevator. It accepts destination
requests from Elevator Passenger, checks summons requests with the Central Control and issues
commands to the Elevator Mechanism for elevator movement. Individual Control knows when
an elevator arrives at a new floor through communications with Floor Sensors and wheter or
not an elevator is filled to capacity through communication with an Overweigh Sensor.

Elevator Mechanism is a module that allows safe operation of an elevator cage. It is able to
handle Doors, Motor and Audible Alarm control. The Elevator Mechanism performs commands
from Individual Control like moving up/down or stopping the elevator. Elevator movement
and door opening/closing is done safely. An Elevator Passenger may request the Elevator
Mechanism to hold doors open or to stop and halt at the next floor the elevator arrives.
Whenever movement of an elevator is halted by a passenger, the Elevator Passenger notifies
the Individual Control about the suspension of operation.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM

'ft---------j~relControl

Floor Pessenger

64

Operstor

Indivlduel Control

Figure 7.1: Architecture structure model

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 65

ENVIRONMENT
ElevatorPassenger
FloorPassenger
Operator
OverweightSensor
FloorSensor
ElevatorMotor
Doors
AudibleAlarm

SYSTEM
ElevatorMechanism
ElevatorControl
ElevatorMaintenanceControl
FloorHandler
ElevatorsSupervisor
PassDestinationslnputControl
DestinationsList
DestinationsAdministrator
PassSummonslnputControl
SummonsList
SummonsAdministrator

Table 7.1: Objects of the flat object instance model

Operator communicates with Individual Controls to put an elevator in and out one of its
possible maintenance modes. Whenever all elevators must be in maintenance mode, this must
done by putting each elevator in maintenance mode separately.

At this time a few response time requirements need to be mentioned. All communication
between a person and the system should be handled within todays human/system communi­
cation timing requirements. This means for example that a destination acceptance response
should be within 0.3 second. Another important response time requirement concerns eleva­
tor control. Whenever an elevator reaches a floor within 8 inches, the system computes the
desired movement of an elevator. If, for example, the elevator should stop at this floor, the
system must control the elevator motor in time. Of course, a quantitive value of this response
time requirement depends on implementation details such as type of motor. At this time only
a qualitive response time requirement can be given: system response must be fast enough to
allow correct operation. In a real elevator control design-instead of this case study-much
more response time requirement study should be done. It would for example be very impor­
tant to know the maximum allowed acceleration/deceleration of a passenger in the elevator
cage. In this case study, awereness of these response time requirements suffices.

7.3 The essential behavior model

At this point, building the essential behavior model is a matter of building the object instance
model and the POOSL description. The first step is to built a message flow model. It is
difficult to built a correct hierarchy while adding objects and communications to the model.
Therefore, initially a flat object instance model is built, while adding hierarchy to the model
in a succeeding step. This is neither a top-down nor a bottom-up approach. One may start in
some intermediate level of the hierarchy and combine both methods. In the elevator problem,
modeling started on the bottom level. Table 7.1 shows all the objects in the initially flat
object instance model. Once the flat model is finished, clusters or a composite objects are
identified. Grouping objects is a bottom-up approach. In the elevator model this approach is
used and resulted in a three level hierarchy. The hierarchy must comply with the architecture

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 66

IOperator

MaintananceMode
system boundary·...· ·· WakeUn ·· ·· Individual InOnerative Central ·IndicateFloor OoerationMode · IndicateSummons

Elevator IndicateDeslination · Control
Floor

Control
Withdraw Summons Floor rlWithdrawDeslination · ·Passenger

Destination · GetSummons ":0 ~. Summons ... Passenger
Summonsln ::::I

· ~ ··· A~ tt ··· AtFloor ·· FiliedT0 anacitv ·· Move ·· Halt ·· ·· ·NoHalt
Elevator ~ ·Halt · ·Hold · I:: Mechanism ··· ...

·'1 ·PassenoerDetected · ·Onen · ·Close · ··· Alarm ·· Move ·· ·.

l~rweigh~IDoors~ IAudible~ I Elevator~ IFloor ~
Alarm Motor Sensor Sensors

Figure 7.2: Level 0 of the message flow diagram

structure model.
The following two sections show the two parts of the object instance model. It is explained

in a top-down fashion. It describes the objects, their connections and communications. This
will give an idea of the dynamic behavior of the system. In section 7.3.3 a detailed description
of the dynamic behavior is given.

7.3.1 Message flow diagrams

As you can see, Figure 7.2 shows the top level of the message flow diagram. The most
important part is the system boundary. Objects outside the system boundary are objects
in the environment and will not be designed. Objects inside the system boundary form the
system to be designed and implemented. The easiest part to understand is the environment
objects. Here is a list of the environment objects and their description:

• ElevatorPassenger is an object to represent a real-world passenger inside an elevator. This
passenger is able to issue destination requests to the system with a Destination message.
The message contains information about the requested destination floor. The system
notifies the passenger about pending destination requests with the IndicateDestination
and WithdrawDestination messages. The system gives the passenger the current floor
number with the AtFloor message. A passenger is able to halt an elevator with the Halt
message or enable it again with the NoHalt message. Halting an elevator causes the
elevator cage to stop and halt at the next floor with its doors open. Hold_ holds the
doors open when the elevator is at a floor .

• FloorPassenger is an object to represent a real-world passenger at a floor who wishes to

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 67

travel with an elevator. He notifies his request to the system with a Summons message.
This message contains information about the location of the passenger and the direction
he wishes to travel in. The request is for any of the available elevators. The system
decides which elevator the passenger will travel with. The system notifies the passenger
about pending summons requests with the IndicateSummons and WithdrawSummons
messages.

• Operator is an object to represent the person who has control over the operation mode
of an elevator. He can put an elevator in normal operation, maintenance mode and lock
and clear mode. Maintenance mode is a mode in which an elevator does not stop for
any summons requests, but handles its destination requests as in the normal operation
mode. In the lock and clear mode, the elevator clears its destination list and ignores
destination and summons requests. The operator puts the elevator in one of these three
modes with a MaintenanceMode message.

• FloorSensors is an object to represent a group of real-world sensors that detect if an
elevator reaches a floor within eight inches. The AtFloor message sent to the system
contains the floornumber.

• OverweightSensor is an object to represent a real-world sensor that senses if an elevator
is filled to capacity. If an elevator is filled to capacity it should not stop for any pending
summon requests at the floors it passes. The overweight sensor object has its information
always available to the system. The system only needs to accept the FilledToCapacity_
message which contains a boolean value.

• The AudibleAlarm is an object to represent a real-world audible alarm. The AudibleAlarm
sounds as long as the ElevatorMechanism is halted by an Halt message from an Elevator­
Passenger.

• The Doors is an object to represent the real-world doors of an elevator, together with
a mechanism to detect passengers passing through. Doors open at an Open message
and close at a Close message. Every time a passenger passes through, the Doors send a
PassengerDetected message.

• The ElevatorMotor is an object to represent a real-world elevator motor. It accepts
commands through the Move message. This message starts the motor moving up or
down or stops the motor. It is save to switch the motor directly from up to down and
vice versa.

When the environment has been analyzed and its objects have been defined it is time to
look at the system itself. We can distinguish three major parts. An IndividualControl part, a
CentralControl part and an ElevatorMechanism part.

The IndividualControl part encompasses all the necessary objects to describe all the func­
tionality that is specific to a single elevator. This means handling destinations, control its
movement and update the display inside the elevator cage. It must provide information for the
CentralControl about its operationmode, position and notify the CentralContral if it cannot
continue operation. The IndividualControl queries the CentralControl about pending sum­
mons requests it may have to handle. If there is nothing to be done for an IndividualControl
it goes to "sleep" in its idle state. In this state the elevator cage is at a floor with its doors
open.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 68

The CentralControl part describes all the functionality that is not specific to a single
elevator, but for all elevators as a whole. It handles summons requests, wakes up idle elevators
and updates the summons panel. The CentralControl wakes up an idle elevator if this elevator
must handle a summons request or if one of the other elevators fails to continue operation.
In Figure 7.3 the internals of the IndividualElevator and CentralControl are shown.

The ElevatorMechanism part is responsible for safe operation of an elevator cage. The
elevator mechanism sends the Halt message to the system if it is unable to continue operation,
because of an halt request from an elevator passenger. It accepts the Move message. This
message contains information about the desired movement of the elevator cage: up, stop or
down. If the cage is stopped, the doors are automatically opened. It will only start moving
again after an up or down command and all passengers have entered or leaved the elevator
cage. The doors will automatically be closed. With a Hold_ the elevator cage will hold at a
floor with its doors open. The Halt message from an ElevatorPassenger halts the elevator at a
floor with its doors open.

Let's take a closer look at level 1 now. The FloorSensors is a collection of 40 FloorSensors,
one at each floor. If an elevator reaches a floor within 8 inches, the FloorSensor sends the
AtFloor message to the system with information about the floor number. This message is
handled by the FloorHandler in the IndividualControl part. The IndividualControl is a cluster of
four objects:

• FloorHandler handles AtFloor messages from the FloorSensors. If this message arrives it
notifies the ElevatorPassenger through an IndicateFloor message and notifies the Eleva­
torControl that the elevator has arrived at a new floor with an AtFloor message.

• ElevatorControl controls the movement of the elevator cage by sending Move messages to
the ElevatorMechanism. It checks destination requests and summons requests. With the
Get Destination message the ElevatorControl asks the DestinationsHandler if a destination
request is pending for a particular floor. The Destinationsln message returns information
about pending destination requests in some direction relative to a floor except for the
floor itself. For instance, the Destinationsln(3, down) message returns true if there is
a destination request pending at floor 0, floor 1 or floor 2. Summons information is
retrieved in the same manner. If nothing is left to be done, the elevator goes to "sleep"
in its idle state. A WakeUp message from the DestinationsHandler or CentralControl
will wake it up again. If an elevator is FilledToCapacity_ or in Maintenance mode it
will not handle any summons requests. The Normal message puts the elevator from
maintenance mode back to normal mode. If an ElevatorPassenger sends a Halt message,
the ElevatorMechanism sends a Halt message to the ElevatorControl. This causes the
ElevatorControl to notify the CentralControl it is temporarily InOperative.

• The DestinationsHandler handles information requests from the ElevatorControl and wakes
it up if a new destination request arrives. While keeping an administration of destination
requests, it updates the DestinationsPanel accordingly with Light messages. New des­
tination requests can be Enable-ed, Disable-ed or the entire destination administration
can be cleared with the C1earAII message.

• ElevatorMaintenanceControl is an object that interprets MaintenanceMode messages from
the Operator and instructs the DestinationsHandler and ElevatorControl to operate ac­
cordingly the requested mode. If the Operator requests the maintenance mode, the

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 69

IndividualControl
MaintenanceMode

"
..... IndicateDestination

Destinations Disable Elevator
~ Withd rawDestination ::l Enable Maintenance..... Destination ... Handler ~ ClearAII... Control

J~",,,, Normal Maintenance

GetDestination GetSummons
Destinationsln Summonsln ~~

WakeUo

+ ' "Ir WakeUo.....
FilledToCaoacitv Elevator InOoerative

OoerationMode r::... ... Control ...
Floor r:: r::... ..

J~ .4~
Move Halt

AtFloor

Floor
Handler

J..
AtFloor IndicateFloor

,Ir "
I CentralCantral

IndicateSummons ...GetSummons
Summons WithdrawSummon~

Summonsln ~~ ... Summons Handler
NewSummons

..... WakeUo "..... InOoerative ... Elevators
OoerationMode... ~ Superviso
Floor ~ ~... ...

FloorSensors ..~
AtFloor

IFloorSensor D

Figure 7.3: Level 1 of the message flow diagram

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 70

DestinationsHandler

Disabla

Destination .\ PassDestinatlons ~ Enable
"-llnputControl WakeUn

AddDestination

IndicateDe.tinetinn I Destinatlonsl ClearAIi
~ WithdrawDestination List I

~

Remove IsDestinalion
Destination

IDestinations GetDestinetion

I

DestinationslnIAdministrator I

SummonsHandler

NewSummons IPassSummons L.. Summons....
IlnputControl I

AddSummons

~
ISummons IlndicateSummons ..
list WithdrewSummons ...

~

Remove
Summons IsSummons

GetSummons
~ Summons ISummonsln IAdministrator

Figure 704: Level 2 of the message flow diagram

Maintenance message is send to the ElevatorControl. This causes the elevator not to
stop for any summons requests. The ElevatorControl informs the CentralControl it is
InOperative for a while. In the lock and clear mode, the ElevatorMaintenanceControl
Disable-s new destinations requests and clears the destination administration in the
DestinationsHandler with the C1earAII message.

The second major part of the system is the CentralControl. It is a cluster of two objects:

• The SummonsHandler handles information requests from the ElevatorControl and alerts
the ElevatorsSupervisor if a new summons request arrives. While keeping an adminis­
tration of the summons requests, it updates the SummonsPanel accordingly with Light
messages.

• The ElevatorsSupervisor WakeUps elevators. This may occur when a new summons re­
quest arrives or an elevator becomes inoperative. If a new summons request arrives,
the ElevatorsSupervisor wakes up the closest idle elevator. If an elevator becomes inop­
erative, the ElevatorsSupervisor wakes up the first idle elevator it can find and lets it
move in the same direction the currently inoperative elevator was going before it was
inoperative.

Level 2 is the bottom level of the object instance diagrams. It is shown in Figure 704. The
DestinationsHandler is a cluster of two objects:

• The PassDestinationslnputControl is an object that handles passenger destinations input.
A passenger supplies the system with destination requests through the Destination mes­
sage. This input can be Disable-ed and Enable-ed by the ElevatorMaintenanceControl.
The PassDestinationslnputControl sends a WakeUp message to the ElevatorControl each
time a new destination request arrives and has been added to the DestinationsList with
the Add Destination message.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 71

• The DestinationsList holds all destination requests and informs the ElevatorPassenger
about pending destination requests with IndicateDestination and WithdrawDestination
messages. C1earAII clears all destination requests and Add Destination is used to add des­
tinations to the list. IsDestination replies with a message containing a boolean whether
or not a particular floor has a destination request pending. RemoveDestination removes
a destination from the list.

• DestinationsAdministrator is able to answer the questions from the ElevatorControl about
pending destination requests. The message Get Destination replies with a message con­
taining a boolean which is set if the appointed floor has a destination request pending.
The destination request will be removed. The Destinationsln message returns informa­
tion about pending destination requests in some direction relative to a floor except for
the floor itself. For instance, the Destinationsl n(3, down) message returns true if there
is a destination request pending at floor 0, floor 1 or floor 2.

The SummonsHandler is very similar to the DestinationsHandler. The exceptions is the Pass­
SummonslnputControl. It cannot be disabled and instead of the WakeUp message, it sends the
NewSummons message to the CentralControl each time a new summons request arrives. All
other objects and messages are similar to the ones of the DestinationsHandler.

7.3.2 Instance structure diagrams

Figures 7.5, 7.6 and 7.7 show the instance structure. They show objects connected through
channels. A channel exist between two objects whenever they have at least one message
flow between them. Each channel must have a unique name. This name may be arbitrary,
but in order to improve readability of the diagrams it is best to use a proposed convention.
In the elevator problem, all leaf objects-objects that are neither a composite object nor a
cluster-have a two character abbreviation of their name. Table 7.2 shows their name ab­
breviations. The name of a channel between two collaborating objects is the concatenation
of both object name abbreviations. The concatenation must be in alphabetical order. There
exist a difficulty if there are several instances of an object-a multiple object-. In the eleva­
tor problem for example, the model contains four elevators. This implies the communication
between four DestinationsLists and four DestinationsPanels. To identify an object, a number is
needed besides its name. This number may then be used to create the channel name as well.
To get unique names for the channels between multiple objects a number is added after the
concatenation of abbreviations. See Figure 7.5. The channel name between ElevatorControl
and OverweightSensor is ecos#, where # is a number between 0 and 3. Inside the Individu­
alControl the name of the channel is ecos, see Figure 7.6. This channel name is local to the
object IndividualControl and there exist no conflict between multiple channels.

The instance structure diagram does not only show interconnections. The diagram is also
a basis for architecture structure. The architecture is represented by drawing boundaries
around groups of objects. There are four different types of boundaries:

• Abstraction boundary

• Concurrency boundary

• Distribution boundary

• Implementation boundary

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM

NAME ABBREV.
AudibleAlarm aa
DestinationsAdministrator da
DestinationsList dl

Doo~ do
ElevatorControl ee
ElevatorMotor em
ElevatorPassenger ep
ElevatorsSupervisor es
FloorHandler fh
FloorPassenger fp
FloorSensor fs
ElevatorMaintenaneeControl me
ElevatorMeehanism mh
Operator op
OverweightSensor os
PassDestinationslnputControl di
PassSummonslnputControl Sl

SummonsAdministrator sa
SummonsList sl

Table 7.2: Name abbreviations of leaf objects

72

Operator I
meop

system boundary.., 1---~---------------., I,,
1 1:

II
, Individual Central

Elevator eolh'
, I Control eces Control I' losl

Floor rl
,

los;dleo' , eesa ,
Passenger dieo'

, I' 1 Passenger
, 1 I:, '-- -tt-----~'!!t'~e~------:,, thIs',

eemh' eeos',,,,
IElevator ~enmh'

,,, 1 Mechanism,,
I,

domh' ,,,
aamh', emmh',

'.

IDoors] IAUdible] I Elevator~ Ioverweight] IFloor]
Alarm Motor Sensor sensors

Figure 7.5: Level 0 of the instance structure diagram

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 73

IndividualControl
meop

Destinations Elevator
dleo dime Maintenance
dieo Handler dime

Control

eeme
daee
diee eesa

I
eeos Elevator eees

Control

eelh

eemh
Floor
Handler

Ihls eplh

rFloorSensor -U

CentralControl

eesa Summons losl
losiHandler

essi

eees Elevators
Supervisol

FloorSensors
Ihls

Figure 7.6: Levell of the instance structure diagram

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 74

DestinationsHandler

dieD IPassDestinatlons I dime
dieeIlnputControl

didl

eDdl IDestinatlonsl dimeIList I

dadl

IDestinations I daee

Administrator I

Sum mons Hand Ie r

essi I PassSummons I fnsi
IlnputControl I

sisl

ISummons I fDsl

List I

sasl

eesa ISummons IIAdministrator

Figure 7.7: Level 2 of the instance structure diagram

The abstraction boundaries are in fact the leaf objects itself, composite objects and clusters.
Concurrency boundaries show of course concurrency between groups of objects. At this point a
concurrency boundary exist around every leaf object. This means that all leaf objects operate
concurrently, but inside the objects the operation is sequentially. The instance structure
diagrams of the elevator problem does not contain distribution boundaries yet, but does have
one implementation boundary. An implementation boundary exist around IndividualControl
and CentrolControl. These clusters contain all objects that control four elevators as described
in the problem statement and will be implemented in software on a single computer that is
capable of performing this task.

7.3.3 POOSL description

The POOSL description describes the static structure of the object instance model together
with the dynamic behavior of the objects. The POOSL description of the elevator problem
is in Appendix A of this report. The description is divided into three parts:

• System description

• A system of process objects

• A system of data objects

This is a top-down order of the elevator problem. The system description shows the static
structure of connected process objects that comprise the system. A process object represents
an object in the object instance model. So, to build a POOSL description, one starts with de­
scribing all objects of the object instance model as process objects in the POOSL description.
At a later stage the dynamic behavior of each object is added to the POOSL description. The
data objects are an extension of the standard data types of the POOSL language. For more
information about POOSL see [15].

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM

ElevatorMaintenanceControl ElevatorMechanismHandler

Figure 7.8: States of the ElevatorMaintenanceControl and the ElevatorMechanism

75

The description of most objects is a very straightforward sequence of sending and receiving
messages. The dynamic behavior of the objects in the environment is not described, only
their interfaces. Three process objects need further explanation: ElevatorMaintenanceControl,
ElevatorControl and ElevatorMechanism.

The dynamic behavior of a process object is some sequence of sending and receiving
messages. What is received or send depends on a certain "state" the process object is in. The
"state" is composed of the execution point in the dynamic behavior description and the values
of the variables of the process object. To understand the behavior of a process object, it may
be necessary to take subsets of all possible states and name them.In the elevator problem the
process objects ElevatorMaintenanceControl and ElevatorMechanism have variables that hold a
value about the state the are in.

The ElevatorMaintenanceControl can be in one of three states: Normal, Maintenance and
LockAndClear. The variable MaintenanceMode holds the value of the state. Figure 7.8 shows
how the value of the variable MaintenanceMode of the ElevatorMaintenanceControl is allowed
to change, and hence the state of the ElevatorMaintenanceControl. In the Normal state, the
elevator handles both destination requests and summons requests. In the MaintenanceMode
the elevator is instructed not to handle any summons requests any more. The LockAndClear
state causes the elevator to not handle both destination requests and summons requests.
All pending destination requests will be cleared as well. The elevator does not accept any
destination request input. The ElevatorMaintenanceControl changes state upon the reception
of messages from the Operator.

The ElevatorMechanism has two variables that are very important to its state: MoveTo
and MoveState. Figure 7.8 shows the variable MoveState. It can be one offour states. Normal
operation is a cycle through three states: Stopped-MustGo-Moving. In the Stopped state the
elevator is at a floor with its doors open. If the ElevatorMechanism receives a Move(up/down)
message a transition to the state MustGo occurs. This state is active until no more passengers
enter or leave the elevator. The doors will then be closed and the elevator starts moving.
At this time the ElevatorMechanism is in the Moving state. A Move(stop) message causes the
elevator to stop and open its doors. Now, the ElevatorMaintenanceControl is in its Stopped
state again.

When the Halt message arrives, the elevator must halt at the next floor it arrives on and
must open its doors. Therefore, at any of the three previous described states a transition may

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 76

occur to the Halted state. While halted, the ElevatorMechanism still handles Move messages
and updates the variable MoveTo. This variable holds the direction the elevator must go to. If
the NoHalt message arrives, ElevatorMechanism goes to the Stopped or MustGo state depending
on the variable MoveTo. In the Stopped state the variable MoveTo always holds stop and in
the MustGo state it always holds up or down. It is also possible to go from the MustGo
state to the Stopped state. This will happen when a Move(stop) message arrives. Variable
MoveTo will then be set to stop. For a detailed description, see the POOSL description itself
in Appendix A.

The ElevatorControl is not difficult to understand concerning states, but its actions to
AtFloor and WakeUp messages need further explanation. The initiative of elevator control
lays at the ElevatorControl. The Operation Mode of an elevator is Idle, Up or Down. In the Up
or Down mode, the elevator handles destination requests and summons requests in the up or
down direction. It will not reverse direction until all requests in a direction are handled. The
precedence of requests is as follows:

1. Destination requests

2. Summons requests in the same direction as the Operation Mode

3. Summons requests at floors in the direction of Operation Mode, but with a request in
the opposite direction. The elevator will travel to the farthest summons request before
reversing its direction.

The elevator will not handle any summons requests if it is filled to capacity or it is in main­
tenance mode. The variable MaintenanceMode holds Maintenance or Normal if the elevator is
in maintenance mode or it is not in maintenance mode.

Whenever the elevator arrives at a new floor the ElevatorControl is send the AtFloor mes­
sage. This message contains the floornumber. The ElevatorControl queries the Destination­
sAdministrator and the SummonsAdministrator to see if it must stop at this floor according the
requests precedence. If there are no pending requests in the direction of the Operation Mode,
the elevator reverses its direction and continues oparation. If there is nothing to be done in
this direction as well the Operation Mode switches to the Idle state. In this state the elevator
is at a floor with its doors open. The elevator will start operation again if the ElevatorControl
receives a WakeUp message. This message is send to it when a new destination request arrives
or the CentralControl decides to wake it up.

The ElevatorMechanism sends the Halt message to the ElevatorControl if it has a Halt
message received from the ElevatorPassenger. This is nothing to worry about, but the Centrol­
Control must know that the elevator is temporarily inoperative. Because halting an elevator
does not effect the operation of itself, all that needs to be done is to send the InOperative
message to the CentralControl. This message is also send to the CentralControl if the elevator
switches to maintenance mode, because it does not handle summons requests any more.

7.4 Heuristics with the SHE method

The heuristics presented in this section serve as guidelines to build the essential behavior
model and architecture structure model. These guidelines may help you, but they are not
compulsory. The essential behavior model consists of:

• Initial requirements description

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM

Initial
f-4 Object

Requirements Class
Description Model

+2 13 13
3 ... Message Flow 5 ...

r'

Diagrams
r'

Architecture POOSL
Structure 1 Description
Model

4 Instance Structure 5
r' Diagrams r'

77

Figure 7.9: The information flow when building the models that comprise the essential be­
havior model

• Object class model

• Object instance model

- Message flow diagrams

- Instance structure diagrams

• POOSL description

• Requirements catalogue

The architecture structure model consists of:

• Architecture structure diagrams

• Architecture decisions statement

• Architecture response time requirements

Of course modeling starts with the initial requirements description. It is the problem
statement that contains information about the system from the customer's point of view.
From this starting point the other models will be built in several phases as depicted in
Figure 7.9. The numbers near the arrows indicate the phase.

The essential behavior model is build in five phases:

1. An initial study is done of the problem domain. The object class model is build from
the initial requirements description

2. Essential architecture structure requirements imposed by the initial requirements de­
scription along with physical geographical constraints are put in the architecture struc­
ture model

3. The initial requirements description and the architecture structure model are used to
create the message flow diagrams.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 78

4. The message flow diagrams and the architecture structure model are input for the in­
stance structure diagrams.

5. The POOSL description is actually build in two sub phases:

(a) A textual form of the basic system structure is build from the message flow dia­
grams and instance structure diagrams.

(b) Dynamic behavior of every object is described.

The requirements catalogue which contains a data-dictionary, object to boundary maps, trace­
bility data and environmental conditions is build from the initial requirements description and
updated with information with every analysis and design phase. The succeeding section de­
scribe each phase building the essential behavior model in more detail.

7.4.1 Phase 1 and 2 in building the essential behavior model

SHE is capable of handling systems of great complexity. These systems may require an initial
study of the problem domain. Building the object class model serves two purposes: 1) it is
an initial study of the problem domain and 2) classes of this model serve as a first candidate
list for objects in the object instance model. Instead of giving a thorough description on how
to build a class model, I would like to refer to the good work done by Rumbaugh eLal. [14].
Rumbaugh eLal. give an exhaustive description and a rich set of heuristics for class models.

The next step is to build the architecture structure model. It contains essential architecture
structure requirements imposed by the problem description. Examples are abstract layering
of the OSI-reference model or physical separation of elevators from each other and from a
central controller. Though the architecture structure model requires information from the
initial requirements description it also requires common knowledge of the problem domain.

7.4.2 Phase 3 in building the essential behavior model

In the third phase, the message flow diagrams are build from the initial requirements descrip­
tion, the object class model and the architecture structure model. The object class model serves
as a first list of candidate objects. Because this list will not contain all required objects-most
of the classes of the object class model belong to the environment-, find objects in the initial
requirements description as well. Because an essential model is build here, every object must
be essential to the problem.

Another important issue to take into account when choosing objects is the architecture
structure model. This model describes high level architecture as is imposed by the problem
description. Architecture structure boundaries may not intersect with objects. Objects must
be carefully chosen to locate them inside boundaries.

Next step is to add message flows to the objects found thisfar. While doing so, additional
objects will be found. Message flow diagrams are initially build from an intermediate level
of abstraction. They are then extended to higher and lower levels. If it is difficult to stay
at one level of abstraction doesn't matter. Objects of different levels are put together in the
diagram along with their message flows and hierarchy is added to the model at a later stage.

When choosing objects and adding messages, overall functionality is partitioned over
objects. To make the model cohesive, organize the model for maximum independence. A good
model keeps related things together and unrelated things separate [17]. Changes will then

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 79

remain local. When messages are added to objects, new objects can be found. This occurs for
example when an object needs functionality-a service-of another object to accomplish its
task and this object is not exist in the model yet. A service request is modeled as a message
between collaborating objects. Messages helps you find objects. New objects require adding
messages. Therefore, interaction exist between finding objects and messages.

Try to avoid continuous message flows and buffered message flows. They cannot be de­
scribed in POOSL directly and therefore make the POOSL description harder to understand.
Giving good names to the message flows is very important. A message flow must be named
from the point of view of the initiator of the communication.

7.4.3 Phase 4 in building the essential behavior model

Once you have the message flow diagrams it is very easy to make the instance structure
diagrams. The object hierarchy of the object instance structure is exactly the same as the
hierarchy of the message flow diagrams. Whenever there exist message flows between two
objects, they are replace by a channel. Name these channels. It is a convention to build
channels names from object name abbreviations. This makes it possible to see what objects a
channel connects just by looking at its name. On page 71 the construction of channel names
is explained.

In the object instance structure diagrams the boundaries of architecture structure from
the architecture structure model are formalized. When the message flow diagrams were build,
object were chosen not to intersect with any of these boundaries. Objects themselves are
abstraction boundaries. So, only concurrency, distribution and implementation boundaries
need to be added.

The instance structure diagrams serve as a skeleton for the construction of the POOSL
description. The instance structure diagrams contain concurrency, distribution and imple­
mentation boundaries. However, POOSL doesn't support them directly, but they can be
specified as clusters.

7.4.4 Phase 5 in building the essential behavior model

The first step in building the POOSL description is transforming the message flow diagrams
and instance structure diagrams into a textual form as a POOSL description skeleton. This
step is mechanical. Objects become process objects, message flows are declared in the mes­
sage interface part of process objects and communication channels are declared. Composite
objects and clusters will be supplied with a behavior description. Of every process object its
functionality and operation must be described in an informal way as a comment. This will
make the POOSL description much more readable.

In the second step the dynamic behavior of the process objects is coded in POOSL.
The hierarchy in the object instance model has reduced the complexity of every object to
an acceptable level. The message flows of a process object and the informal description
documented in the POOSL description in the first subphase serve a starting point to build
the dynamic behavior description of the process object. When it is too difficult to make
the description, one could start with a less complex object. Objects at the lowest level in
the hierarchy are usually less complicated than higher levels. When describing the dynamic
behavior is difficult, even when all its collaborating objects can be described, the object
instance model needs remodeling. Objects must be added to the object instance model or

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 80

the complex object must be made a composite object to reduce object complexity. This
will however influence dynamic behavior descriptions of collaborating objects. They must
be checked and modified if necessary. If messages are homogeneous distributed across the
object instance model and the model is build maximizing independence, modeling iterations
are minimized and modifications will stay local.

Keep the description of the objects in the POOSL description ordered in hierarchy level
and order each level alphabetically.

7.5 Review

This section reviews the application of SHE on the elevator problem. Though especially items
of the applied SHE part are reviewed, succeeding sections will give also-a less extensive-­
review of other SHE parts. The applied SHE part consists of all parts of the essential behavior
model. They are build in conjunction with the architecture structure model.

The SHE review is based on a single case study. Of course this is not enough to fully
evaluate an analysis and design methodology, but gives a good first impression. Future studies
of other complex embedded systems are required.

7.5.1 Four framework quadrants

SHE framework consists of four quadrants, see Figure 6.1. The idea of using four quadrants
is to enhance awareness about essence versus implementation and behavior versus structure
[12]. The top half of the framework-the essential behavior model and architecture structure
model- captures essence while the bottom half-the extended behavior model and imple­
mentation structure model-captures implementation. The left half-the essential behavior
model and extended behavior model-captures behavior, while the right half-the architecture
structure model and implementation structure model-captures structure.

In SHE not all models are strictly separated according the four quadrant principles. Take
for example:

• Boundaries. Boundaries, are structuring concepts but are modeled in the essential
behavior model and the extended behavior model, both behavior quadrants.

• The initial requirements description. It contains both behavior and structure as well
essentials and implementations. In SHE it is part of the essential behavior description.
The initial requirements description serves as an information source during analysis
and specification. Its information will be formalized in essential models: the top half
of the quadrant framework. So, probably a better place for the initial requirements
description would be outside of the quadrant framework, above the essential part. This
would emphasize that the initial requirements description is input for both essential
behavior model and architecture structure model.

• The requirements catalogue. It collects information to be stored during analysis and
design [13]. It contains a data dictionary, object to boundary maps, tracebility data
and environmental conditions. It does not contain essential dynamic behavior. Why
put it in the essential behavior description? Maybe, a better place would be outside the
quadrant framework.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 81

• The object class model. It serves as an initial study of the problem domain and as a
first candidate list of objects for the object instance model. The object class model does
not contain any dynamic behavior. Yet, it is part of a behavior quadrant.

Not strictly keeping to the quadrant principles may be cause for confusion or worse, mis­
placing information. SHE separates essence from implementation, but mixes structure with
behavior in the quadrant framework. Restructuring parts of the framework should therefore
be considered. One could think of separating into three major parts:

• Initial requirements and initial study: initial requirements description and object class
model.

• Essential part: architecture structure model and essential behavior model except the
initial requirements description and object class model. This part is build during analysis
of the problem domain and will formalize the customers true intent.

• Implementation part: extended behavior model and implementation structure model.
This part is build during design.

How and when behavior and structure should be separated should be researched, especially
with computer aided SHE support in mind.

7.5.2 Modeling the environment

SHE should have equal emphasis on modeling environment and system. The SHE model of
the elevator problem mostly focussed on modeling the system. This is cause for problems.

The SHE model of the elevator problem models the environment in not enough detail.
Dynamic behavior of the system relies on environment properties that are not modeled. If,
for example the elevator motor runs the elevator cage down, floor sensors are activated at
succeeding lower floors. The dynamic behavior description of system objects expect floors to
be numbered in succeeding order, with floor 0 at the bottom and floor 39 at the top of the
elevator shaft. Any other numbering of floors will make the dynamic behavior description of
many objects invalid.

Another example is modeling a passenger. A passenger arrives at a floor and issues a
summons request to the system. The system sends an elevator at the floor the passenger
is at. The passenger enters the elevator when it arrives and has its doors opened. Here
is a constraint: A passenger can only enter an elevator that is at the correct floor with its
doors open. The SHE model of the elevator problem contains floor passengers and elevator
passengers. These passengers don't move between system parts but are statically "connected"
to a floor or an elevator cage. Without the previously described constraints in the model, the
model is not suited for validation.

If we took a closer look to the model we would note several other missing constraints. The
key line here is: too much emphasis has been put on modeling the system itself and too little
on its environment. Modeling an environment is as important as modeling the system itself.
Each embedded system is designed for a particular environment. Changes in environment
influences system operation. At worst case, it could malfunction. To model an environment,
these properties should be taken into account:

• Environment objects interact just as environment objects interact with system objects or
system objects interact. However, terminology about interaction between environment

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 82

objects lays at the problem domain, so it is most easily described with problem domain
constructs/relations. In SHE, they must be converted into communicating objects,
which may cause loss of information or introduce errors.

• Objects could be moving. An example is the passenger of the elevator problem. Pas­
senger communication with the system "moves" to other system parts as time passes
by. In fact, the passenger even physically moves through system and environment. At
a particular instant of time, a moving objects is "visible" only to a model part. SHE is
based on a static structure of communicating objects. To model "movement" and "visi­
bility" of an object, in SHE these properties must be embedded in the dynamic behavior
description of the moving object or they must be modeled as traveling data-objects.

• Objects could come into existence and die at some other time. This is common practice
in software systems. Even todays hardware like runtime programmable logic, could
have this property. SHE however, doesn't support creation and deletion of objects­
requirement Ij-. As SHE is a method for hardware/software systems, maybe it should.

SHE should have equal emphasis on modeling environment and modeling system-requirement
2d-. The system model and environment model as a whole act as a closed system. The en­
vironment model should have enough detail, so any information that is used to model, is
modeled. The resulting closed system model is executable and can be used for simulation.

7.5.3 Mixing analysis and design

Analysis models should not contain implementation details. However, for co-design, high
level architecture structure must be incorporated [13] page 2. High level architecture design
is motivated and documented in the architecture structure model. Examples of high level
architecture structure are (standardized) layering and topology that may be imposed by the
initial problem description and by physical geographical constraints [13] page 5.

The examples of layering and topology constraints could be essential or implementations.
It depends on the definition of the system boundary [17]. Topology may be essential or
a possible solution, layering may be essential or optional. The analyst is responsible for
separating essence from implementation. However he may be tempted to incorporate design
decisions-implementations-in the architecture structure model. Implementation boundaries
in the essential behavior model only enhances the risk of misjudgment.

7.5.4 Functionality distribution

A system "must do" something. Functionality is a system's most important property. There
must be a close relation between system functionality and models -requirement 2c-. SHE
does not include a functional model as OMT [14] does, but uses a few concepts in its framework
to directly relate to functionality instead of a separate model. They are:

• Objects and message flows

• Clusters

• Scenarios

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 83

When the object instance model is build, overall functionality is divided among objects. Each
object provides part of the functionality with its encapsulated data, dynamic behavior and
communications with collaborating objects. Objects and communications are chosen to max­
imize independence. In the object instance model the objects name and its communications
give a clue what it "does"-functionality-.

Clusters group objects that are tied to each other in some way. In the elevator problem for
example, clusters IndividualControl and CentralControl separate to functional different parts:
functionality concerning a single elevator in the IndividualControl and concerning all elevators
as a collection in the CentralControl. Another example is cluster DestinationsHandler and
cluster SummonsHandler. Clusters group collaborating objects that perform a part of system
functionality.

Collaborating instances should perform some coherent part of the system behavior, called
a scenario [13] page 4. The collection of all scenarios describes system behavior completely.
Therefore, scenarios divide system functionality.

SHE has means to divide functionality and shows the relation between functionality and
models. However, the analyst may not be aware enough of the relation between functionality
and models. SHE should stress the importance of this relation and have heuristics how to
apply the proper concepts when dividing functionality.

7.5.5 Object class model

The application of OMT on the elevator problem showed that it is difficult to build a class
template view, see 4.2.2. SHE has an object class model in its essential behavior model. SHE's
object class model serves two purposes [13]:

• Initial study of the problem domain

• First list of candidate objects for the object instance model

Building an object class model certainly helps to understand the static structure of the problem
domain. However, the model gives no clue about any dynamic behavior and its emphasis is
on static structure of the environment-see 4.2.1-. Because the system itself is not studied
in enough detail, the object class model is of limited value as initial study. As a first list of
candidate objects it will mostly generate objects in the environment.

Considering the results of building an object class model, should SHE keep it for the
purposes previously described? Ideas exist to use the model as a guide for building the object
instance model. The object class model is considerably stable as requirements evolve [14].
Associations between class templates serve as candidate communications. When the object
class model structure is used as a template for the object instance model it will inherit the
stability. Classes and associations guide the analyst to add objects and communications.
Because, initially the emphasis of the object class model is on environment, the object class
model and object instance model should be build concurrently, in conjunction with each other.
The object instance model helps to find new objects and classes, while the object class model
serves as a skeleton for the object instance model.

At this time, development of SHE focused mostly on hardware. In future much more
attention must be paid to software as well. Then, the object class model may have other
important purposes as well.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 84

7.5.6 Instance approach

Building the OMT object model of the elevator problem required many iterations-see 4.2.5­
. Building the object instance model of the elevator problem on the other hand, was done in a
single iteration. SHE's instance approach with objects and messages does minimize iterations.

The object instance model of the elevator problem consists of 8 environment objects and
11 system objects. These are small numbers for a problem with considerable dynamic com­
plexity. Building the object instance model, choosing objects and communications, was a
continuous process without many alterations in the model or points at which it is difficult to
find new objects and communications. The model was build in conjunction with the archi­
tecture structure model without difficulty. While defining dynamic behavior in the POOSL
description, only minor changes in the object instance model were needed.

7.5.7 Hierarchy issues

Human limitations prevent us from keeping all details of complex systems in our head at
one time. Hierarchy enables us to describe every detail of a system, while it is also possible
to perceive a system as a whole [17]. Hierarchy represents a system at various level of de­
tail, together with a bookkeeping scheme to show the relationship between different levels of
representation.

Hierarchy is a concept to divide and conquer complexity. Building a hierarchy can be
done top-down or bottom-up. SHE mixes both methods. In SHE, the analyst is allowed
to start at some intermediate level of abstraction and work his way up and down in the
hierarchy. Whenever the analyst adds objects and messages, he puts them at the proper level
of abstraction. If he is unable to decide the level of abstraction of an object, he is allowed to
add hierarchy afterwards. At a later time, when the model has evolved to a more complete
model, judging level of abstraction is easier. This flexible approach speeds up modeling
considerably, as experienced with the SHE model of the elevator problem.

Encapsulation is required to understand the model at a particular level of abstraction­
requirement Ie-. In SHE, hierarchy is build using composite objects and clusters. To
understand the model at a certain level of abstraction, it is necessary to hide lower levels of
abstraction. To hide lower levels of abstraction in a composite object, the composite object
could be given the abstract description of its central object-page 54-. SHE should allow
hiding lower levels of abstraction of a composite object by attaching an abstract description
of its internals. The abstract description of the internals of a cluster will be much more
complicated-page 54-. With a cluster, digging into lower levels of abstraction is necessary
to understand the model. Examples are the IndividualControl and CentralControl of the elevator
problem. A cluster may not be the proper concept to divide and conquer complexity. The
relation between clusters and functionality is already pointed out in section 7.5.4, maybe
clusters should be replaced by functionality boundaries.

7.5.8 Boundary issues

The instance structure diagrams contain boundaries. One of its possible types of boundaries
is a concurrency boundary. A concurrency boundary restricts the interior to be implemented
sequentially, [13] page 5. What exactly is a concurrency boundary's role in the essential
behavior model?

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM 85

A concurrency boundary restricts all possible solutions to those with a sequential imple­
mentation inside the concurrency boundary. However, it is often possible to satisfy a concur­
rent processing requirement with a sequential implementation, [17] page 12. Why should a
design decision like this be put in the essential behavior moder! Concurrency and response
times are very closely related concepts in an implementation model. Maybe it is better to
let all objects in the essential behavior model operate concurrently to prevent from making
premature design decisions. Concurrency boundaries could be added to the extended behavior
model to formalize implementation decisions in the implementation structure model.

Distribution boundaries model constraints imposed by physical distribution like asyn­
chronous/synchronous operation of model parts or accessibility of objects. The analyst must
be very careful to separate essence from implementation as he adds distribution boundaries.
Judging essence from implementation with topology is difficult: a premature design decision
is easily made. In SHE, the instance structure diagrams of the essential behavior model may
also contain implementation boundaries, [13] page 5. How is essence from implementation
separated if implementation boundaries are allowed in an essential model? Implementation
boundaries should only be allowed in the extended behavior model to formalize implementation
decisions in the implementation structure model.

7.5.9 Formal versus informal

SHE integrates informal techniques with formal ones. Building models in SHE starts with
defining an informal model which will be formalized in POOSL [15]. These steps are taken
during both analysis/specification and design. This approach proved to be very useful when
SHE was applied to the elevator problem.

The informal object instance model has a formal basis. A succeeding formalization step
forces to avoid being vague or having ambiguities in the model. Graphic representation of
the informal model enhances communication with the customer. The POOSL description
helps to explain communications between objects in the object instance model. Messages in
the object instance model forces to think about high level dynamic behavior while structure
is defined before it is formalized. This initial study of high level dynamic behavior helps to
define formal dynamic behavior descriptions in the POOSL description. Formal and informal
techniques interact "natural" in SHE.

Currently, POOSL is not able to formalize all aspects of the object instance model yet. For
example, it only supports abstraction boundaries of all boundary types. In POOSL, process
objects operate concurrently, while its internal operation is sequential. Unfortunately, this
property can not be exploited to model concurrency boundaries. If, for example, a concurrency
boundary is modeled with a basic process object, internal sequential operating objects must
be modeled as data objects. These data objects however, don't support message flows between
them, so modeling an object of the object instance model as a data object is impossible. In
future, POOSL should support all types of boundaries.

Message passing in POOSL is based on the rendez-vous mechanism. All message flows in
the object instance model are formalized in POOSL using the rendez-vous mechanism. One­
way synchronous message passing can be modeled using the rendez-vous mechanism directly.
All other types of message passing need special POOSL constructs to model. Continuous
message passing and asynchronous message passing even need additional process objects to
model communications. SHE must prescribe how to model all types of message flows in
POOSL. They serve as formal definitions of message flow primitives.

CHAPTER 7. A SHE MODEL OF THE ELEVATOR PROBLEM

7.5.10 Channels in an essential model

86

The instance structure diagrams of the object instance model contain channels. A channel
exists between two objects if they have at least one message connection in the message flow
diagrams. Channels form basic concept in POOSL through which process objects communi­
cate. Identifying channels in the object instance model is necessary to be able to formalize
the model in POOSL. But, are these channels essential to the problem domain?

Channels in POOSL are means for identification. Whenever a process object commu­
nicates with another process object, selecting a channel is a way to "identify" or "select"
the other party. Identification in the message flow diagrams is done differently. Instead
of a channel, the objects themselves are identified. Each object is unique in its existence.
Communicating objects are identified by drawing a message primitive symbol between them.
Channels in the instance structure diagrams translate object identification in the message
flow diagrams to a channel structure form suitable for POOSL. They do not add information
to the essential behavior model, nor are they essential to the problem domain.

Channels could be essential though. Model parts could be separated by distribution
boundaries. Objects in one part cannot communicate to objects in the other part directly,
they are "invisible" to each other. If communication between separated parts is required, they
could be connected through one or more channels. Message flows will be redirected to these
channels. SHE should only allow essential channels in its essential behavior model. Channels
could be essential when messages crosses certain types of boundaries.

Chapter 8

Conclusions

At Einhoven University of Technology the Digitial Information Systems Group does research
to structured specification, analysis and design methods for hardware/software systems. This
research requires both theoretical and practical input. Besides studying existing method
theories, they must be tried out and new theories and ideas must be evaluated after application
to a real-world problem. This masters project supplies the research with practical input.

This thesis describes the application of OMT-Object-oriented Modeling Technique-and
SHE-Software/Hardware Engineering-on an elevator problem. The analysis and design
of the elevator control showed to be a problem with enough complexity like hierarchy and
extensive dynamic behavior to be very useful in this case study.

First step in the master project was the application of OMT on the elevator problem.
OMT is a method for software systems, but is used for combined software/hardware in the
case study. Though promising at first sight, applying OMT to the elevator problem gave quite
a few problems. Building the object model was difficult due to complex hierarchy concepts
in OMT, many iterations necessary and difficulty choosing objects. Relations between OMT
models is not always clear, models are hard to keep consistent and are prone to ambiguities.
In OMT, not separating essence from implementation is an easily made mistake.

OMT is a method used with great succes on software problems, but showed not to be
useful in combined software/hardware applications. Instead of extending OMT for use with
software/hardware systems, information from the application of OMT was used to build an
initial requirement list for a new method named SHE.

SHE does not focus on classes and associations like OMT, but on instances and com­
munications between them. This instance approach feels more "natural" because it closely
corresponds to the way humans think about objects. This instance approach does solve many
of the problems encountered with OMT. Iterations are minimized, choosing objects is less
difficult and SHE hierarchy is not complicated. The formal POOSL basis of SHE avoids
ambiguities and inconsistencies. Mixing formal techniques with informal ones shows to be a
successful combination: it is easy to understand and learn while keeping the rigor of a formal
method.

Besides many positive properties and solving most of the problems OMT gave, SHE does
have deficiencies of its own. Some SHE models are misplaced in the quadrant framework,
partly mixing analysis and design in SHE weakens the ability to separate essence from im­
plementation and the difficulties the object class model gave in OMT still remain in SHE.
Also the essential models contain non-essential channels and the relation between concurrency

87

CHAPTER 8. CONCLUSIONS 88

boundaries and essence is unclear.
It is clear that SHE is still under development. SHE is promising for analysis and design

of hardware/software systems, but a lot of research still needs to be done. In the near future,
the quadrant framework should be remodeled and the role of the object class model together
with its relation to other models should be more clearly determined. Practical experience
with an analysis and design method such as in the case study of this masters project is very
important input for SHE development. As SHE evolves, more case studies should be done.

Bibliography

[1] Bowers, D.S.
"Some principles for the encapsulation of the behavior of aggregate objects"
Conf. Title: lEE Colloquium on "Recent Progress in Object Technology" (Digest
No.1993/238)
London: lEE, 1993

[2] Briggs, T
"A Specification Language for Object Oriented Analysis and Design"
In: "Proceedings of the 8th European Conference on Object-Oriented Programming",
Bologna, Italy, july 1994

[3] Coleman, D; P. Arnold, S. Bodoff, C. Dolling, H. Gilchrist, F. Hayes and P. Jeremaes
"Object-Oriented Development: The Fusion Method"
Englewood Cliffs: Prentice Hall, 1994

[4] Eckert, G. P. Golder
"Improving object-oriented analysis" Information and Software Technology
Vol: 36 Iss: 2 p. 67-86
UK: Butterworth-Heinemann Ltd. 1994

[5] Goguen, J; J. Messeguer
"Unifying Functional, Object-Oriented and Relational Programming with Logical Se­
mantics"
In: "Research Directions on Object-Oriented Programming"
MIT press, 1987

[6] Hayes, F and D. Coleman
"Coherent models for object-oriented analysis"
In: "Proceedings of the 1991 Conference on Object-Oriented Programming, Systems,
Languages and Applications", Phoenix, Arizona, oct 1991

[7] Jacobson, I
"Object-Oriented Software Engineering: A Use Case Driven Approach"
New York: ACM Press Books, 1992

[8] Messeguer, J
"A Logical Theory of Concurrent Objects"
In: "Proceedings of the 1990 Conference on Object-Oriented Programming, Systems,
Languages and Applications"

89

BIBLIOGRAPHY

[9] Milner, R.
"A Calculus of Communicating Systems", Lecture notes in Computer Science 92.
Berlin, Germany: Springer Verlag, 1980

90

[10] Moreira, A.M.D. and R.G. Clark
"Combining Object-Oriented Analysis and Formal Description Techniques"
In: "Proceedings of the European Conference on Object-Oriented Programming",
Bologna, Italy, july 1994

[11] Narfelt, K.H.
"SYSDAX - an object oriented design methodology based on SDL"
In: "Proceedings of SDL'87: State of the Art and Future Trends", Amsterdam, apr 1987

[12] Putten, P.H.A.
"A Specification Method for Digital Systems: Stratagies for the specification, architecture
design and implementation modeling of digital hardware/software systems"
Eindhoven: Instituut Vervolgopleidingen, Technische Universiteit Eindhoven, mrt 1993
ISBN: 90-5282-238-7

[13] Putten, P.H.A. van der; J.P.M. Voeten, M.P.J. Stevens
"Object-Oriented Co-Design for Hardware/Software Systems"
To be published in proceedings of Euromicro 95.

[14] Rumbaugh, James; Michael Blaha, William Premerlani, Frederick Eddy, William
Lorensen
"Object Oriented Modeling and Design",
London: Prentice Hall, 1991

[15] Voeten, J .P.M.
"An Object-Oriented Language for the Specification, Design and Description of Hard­
ware/Software Systems"
Eindhoven: Eindhoven University of Technology, Digital Information Systems Group,
dec 1994
EUT report 95-E-290

[16] Voeten, J .P.M.
"Semantics of POOSL: An Object Oriented Specification Language for the Analysis and
Design of Hardware/Software Systems"
Eindhoven University of Technology, Digital Information Systems Group, feb 1995
To be published as EUT report.

[17] Ward, P.T.; S.J. Mellor
"Structured Development for Real-Time Systems"
Volume 1,2 and 3
Englewood Cliffs.,New Jersey: Prentice Hall, 1985

[18] Yourdon, Edward
"Modern Structured Analysis"
London: Prentice Hall, 1989

Appendix A

POOSL description of the elevator
problem

POOSL SYSTEM SPECIFICATION OF THE ELEVATOR PROBLEM

//The ElevatorControlSystem is the overall system description of the
//elevator problem. It includes the embedded system itself as well as
//objects in the environment. The environment objects descriptions
//however, do not include instance method descriptions.

epmhO/epmh] II
epmhl/epmh] II

epmh2/epmh] II
epmh3/epmh] II

ecmh2/ecmh,

ecmhO/ecmh,

ecmhl/ecmh,

ecmh3/ecmh,

epfhO/epfh,
epfhl/epfh,
epfh2/epfh,
epfh3/epfh,

dlepO/dlep,
dlepl/dlep,
dlep2/dlep,
dlep3/dlep,

ElevatorControlSystem = <
ElevatorPassenger[diepO/diep,
ElevatorPassenger[diepl/diep,
ElevatorPassenger[diep2/diep,
ElevatorPassenger[diep3/diep,
Operator II
FloorPassenger I I
IndividualControl(O) [diepO/diep, dlepO/dlep, epfhO/epfh,

ecosO/ecos, fhfsO/fhfs] II

IndividualControl(l) [diepl/diep, dlepl/dlep, epfhl/epfh,
ecosl/ecos, fhfsl/fhfs] II

IndividualControl(2) [diep2/diep, dlep2/dlep, epfh2/epfh,
ecos2/ecos, fhfs2/fhfs] II

IndividualControl(3) [diep3/diep, dlep3/dlep, epfh3/epfh,
ecos3/ecos, fhfs3/fhfs] II

CentralControl II
OverweightSensor[ecosO/ecos] I I
OverweightSensor[ecosl/ecos] I I
OverweightSensor[ecos2/ecos] I I
OverweightSensor[ecos3/ecos] I I
ElevatorMechanism[ecmhO/ecmh, epmhO/epmh, domhO/domh, aamhO/aamh,

emmhO/emmh] II

ElevatorMechanism[ecmhl/ecmh, epmhl/epmh, domhl/domh, aamhl/aamh,
emmhl/ emmh] II

91

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

ElevatorHechanism[ecmh2/ecmh, epmh2/epmh, domh2/domh, aamh2/aamh,
emmh2/emmh] I I

ElevatorMechanism[ecmh3/ecmh, epmh3/epmh, domh3/domh, aamh3/aamh,
emmh3/emmh] II

Doors[domhO/domh] I I
Doors[domhl/domh] II
Doors[domh2/domh] II
Doors[domh3/domh] I I
AudibleAlarm[aamhO/aamh] I I
AudibleAlarm[aamhl/aamh] II
AudibleAlarm[aamh2/aamh] I I
AudibleAlarm[aamh3/aamh] I I
ElevatorMotor[emmhO/emmh] I I
ElevatorMotor[emmhl/emmh] II
ElevatorMotor[emmh2/emmh] I I
ElevatorMotor[emmh3/emmh] I I
FloorSensors[fhfsO/fhfs] I I
FloorSensors[fhfsl/fhfs] II
FloorSensors[fhfs2/fhfs] I I
FloorSensors[fhfs3/fhfs]
POD,
DOD
>

PROCESS OBJECTS

POD = <

//An ElevatorPassenger is a passenger inside an elevator. He is
//capable of issueing destination requests

92

process class
instance variables
communication channels
message interface

initial method call

ElevPassenger {ep}

diep dlep epfh epmh
diep!Destination(floor)
dlep?IndicateDestination(floor)
dlep?WithdrawDestination(floor)
epfh?IndicateFloor(floor)
epmh!Halt
epmh!Hold_(state)
epmh!NoHalt

//A FloorPassenger is a passenger on some floor. He is capable of
//issueing summons requests

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 93

process class
instance variables
communication channels
message interface

initial method call
instance methods

FloorPassenger {fp}

fpsi fpsl
fpsi!Summons(floor, direction)
fpsl?IndicateSummons(floor, direction)
fpsl?WithdrawDestination(floor, direction)

liThe Operator sets an individual elevator operation mode to one of
Iithree modes: normal operation, maintenance mode and a mode in which
Ilan elevator is disabled. The mode requests must sequence up or down
Iithrough these modes.

process class
instance variables
communication channels
message interface
initial method call
instance methods

Operator {op}

mcop
mcop!MaintenanceMode(shaft, mode)

liThe OverweightSensor senses if an elevator is filled to capacity

process class
instance variables
communication channels
message interface
initial method call
instance methods

OverweightSensor {os}

ecos
ecoslFilledToCapacity_(state)

liThe FloorSensors is a collection of floorsensors, one per floor, for
Iia particular shaft.

FloorSensors
fhfs
fhfslAtFloor(floor)

cluster
communication channels
message interface
behaviour specification

(FloorSensor(O) II FloorSensor(l) II
FloorSensor(3) II FloorSensor(4) I I
FloorSensor(6) I I FloorSensor(7) I I
FloorSensor(9) I I FloorSensor(10) II
FloorSensor(12) I I FloorSensor(13) I I
FloorSensor(15) I I FloorSensor(16) I I
FloorSensor(18) II FloorSensor(19) I I

FloorSensor(2) II
FloorSensor(5) II
FloorSensor(8) I I
FloorSensor(ll) II
FloorSensor(14) II
FloorSensor(17) II
FloorSensor(20) I I

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

FloorSensor(21) II FloorSensor(22) II FloorSensor(23) I I
FloorSensor(24) II FloorSensor(25) II FloorSensor(26) I I
FloorSensor(27) II FloorSensor(28) I I FloorSensor(29) II

FloorSensor(20) I I FloorSensor(31) I I FloorSensor(32) II

FloorSensor(33) I I FloorSensor(34) II FloorSensor(35) I I
FloorSensor(36) I I FloorSensor(37) I I FloorSensor(38) I I
FloorSensor(39))

lIThe IndividualControl is one of two major control parts of the
Ilelevator problem. This one handles all control aspects that are
Ilspecific to an individual elevator.

94

cluster
communiction channels

message interface

IndividuaIControl<SHAFT>
epfh dlep diep ecmh ecos fhfs ecsa
eces mcop
diep?Destination(floor)
dldp!IndicateDestination(floor)
dldp!WithdrawDestination(floor)
eces!Floor_(floor)
eces!InOperative
eces!OperationMode_(mode)
eces?WakeUp(floor)
ecmh!Move(direction)
ecmh?Halt
ecos?FilledToCapacity_(answer)
ecsa!GetSummons(shaft, floor, direction)
ecsa!Summonsln(shaft, floor, direction)
ecsa?GetSummons_(shaft, answer)
ecsa?Summonsln_(shaft, answer)
epfh!IndicateFloor(floor)
fhfs?AtFloor(floor)
mcop?MaintenanceMode(mode)

behaviour specification
(DestinationsHandler I I

ElevatorMaintenanceControl<SHAFT> II

ElevatorControl<SHAFT> II

FloorHandler)
\ { dime, dIme, daec, diec, ecmc, ecfh }

lIThe CentralControl is one of two major control parts of the
Ilelevator problem. This one handles all control aspects that are
Ilspecific to all elevators as a whole.

cluster
communication channels

CentralControl
fpsi fpsl eces ecsa

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 95

message interface

behaviour specification
(SummonsHandler II

ElevatorSupervisor)
\ { essi }

eces!WakeUp(floor)
eces?Floor_(floor)
eces?InOperative
eces?OperationMode_(mode)
ecsa!GetSummons_(shaft, answer)
ecsa!Summonsln_(shaft, floor, direction)
ecsa?GetSummons(shaft, floor, direction)
ecsa?Summonsln(shaft, floor, direction)
fpsi?Summons(floor, direction)
fpsl!IndicateSummons(floor, direction)
fpsl!WithdrawSummons(floor, direction)

//The DestinationsHandler contains all processes associated with
//destinations.

cluster
communications channels
message interface

DestinationsHandler
diep dimc diec dlmc daec dlep
daec!Destinationsln_(answer)
daec!GetDestination_(answer)
daec?Destinationsln(floor, direction)
daec?GetDestination(floor)
diec!WakeUp
diep?Destination(floor)
dimc?Disable
dimc?Enable
dlep!IndicateDestination(floor)
dlep!WithdrawDestination(floor)
dlmc?ClearAll

behaviour specification
(PassDestinationslnputControl II

DestinationsList I I
DestinationsAdministrator)
\ { didl, dadl }

//The ElevatorMaintenanceControl is a process which accepts commands
//from the operator and puts an elevator in the required mode. These
//modes are (1) normal: normal operation of an elevator, (2)
//maintenance: as in normal, but summons are ignored and (3) lock and
//clear: summons and destinations are ignored and the destinationslist
//is cleared.

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 96

process class
instance variables
communication channels
message interface

initial method call
instance methods

init
MaintenanceMode :=
loop

loop
Imodel

(

ElevatorMaintenanceControl<SHAFT> {mc}
SHAFT MaintenanceMode
mcop dimc dlmc ecmc
dimc!Disable
dimc !Enable
dlmc!ClearAll
ecmc!Maintenance
ecmc !Normal
mcop?MaintenanceMode(shaft, mode)
init

nev(MaintenanceMode) SetNormal;

[MaintenanceMode IsNormal]
mcop?MaintenanceMode(shaft, mode I shaft=SHAFT and

mode IsMaintenance)
ecmc!Maintenance;
MaintenanceMode SetMaintenance

)

or
(

[MaintenanceMode IsMaintenance]
mcop?MaintenanceMode(shaft, mode shaft=SHAFT and

mode IsLockAndClear)

)

or

dimc!Disable;
dlmc!ClearAll;
MaintenanceMode SetLockAndClear

(

)

or
(

[MaintenanceMode IsMaintenance]
mcop?MaintenanceMode(shaft, mode

ecmc!Normal;
MaintenanceMode SetNormal

[MaintenanceMode IsLockAndClear]
mcop?MaintenanceMode(shaft, mode

dimc!Enable;

shaft=SHAFT and
mode IsNormal)

shaft=SHAFT and
mode IsMaintenance)

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 97

MaintenanceMode SetMaintenance
) ;

loop

//The ElevatorControl schedules the movement of an elevator cage. It
//queries the destinations administrator and summons administrator and
//issues commands to the ElevatorMechanism. If this elevator can't
//continue to do its job, it notifies the elevators supervisor.

ElevatorControl<SHAFT> {ec}
SHAFT OperationMode MaintenanceMode
Floor
daec diec ecos ecmh ecfh eces ecsa ecmc
daec!DestinationIn(floor, direction)
daec!GetDestination(floor)
daec?DestinationIn_(answer)
daec?GetDestination_(answer)
diec?WakeUp(floor)
eces!Floor_(shaft, floor)
eces!Inoperative(shaft)
eces!OperationMode_(shaft, mode)
eces?WakeUp(shaft, floor)
ecfh?AtFloor(floor)
ecmc?Maintenance
ecmc?Normal
ecmh! Move (direction)
ecmh?Halt
ecos?FilledToCapacity_(state)
ecsa!GetSummons(shaft, floor, direction)
ecsa!SummonsIn(shaft, floor, direction)
ecsa?GetSummons_(shaft, answer)
ecsa?SummonsIn_(shaft, answer)
init

communication channels
message interface

initial method call
instance methods

init
//Move elevator to floor 0
OperationMode := new(OperationMode) SetIdle;
MaintenanceMode := new(MaintenanceMode) SetNormal;
Floor := 0;
loop

process class
instance variables

loop
Ifloor, sdaf, sdil
(

ecfh?AtFloor(Floor)
CheckSumDestAtFloor()(sdaf);

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

if sdaf then
ecmh!Move(new(Direction) SetStop)

fi;
CheckSumDestIn()(sdi);
if sdi not then

if OperationMode IsUp then
OperationMode SetDown

else
OperationMode SetUp

fi;
CheckSumDestAtFloor()(sdaf);
if sdaf then

ecmh!Move(new(Direction) SetStop)
fi;
CheckSumDestIn()(sdi);
if sdi not then

OperationMode SetIdle
fi

fi;
(

[OperationMode IsUp]
ecmh!Move(new(Direction) SetUp)

)

or
(

[OperationMode IsIdle]
ecmh !Move (new(Direction) SetStop)

)

or
(

[OperationMode IsDown]
ecmh!Move(new(Direction) SetDown)

)

)

or
(

ecmh?Halt
eces!Inoperative(SHAFT)

)

or
(

diec?WakeUp(floor)
if OperationMode IsIdle then

if floor<Floor then
OperationMode SetDown;
ecmh!Move(new(Direction) SetDown)

else

98

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

OperationMode SetUp;
ecmh!MoveCnewCDirection) SetUp)

fi
fi

)

or
C

eces?WakeUpCshaft, floor I shaft=SHAFT)
if floor<Floor then

OperationMode SetDown;
ecmhlMoveCnewCDirection) SetDown)

else
OperationMode SetUp;
ecmh!MoveCnewCDirection) SetUp)

fi
)

or
C

ecmc?Normal
MaintenanceMode SetNormal

)

or
C

ecmc?Maintenance
MaintenanceMode SetMaintenance;
eces!InOperative

)

or
C

eces!Floor_CSHAFT, Floor)
)

or
C

eces!OperationMode_CSHAFT, OperationMode)
) ;

loop

CheckSumDestAtFloor C)Canswer)
Idestansw fill2cap shaft sumanswl
ecos?FilledToCapacity_Cfill2cap);
if fill2cap not and MaintenanceMode IsNormal then

ecsa!GetSummonsCSHAFT, Floor, OperationMode);
ecsa?GetSummons_Cshaft, sumansw I shaft=SHAFT);

else
sumansw := FALSE;

fi;
daec!GetDestinationCFloor)j

99

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 100

daec?GetDestination_(destansw)j
answer := sumansw or destansw

CheckSumDestln ()(answer)
Idestansw fil12cap shaft sumanswl
ecos?FilledToCapacity_(fil12cap)j
if fil12cap not and MaintenanceMode IsNormal then

ecsa!Summonsln(SHAFT, Floor, OperationMode);
ecsa?Summonsln_(shaft, sumansw I shaft=SHAFT);

else
sumansw := FALSEj

fi;
daec!Destinationln(Floor, OperationMode);
daec?Destinationln_(destansw);
answer := sumansw or destansw

liThe FloorHandler updates the display inside the elevator cage and
Iinotifies the elevator control that the elevator cage has reached a
Ilfloor within 8 inches.

FloorHandler {fh}

ecfh fhfs epfh
ecfh!AtFloor(floor)
epfh!IndicateFloor(floor)
fhfs?AtFloor(floor)
loopinitial method call

instance methods
loop

Ifloor I
fhfs?AtFloor(floor);
epfh!IndicateFloor(floor);
ecfh!AtFloor(floor)j
loop

process class
instance variables
communication channels
message interface

liThe SummonsHandler contains all processes associated with summons.

cluster
communications channels
message interface

SummonsHandler
fpsi fpsl essi ecsa
ecsa!GetSummons_(shaft, answer)
ecsa!Summonsln_(shaft, answer)
ecsa?GetSummons(shaft, floor, direction)
ecsa?Summonsln(shaft, floor, direction)
essi!NewSummons(floor, direction)
fpsi?Summons(floor, direction)

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 101

fpsl!IndicateSummons(floor, direction)
fpsl!WithdrawSummons(floor, direction)

behaviour specification
(PassSummonsInputControl I I

SummonsList II
SummonsAdministrator)
\ { sisl, sasl }

liThe ElevatorSupervisor supervises all elevators. If an new summons
Ilarrives it sends the closest idle elevator. If an elevator becomes
Ilinoperative the supervisor starts an idle elevator to move in the
Iisame direction.

eces essi
essi?NewSummons(floor, direction)
eces?InOperative(shaft)
eces?Floor_(shaft, floor)
eces?OperationMode_(shaft, mode)
eces!WakeUp(shaft, floor)
loop

ElevatorsSupervisor {es}

initial method call
instance methods

loop
Ib ElevNr ElevDist direction floor i mode shaft
thisfloor thismodel

process class
instance variables
communication channels
message interface

(

essi?NewSummons(floor, direction)
IISend closest idle elevator
ElevNr := -1;
ElevDist := 40;
i := 0;
do i<4 then

eces?OperationMode_(shaft, mode I shaft=i);
if mode IsIdle then

eces?Floor_(shaft, thisfloor I shaft=i);
if thisfloor-floor abs < ElevDist then

ElevNr := i;
ElevDist := thisfloor-floor abs

fi
fi
i := i + 1

od
if ElevNr > -1 then

eces!WakeUp(ElevNr, floor)
fi

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

)

or
(

eces?Inoperative(shaft)
//Start the first idle elevator in the direction the
//inoperative elevator vas going.
eces?OperationMode_(i, mode I i=shaft);
i := 0;
b := TRUE;
do (i<4 and b) then

eces?OperationMode_(shaft, thismode I shaft=i);
if thismode IsIdle then

(

[mode IsUp]
eces!WakeUp(i, 39)

)

or
(

[mode IsDovn]
eces!WakeUp(i, 0)

) ;

b := FALSE
fi

od
) ;

//The elevators supervisor shouldn't vake up
//elevators that are halted or in maintenance
//mode. This isn't correctly implemented yet.

loop

//The FloorSensor senses if an elevator cage reaches a floor vithin 8
flinches.

102

process class
instance variables
communication channels
message interface
initial method call
instance methods

FloorSensor(FLOOR) {fs}
FLOOR
fhfs
fhfs!AtFloor(floor)

//The ElevatorMechanism controls the mechanical part of an
//elevator cage. It controls the motor, doors and audible alarm. It
//accepts commands from the elevator controller. The
//ElevatorMechanism is in one of four states: (1) moving: the
//elevator cage is moving, (2) stopped: the elevator cage has stopped

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 103

Ilat a floor. (3) mustgo: the elevator must go, but vaits until all
Ilpassengers has entered and (4) halted: the halt svitch is operated.

ElevatorMechanism {mh}
MoveState LastPassDetTime MoveTo
ecmh epmh domh aamh emmh
aamh!Alarm(state)
domh!Close
domh!Open
domh?PassengerDetected
ecmh !Halt
ecmh?Move(direction)
emmh!Move(command)
epmh?Halt
epmh?Hold_(state)
epmh?NoHalt
initinitial method call

instance methods
init

IIElevator initially stopped
LastPassDetTime := 0;
MoveState := nev(MoveState) SetStopped;
MoveTo := nev(Direction) SetStop;
loop

process class
instance variables
communication channels
message interface

loop
Idirection move mustholdl

epmh?Hold_(musthold);
(

[MoveState IsMovingJ
ecmh?Move(direction I direction IsStop)

emmh!Move(nev(Direction) SetStop);
domh!Open;
MoveTo SetStop;
MoveState SetStopped

)

or
(

[MoveState IsMovingJ
ecmh?Move(direction I direction IsUp or direction IsDovn)

emmh!Move(direction)
)

or
(

[MoveState IsMovingJ
epmh?Halt

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

//Stop elevator at next floor
emmh!Move(new(Direction) SetStop);
domh!Open;
aamh!Alarm(TRUE);
ecmh!Halt
MoveState SetHalted

)

or
(

[MoveState IsStopped]
ecmh?Move(direction I direction IsStop)

)

or
(

[MoveState IsStopped or MoveState IsMustGo]
ecmh?Move(direction I direction IsUp or direction IsDown)

MoveTo := direction;
MoveState SetMustGo

)

or
(

[MoveState IsStopped]
epmh?Halt

aamh!Alarm(TRUE);
ecmh!Halt;
MoveState SetHalted

)

or
(

[MoveState IsMustGo]
ecmh?MoveState(direction I direction IsStop)

MoveTo SetStop;
MoveState SetStopped

)

or
(

[MoveState IsMustGo]
epmh?Halt

aamh!Alarm(TRUE);
ecmh!Halt;
MoveState SetHalted

)

or
(

[MoveState IsMustGo and (LastPassDetTime Time»10 and
musthold not]

domh!Close;

104

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

emmh!Move(MoveTo);
MoveState SetMoving

)

or
(

[MoveState IsHaltedJ
epmh?NoHalt

aamh!Alarm(FALSE);
if MoveTo IsStop then

MoveState SetStopped
else

MoveState SetMustGo
fi

)

or
(

[MoveState IsHaltedJ
ecmh?Move(direction)

MoveTo := direction
)

or
(

domh?PassengerDetected
LastPassDetTime ResetTimer

) ;

loop

lIThe AudibleAlarm is an audible alarm

105

process class
instance variables
communication channels
message interface
initial method call
instance methods

AudibleAlarm {aa}

aamh
aamh?Alarm(state)

lIThe ElevatorMotor is an interface process to the real-world elevator
Ilmotor.

process class
instance variables
communication channels
message interface
initial method call
instance methods

ElevatorMotor {em}

emmh
emmh?Move(command)

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

liThe Doors are the doors of an elevator cage, together with detection
Ilof passengers entering and leaving the elevator cage.

106

process class
instance variables
communication channels
message interface

initial method call
instance methods

Doors {do}

domh
domh!PassengerDetected
domh?Close
domh?Open

liThe PassDestinationslnputControl is an interface process that
Ilcommunicates with an elevator passenger. Each time a new destination
Ilrequest arrives it notifies the elevator control so.

process class
instance variables
communication channels
message interface

initial method call
instance methods

loop
Ifloorl

(

PassDestinationslnputControl {di}

diep dimc diec didl
didl!AddDestination(floor)
didl?AddDestination_
diem! WakeUp (floor)
diep?Destination(floor)
dimc?Disable
dimc?Enable
loop

diep?Destination(floor)
didl!AddDestination(floor);
didl?AddDestination_;
diem !WakeUp (floor)

)

or
(

dimc?Disable
dimc?Enable

) ;

loop

liThe DestinationsList contains all the destination requests. They can

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 107

Ilbe added, queried and removed. The destination display is updated
Ilaccording the contents of the list.

Size(40);

DestinationsList {dl}
DestL
didl dadl dlep dlmc
dadl!IsDestination_(answer)
dadl?IsDestination(floor)
dadl?RemoveDestination(floor)
didl!AddDestination_
didl?AddDestination(floor)
dlep!IndicateDestination(floor)
dlep!WithdrawDestination(floor)
dlmc?ClearAll
initinitial method call

instance methods
init

DestL := new(BooleanArray)
ClearList;
loop

process class
instance variables
communication channels
message interface

loop
Ifloorl

(

didl?AddDestination(floor)
DestL SetElement(floor, TRUE);
dlep!IndicateDestination(floor);
didl!AddDestination_

)

or
(

dadl?IsDestination(floor)
dadl!IsDestination_(DestL GetElement(floor))

)

or
(

dadl?RemoveDestination(floor)
DestL SetElement(floor, FALSE);
dlep!WitdrawDestination(floor)

)

or
(

dlmc?ClearAll
ClearList 0 0

) ;

loop

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 108

ClearList 00
Iii
i := 0;

do i<40 then
DestL SetElement(i, FALSE);
dlep!WithdrawDestination(i);
i := i + 1

od

liThe DestinationsAdministrator answers questions from the elevator
Ilcontrol about destinations.

dadl daec
dadl!IsDestination(floor)
dadl!RemoveDestination(floor)
dadl?IsDestination_(answer)
daec!Destinationsln_(answer)
daec!GetDestination_(answer)
daec?Destinationsln(floor, direction)
daec?GetDestination(floor)
loop

DestinationsAdministrator ida}

initial method call
instance methods

loop
lanswer b direction floor I
(

process class
instance variables
communication channels
message interface

daec?GetDestination(floor)
dadl!IsDestination(floor);
dadl?IsDestination_(answer);
if answer=TRUE then

dadl!RemoveDestination(floor);
daec!GetDestination_(TRUE)

else
daec!GetDestination_(FALSE)

)

or
(

daec?Destinationsln(floor, direction)
(

[direction IsUpJ
b := FALSE;
floor := floor + 1;
do floor<40 then

dadl!IsDestination(floor);
dadl?IsDestination_(answer);

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 109

b := b or ansver;
floor := floor + 1

od
)

or
(

[direction IsDovn]
b <= FALSE;
floor := floor - 1;
do floor>=O then

dadl!IsDestination(floor);
dadl?IsDestination_(ansver);
b := b or ansver;
floor := floor - 1

od
) ;

daec!Destinationln_(b)
) ;

loop

liThe PassSummonslnputControl is an interface process that
Ilcommunicates vith a floor passenger. Each time a nev summons request
Ilarrives it notifies the elevators supervisor so.

fpsi sisl essi
essi!NevSummons(floor, direction)
fpsi?Summons(floor. direction)
sisl!AddSummons(floor, direction)
sisl?AddSummons_
loop

PassSummonslnputControl {si}process class
instance variables
communication channels
message interface

initial method call
instance methods

loop
Idirection floorl

fpsi?Summons(floor, direction)
sisl!AddSummons(floor. direction);
sisl?AddSummons_;
essi!NevSummons(floor, direction);
loop

liThe SummonsList contains all the Summons requests. They can be
Iladded, queried and removed. The summons display is updated according
lithe contents of the list.

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 110

SummonsList {sl}
SummonsUpL SummonsDownL
sisl fpsl sasl
fpsl!IndicateSummons(floor, direction)
fpsl!WithdrawSummons(floor, direction)
sasl!IsSummons_(answer)
sasl?IsSummons(floor, direction)
sasl?RemoveSummons(floor, direction)
sisl!AddSummons_
sisl?AddSummons(floor, direction)
initinitial method call

instance methods
init

SummonsUpL := new(BooleanArray) Size(40);
SummonsDownL := new(BooleanArray) Size(40);
ClearLists00 ;
loop

process class
instance variables
communication channels
message interface

loop
Idirection floor I

(

sisl?AddSummons(floor, direction)
(

[direction IsUpJ
SummonsUpL SetElement(floor, TRUE)

)

or
(

[direction IsDownJ
SummonsDownL SetElement(floor, TRUE)

)

fpsl!IndicateSummons(floor, direction);
sisl!AddSummons_

)

or
(

sasl?IsSummons(floor, direction)
(

[direction IsUpJ
sasl!IsSummons_(SummonsUpL GetElement(floor))

)

or
(

[direction IsDownJ
sasl!IsSummons_(SummonsDownL GetElement(floor))

)

)

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM 111

or
(

sasl?RemoveSummons(floor, direction)
(

[direction IsUp]
SummonsUpL SetElement(floor, FALSE)

)

or
(

[direction IsDown]
SummonsDownL SetElement(floor, FALSE)

)

fpsl!WithdrawSummons(floor, direction)
) ;

loop

ClearLists 0 0
Idirection floor il
i := 0;
do i<40 then

SummonsUpL SetElement(FALSE);
fpsl!WithdrawSummons(floor, direction SetUp);
SummonsDownL SetElement(FALSE);
fpsl!WithdrawSummons(floor, direction SetDown);
i := i+i

od

lIThe SummonsAdministrator answers questions from the elevator
Ilcontrol about summons.

SummonsAdministrator {sa}

sasl ecsa
ecsa!GetSummons_(shaft, answer)
ecsa!Summonsln_(shaft, answer)
ecsa?GetSummons(shaft, floor, direction)
ecsa?Summonsln(shaft, floor, direction)
sasl!IsSummons(floor, direction)
sasl !RemoveSummons (floor, direction)
sasl?IsSummons_(answer)
loop

process class
instance variables
communication channels
message interface

initial method call
instance methods

loop
lanswer b direction floor shaft I
(

ecsa?GetSummons(shaft, floor, direction)

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

sasl!IsSummons(floor, direction);
sasl?IsSummons_(answer);
if answer=TRUE then

sasl!RemoveSummons(floor. direction);
ecsa!GetSummons_(shaft, TRUE)

else
ecsa!GetSummons_(shaft. FALSE)

fi
)

or
(

ecsa?Summonsln(shaft, floor, direction)
(

[direction IsUpJ
b := FALSE;
floor := floor + 1;
do floor<40 then

sasl!IsDestination(floor. direction);
sasl?IsDestination_(answer);
b := b or answer;
floor := floor + 1

od
)

or
(

[direction IsDownJ
b := FALSE;
floor := floor - 1;
do floor>=O then

sasl!IsDestination(floor, direction);
sasl?IsDestination_(answer);
b := b or answer;
floor := floor - 1

od
) ;
ecsa!Summonsln_(shaft. b)

) ;
loop

>

DATA OBJECTS

DOD = <

112

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

IIBooleanArrayElement is an element of an boolean array implemented as
Ila single linked list.

113

data class
instance variables
instance methods

GetBoolean
Bool

SetBoolean(bool)
Bool := bool;
self

GetNext
NextElement

BooleanArrayElement
Bool NextElement

BooleanArray
FirstElement

then
SetNext(new(BooleanArrayElement));
:= element GetNext(element);

SetNext(nextelement)
NextElement := nextelement;
self

lIThe BooleanArray is an array of booleans.

data class
instance variables
instance methods

Size (number)
Ii element I
FirstElement := new(BooleanArrayElement);
element := FirstElement;
i := 1;
do i<number

element
element
i .- i+l

od;
self

GetElement(elementnumber)
Ii element I
element := FirstElement;
i := 0;

do i<elementnumber then
element := element GetNext(element);
i := i+l

od;
element GetBoolean

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

SetElement(elementnumber, bool)
Ii element I
element := FirstElement;
i := 0;

do i<elementnumber then
element := element GetNext(element);
i := i+1;

od
element SetBoolean(bool);
self

liThe Direction is a data object to hold the direction.

114

data class
instance variables names
instance methods

SetDown
state := 0;
self

IsDown
state = 0

SetStop
state := 1;
self

IsStop
state = 1

SetUp
state := 2;

self

IsUp
state = 2

Direction
state

liThe MaintenanceMode is a data object to hold the maintence mode of
Ilan elevator.

data class
instance variables
instance methods

SetNormal

MaintenanceMode
mode

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

mode := 0;
self

IsNormal
mode = 0

SetMaintenance
mode := 1;
self

IsMaintenance
mode = 1

SetLockAndClear
mode := 2;
self

IsLockAndClear
mode =2

115

liThe OperationMode is
I I elevator.

data class
instance variables
instance methods

SetDown
mode := 0;
self

IsDown
mode = 0

Setldle
mode .- 1;
self

IsIdle
mode = 1

SetUp
mode := 2;

self

I sUp
mode = 2

a data object to hold the operation mode of an

OperationMode
mode

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

lIThe MoveState is a data object to hold the move state of the
IIElevatorMechanism.

data class MoveState
instance variables state
instance methods

SetStopped
state := 0;

self

IsStopped
state = 0

SetMustGo
state := 1;
self

IsMustGo
state = 1

SetMoving
state := 2;
self

IsMoving
state = 2

SetHalted
state := 3;
self

IsHalted
state = 3

lIThe Timer is data object acting as a general timer. It increments
Ilits count every second.

116

data class
instance variable
instance methods

Time
Count

ResetTimer

Timer
Count

APPENDIX A. POOSL DESCRIPTION OF THE ELEVATOR PROBLEM

Count := 0;
Count

//Count is automatically incremented every second.

>

117

Appendix B

OMT notation
Object Model Notation

Basic Concepts

Class: Association:

I Class Name I Association Name

role-' role-2 '-----__----'

Class Name

attribute
attribute: data_type
attribute: data_type = init_value
...

operation
operation (argJist) : return_type
...

Generalization (Inheritance):

Qualified Association:

Association Name ,..-----,

L __~-----J role-' role-2 '-----__~

MUltiplicity of Associations:

--1 Class Exactly one

~ Class Many (zero or more)

-1 Class Optional (zero or one)

~ Class One or more

Aggregation:
~ Class I Numerically specified

Ordering:

{ordered} .J I
, Class

Link Attribute:

Class Name I

Ternary Association:
Association Name

Instantiation Relationship:
(Class Name)

attribute_name ~ value

Aggregation (alternate form):

Object Instances:

Object Model Notation
Advanced Concepts

Abstract Operation: Association as Class:

I Class-'
I I

Class-2 II \.) I

Association Name

link attribute
...
link operation
...Subclasses must

provide concrete
implementations
of operation.

ation is abstract
e superclass.

Superclass

operation {abstract) Oper
in th

A
Subclass-' Subclass-2

operation operation

Generalization Properties:

More subclasses
exist.

Subclasses have
overlapping (nondisjoint)
membership.

Discriminator is an attribute
whose value differentiates
between subclasses.

Multiple Inheritance:

Class Attributes and Class Operations: Derived Attribute:

Class Name Class Name

$attribute lattribute

$operation
Derived Class:

Propagation of Operations:

Class-' Class-2

operation - operation
operation

rClass Name

Derived Association:

IClass-' I!--,/I-f-----I Class-2

Constraints on Objects: Constraint between Associations:

Class-'

attrib-'
attrib-2

{ attrib-' ~ 0 I

A7
Class-' t{subset)

Class-2

A2

Dynamic Model Notation

Event causes Transition between States: Event with Attribute:

~~
~~

event (atlrlbutel

Initial and Final States: Action on a Transition:

event I aetion

Guarded Transition:

event [guard]

Output Event on a Transition:

~ eventt I event2 r;::.:::,\
~---------I"~I~

Actions and Activity while in a State:

State Name

entry I entry-action
do: activity-A
event- t I action-l

exit I exit-action

State Generalization (Nesting):

Sending an event to another object:

~~
~~

: event2

I C'!SS0 3!

Concurrent Subdiagrams:

Superstate

event3

Splitting of control:

event2

Superstate

event2

Synchronization of control:

eventO
event3

event4

Process:

Functional Model Notation

Data Flow between Processes:

Data Store or File Object: Data Flow that Results in a Data Store:

Name of
data store

Actor Objects (as Source or Sink of Data):

---1[>

Control Flow:

Name of
data store

Access of Data Store Value:

Data store

Access and Update of Data Store Value:

Data store

Duplication of Data Value:

Update of Data Store Value:

Data store

Composition of Data Value:

>dl =>~composite
•

d2

Decomposition of Data Value:

~
1

composite

d2

	Voorblad

	Abstract

	Contents

	List of figures.

	List of tables.

	1. Introduction

	2. The elevator problem.

	3. Object modeling technique.

	4. An OMT model of the elevator problem.

	5. Software / hardware engineering requirements.

	6. Software / hardware engineering summary.

	7. A SHE model of the elevator problem.

	8. Conclusions

	Bibliography

	Appendix

