28,554 research outputs found

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Software Engineering Challenges for Investigating Cyber-Physical Incidents

    Get PDF
    Cyber-Physical Systems (CPS) are characterized by the interplay between digital and physical spaces. This characteristic has extended the attack surface that could be exploited by an offender to cause harm. An increasing number of cyber-physical incidents may occur depending on the configuration of the physical and digital spaces and their interplay. Traditional investigation processes are not adequate to investigate these incidents, as they may overlook the extended attack surface resulting from such interplay, leading to relevant evidence being missed and testing flawed hypotheses explaining the incidents. The software engineering research community can contribute to addressing this problem, by deploying existing formalisms to model digital and physical spaces, and using analysis techniques to reason about their interplay and evolution. In this paper, supported by a motivating example, we describe some emerging software engineering challenges to support investigations of cyber-physical incidents. We review and critique existing research proposed to address these challenges, and sketch an initial solution based on a meta-model to represent cyber-physical incidents and a representation of the topology of digital and physical spaces that supports reasoning about their interplay
    corecore