216 research outputs found

    Automatic Detection and Characterization of Pathological Fluid Regions in Optical Coherence Tomography Images

    Get PDF
    Programa Oficial de Doutoramento en Computación. 5009V01[Abstract] Intraretinal fluid accumulation is both the common symptom and culprit of the main causes of blindness in developed countries: Age-related Macular Degeneration and Diabetic Macular Edema. For its diagnosis, experts of the domain employ Optical Coherence Tomography images (OCT), providing non-invasive cross-sectional representations of the retinal structures. However, like any medical imaging modality, OCT is influenced by multiple factors that impact its quality and subsequent interpretation. Coupled with the subjectiveness of the human experts, these factors can significantly affect the diagnostic process, treatment and quality of life for the affected individuals (particularly in these pathologies where early detection is crucial). To address these challenges, Computer-Aided Diagnosis (CAD) methodologies are developed, offering a layer of abstraction of the information present in the images. Still, in the particular scenario of these pathological fluid accumulations, the development of these methodologies is specially difficult due to their diffuse nature without defined boundaries. In this thesis, we proposed different CAD methodologies with the objective of helping expert clinicians to better detect and understand these pathologies. Furthermore, we expand the developed methodologies to other medical imaging modalities and conditions, such as macular neovascularizations in OCT Angiographies and COVID-19 diagnosis through the analysis of lung chest radiographs.[Resumen] La acumulación de líquido intrarretiniano es tanto síntoma común como culpable de las principales causas de ceguera en los países desarrollados: la degeneración macular asociada a la edad y el edema macular diabético. Para su diagnóstico, los expertos en el campo emplean imágenes de Tomografía de Coherencia Óptica (OCT), que proporcionan representaciones transversales no invasivas de las estructuras retinianas. Sin embargo, al igual que cualquier modalidad de imagen médica, OCT se ve influenciado por múltiples factores que afectan a su calidad y posterior interpretación. Junto con la subjetividad de los expertos humanos, estos factores pueden afectar significativamente el proceso diagnóstico, tratamiento y calidad de vida de las personas afectadas (particularmente en estas patologías donde una detección temprana es crucial). Para abordar estos desafíos, se desarrollan metodologías de diagnóstico asistido por ordenador (CAD), que ofrecen una capa de abstracción de la información presente en las imágenes. Sin embargo, en el escenario particular de estas acumulaciones patológicas de fluido, el desarrollo de estas metodologías es especialmente difícil debido a su naturaleza difusa, sin bordes definidos. En esta tesis doctoral proponemos diferentes metodologías CAD con el objetivo de ayudar a las personas expertas del dominio a detectar y comprender mejor estas patologías. Además, expandimos las metodologías desarrolladas a otras modalidades de imagen médica y afecciones, como al análisis de neovascularizaciones maculares en Angiografía OCT y al diagnóstico de COVID-19 mediante radiografías torácicas.[Resumo] A acumulación de líquido intrarretiniano é tanto o síntoma común como culpable das principais causas de cegueira nos países desenvolvidos: a dexeneración macular asociada á idade e o edema macular diabético. Para o seu diagnóstico, os expertos no campo empregan imaxes de tomografía de coherencia óptica (OCT), que proporcionan representacións transversais non invasivas das estruturas retinianas. Non obstante, ao igual que calquera modalidade de imaxe médica, a OCT vese influenciada por múltiples factores que afectan a s´ua calidade e a súa posterior interpretación. Xunto coa subxectividade dos expertos humanos, estes factores poden afectar significativamente ao proceso diagn´ostico, ao tratamento e á calidade de vida das persoas afectadas (particularmente nestas patoloxías onde unha detección precoz é crucial). Para abordar estes desafíos, desenvólvense metodoloxías de diagnóstico asistido por ordenador (CAD), que ofrecen unha capa de abstracción da información presente nas imaxes. Non obstante, no escenario particular das acumulacións patolóxicas de líquido, o desenvolvemento destas metodoloxías é especialmente difícil debido a súa natureza difusa, sen bordes definidos. Nesta tese de doutoramento propoñemos diferentes metodoloxías de CAD co obxectivo de axudar ás persoas expertas do campo a detectar e comprender mellor estas patoloxías. Ademais, expandimos as metodoloxías desenvoltas a outras modalidades de imaxe médica e patoloxías, como a an´alise de neovascularizacións maculares en Anxiografía OCT e ao diagnóstico da COVID-19 mediante a análise de radiografías torácicas

    Dual-Tree Complex Wavelet Input Transform for Cyst Segmentation in OCT Images Based on a Deep Learning Framework

    Get PDF
    Optical coherence tomography (OCT) represents a non-invasive, high-resolution cross-sectional imaging modality. Macular edema is the swelling of the macular region. Segmentation of fluid or cyst regions in OCT images is essential, to provide useful information for clinicians and prevent visual impairment. However, manual segmentation of fluid regions is a time-consuming and subjective procedure. Traditional and off-the-shelf deep learning methods fail to extract the exact location of the boundaries under complicated conditions, such as with high noise levels and blurred edges. Therefore, developing a tailored automatic image segmentation method that exhibits good numerical and visual performance is essential for clinical application. The dual-tree complex wavelet transform (DTCWT) can extract rich information from different orientations of image boundaries and extract details that improve OCT fluid semantic segmentation results in difficult conditions. This paper presents a comparative study of using DTCWT subbands in the segmentation of fluids. To the best of our knowledge, no previous studies have focused on the various combinations of wavelet transforms and the role of each subband in OCT cyst segmentation. In this paper, we propose a semantic segmentation composite architecture based on a novel U-net and information from DTCWT subbands. We compare different combination schemes, to take advantage of hidden information in the subbands, and demonstrate the performance of the methods under original and noise-added conditions. Dice score, Jaccard index, and qualitative results are used to assess the performance of the subbands. The combination of subbands yielded high Dice and Jaccard values, outperforming the other methods, especially in the presence of a high level of noise

    Enhancing Point Annotations with Superpixel and Confidence Learning Guided for Improving Semi-Supervised OCT Fluid Segmentation

    Full text link
    Automatic segmentation of fluid in Optical Coherence Tomography (OCT) images is beneficial for ophthalmologists to make an accurate diagnosis. Although semi-supervised OCT fluid segmentation networks enhance their performance by introducing additional unlabeled data, the performance enhancement is limited. To address this, we propose Superpixel and Confident Learning Guide Point Annotations Network (SCLGPA-Net) based on the teacher-student architecture, which can learn OCT fluid segmentation from limited fully-annotated data and abundant point-annotated data. Specifically, we use points to annotate fluid regions in unlabeled OCT images and the Superpixel-Guided Pseudo-Label Generation (SGPLG) module generates pseudo-labels and pixel-level label trust maps from the point annotations. The label trust maps provide an indication of the reliability of the pseudo-labels. Furthermore, we propose the Confident Learning Guided Label Refinement (CLGLR) module identifies error information in the pseudo-labels and leads to further refinement. Experiments on the RETOUCH dataset show that we are able to reduce the need for fully-annotated data by 94.22\%, closing the gap with the best fully supervised baselines to a mean IoU of only 2\%. Furthermore, We constructed a private 2D OCT fluid segmentation dataset for evaluation. Compared with other methods, comprehensive experimental results demonstrate that the proposed method can achieve excellent performance in OCT fluid segmentation.Comment: Submission to BSP

    Joint Diabetic Macular Edema Segmentation and Characterization in OCT Images

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10278-020-00360-y[Abstract]: The automatic identification and segmentation of edemas associated with diabetic macular edema (DME) constitutes a crucial ophthalmological issue as they provide useful information for the evaluation of the disease severity. According to clinical knowledge, the DME disorder can be categorized into three main pathological types: serous retinal detachment (SRD), cystoid macular edema (CME), and diffuse retinal thickening (DRT). The implementation of computational systems for their automatic extraction and characterization may help the clinicians in their daily clinical practice, adjusting the diagnosis and therapies and consequently the life quality of the patients. In this context, this paper proposes a fully automatic system for the identification, segmentation and characterization of the three ME types using optical coherence tomography (OCT) images. In the case of SRD and CME edemas, different approaches were implemented adapting graph cuts and active contours for their identification and precise delimitation. In the case of the DRT edemas, given their fuzzy regional appearance that requires a complex extraction process, an exhaustive analysis using a learning strategy was designed, exploiting intensity, texture, and clinical-based information. The different steps of this methodology were validated with a heterogeneous set of 262 OCT images, using the manual labeling provided by an expert clinician. In general terms, the system provided satisfactory results, reaching Dice coefficient scores of 0.8768, 0.7475, and 0.8913 for the segmentation of SRD, CME, and DRT edemas, respectively.This work is supported by the Instituto de Salud Carlos III, Government of Spain, and FEDER funds through the DTS18/00136 research project and by Ministerio de Ciencia, Innovación y Universidades, Government of Spain through the DPI2015-69948-R and RTI2018-095894-B-I00 research projects. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro de Investigación del Sistema Universitário de Galicia, Ref. ED431G 2019/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C 2016-04

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    [Abstract] Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS® from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way.Xunta de Galicia; ED431G 2019/01This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia, Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%)

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS(R) from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way

    Caracterización del Edema Macular Diabético mediante análisis automático de Tomografías de Coherencia Óptica

    Get PDF
    Programa Oficial de Doctorado en Computación. 5009V01[Abstract] Diabetic Macular Edema (DME) is one of the most important complications of diabetes and a leading cause of preventable blindness in the developed countries. Among the di erent image modalities, Optical Coherence Tomography (OCT) is a non-invasive, cross-sectional and high-resolution imaging technique that is commonly used for the analysis and interpretation of many retinal structures and ocular disorders. In this way, the development of Computer-Aided Diagnosis (CAD) systems has become relevant over the recent years, facilitating and simplifying the work of the clinical specialists in many relevant diagnostic processes, replacing manual procedures that are tedious and highly time-consuming. This thesis proposes a complete methodology for the identi cation and characterization of DMEs using OCT images. To do so, the system combines and exploits di erent clinical knowledge with image processing and machine learning strategies. This automatic system is able to identify and characterize the main retinal structures and several pathological conditions that are associated with the DME disease, following the clinical classi cation of reference in the ophthalmological eld. Despite the complexity and heterogeneity of this relevant ocular pathology, the proposed system achieved satisfactory results, proving to be robust enough to be used in the daily clinical practice, helping the clinicians to produce a more accurate diagnosis and indicate adequate treatments[Resumen] El Edema Macular Diabético (EMD) es una de las complicaciones más importantes de la diabetes y una de las principales causas de ceguera prevenible en los países desarrollados. Entre las diferentes modalidades de imagen, la Tomografía de Coherencia Óptica (TCO) es una técnica de imagen no invasiva, transversal y de alta resolución que se usa comúnmente para el análisis e interpretación de múltiples estructuras retinianas y trastornos oculares. De esta manera, el desarrollo de los sistemas de Diagnóstico Asistido por Ordenador (DAO) se ha vuelto relevante en los últimos años, facilitando y simplificando el trabajo de los especialistas clínicos en muchos procesos diagnósticos relevantes, reemplazando procedimientos manuales que son tediosos y requieren mucho tiempo. Esta tesis propone una metodología completa para la identificación y caracterización de EMDs utilizando imágenes TCO. Para ello, el sistema desarrollado combina y explota diferentes conocimientos clínicos con estrategias de procesamiento de imágenes y aprendizaje automático. Este sistema automático es capaz de identificar y caracterizar las principales estructuras retinianas y diferentes afecciones patológicas asociadas con el EMD, siguiendo la clasificación clínica de referencia en el campo oftalmológico. A pesar de la complejidad de esta relevante patología ocular, el sistema propuesto logró resultados satisfactorios, demostrando ser lo sufi cientemente robusto como para ser usado en la práctica clínica diaria, ayudando a los médicos a producir diagnósticos más precisos y tratamientos más adecuados.[Resumo] O Edema Macular Diabético ( EMD) é unha das complicacións máis importantes da diabetes e unha das principais causas de cegueira prevenible nos países desenvoltos. Entre as diferentes modalidades de imaxe, a Tomografía de Coherencia Óptica ( TCO) é unha técnica de imaxe non invasiva, transversal e de alta resolución que se usa comunmente para a análise e interpretación de múltiples estruturas retinianas e trastornos oculares. Desta maneira, o desenvolvemento dos sistemas de Diagnóstico Asistido por Computador ( DAO) volveuse relevante nos últimos anos, facilitando e simplificando o traballo dos especialistas clínicos en moitos procesos diagnósticos relevantes, substituíndo procedementos manuais que son tediosos e requiren moito tempo. Esta tese propón unha metodoloxía completa para a identificación e caracterización de EMDs utilizando imaxes TCO. Para iso, o sistema desenvolto combina e explota diferentes coñecementos clínicos con estratexias de procesamento de imaxes e aprendizaxe automático. Este sistema automático é capaz de identificar e caracterizar as principais estruturas retinianas e diferentes afeccións patolóxicas asociadas co EMD, seguindo a clasificación clínica de referencia no campo oftalmolóxico. A pesar da complexidade desta relevante patoloxía ocular, o sistema proposto logrou resultados satisfactorios, demostrando ser o sufi cientemente robusto como para ser usado na práctica clínica diaria, axudando aos médicos para producir diagnósticos máis precisos e tratamentos máis adecuados
    corecore