12,305 research outputs found

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    A Study of Realtime Summarization Metrics

    Get PDF
    Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems

    Sensitive and Scalable Online Evaluation with Theoretical Guarantees

    Full text link
    Multileaved comparison methods generalize interleaved comparison methods to provide a scalable approach for comparing ranking systems based on regular user interactions. Such methods enable the increasingly rapid research and development of search engines. However, existing multileaved comparison methods that provide reliable outcomes do so by degrading the user experience during evaluation. Conversely, current multileaved comparison methods that maintain the user experience cannot guarantee correctness. Our contribution is two-fold. First, we propose a theoretical framework for systematically comparing multileaved comparison methods using the notions of considerateness, which concerns maintaining the user experience, and fidelity, which concerns reliable correct outcomes. Second, we introduce a novel multileaved comparison method, Pairwise Preference Multileaving (PPM), that performs comparisons based on document-pair preferences, and prove that it is considerate and has fidelity. We show empirically that, compared to previous multileaved comparison methods, PPM is more sensitive to user preferences and scalable with the number of rankers being compared.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Human assessments of document similarity

    Get PDF
    Two studies are reported that examined the reliability of human assessments of document similarity and the association between human ratings and the results of n-gram automatic text analysis (ATA). Human interassessor reliability (IAR) was moderate to poor. However, correlations between average human ratings and n-gram solutions were strong. The average correlation between ATA and individual human solutions was greater than IAR. N-gram length influenced the strength of association, but optimum string length depended on the nature of the text (technical vs. nontechnical). We conclude that the methodology applied in previous studies may have led to overoptimistic views on human reliability, but that an optimal n-gram solution can provide a good approximation of the average human assessment of document similarity, a result that has important implications for future development of document visualization systems

    Validating simulated interaction for retrieval evaluation

    Get PDF
    A searcher’s interaction with a retrieval system consists of actions such as query formulation, search result list interaction and document interaction. The simulation of searcher interaction has recently gained momentum in the analysis and evaluation of interactive information retrieval (IIR). However, a key issue that has not yet been adequately addressed is the validity of such IIR simulations and whether they reliably predict the performance obtained by a searcher across the session. The aim of this paper is to determine the validity of the common interaction model (CIM) typically used for simulating multi-query sessions. We focus on search result interactions, i.e., inspecting snippets, examining documents and deciding when to stop examining the results of a single query, or when to stop the whole session. To this end, we run a series of simulations grounded by real world behavioral data to show how accurate and responsive the model is to various experimental conditions under which the data were produced. We then validate on a second real world data set derived under similar experimental conditions. We seek to predict cumulated gain across the session. We find that the interaction model with a query-level stopping strategy based on consecutive non-relevant snippets leads to the highest prediction accuracy, and lowest deviation from ground truth, around 9 to 15% depending on the experimental conditions. To our knowledge, the present study is the first validation effort of the CIM that shows that the model’s acceptance and use is justified within IIR evaluations. We also identify and discuss ways to further improve the CIM and its behavioral parameters for more accurate simulations
    corecore