503 research outputs found

    Climbing Robot for Steel Bridge Inspection: Design Challenges

    Full text link
    Inspection of bridges often requires high risk operations such as working at heights, in confined spaces, in hazardous environments; or sites inaccessible by humans. There is significant motivation for robotic solutions which can carry out these inspection tasks. When inspection robots are deployed in real world inspection scenarios, it is inevitable that unforeseen challenges will be encountered. Since 2011, the New South Wales Roads & Maritime Services and the Centre of Excellence for Autonomous Systems at the University of Technology, Sydney, have been working together to develop an innovative climbing robot to inspect high risk locations on the Sydney Harbour Bridge. Many engineering challenges have been faced throughout the development of several prototype climbing robots, and through field trials in the archways of the Sydney Harbour Bridge. This paper will highlight some of the key challenges faced in designing a climbing robot for inspection, and then present an inchworm inspired robot which addresses many of these challenges

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Robot Navigation in Distorted Magnetic Fields

    Get PDF
    This thesis investigates the utilization of magnetic field distortions for the localization and navigation of robotic systems. The work comprehensively illuminates the various aspects that are relevant in this context. Among other things, the characteristics of magnetic field environments are assessed and examined for their usability for robot navigation in various typical mobile robot deployment scenarios. A strong focus of this work lies in the self-induced static and dynamic magnetic field distortions of complex kinematic robots, which could hinder the use of magnetic fields because of their interference with the ambient magnetic field. In addition to the examination of typical distortions in robots of different classes, solutions for compensation and concrete tools are developed both in hardware (distributed magnetometer sensor systems) and in software. In this context, machine learning approaches for learning static and dynamic system distortions are explored and contrasted with classical methods for calibrating magnetic field sensors. In order to extend probabilistic state estimation methods towards the localization in magnetic fields, a measurement model based on Mises-Fisher distributions is developed in this thesis. Finally, the approaches of this work are evaluated in practice inside and outside the laboratory in different environments and domains (e.g. office, subsea, desert, etc.) with different types of robot systems

    Report of the In Situ Resources Utilization Workshop

    Get PDF
    The results of a workshop of 50 representatives from the public and private sector which investigated the potential joint development of the key technologies and mechanisms that will enable the permanent habitation of space are presented. The workshop is an initial step to develop a joint public/private assessment of new technology requirements of future space options, to share knowledge on required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. The majority of the material was produced in 5 working groups: (1) Construction, Assembly, Automation and Robotics; (2) Prospecting, Mining, and Surface Transportation; (3) Biosystems and Life Support; (4) Materials Processing; and (5) Innovative Ventures. In addition to the results of the working groups, preliminary technology development recommendations to assist in near-term development priority decisions are presented. Finally, steps are outlined for potential new future activities and relationships among the public, private, and academic sectors

    Pressurized Lunar Rover

    Get PDF
    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction. The PLR is capable of voice, video, and data transmission. It is equipped with two 5 W X-band transponder, allowing simultaneous transmission and reception. An S-band transponder is used to communicate with the crew during EVA. The PLR has a total mass of 6197 kg. It has a nominal speed of 10 km/hr and a top speed of 18 km/hr. The rover is capable of towing 3 metric tons (in addition to the RTG trailer)

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Automation and Robotics in Forest Harvesting Operations: Identifying Near-Term Opportunities

    Get PDF
    Technology development, in terms of both capability and cost-effective integration, is moving at a fast pace. While advanced robotic systems are already commonplace in controlled workspaces such as factories, the use of remote controlled or autonomous machines in more complex environments, such as for forest operations, is in its infancy. There is little doubt autonomous machinery will play an important role in forest operations in the future. Many machine functions already have the support of automation, and the implementation of remote control of the machine where an operator can operate a piece of equipment, typically in clear line-of sight, at least is commonly available. Teleoperation is where the operator works from a virtual environment with live video and audio feedback from the machine. Since teleoperation provides a similar operator experience to working in the machine, it is relatively easy for an operator to use teleoperation. Autonomous systems are defined by being able to perform certain functions without direct control of a human operator. This paper presents opportunities for remote control, teleoperated machines in forest operations and presents examples of existing developments and ideas from both forestry and other industries. It identified the extraction phase of harvesting as the most logical placement of autonomous machines in the near-term. The authors recognise that, as with all emerging technologies and sectors, there is ample scope for differences in opinions as to what will be commercially successful in the future
    corecore