594 research outputs found

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Assessing and predicting the students’ systems thinking preference: multi-criteria decision making and machine learning

    Get PDF
    The 21st century is marked by a technological revolution that features digital implementation and high interconnectivity between systems across different domains, such as transportation, agriculture, education, and health. Although these technological changes resulted in modern systems capable of easing individuals’ lives, these systems are increasingly complex, and that increased complexity is only expected to continue. The increased system complexity is due to the rapid exchange of information between subsystems, which creates high interconnectivity and interdependence between the subsystems and their elements. Workforce skill sets, as a result, must be modified appropriately to ensure the systems’ success. Systems Thinking is an approach that helps individuals better understand and effectively solve modern complex systems problems by encouraging holistic thinking. Systems thinking consists of two approaches holistic and reductionist views. This dissertation aims to study college engineering and non-engineering students’ preference for holistic thinking versus reductionist thinking, their ranking to the systems thinking dimensions, and whether this preference varies depending on demographics and general factors. Additionally, this study investigates the possibility of predicting the students’ preference for holistic thinking. The study uses the multi-criteria decision-making method, the Analytic Hierarchy Process and Fuzzy Analytic Hierarchy Process to determine the student’s preferences, and uses statistical analysis such as independent sample t-test and ANOVA to evaluate the factors. Also, the study uses machine learning classification models such as Logistic Regression, Support Vector Machine, Naïve Bayes, Decision Trees, voting classifiers, Bagging, and Random Forest to predict and evaluate the most predicting model. The results of the dissertation conclude that overall students prefer the reductionist approach and report the students’ preference towards dimensions of complexity, independence, uncertainty, systems worldview, and flexibility and the ranking difference based on some factors. Lastly, the results show that the students’ preference for holistic thinking can be predicted with a 77% accuracy using the Random Forest classifier

    The synthesis of variety : developing product families

    Get PDF

    Supporting ergonomics in concept design

    Get PDF
    Supporting ergonomics in concept desig
    • 

    corecore