
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1992

Facilitating teacher participation in intelligent
computer tutor design : tools and design methods.
Thomas J. Murray
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Murray, Thomas J., "Facilitating teacher participation in intelligent computer tutor design : tools and design methods." (1992).
Doctoral Dissertations 1896 - February 2014. 4903.
https://scholarworks.umass.edu/dissertations_1/4903

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/4903?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Facilitating Teacher Participation in
Intelligent Computer Tutor Design:

Tools and Design Methods

A Dissertation Presented

by

Thomas J. Murray

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment

of the requirements for the degree of

Doctor of Education

February 1992

School of Education

© Copyright by Thomas J. Murray 1992

All Rights Reserved

This research was supported in part by:

Apple Computer Inc., Cupertino, CA.

The National Science Foundation under grant number MDR 875162.

The Office of Naval Research under a University Research

Initiative Grant, no. N00014-86-K-0764.

Facilitating Teacher Participation in

Intelligent Computer Tutor Design:

Tools and Design Methods

A Dissertation Presented

by

Thomas J. Murray

Approved as to style and content by:

Beverly Park Woolf, Member

ACKNOWLEDGMENTS

It has been a long, productive, and satisfying journey, marked by the guidance and

support of many. Foremost, I would like to thank my committee members who each, in his

or her own way, inspired me by modeling how to be successful academicians without being

plagued by the imposing furrowed brow and pale ivory-tower glow; by the graceful manage¬

ment of their priorities they blend work, family, friendships, and exercise into balanced full

lives.

Klaus Schultz has been a good friend and strong ally, and a careful reader of the moun¬

tains of material I’ve asked his advice on over the years, pointing out many connections

in my work that I had missed. Beverly Woolf’s Strunk-&;-White-style editing, sometimes

ruthless but always from the heart, have been essential in transforming this and many other

documents from rhetorical gobbledygook to a state of greater elegance; her support has been

multi-faceted, generous, and consistent. Howard (Hap) Peelle, whose insightful and diver¬

gent thinking has lead me to broaden my perspective on many occasions, pointed the way

in my early tenure as a graduate student, and he has shown confidence in my intelligence

and judgment throughout. I would also like to acknowledge the important mentorship of

John Clement in several projects during my tenure as a graduate student.

For the execution of this research there were many helping hands. One could not hope

for a better working partner than Charlie Camp, who, with determination, patience, and

good cheer underwent a host of trials and tribulations wearing the triple-hats of subject

matter expert, experimental subject, and co-researcher. Thanks to Frank Linton and Kim

Gonzalez for their hard work as knowledge base managers and for important feedback about

software usability.

This journey would have been even longer and much less pleasant had it not been for

the programming assistance and advice of: Miguel Cardos (porting code from HP to Mac);

IV

Craig Fournier, Raul Bose, and the SFSU crew (crane boom simulation); Marcus Weinhardt

(graphical network editor); Jim Salehi (help system interface); and finally, Dan Suthers (Lisp

wisdom and magic!). Additional gratitude is owed to Dan Suthers and Miguel Cardos for

loyal friendship and key discussions on early versions of the software and to Frank Linton

for useful feedback on this document.

Generous financial and moral support for myself and the UMass KCSG lab was received

through Barbara Bowen of Apple Computers External Research Group, Mark Miller of

Apple Computer’s Business Learning Research group, and Andrew Molnar of the National

Science Foundation.

When I began this project in earnest I set a challenging goal for myself to maintain peace

of mind, physical health, and enjoyment as top priorities. Thus, “the real dissertation,” as I

called it, was the “struggle” to live my life as a university researcher and doctoral candidate

without struggling. I have succeeded (to my amazement) in large part due to having the

people mentioned below in my life.

Thanks to my parents Joe Murray and Dot Murray for steadfast belief in my abilities

and graceful tolerance of my decisions in my transition from engineer-making-big-bucks into

realms in which they had little experience (academia, meditation, dance, martial arts, etc.).

Their consistent faith in me since childhood was internalized and has been at the core of

all I have ever accomplished.

I would like to thank Jeanne Edelen, Caroline Ayres, and Charlie Morrison for emotional

support, and Felix Bizaoui for being my pal and helping me remember the real dissertation.

Special thanks and hugs to Victoria Yoshen for making the final eight months of this project

one of the most wonderful periods of my life.

Finally I would like to express my special gratitude to Keith Otis in writing (if I did

so in spoken words he would pretend not to understand and ask me to race him around

the back yard or build a dinosaur with LEGOs). He grew from infancy to boyhood as this

project grew from inception to completion, and has been my greatest teacher and dearest

companion.

v

ABSTRACT

Facilitating Teacher Participation in

Intelligent Computer Tutor Design:

Tools and Design Methods

FEBRUARY 1992

THOMAS J. MURRAY, B.S. PHYSICS, WORCESTER POLYTECHNIC INSTITUTE

M.ED., EDUCATION, UNIVERSITY OF MASSACHUSETTS

M.S., COMPUTER SCIENCE, UNIVERSITY OF MASSACHUSETTS

ED.D., EDUCATION, UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Klaus Schultz

This work addresses the widening gap between research in intelligent tutoring systems

(ITSs) and practical use of this technology by the educational community. In order to ensure

that ITSs are effective, teachers must be involved in their design and evaluation. We have

followed a user participatory design process to build a set of ITS knowledge acquisition tools

that facilitate rapid prototyping and testing of curriculum, and are tailored for usability

by teachers. The system (called KAFITS) also serves as a test-bed for experimentation

with multiple tutoring strategies. The design includes novel methodologies for tutoring

strategy representation (Parameterized Action Networks) and overlay student modeling (a

“layered” student model), and incorporates considerations from instructional design theory.

It also allows for considerable student control over the content and style of the information

presented. Highly interactive graphics-based tools were built to facilitate design, inspection,

and modification of curriculum and tutoring strategies, and to monitor the progress of the

tutoring session. Evaluation of the system includes a sixteen-month case study of three

educators (one being the domain expert) using the system to build a tutor for statics

vi

(forty topics representing about four hours of on-line instruction), testing the tutor on a

dozen students, and using test results to iteratively improve the tutor. Detailed throughput

analysis indicates that the amount of effort to build the statics tutor was, surprisingly,

comparable to similar figures for building (non-intelligent) conventional computer aided

instructional systems. Few ITS projects focus on educator participation and this work is

the first to empirically study knowledge acquisition for ITSs. Results of the study also

include: a recommended “design process” for building ITSs with educator participation;

guidelines for training educators; recommendations for conducting knowledge acquisition

sessions; and design tradeoffs for knowledge representation architectures and knowledge

acquisition interfaces.

vu

TABLE OF CONTENTS

Acknowledgments . iv

Abstract. vi

List of Figures . xiii

Chapter

1. INTRODUCTION. 1

1.1 Background and Motivation. 1

1.1.1 Intelligent Tutoring Systems. 1

1.1.2 ITS is “AI Complete” . 4

1.1.3 Tutoring Systems are Needed. 4

1.1.4 Problem Areas. 5

1.2 Description of the Study. 8

• 1.2.1 Research Questions and Goals. 8

1.2.2 Description of the KAFITS System. 11

1.2.3 Overview of the Methodology. 12

1.3 Scope of the Study . 17

1.4 Contributions. 21

1.5 Limitations to Conclusions. 22

1.6 Guide to the Reader. 23

2. LITERATURE REVIEW AND THEORETICAL BACKGROUND . . 25

2.1 Generic Intelligent Tutoring Systems and Shells. 26

2.1.1 A Definition of Intelligent Tutoring Systems. 27

2.1.2 Early Systems. 29

2.1.3 An Overview of Current Generic Systems. 31

2.1.4 Design Issues for ITS Shells. 37

2.1.5 Summary of Generic Intelligent Tutoring Systems and Shells . . 42

2.1.6 KAFITS and Generic Tutoring Systems. 43

V1U

2.2 Instructional Theories and Intelligent Tutoring. 45

2.2.1 Instructional Design Theory. 46

2.2.2 In Defense of IDT . 47

2.2.3 What Can Be Gleaned From IDT. 49

2.2.4 Component Display Theory. 52

2.2.5 The Merging Paths of ITS and IDT . 55

2.2.6 Summary of Instructional Theories and Intelligent Tutoring ... 56

2.2.7 KAFITS and Instructional Theory. 57

2.3 Empirical Research and Iterative Design. 60

2.3.1 AI Research. 60

2.3.2 Iterative and Participatory Design. 63

2.3.3 Usability and Interface Design . 66

2.3.4 Summary of Empirical Research and Iterative Design. 67

2.3.5 KAFITS Research and Design Issues. 67

2.4 Knowledge Acquisition and Intelligent Tutoring. 68

2.4.1 Knowledge Acquisition Issues. 69

2.4.2 Knowledge Acquisition Methods . 74

2.4.3 Summary of Knowledge Acquisition and Intelligent Tutoring . . 79

2.4.4 KAFITS and Knowledge Acquisition. 81

2.5 ITS Evaluation Methods. 83

2.5.1 The State of ITS Evaluation. 84

2.5.2 Research and Evaluation Paradigms. 85

2.5.3 Evaluation Methods. 89

2.5.4 Summary of ITS Evaluation Methods . 98

2.5.5 KAFITS Evaluation. 100

3. DESCRIPTION OF THE KAFITS SYSTEM. 102

3.1 Description of the Representational Framework . 102

3.1.1 Domain and Strategic Knowledge Bases. 102

3.1.2 Object-Oriented Representation. 103

3.1.3 Layered Decision Model. 106

3.1.4 Object Mixins. 108

3.1.5 Representing Curriculum Structure. HI

3.1.6 Conceptual Vocabulary . 112

IX

3.1.7 Strategy Representation. 116

3.2 Description of the Interfaces. 121

3.2.1 The Browser. 121

3.2.2 The Strategy Editor. 123

3.2.3 Session Monitoring Tools . 124

3.2.4 Student Interaction. 127

3.3 Layered Overlay Student Model. 130

3.3.1 Purposes for the Student Model. 130

3.3.2 Representation Issues . 133

3.3.3 Diagnosis and Remediation. 137

3.3.4 Other Student Model Features . 137

3.4 Knowledge and Data Management Features . 138

3.4.1 Managing Domain Knowledge. 138

3.4.2 Data Records. 141

3.5 Help and Assistance Features . 142

3.5.1 Assistance. 142

3.5.2 Knowledge Base Navigation and Information Features. 143

3.5.3 Consistency and Error Checking. 144

3.5.4 Other Interface Features. 145

3.6 Implementation. 147

4. RESEARCH METHODOLOGY . 152

4.1 Description of the Case. 152

4.1.1 Description of the Subjects. 153

4.1.2 Discussion of the Prototypicality of the Subjects. 155

4.1.3 Choosing the Domain. 156

4.1.4 Unstable Software Platform. 159

4.2 Case Study Time Line . 160

4.3 Data Collection. 164

5. RESULTS, ANALYSIS AND DISCUSSION. 166

5.1 ITS Knowledge Engineering with Classroom Teachers. 167

x

5.1.1 Steps in the ITS Design Process . 167

5.1.2 Training the Domain Expert . 174

5.1.3 Working with the Domain Expert. 178

5.2 Results of the Statics Tutor Test Runs . 185

5.3 Quantitative Analysis of the Curriculum and Design Process. 191

5.3.1 Curriculum Size and Complexity. 191

5.3.2 Design Steps and Person-hours. 195

5.3.3 Analysis of Other Data . 200

5.3.4 Summary of the Quantitative Analysis. 202

5.4 Knowledge Representation Issues . 203

5.4.1 Development of the Original KAFITS Framework. 204

5.4.2 Conceptual Vocabulary and Semantic Uncertainty. 206

5.4.3 Flexibility and Modularity in the Domain Knowledge Base . . . 212

5.4.4 Summary of Knowledge Representation Issues. 220

5.5 Cognitive Considerations, Interface Design, and User Participation . . 222

5.5.1 Procedural Nature of Curriculum Mental Models. 223

5.5.2 Cognitive Factors in Curriculum Size and Complexity. 225

5.5.3 Design Principles. 228

5.5.4 User Participatory Design. 232

5.5.5 Summary of Cognitive Considerations and Interface Design . . . 236

6. SUMMARY AND RECOMMENDATIONS. 238

6.1 Contributions. 238

6.2 Limitations. 243

6.3 Recommendations and Proposals to the ITS Research Community . . . 245

6.3.1 Recommendations . 245

6.3.2 NEO-KAFITS and Class Z Tutors. 245

6.3.3 Toward A Theory of Knowledge Types. 257

6.3.4 Collaborative, Inspectible, Persuadable Computer Tutors 264

6.4 Recommendations for Future Research. 268

6.5 Recommendations for the Instructional and Educational Communities . 272

Appendices

A. Terms and Definitions . 278

xi

B. Knowledge Type Descriptions. 281

C. Post-Study Interview’ with the Domain Expert. 288

D. KAFITS Menu Operations. 292

E. Strategies Used in the Statics Tutor . 296

F. Crane Boom Simulation Details. 302

G. Sample Tutorial Dialog. 305

H. Sample Object Instances. 309

I. Sample Saved-instances File. 314

J. Sample Lesson Listing. 320

K. Sample Edit Record . 322

L. Sample Trace File. 325

M. Sample Paper Worksheets. 328

Bibliography . 333

xu

LIST OF FIGURES

Figure Page

1.1 Comparing CAI with ITS. 3

1.2 The KAFITS System. 13

1.3 Topic Network. 16

1.4 Sample Screen with Crane Boom. 17

1.5 Sample Screen with Picture. 18

2.1 Merrill’s Performance-Content Matrix. 53

2.2 A Modified Performance-Content Matrix. 59

2.3 Knowledge Acquisition Methods . 80

2.4 Evaluation Methods. 99

3.1 Topic and Presentation Attributes. 104

3.2 Four-Level Decision Model. 107

3.3 Hierarchical Object Organization. 109

3.4 Flat Hierarchy for Mixins. 110

3.5 KAFITS Primitive Discourse Actions . 114

3.6 Elements of the KAFITS Conceptual Vocabulary. 115

3.7 PAN -f Switch Register = Strategy. 118

3.8 The Browser. 122

3.9 Components of the Browser. 122

3.10 PAN Editor. 124

3.11 The Strategy Switch Editor. 125

3.12 Monitoring Tools.-. 126

xiii

3.13 Topic Level Display . 128

3.14 The Student Initiative Menu . 131

3.15 Layered Student Model . 135

4.1 Study Time Line. 160

4.2 Linear Equilibrium Part of Curriculum. 161

5.1 ITS Knowledge Acquisition Method. 169

5.2 Knowledge Needed by the Domain Expert. 176

5.3 Quotes by the Domain Expert on Teaching Physics. 181

5.4 Quotes About ITS Design Process Complexity. 182

5.5 Project Task and Step Terminology Relationships. 195

5.6 Person-hour Analysis for Building the Statics Tutor. 196

5.7 Time vs. Participant Role. 198

5.8 Perspectives for Teaching Newton’s Third Law. 218

5.9 Summary of Knowledge Representation Design Tradeoffs. 221

5.10 Inversion of Subordinate Topic Relationship. 225

5.11 Linearization of Subordinate Topic Relationship . 226

5.12 Quotes about Curriculum Size . 227

5.13 Quotes about Modularity. 227

6.1 Class Z Hierarchy. 250

6.2 ITS and AI State of the Art—A Perspective. 255

xiv

Chapter 1

INTRODUCTION

This document describes the design and formative evaluation of a computer system,

or set of “tools,” that allow educators (teachers, curriculum designers, and instructional

theorists) with no experience in computer programming to participate fully in the design,

building, evaluation, and modification of intelligent computer tutors. The system facilitates

the process of encoding an instructor’s knowledge about what to teach and how to teach

in his area of expertise. A computer tutor built using these tools engages the student in a

highly interactive tutorial session based on multiple strategies defined by an instructor, and

the tutoring is flexible in responding to students’ needs and to the curriculum context. In

this document we describe (1) the computer system, (2) our methods for using the system

to acquire instructional knowledge, and (3) a case study of three educators using the system

to build a tutor for part of a high school physics curriculum.

1.1 Background and Motivation

1.1.1 Intelligent Tutoring Systems

Computer scientists and educators have had great hope that artificial intelligence tech¬

nology could be used to design flexible, effective, and powerful learning environments. In¬

telligent tutoring systems1 (ITSs) are computer programs that incorporate artificial in¬

telligence (AI) knowledge representation and control paradigms. These paradigms include

1 Intelligent tutoring systems, intelligent learning environments, knowledge based tutoring systems, and

intelligent computer aided instruction (ICAI) systems are different terms with similar meaning, i.e computer

1

2

frame-based and rule-based representations of knowledge (as in expert systems) and explicit

models of domain expertise,* 2 the student’s knowledge and preferences, and the instructional

process. One way to describe ITSs is to compare them with traditional computer aided in¬

struction (CAI) (see Wenger [1987] for a more detailed introduction to ITSs). In CAI each

tutorial decision is explicitly encoded, for example, “if the student answers ‘YES’ to ques¬

tion #32 give explanation #45.” CAI systems do have limited ability to personalize the

tutorial, since the material presented depends on the student’s behavior (i.e. the student’s

answers to questions). However CAI has many problems, including limited flexibility be¬

cause the designer must enumerate every possible situation and combination of situations

the program will respond to, and building and modifying the programs is difficult because

all important decisions are implicit. Specifically, CAI systems contain knowledge about the

following implicitly:

1. structure of the knowledge being taught,

2. reasons or strategies used to make instructional decisions, and

3. assumptions about the student’s knowledge or mental state.

ITS systems add increased sophistication and flexibility by explicitly encoding models

of the processes relevant to instruction (see Figure 1.1.1), including:

1. a model of expertise in the domain,

2. a model of tutoring expertise, and

3. a model of the student.

assisted learning programs that incorporate artificial intelligence technology and paradigms. These terms

can imply a focus on different issues for different authors, but for the purposes of this paper we treat them

as equivalent, unless otherwise noted.

2 We use the word “domain” to mean the content area or subject matter area. Domain expertise is

expertise in solving problems in the domain. Though the meanings are not synonymous, we use the words

teacher, tutor, domain expert, and instructional designer interchangeably to refer to the hypothetical user

of the KAFITS tool, or, in some contexts, the teacher who participated in this study.

3

-- Structure of the knowledege being taught
-> Reasons or strategies used to make decisions
— Assumptions about the student's state

Flexible tutorial behavior

tttt

1 r ^
Domain 1

Knowledge |
Student

Model
Tutoring

Rules |

l J

Figure 1.1 Comparing CAI with ITS

4

These three models are constructed and/or updated by the ITS as it creates a tutorial

session on the fly. Modeling domain expertise enables flexibility in generating problems and

explanations; modeling tutoring expertise enables multiple tutoring styles to be represented

explicitly, as in the tutoring rule “if student-is-confused then give-more-hints,” and modeling

the student’s knowledge enables instruction to be tailored to the needs of each student.

1.1.2 ITS is “AI Complete”

Intelligent tutoring systems are among the most complex and challenging areas where

artificial intelligence is being applied. Ultimately, ITS designers strive to endow their sys¬

tems with sophisticated “intelligent” capabilities, some of which involve: modeling expert

level problem solving skills and information organization; constructing a dynamic model

of the learner’s knowledge, mental state, and beliefs; engaging in meaningful and individ¬

ualized dialog with the learner; responding to the learner’s requests for information and

explanation; incorporating principles and strategies of good tutoring based on learning the¬

ories and pragmatic constraints; providing a rich and exciting, yet accessible, environment

for learning and applying skills; and even incrementally improving their performance in all

of the above areas as the tutor encounters novel student behavior. The problems of ITS

construction are said to be “AI complete,” i.e., contained within their solution are the so¬

lutions to many of the difficult problems facing the entire field of artificial intelligence (for

example: natural language generation and understanding, intelligent interfaces, planning,

knowledge representation, and expert systems).

1.1.3 Tutoring Systems are Needed

If ITSs present such difficult challenges why attempt to build them? Research in ITS

continues because the potential gains are as great as the known difficulties. Education is

not just an “applications area” in which to test expert systems technology,3 but is an end

3An expert system is an AI system that simulates expert-level skills using a set of rules that capture the

nature of the expertise.

5

in itself. Documented deficiencies of our current educational system for both children and

adults [US Department of Education 1983, National Science Foundation 1983] underscore

the need for new learning paradigms in schools, home education, and industrial training.

Personalized tutoring (by human tutors) has been shown to be highly effective [Bloom 1984]

compared to classroom teaching and individualized (or mastery) learning. But society

does not have the resources to provide each learner with a skilled tutor in every area.

Computer programs will not (in the foreseeable future) be as “intelligent” as good human

tutors in understanding domains or in being sensitive to the learner’s needs, but they can

improve education by assisting overburdened teachers and instructing in areas where human

experts are not available. Shute [1990] summarizes several studies that demonstrate that

in some situations students using ITSs learn more efficiently and effectively than students

covering the same subject matter in classrooms. Computer tutors can also include learning

environments, such as simulations of physical systems and interactive databases, which

would be categorically impossible without the use of computers.

The success of ITSs does not require all of the sophisticated capabilities and “intelli¬

gence” mentioned in Section 1.1.2. Rather, they only have to be sufficiently better than the

(static) text book or the (impersonal) lecture to make a positive impact on education.

1.1.4 Problem Areas

Significant progress has been made in ITS research [Kearsley 1987, Psotka et al. 1988]

but there are still many unexplored areas and most of the key issues identified have not

been resolved. Below we describe the issues needing attention that this study addresses:

ITS research vs. application gap. ITSs are often designed by scientists with little

experience teaching in the domain of the ITS (except perhaps for computer programming

domains). It is important for educators (and students as well) to participate in the ITS

design process. However, as research in ITS continues to produce more sophisticated systems

and theories, the gap between the research community and the educational community

continues to widen, because educators’ understanding, acceptance, and use of this research

6

has been much slower than research progress. As this theory-application gap -widens it

becomes more difficult for educators to participate in ITS research and application, and as a

result research is becoming increasingly academic and unconnected to the pragmatic aspects

of teaching and learning. Clancey & Joerger [1988] state that “...the reality today is that the

endeavor is one that only experienced programmers (or experts trained to be programmers)

can accomplish. Indeed, research of the past decade has only further increased our standards

of knowledge representation desirable to teaching, while the tools for constructing such

programs lag far behind or are not generally available.”

General frameworks. It is often difficult to apply the ideas generated by one ITS

research project to another, or to compare two ITS systems [Ohlsson 1986]. This lack of

generality is due to many factors, including insufficient evaluation, the limited number of

ITSs designed to answer general theoretical questions, and the lack of a shared conceptual

vocabulary. Domain independent frameworks, of which few exist, facilitate more and clearer

collaboration and critique.

Explicit representation of tutoring strategies. One might think that the major

focus of ITS research, a field that deals with automating tutoring, would be to simulate

tutoring and/or teaching expertise. Yet surprisingly little research deals directly with repre¬

senting pedagogical knowledge (i.e. knowledge related to teaching and learning in a specific

domain) or with modeling general pedagogical expertise. ITSs have been designed to tutor

in many domains, and each designer has his/her own ideas for promoting learning. A few

systems are based on specific theories of cognition and/or instruction (such as in Anderson

et al. [1985a]), but in general there is little agreement, and often controversy, about the best

methods for encouraging learning (in general, and in specific domains). The instructional

principles or rules underlying ITS design are often ad-hoc and/or not represented explicitly.

Without explicit representations of the rules or strategies used it is difficult to evaluate or

build upon ITS designs.

Multiple tutoring strategies. In addition, very little ITS research incorporates mul¬

tiple tutoring strategies. As educators become more involved in the ITS design process, and

7

as ITSs become more educationally realistic, the breadth of content and teaching styles in

these systems will need to expand. Most intelligent tutoring systems focus on a limited

instructional domain and embody a single theory of instruction or learning. However, a

system designed to teach various types of knowledge in multiple domains will need to be

sensitive to the pedagogical properties of the information being taught and be able to switch

between multiple tutoring strategies. Systems are needed which facilitate experimentation

with various tutoring styles, rather than committing to a particular learning theory or

tutoring style.4

Experimental ITS workbenches It is not enough to explicitly represent and se¬

lect among multiple tutoring strategies—cognitive and educational research is needed to

determine the most effective strategies for various instructional contexts. Few theory-based

general paradigms for instruction via intelligent tutoring systems have been put forth, and

few specific strategies have been tested (Anderson et al. [1984] being a notable excep¬

tion). Most relevant (non-computer based) instructional and cognitive theories are not

operationalized to a level easily implemented in a computer, nor do they anticipate many

practical factors and domain related idiosyncrasies. More research is needed on computer-

based instructional strategies, and practicing educators should be involved in this research.

But since the experience of learning via an intelligent tutoring system is so novel that nei¬

ther teachers nor theorists can foresee many crucial issues, much of this research needs to

be done on-line. The insights, principles, and rules used in ITSs should originate from a

rich synthesis of learning and instructional theories, insights from practicing teachers, and

on-line experimentation, and this synthesis can be greatly enhanced by appropriate com¬

puter tools. Halff [1988, pg. 99] emphasizes: “...laboratories for systematic manipulation

of alternative tutoring methods are needed.”

Instructional design theory. The volumes of work, both experimental and prescrip¬

tive, generated by the instructional design research community have been largely ignored

4Ohlsson [1986, pg. 220] says: “In order to provide adaptive instruction, a tutor must have a wide range

of instructional actions to choose from.”

8

by the ITS research community5 [Halff 1988]. Yet for decades instructional systems design

(ISD) has been formulating answers and hypotheses to questions of vital importance to

ITS. Instructional design theories, although not as well-founded on cognitive theory as

many in the ITS field would like, address the breadth of situations and practical realities of

instruction and training. Rather than ignore ISD, ITS researchers should become familiar

with it and use those ISD principles that are cognitively feasible.

ITS evaluation. ITS research suffers from a lack of principled evaluation of its ar¬

tifacts (as does AI research in general [Buchanan 1987, Rosenberg 1987]). This is partly

due to a lack of agreement about which experimental and evaluation methods are appropri¬

ate, and partly because the field is in a formative stage. Consequently, papers containing

descriptions of non-substantiated ideas, un-implemented systems, and implemented but

untested systems are often published. It seems clear [Cohen & Howe, 1988] that traditional

quantitative scientific analysis is inappropriate in most situations, yet some form of rigor

must be adhered to if progress in the field is to continue.

Next we describe the research goals motivated by the above concerns.

1.2 Description of the Study

1.2.1 Research Questions and Goals

The overriding question we address in this study is:

What are the key issues in the design and use of a tool that allows educators

to participate intimately in building and evaluating ITS s'!

This terse summary of our goal is elaborated below where we expand upon each of the

emphasized terms in the overriding question.

5Both historical and other reasons are responsible for this lack of collaboration. We do not speculate to

any length about the reasons.

9

• This is an exploratory study in an area where there has been little previous investi¬

gation. Therefore the goal is to identify “key issues” rather than test clearly stated

hypotheses.

• “Educators” includes teachers, instructional designers, learning theorists, etc. (espe¬

cially those without programming, computer science, or ITS backgrounds). Since the

effort and expertise required to build an ITS is at least as much as that required to

write a test book, we do not expect all teachers to participate in ITS construction;

on the contrary, we assume that practicing classroom teachers and industry trainers

who help design ITSs will be few in number and “above average” in their teaching

abilities and knowledge of the domain. However any instructor should be able to use

the resulting computer tutor in his/her classroom.

• “Participating intimately” means that the educator is able to design the knowledge

base, enter information within the knowledge base, rim the tutor to test various as¬

pects of it, and modify the knowledge base for debugging or customization. It is

understood that a knowledge engineer6 (KE) is needed to assist in this process. The

KE needs to train the user in the practical and conceptual aspects of the tools and be

available for consultation, but the goal is to have the educator use the tools relatively

independently.

• “ITSs” are, for our purposes, computer tutors which behave differently for different

curriculum characteristics and student characteristics, and in which this flexibility is

represented explicitly, i.e. not hard-wired. Some characterize “intelligence” in ITSs

in terms of how well they approximate human tutoring. However, our vision is more

modest: to build artifacts that are better learning aides than textbooks, classroom

lectures, or traditional CAI. In addition, the state of the art is far from being able

to simulate human intelligence, and more importantly, ITSs, in our view, should not

(and could not) replace human teachers.

6 A knowledge engineer is a scientist or engineer who works with a domain expert to encode domain

expertise in an AI system.

10

Another framing of this study’s overriding question is: What are the factors involved in

enabling an instructor to create and evaluate a computer tutor with a high level of complexity

and flexibility (as described in the description of ITSs above)?

This research directly addresses the “problem areas” described earlier in this chapter by

including the following broad goals:

1. Design an architecture supporting opportunistic invocation of multiple tutoring

strategies.

2. Define a conceptual vocabulary for representing the objects, events, and relation¬

ships involved in tutoring.

3. Make the architecture and vocabulary non-technical, i.e., usable by teachers.

4. Design a knowledge acquisition interface7 which facilitates rapid prototyping and

easy creation, modification, and testing of both instructional content and tutoring

strategies.

5. Incorporate selected findings from instructional design theory and cognitive psy¬

chology.

Our method of addressing these goals was to build the KAFITS (Knowledge Acquisition

Framework for ITS) system8 and test it on typical users. We refined the broad goals and

the overarching question discussed above by positing a series of more specific research

questions, listed below. We did not intend to produce definitive answers to these questions,

but used them as context to guide the design of the research study.

1. What are important features for ITS knowledge acquisition systems?

7Knowledge acquisition is the process of acquiring an expert’s knowledge for representation in an AI

system.

“Usually “KAFITS” refers to both the framework and the interface, unless the distinction is relevant and

so noted.

11

2. What aspects of knowledge acquisition systems (in general, and KAFITS in particular)

are difficult for educators to grasp or use, and how long does it take to learn how to

use it?

3. How does KAFITS facilitate content analysis of the subject matter?

4. How much independence can an instructor have in using KAFITS? Where in the

design process is the knowledge engineer most needed (and why)?

5. How difficult it is for instructors to articulate what and how they teach?

6. How does an instructor’s pre-existing knowledge help or hinder his use of KAFITS to

design a tutor?

7. How domain independent is KAFITS?

8. How much time and effort does it take to build an ITS using KAFITS?

9. What kind of assistance/reference help is useful, both on-line and off-line?

10. What is the difference in training needed for different levels of users?

11. Does the teacher learn anything from the ITS design process that can be used in

classroom instruction?

1.2.2 Description of the KAFITS System

In pursuing the above goals we have designed, implemented, and tested an ITS knowl¬

edge acquisition (KA) framework (a representational system) and a knowledge acquisition

interface (a computer program) which reifies this conceptual framework for instructors.

The framework and implemented system, called KAFITS, incorporates instructional design

paradigms and facilitates rapid creation and manipulation of multiple tutoring strategies.

The representational framework comprises a general system or language for describing what

to teach and how to teach it. The knowledge acquisition interface is a tool (actually a set

12

of tools) which allows a teacher, sometimes with the assistance of a knowledge engineer, to

design, test, and modify intelligent computer-based instruction.9

Figure 1.2 shows a high level diagram of the system components. Domain knowledge

(examples, questions, topics, etc.) and strategic knowledge (tutoring strategies for how

to use the domain knowledge) are stored in separate knowledge bases. The Browser is the

user’s interface to the domain knowledge base, and the Strategy Editor is the user’s interface

to the strategic knowledge base. The strategies can be thought of as rules which specify

how to use the domain knowledge. An interpreter (or Tutoring Engine) uses the domain

knowledge and strategic knowledge (along with information from the student model) to

create tutoring sessions. The educator/user can test the tutor10 (run it as if he/she were a

student) and easily modify the domain and strategic knowledge to debug and improve it. In

this study the Browser was built and tested with educators, and a prototype of the Strategy

Editor was built, but not tested with educators. The system also has a student model (a

model of the student’s correct and buggy knowledge) and a student interface (which allows

the student to take initiative during the tutoring session).

1.2.3 Overview of the Methodology

Exploratory nature of the study. Although research in the areas of multiple tu¬

toring strategies for ITSs and knowledge acquisition interfaces for ITSs is quite limited,

several research teams are building systems motivated by goals which overlap those ex¬

pressed here, i.e. generic architectures and ITS authoring tools usable by educators,11 and

9Note that the “knowledge acquisition” discussed here is acquisition of pedagogical and curriculum knowl¬

edge from the instructor. It is not acquisition of domain expertise, i.e., the system does not facilitate the

acquisition of physics problem solving expertise from a physics teacher. Also note that KAFITS is a rep¬

resentational framework and an interface allowing an instructor to represent his/her knowledge in terms of

that framework. Is is not a tool for automatic acquisition of knowledge from instructors or for learning from

its own experience.

10In this document when we refer to a computer “tutor” we usually mean a tutor built using KAFITS, i.e.

the KAFITS system combined with the knowledge base of a particular domain (unless the context clearly

implies a different sense). Similarly “the tutor” will usually refer to the physics tutor built during this study.

uWe describe several of these systems, and how this project relates to them in Section 2.1.

13

Knowledge
Bases

Knowledge
Aquisition
Interface

Domain Expert/Teacher
KB Manager

Knowledge Engineer

Figure 1.2 The KAFITS System

14

we have borrowed design ideas from these projects. Unfortunately there are no accepted

or experimentally established guidelines for designing such systems, and little rationale for

design decisions is given in the literature. Also, no current ITS project studies empirically

how easy, powerful, or flexible the systems are for teachers or instructional designers to use.

For all of the above reasons this research is “exploratory” and constitutes a plausibility

study. The evaluation is formative and qualitative, as described below. We investigate the

feasibility and practicality of a knowledge acquisition tool being used by educators to build

an ITS, and report on the issues identified.

User participatory design. Development of the KAFITS system was based on a

user participatory process [Bromberg & Henderson 1990], i.e. design and implementation

are iterative and concurrent with use by a domain expert12 (and two “knowledge base

managers”13), allowing maximum design input from the user’s perspective.

Formative evaluation. A user participatory design becomes a formative evaluation

when the researcher keeps records of the difficulties and successes encountered, and the

effects of modifications made to the system. Starting with a basic prototype system, we

recorded observations of the instructor using the system and incrementally improved the

system. In this document we report on aspects of the system that worked as well as those

that did not, and give suggestions for future modifications.

Case study method. Since we are studying the construction of a single tutor as

designed by a single instructor, the study is primarily a case study. The generalization

possible from studying several domains or instructors is traded for a deeper analysis of a

single case.

Outline of the study. The sixteen month study went through several phases, in¬

cluding: familiarizing the domain expert with the KAFITS framework, curriculum design,

12We use the term “domain experts” to refer to teachers or instructional experts using the KAFITS

system. The term “user” refers to anyone using the KAFITS system for knowledge engineering (primarily

domain experts and knowledge base managers), not students using the tutor.

13The knowledge base manager is a member of the ITS design team whose task it is to enter the knowledge

as specified by the domain expert into the knowledge base, and test the curriculum for obvious errors (i.e.

errors not related to the domain content).

15

implementation and debugging of the statics knowledge base, testing the statics tutor on

19 subjects, and refining and expanding the knowledge base. These phases are described in

detail in Chapter 4.

Data collection Several types of data were collected, including: notes from structured

and unstructured interviews, “edit records” recording the details of usage of the knowledge

acquisition interface, “trace files” recording the details of student runs of the tutor, and

taped debriefing sessions with students. These are described in Section 3.4.

The instructional domain. This study includes a case study of a high school physics

teacher14 using the KAFITS system to build a tutor for statics.15 The topic network de¬

signed by the domain expert, see Figure 1.3, shows the scope of the curriculum. The domain

expert’s main goal was to give students a qualitative, intuitive understanding of the rela¬

tionships between forces in static (non-motion) situations, and he intended the curriculum

to be used after students had some initial exposure to the important concepts from a class¬

room or textbook. The curriculum focuses on developing a qualitative understanding of the

following topics: Newton’s Third Law, linear equilibrium, the properties of different types

of forces (tension, gravity, and contact forces), and how to evaluate free body diagrams.

Topics are classified according to knowledge type, such as fact, procedure, Mis-KU (mis¬

conception), etc. (see the key in the lower left of the figure). Links between nodes indicate

relationships between the topics, such as part-of, critical-misconception, and various types

of prerequisite links (familiarity, easy, typical, and difficult, etc.).16 Tutoring strategies use

the node and link types to determine the order to present topics. The most general topics

in the network are: static forces, FBD (free-body diagram) solution analysis, and linear

equilibrium.

Figures 1.4 and 1.5 are screen dumps from a tutoring session that illustrate typical

qualitative questions asked of the student, and Appendix G shows a tutorial dialog from a

14Dr. Charles Camp is a physics teacher at the Amherst Regional High School, Amherst, Massachusetts.

We refer to him as the “domain expert.”

15The framework has been applied in two other domains in limited ways, but these are not discussed.

16The node types and link types are described in Section 3.1.5.

16

Figure 1.3 Topic Network

17

w Tutor KE Student Menu

Crone Boom Picture Meters

X 5' * ■■■■■ LhUUSt UNt =

Tension force increases. O
Tension force decreases. X Tension force remains the same

O
»INTERRUPT«

TC- 23.33 N
d- 7.00 m

Dialog Windoiu
First you sill be given soee crane booe situations and then
asked ehat eill happen ehen one variable in the situation is
modified. These situations try to find out about your
intuition ehen solving these kinds of problems. Take your
best guess at them. Later you mill be presented mith other
types of problems.

Given an object in equilibrium, changing one of the forces
must result in a change in one or more of the other forces,
if the total system is to remain in equilibrium <i.e. not movi

Hoe mould you expect the tension force in the cable <TC> to
change if the hanging meight mere moved to the left?

Figure 1.4 Sample Screen with Crane Boom

typical statics tutor session. Part of the curriculum centers around a learning environment

called the “crane boom” in which the student can manipulate a simulated physical system

and observe the resulting forces and force components [Duckworth et al. 1987, Woolf et al.

1988]. Figure 1.4 shows a typical question about the crane boom. In this case, the crane

boom is brought up as a static picture. In other cases it is brought up as an interactive

simulation for the student to manipulate and/or measure.

1.3 Scope of the Study

Though research in ITS has been ongoing for over two decades, due to the complexity of

the problems needing to be addressed, it is still in a formative stage. Researchers in the field

18

r
Tutor KE Student Menu 3:39:57 PM ©

Picture window

iwww 1
pi
i’E'iii
phi

Dialog Window

How is it possible that this refrigerator does not sove when
these two people are pushing on it? The big person is
obviously stronger and is pushing harder.

Rnseer Choices:

a. Friction froe the floor pushes left and adds to the seal I
person's force to balance the big person's force.

b. Gravity force pulling doen balances the big person's
sideward force.

c. A refrigerator has too euch inertia for a big person to
wove, even on a frictionless floor.

d. The force of the floor pushing up is able to balance the
big force to the right.

CHOOSE ONE

a. Friction from the fl...
b. Grauity force pullin...
c. R refrigerator has t...
d. The force of the flo...

»INTERRUPT«

Figure 1.5 Sample Screen with Picture

19

are still defining the major research questions, while making modest gains in understanding

and solving isolated issues. Much of the work done to date involves building systems to

teach a particular subject, a post-hoc credit-blame analysis of the system’s performance,

and then generalizing the results. The generality of such results is limited. In contrast, this

research does not aim to improve instruction in a particular subject, nor does it involve

building a “performance system,” i.e. one intended to be robust and complete enough to

teach students in a stand-alone fashion. We address a small handful of the issues facing

ITS designers, as listed in Section 1.1. Since it is just as important to delineate what a

research project is not as it is to describe what it is, we list limitations to the scope of the

study below.

Instructional principles and cognitive models. The study does not involve a

descriptive explanation or inquiry into how teachers teach. It incorporates some results

of instructional and cognitive theory, and tests whether these are acceptable and useful to

instructors, but no cognitive model is proposed for the organization of knowledge in students

or instructors.

Domain expert systems. The study is not an attempt to completely represent an

expert’s knowledge about the domain to be taught. Rather, it is concerned with representing

pedagogical knowledge about the domain knowledge. There is no domain expert system

component that can solve the types of problems given to the student.

Simplicity and modularity of domain knowledge. Our goal is to develop a frame¬

work that is general and easily used and modified. Sophisticated student modeling (such

as model-tracing, as used with expert domain models [Anderson et a. 1985a]) and highly

interactive simulations [Woolf et al. 1986] will not be included.17 The tutor built for this

17Research focusing on the representation of complex problem solving behavior (i.e. computational mod¬

eling of performance in the domain being taught) requires detailed cognitive task analysis. It is also limited

to procedural skills. Research that focuses on tutoring with sophisticated learning environments requires

knowledge representation schemes and control methods tailored specifically to the learning environment.

Learning environments tend to be focused on teaching domain-specific problem solving using non-directive

or coaching strategies.

20

study does incorporate a (“black box”) simulation environment, and there is only limited

assessment of the student’s behavior while using the simulation.

Representational adequacy vs. inferencing power. The system is “knowledge

intensive,” deriving its flexibility from the variety and large amount of information available

to the tutoring strategies. Our near term goal is for representational adequacy—i.e. we are

interested in determining what types of objects, attributes, and relationships are sufficient

for a domain independent tutoring system with multiple strategies. The sophisticated AI

inferencing needed to generate and recognize natural language, or compute questions and

explanations from first principles, can be added at some future date.

Basic knowledge types. Because the tutoring is driven by topic network traversal,

rather than by a computational model of problem solving, the tutoring styles supported

tend to be more directive than in “coaching” tutors. The KAFITS framework supports the

teaching of “basic” types of knowledge more readily than “complex knowledge and skills.”

Basic knowledge types include concepts, facts, simple procedures, and principles. These are

usually prerequisite to more complex skills such as heuristic problem solving and metacog-

nitive skills [Gagne, 1985]. The teaching of complex skills seems best accomplished with

predominantly student-controlled, problem-driven, and remediation-driven tutorial environ¬

ments, while teaching basic types of knowledge is best accomplished by more directive, tutor

controlled environments. Nevertheless, the designer can create strategies that simulate a

wide range of styles: from more directive to more student controlled, from minimum to

maximum feedback, from error driven to curriculum driven, etc.

Student learning. This research is focused on knowledge acquisition, i.e. the pro¬

cess by which the teacher’s information is transferred to the tutoring system. We have

not measured whether students learn better (vs. any other method) with this system, or

how various aspects of the system affect the learning process. Student learning is more a

function of what the domain expert enters in the knowledge base than it is of the KAFITS

representational framework. We are, however, interested in how the teacher uses the system

21

in the overall design process, i.e. how he/she uses feedback from test runs with students to

modify the knowledge base.

Student initiative. Regardless of the teaching strategy, some degree of student con¬

trol is crucial in all tutoring systems. The system allows students to interrupt the tutoring

session to ask for information, ask to be taught a new topic, change the teaching style, skip

forward or back up in the lesson, etc. We are primarily interested in how the design of the

framework facilitates or inhibits students’ ability to determine the amount, content, and

sequencing of the course material. We did not investigate students using this capability or

how this capability relates to learning.

1.4 Contributions

This study makes several original contributions to research in the field of Intelligent

Tutoring Systems as described below.18

Tools for Rapid prototyping and tailoring of ITSs. KAFITS allows an instructor

to easily and rapidly design, test, and modify an intelligent tutoring system, and it allows an

to instructor customize an existing ITS for his/her content preferences and teaching style.

User participatory design of a general ITS framework. Though other general

ITS frameworks have been designed (see Section 2.1) none (that we are familiar with)

have been designed in a user participatory way. Therefore we believe that the KAFITS

representational framework and user interface are more comprehensible and relevant to

practicing teachers. We also identify general design issues and tradeoffs for building ITS

knowledge acquisition interfaces.

Case study of the use of knowledge acquisition tools. This study is unique

in that we report on the problems, issues, and tradeoffs encountered when educators are

18Determining which aspects of the research are original contributions is based on our survey of the

literature, as summarized in Chapter 2.

22

involved in hands-on ITS design and construction, and we base our analysis on empirical ev¬

idence. Reports of other general ITS frameworks or shells do not discuss issues encountered

when the systems are used by educators.

Multiple strategies. Other generic ITSs do not include a general control mechanism

that allows multiple tutoring strategies, or a knowledge acquisition interface for creating

and modifying multiple tutoring strategies.

1.5 Limitations to Conclusions

There are several factors which limit the generality of our contributions and analysis

(also see Section 1.3 above for areas in which we do not plan to draw conclusions or make

substantive contributions).

Domain independence. Since this is a case study involving the design of a single

computer tutor, possible claims about the domain independence of the KAFITS framework

and interface are limited.

Low number of subjects. Our conclusions about the usefulness of the KAFITS

tools and our knowledge acquisition method are limited because we observed only three

educators using the system (the domain expert and two knowledge base managers).19 How¬

ever, as explained in Section 5.4.1, the original prototype KAFITS system, and many of

our conclusions, are based on experiences working writh educators outside the scope of this

study.

Role of the experimenter. Since the author designed and implemented the KAFITS

framework and also acted as the knowledge engineer in this study, our ability to make

objective observations is limited. Possible claims about the usefulness of KAFITS with an

arbitrary teacher and knowledge engineer are similarly limited.

19But see Section 2.5.2 for a discussion of the benefits of case study research.

23

Moving targets. Since we have followed a formative evaluation process and modified

the system incrementally, there is no base-line system which has been constant over the

entire experiment. This may make it difficult to draw conclusions from observations made

at different stages of the design process.

1.6 Guide to the Reader

This document is primarily addressed at those involved in ITS research or construction.

However, we have made every attempt to make it readable by anyone having a modicum

of familiarity with basic ITS concepts. A glossary of terms and important concepts can be

found in Appendix A.

Chapter 2 is a review and synthesis of various sub-fields of the literature, including

sections on generic intelligent tutoring systems, instructional design theory, knowledge ac¬

quisition, AI systems design and research methodology, and qualitative evaluation methods.

The section on generic ITSs will familiarize the reader with the important issues in ITS de¬

sign. At the end of each section is a summary, followed by a discussion of how this study

and the KAFITS system relate to issues identified for that literature sub-field.

Chapter 3 is a detailed description of the KAFITS system, including the representational

framework, the knowledge acquisition interface, the student interface, and implementation

and extendibility issues. Only a cursory reading of Chapter 3 is needed before reading the

analysis and summary chapters (Chapters 5 and 6). Readers not familiar with the terms

“instance,” “object,” “method,” and “slot” may want to read the descriptions of these terms

in Appendix A before reading Chapter 3.

Chapter 4 describes our research method. We describe the subjects and domain chosen

for the case study, and argue that the participants are typical users of the software. We

also give a time line of the study and discuss data collection techniques.

24

Chapter 5 gives results and analysis of the data collected. We discuss results, issues, and

tradeoffs for knowledge engineering, knowledge representation, and interface design. The

reader who wants to skip details of how conclusions were reached can read the summaries

that follow each section (and some sub-sections).

Chapter 6 summarizes the results and contributions of the study and proposes several

generalizations to our results, including: a high level design specification for generic ITS

shells, an ITS knowledge type classification scheme, and ITS student interfaces. We also

suggest a number of research projects that build upon this study, and make recommenda¬

tions to the educational community regarding the use of ITS shells in public education and

industry.

Chapter 2

LITERATURE REVIEW AND THEORETICAL

BACKGROUND

This review and synthesis of various sub-fields of the literature serves two purposes: it

gives the reader a general understanding of relevant concepts, issues, and trends in the lit¬

erature, and establishes a theoretical foundation upon which to base this study. The main

areas investigated are: intelligent tutoring systems, instructional design theory, AI knowl¬

edge acquisition, AI systems design, AI research methodology, and qualitative evaluation

methodologies for AI tutoring systems. Also included are references from learning the¬

ory (including cognitive science), and human computer interactions (usability and interface

design).

The first section is an overview of generic knowledge-based tutoring systems and shells,

including a brief general introduction to intelligent tutoring systems.1 This section discusses

implemented systems that are designed for generality and domain independence and provide

ITS construction tools usable by non-programmers. We reference authors that fall within

the ITS literature and authors that are more closely associated with instructional science.

The second section is a survey of aspects of the instructional design literature related

to ITS. Instructional design (or instructional theory, or instructional science) aims at pre¬

scribing optimal methods of instruction. Some references from learning theory (including

educational psychology and cognitive psychology) are included, but learning theory is not

the main focus (as it is in many other ITS investigations). This is because learning theory

*It is suggested that readers not familiar with the ITS field look elsewhere [Wenger 1987, Ohlsson 1986]

for a more complete overview of the field.

25

26

is involved in describing how the mind works, giving general suggestions or paradigms for

instruction, but for a theory to be most useful to ITS designers it must go a step further and

prescribe specific instructional methods—and this is the domain of instructional theory. We

look to the instructional literature for basic components or structures necessary or desirable

for a generic computer tutoring framework. We do not focus on specific instructional theo¬

ries except for Component Display Theory (CDT). We describe CDT because it is a good

example of an instructional theory that is at the same time general, concrete, and simple,

and because we borrowed from CDT in designing the KAFITS framework.

The third section is a discussion of ITS research and design methodologies. We discuss

how engineering and research goals axe intertwined, and how software design and evaluation

methods axe intextwined. We include discussions of iterative design, user participatory

design, and interface design. The fourth section is an overview of AI knowledge acquisition

methods and issues. We describe and compare a number of methods applicable to ITSs. The

fifth section is a discussion of ITS evaluation methodologies. We describe how evaluation

methods taken from the fields of AI, education, and psychology, can, and should, be used

to evaluate intelligent tutors. The section focuses on qualitative and formative evaluation

methods.

2.1 Generic Intelligent Tutoring Systems and Shells

In this section we review AI instructional or tutoring systems designed to be domain

independent and discuss design issues for generic ITSs. Many of the systems mentioned

lean toward what might be called “authoring systems” or “shells” for ITSs.

27

2.1.1 A Definition of Intelligent Tutoring Systems

There are divergent opinions in the field about what an intelligent tutoring system is,

or what constitutes research in the field of ITS;2 therefore we describe some definitions of

ITS found in the literature and then give our own definition. Also, the reader will also be

afforded a brief overview of intelligent tutoring systems.

A prime motivation for using computers to teach is their potential to dynamically tai¬

lor instruction to the needs of individual learners. “The computer can, in principle, be

programmed to adapt both the content and the form of instruction to the student’s under¬

standing of the subject matter” and to other parameters of the instructional setting [Ohlsson

1987]. Computer aided instruction (CAI) was one of the first applications of computers,

but CAI (in its traditional form) has fallen far short of the above vision. More recently,

education was one of the first application areas of artificial intelligence (AI), and AI was

seen as the path that could restore and realize the vision of the individualized computer

tutor.

Carbonell, working on SCHOLAR, one of the earliest intelligent tutoring projects [Car-

bonell 1970], proposed a paradigm shift in computer aided instruction. In traditional CAI,

which Carbonell called a “frame oriented” approach, segments of curriculum were repre¬

sented in pre-stored units (often called frames) which were presented to the student in

a fixed, pre-defined sequence. Carbonell proposed an “information-structure-oriented” ap¬

proach in which the domain knowledge was represented explicitly. Such a system, he argued,

would have greatly increased flexibility in responding to the student by, for example, an¬

swering student questions and generating tutorial dialogues. CarbonelTs paradigm shift

emphasizes that intelligent tutors are “generative,” and is, to this day, still a fair descrip¬

tion of the difference between CAI and ITS. Similarly, Wenger [1987, pg. 7] (in a fairly

recent overview of the field) says that the main feature of ITS which distinguishes it from

2 One approach to this controversy is not to use the term “ITS” at all, i.e. to avoid preconceptions by

using such terms as “knowledge-based tutoring system,” or “interactive learning environment.” This results

in the area of fuzziness being shifted a bit to one side or the other, but questions about what systems or

research fit into that category remain.

28

CAI is “the shift from the programming of decisions to the programming of knowledge.”

He uses the term “knowledge communication systems” for ITSs.

One of the first general paradigms for an ITS framework, and perhaps the only one that

has ever been generally accepted, is the three-module division of expertise, proposed in the

early 1970s, and often cited today [Woolf & McDonald 1984]. The three components are:3

• a student model component that stores information and makes inferences concerning

the student’s knowledge, knowledge “bugs”, and learning preferences,

• an expert system component that models expertise in the domain being taught, and

• a tutoring component, embodying knowledge about how to teach.

Clancey [1986a] views AI as a science dealing with the construction of computational

qualitative process models.4 Al-based instructional programs can represent three kinds of

processes qualitatively: human reasoning (from the perspective of either the expert or the

student), real world processes, and the communication process (which includes teaching

and diagnosing the student’s knowledge). He notes that depending on the domain, the

instruction may focus on conveying a reasoning process (as in mathematics or computer

programming) or a physical process (as in geology or mechanics). The domain content model

(or “subject material” model) of an ITS contains “correct” models of the real world and/or

reasoning process. The student model contains dynamically updated “novice models” of

the real world and/or a reasoning process. Clancey’s definition of an ITS is: “[an] Al-based

instructional program [that] represents at least one component in the form of a qualitative

model.”

In contrast, Ford [1988] suggests appraising the level of “intelligence” of an ITS system

according to how it stands up to fifteen criteria phrased as questions (developed by Self

[1985b]), for example: “can the system answer arbitrary questions from the user about the

3Variations on this taxonomy exist, such as including a communication component that contains natural

language and discourse expertise, or a component that deals with the tutor’s interface to the student.

4I.E. models that describe objects and processes in terms of spatial, temporal, and causal relationships.

29

subject?” and “can the system give alternative explanations?” This constitutes defining or

appraising ITSs according to how closely they measure up to the capabilities of a (good)

human tutor. This approach has its uses, but it also has significant limitations. It may

be appropriate to use this ITS definition if one’s goal is to improve education for a specific

topic. However, in ITS research, where we try to gain a deeper understanding of ITS design

issues, it is better to focus deeply on specific research areas than spread the effort over all

desirable ITS features. Also, though Ford’s approach is useful in helping us visualize the

long term goals for the field, performing a “check-mark” evaluation of an ITS system offers

little substantive information to other researchers to guide their endeavors.5

In summary, we gave given several common criteria for determining whether a com¬

puter tutor is an ITS: a generative knowledge view, a three-component view, a qualitative

processes view, and a performance criterion view. Our definition harks back to Carbonell’s

emphasis on the generativity of ITSs. We characterize the “intelligence” of the system in

terms of the flexibility of its response, or of the space of possible responses. For the purposes

of our discussion, an intelligent computer tutor is a computer tutor which can behave

differently for different students, discourse situations, and/or subject matter characteristics,

and (most importantly) where this flexibility is represented explicitly (i.e. all potential cur¬

riculum paths and discourse paths are generated, not stored). In accordance with Wenger

(above), rather than storing each decision, the knowledge enabling those decisions is stored.

2.1.2 Early Systems

Though the designers of many tutoring systems have laid claim to the generality of

their methods or design philosophy, until recently very few ITSs were general in more

than principle or extrapolation. Before discussing current generic ITS shells, we review how

several early systems or proposals contributed to our current understanding of generic ITSs.

5Unless one’s research goal was to evaluate the interaction of ITS sub-systems, in which case focusing on

many desirable ITS features is more appropriate.

30

The three-component paradigm for ITS systems. The three-component model

mentioned above (composed of the domain module, student model, and the tutoring module)

is a workable paradigm for expressing the capabilities that a “truly intelligent” tutor must

have, i.e. capabilities that good human teachers have that require sophisticated reasoning

(and therefore, supposedly, AI technology). However, it has not been a useful way to

model the subsystems of ITS software. Few systems (and no generic systems) following this

architecture completely and cleanly. One reason is that an ITS with robust functioning in

all three areas is beyond the state of the art in AI, and research projects have focused on

specific issues within the paradigm. A more important reason that the three-component

paradigm is a “paradigm,” and not a design framework, is that in practical (and perhaps also

theoretical) terms it is extremely difficult to cleanly break a tutoring system’s functionality

into the three independent modules. There is much overlap between the domain (inputs)

and range (effects) of the inference rules for the three sub-systems. The interdependence of

the three main functions of an ITS has led designers to use more cohesive architectures, such

as object-oriented programming (discussed below). Though the three-component paradigm

has not worked well to model the subsystems of an ITS, it is often and successfully used as

a model of the knowledge bases needed for tutoring.

Other issues in early systems. In order to evaluate generic ITS frameworks on

theoretical or empirical bases they must have explicit knowledge representation schemes.6

Ideally all software modules will have explicit representational languages or frameworks.

Several early ITS systems approached this goal. For example, Clancey’s [1982] pioneer¬

ing work on the GUIDON system emphasized the separation of knowledge structures (the

knowledge base) from the procedures that interpret knowledge (the inference engine), and

emphasized the importance of separating the domain knowledge from the tutoring knowl¬

edge. The GUIDON system represented both domain and teaching expertise in production

rules; O’Shea’s tutor for quadratic equations [O’Shea 1982] was another early system that

6Being explicit about the structure and allowed relationships between entities in the knowledge base is

important. It is not as crucial to be explicit about how these schemes are implemented in the computer.

31

used a production rule representation of tutoring expertise.7 Production rule formalisms

have some disadvantages [Clancey 1985, Lesser 1984], leading Woolf [1984] to use a three-

layered transition network and meta-rules to represent tutoring and discourse knowledge in

her MENO Tutor. The tutor was able to simulate segments of flexible tutorial discourse.

It is also noteworthy that the system was tested for two domains (unfortunately, it is rare

that generic ITS frameworks are applied to more than one domain).

Much was learned from the early attempts at general ITS architectures. None of these

systems, however, have been taken on by other research teams as truly general mechanisms

or “shells” from which to build tutors (indeed, most were intended to be only research

vehicles). The last few years have seen a resurgence in efforts to design generic shells,

authoring systems, and theoretical frameworks for intelligent tutors.

2.1.3 An Overview of Current Generic Systems

We will look at seven tutoring system research projects which have generality as a main

design goal: Training Express, PTA, Bite-Sized Tutor, MAIS, IDE, ID Expert, and Expert

CML. The first three systems were designed as generic shells based on extensions to the

traditional ITS paradigms. The other four were created as tools for instructional theory and

curriculum development, but all incorporate aspects of traditional ITS (including a student

model and AI knowledge representation techniques). Though other generic ITS projects

are described in the literature, we chose to look at only functioning systems. All seven

systems are at least partially implemented and most have had initial trial runs. However,

research on ITS shells is in its infancy—none of the systems are being used routinely and

none have undergone evaluation. We describe the seven projects and discuss their unique

aspects in light of these desirable characteristics for generic ITSs or ITS shells (each

characteristic is described in detail later):

7 A unique feature of the quadratic tutor was that it was “self improving.” Based on statistical information

from past tutoring sessions, the program deduced rule changes likely to cause improvement for certain high

level goals, such as decreasing student time on task, decreasing computation time, and increasing student

scores.

32

1. domain independence and sufficient scope,

2. usability by educators,

3. theoretical basis for instructional decisions,

4. explicit representation of domain knowledge,

5. explicit representation of strategic knowledge,

6. implementation and evaluation for practicality and usability.

Training Express. Training Express [Clancey & Joerger 1988] rims in conjunction

with a traditional expert systems, and, using some pedagogical information from an in¬

structional designer, produces a tutor that teaches the expert knowledge. Clancey’s main

goal was to create a practical, low overhead, conceptually simple tutoring mechanism. An

interface is provided which allows the instructor to adapt the rules in a traditional expert

system shell (the Ml shell) by inserting “break points” and elaborations into the rule base.

The instructional designer defines problems (cases) and key concepts, and associates the

concepts with specific expert rules. The resulting tutoring system is an apprenticeship style

tutor. The tutor can ask the student to solve problem cases and can interrupt the student

to ask probing questions about important concepts. The student can ask the tutor for

help solving problems and ask how the tutor reached its conclusions. The system has no

explicit representation of the student model or tutoring strategies. Its main feature is its

practicality—Clancey has demonstrated (subject to further testing with students) that a

workable generic intelligent tutor based on an expert system domain model can be real¬

ized within a simple framework. The system’s greatest source of power is also its biggest

limitation: it can only teach domains that can be represented using production rules, i.e.

domains with simple procedural skills.

PTA. The PUPS Tutoring Architecture [Anderson Sz Skwarecki 1986] is a generic

shell for tutors that incorporate the model tracing paradigm used in Anderson’s previous

tutoring systems (including the Geometry Tutor [Anderson & Reiser 1985] and the LISP

33

Tutor [Anderson et al. 1985]). Like Clancey’s GUIDON system, both domain expertise

and tutoring expertise are represented in production rules (“goal-driven” production rules

in this case). Unlike any of the other systems we discussed, the domain model has cognitive

fidelity, and the student model is runable. The student model is a rule-based system itself,

containing a subset of the expert rules, plus some “buggy” rules, which can be used to

predict or explain student behavior. The knowledge representation and design philosophy

of Anderson’s tutors are based on his ACT* theory of human cognition [Anderson 1983].

The tutoring strategy, also inspired by ACT* is, as in Training Express, fairly simple and

straight-forward. Since representing expertise in terms of production rules and cataloging

potential buggy rules is a difficult task, it is unlikely that PTA can be used by teachers or

domain experts without significant training.

Bite-Sized Tutor. The Bite-Sized Tutoring Architecture [Bonar, Cunningham, &

Schultz 1986] is an ITS authoring language that uses an object-oriented representational

paradigm. The goal of the system is to allow rapid prototyping, testing, and modification

of tutoring systems, with the involvement of domain experts who are not programmers.

Traditional tutoring systems are organized around functional components such as “diag-

noser,” “explainer,” “tutor,” etc. In designing instructional systems one finds that the

information relevant to a given curriculum item (such as “Kirchoff’s Second Law” or “How

to use a graph”) is distributed over several of the functional components. Therefore, in

practice, it is hard to design these subsystems to be independent of each other. Also, the

domain specific information is hard to modify and not very modular. In the object-oriented

paradigm the information needed to explain, diagnose, and teach each bit of domain knowl¬

edge is organized around that piece of domain knowledge, making the knowledge base very

modular. Also, objects can inherit properties from similar or more general objects, de¬

creasing representational redundancy and potential inconsistencies in the knowledge base.

One distinguishing characteristic of this research is that tutors in several domains are being

implemented using this system. This research group (University of Pittsburgh’s Learn¬

ing Research and Development Center) has developed tutors for programming, economics,

electricity, and hydrostatics that use (or have inspired the development of) the Bite-Sized

34

paradigm. The Bite-sized paradigm facilitates ITS construction by AI programmers and but

there it does not address the issues of tools or methods which allow educators to understand

and participate in building ITSs.

MAIS. The Minnesota Adaptive Instructional System [Tennyson 1986, Tennyson &

Christenson 1988] is based on a specific instructional theory. It is unique among the sys¬

tems described here in two ways. First, it is self improving (“adaptive”)—its instructional

strategy is based on nine instructional variables8 that are adjusted continuously based on

a statistical analysis of the system’s performance (i.e. the success and efficiency of the

student’s learning). Its second unique feature is that it incorporates affective variables

(motivation, perseverance, personality) in its student model. Its instructional strategy is

a Bayesian conditional probability model embedded in computer code which adapts and

personalizes instruction. Though unique in these ways, MAIS is limited in that it does

not have an explicit representation of its strategies or a user interface for inspecting and

changing its knowledge.

ID Expert. The Instructional Design Expert [Merrill 1987, Merrill 1989] is an expert

system that assists instructional designers in course specification. Like MAIS, Merrill’s

system is founded on a specific instructional theory, his Component Display Theory. Com¬

ponent Display Theory (described in more detail in a later section) prescribes a mapping

from the characteristics of what is taught (e.g., whether it is a skill or a concept) to methods

for teaching (for example how many and what kind of examples to give). Unlike most other

systems described here, in which the user creates and modifies objects in a knowledge base

in an un-constrained manner, knowledge acquisition in ID Expert takes the form of a long

series of specific questions to the instructional designer. The system’s input comes from

an interactive session in which the user is prompted to specify and refine taxonomies of

concepts, common errors, and behavioral objectives. The major drawback of this system

is that the output is a written course specification (detailing the ordering and manner of

8The variable are: number of examples, amount of information, sequencing of information, format of

information, learning time, corrective error analysis, mixed initiative level, amount of advisement, and

amount of refreshment and remediation.

35

presentations and tasks to be given to the student), and the capability to produce on-line

instruction from the instructional specification has not been built yet (see [Merrill et al.

1990] for a description).

IDE. The Instructional Design Environment [Russel, Moran, & Jordan 1988] was

developed at Xerox Park and built using the Notecard system [Halasz et al. 1986]. It

is a tool which assists in the design and development of curriculum, content, and delivery

of instructional material. Unlike the above systems, IDE is designed to be used by multiple

experts designing large curricula, and (since is is based on the Notecard system) it has a

user friendly interface for inspecting and modifying knowledge. The output of IDE includes:

a Knowledge Structure (or concept network) representing the knowledge to be taught; a set

of Instructional Units (text, pictures, simulations, etc., that the student can interact with);

and a set of Course Control Rules which guide the sequencing of Instructional Units. This

information is passed to the “IDE Interpreter” [Russel 1988] which generates an on-line

tutorial using the output of IDE. Alternatively, IDE’s output can be used by an instructor

as a specification for a non-computer-based course. Instructional goals are represented in

an AND/OR tree, constructed by interpreting rules in a forward chaining manner, with

backtracking and replanning as needed.

Another distinguishing characteristic of the system is that the instructional designer can

record justifications for design decisions using “rationalization” links between objects in the

knowledge base. Justifications are a form of documentation which makes it possible to build

large tutorial data bases with multiple designers.9 However, the justification arguments

consist of canned text typed in by the user, so there is no automatic inferencing from

evidence to yield instructional decisions.

Though the IDE framework is potentially powerful (though this has not been demon¬

strated empirically) its complexity may be prohibitive for practicing educators to use, and

it is limited in its ability to allow teachers to define tutoring strategies.

9Thus justifications (arguments based on evidence) can be recorded for all rules, objects, and information

in the system. For instance, general Tutoring Principles are justified by Literature References. Cognitive

Principles for teaching a particular domain are justified by Tutoring Principles and Course Objectives.

36

Expert CML. The Expert Computer-Managed Learning system [Jones & Wipond

1989] was developed with the help of a team of instructional experts. Like ID Expert,

it contains an expert system in the domain of instructional systems design. Unlike ID

Expert, it synthesizes rules from several instructional experts and instructional theories. Its

interaction with the user is open ended, compared to the interactive dialogue of ID Expert.

Like IDE, the structure of the objects in the system encourages top-down design, and it

supports multiple authors working on large courses. It also has a fairly sophisticated user

interface. The user is guided through the design process by templates, instantiating courses,

topics, lessons, objectives, learning activities, etc. Unlike IDE, it uses its instructional design

expertise to check consistency and completeness within the knowledge base. Examples of

the types of warnings or advice generated by the expert rules are: “topic XX is of type

‘concept’, but none of its sub-topics are concepts,” and “the sub-topics of topic XX will

probably take longer than the learning time allocated for topic XX. You may want to split

topic XX into parts.” The output of Expert CML is a runable (on-line) course with student

monitoring capability. Since little information is given about Expert CML in use in realistic

situations, its practicality, usability, flexibility, and expressiveness are unknown. Though

its curriculum representation is powerful, its tutoring strategy representation is limited.

Other Systems. Following is a list of other instructional systems that have design

goals that overlap with the systems described above (such as generality and usability by

non-programmers), and have been at least partially implemented. These systems were not

included above because only brief descriptions were found, because there was no indication

that they were used by anyone other than the designers, or because they focus on a limited

instructional area.

• BB-IP. A blackboard-based dynamic instructional planner [W. Murray 1990].

• COACH. A shell for intelligent help systems [Winkels et al. 1988, and Breuker et al.

1987] .

• DOCET. Didactics On Computer: an Environment Tutor [Bonarini, Filippi, & Muti

1988] .

37

• DOCENT. An intelligent system for assisting teachers in the planning and analysis of

instruction [Winne & Kramer 1988].

• Micro-search. A “shell” for building systems to help students solve non-deterministic

tasks [Sleeman 1987b].

• PIXIE/LMS. A shell for developing intelligent tutoring systems [Sleeman 1987a].

• SCALD. Scriptal Computer Aided Learning Designer [Nicolson 1988].

• SCENT. A Student Computing Environment for LISP programming that incorporates

a black-board based instructional planner. [McCalla & Greer 1988].

• SnP. Self Improving Instructional Planner [Macmillan et al.1988].

• TOTS. Task-Oriented Tutoring System [Rickel 1988].

• The Teacher’s Apprentice. An intelligent authoring system for ITS mathematics

[Lewis et.a 1 1987].

Proposed functional or theoretical ITS frameworks which have not been implemented

can be found in: Bumbaca [1988], Begg &: Hogg [1987], Derry et al.[1988], and Cerri [1988].

2.1.4 Design Issues for ITS Shells

Here we discuss the desirable characteristics of ITS shells in terms of design issues,

comparing and contrasting the seven systems described above.

Domain independence and sufficient scope. ITS shells should be able to encode

domain and tutoring knowledge from a variety of domains and should be able to cover a

realistic segment of curriculum (between a dozen concepts and an entire course).

All of the systems have described domain independence as a major design goal (as com¬

pared with most ITS systems, which were designed for a specific domain, and for which

domain independence is argued for post-hoc). When we consider the variety of domains

38

dealt with by ITSs (including programming, geometry, industrial training, economics, struc¬

tural analysis of airplanes, grammar, etc.) and the tutoring styles used (gaming, scientific

inquiry, apprenticeship learning, example-based concept learning, constrained-path prob¬

lem solving, etc.) it is hard to imagine any system being general enough to cover all of

these possibilities. In fact, though each system is domain independent, their frameworks

for representing teaching knowledge limit their scope, in practical terms, to certain kinds

of knowledge or interaction styles (some of the authors acknowledge this limitation explic¬

itly). This is only to be expected, given the magnitude of the ITS problem; however, it is

desirable for designers and authors to be explicit about these limitations (which, if made

explicit would be design constraints rather that limitations). Unfortunately, stating these

limitations clearly will be difficult until the field has a descriptive taxonomy for the many

types of domains and interactions.

Usability. ITS shells should be usable by educators who are not programmers or AI

scientists.

All of the systems claim to be usable by instructional personnel who are not familiar with

AI concepts or programming. For many of the systems this has yet to be demonstrated, and

IDE is best suited for domain experts who are also experts in instructional design theory.

PTA and Training Express both require that domain expertise be modeled computationally

using a rule-based formalism. This is prohibitive for most teachers, though Training Express

is designed for users with “minimal training or knowledge engineering experience.” Whether

or not these systems can be used by teachers “off the street,” there is still a need for tools

that instructional research and development teams can use to build tutors without starting

from scratch each time.

There are also differences among the systems described in terms of the complexity of

the representational frameworks, and in the amount of training needed to use them. ID

Expert and Expert CML are designed for instructors with minimal training in instructional

theory or the system’s framework. The amount of on-line assistance provided to the user

(discussed below) significantly influences the training needed. Expert CML and IDE are

39

designed to allow several curriculum developers to work together designing a course over

a long time period. For all of the systems (except ID Expert) a fair amount of training

in the conceptual framework of the system seems necessary to design a course or tutor

from scratch. However, much less training should be needed for an instructor to modify an

existing knowledge base to correct bugs or tailor it to her needs. The difference between

these two levels of use is not elaborated on in the literature, so one can’t say how easy it is

to make small knowledge base modifications using these systems.

Overall, there is a tradeoff between power/flexibility and ease of use. Frameworks with

simple knowledge structures or tutoring strategies can be used with less training, but the

tutorial behavior is comensurally limited.

Assistance provided. On-line assistance is an important component of usability.10

As mentioned, IDS Expert guides the user through the knowledge acquisition process with

a detailed interactive dialog. If the dialog is specific enough, the resulting knowledge base

can be guaranteed to be well-formed. However the user is constrained to wade through

dozens (or hundreds) of questions, and cannot design and modify the knowledge base in

an opportunistic manner. This may be appropriate for a novice instructional designer, but

an expert or seasoned user may feel overly constrained. Expert CML allows for a flexible

design process, and carries out consistency and completeness checking on the curriculum

knowledge. It is designed to be used by both experienced instructional designers and novices,

including even student teachers (though this has yet to be demonstrated). Training Express

helps the user analyze the rule base to determine where it is best to set “break points.”

Theoretical basis for instructional decisions. The teaching methods used (im¬

plicitly or explicitly) by tutoring systems should be founded upon learning and/or instruc¬

tional theories suitable to the subject matter area. However, tutoring shells should allow

l0Usability should be designed into many aspects of an ITS shell, including the conceptual vocabulary,

the representational framework, and the knowledge base tools. Unfortunately the only clear evidence of

usability features in the descriptions of most of the systems is related to help, assistance, and knowledge

base consistency checking.

40

for a variety of strategies, and should be somewhat strategy-independent as well as domain

independent.

The systems we are comparing differ greatly with respect to their theoretical basis: PTA

is based on a tested theory of human cognition; instructional decisions in MAIS are based

on empirical testing of instructional design variables; ID Expert is based on Component

Display Theory, a well established instructional theory which is supported by cognitive

principles; IDE is based on the experience and knowledge of a team of instructional design

experts; Bite-Sized Tutor and Expert CML allow different strategies to be represented, but

are not committed to any instructional style.

Explicit representation of domain knowledge. What separates these systems

from CAI authoring shells is the flexibility and power gained from representing knowledge

explicitly using AI knowledge representation paradigms.

Most of the systems incorporate network representations of topics (domain knowledge).

Most use frame-based representations of the objects in the system. Many of the systems use

rule-based representations of the domain knowledge and/or teaching strategies. All of the

systems use at least one of these three representational methods, and many use networks,

frames, and rules.

Training Express and PTA use rule-based (expert system) representations of domain

expertise. All of the other systems (except MAIS) use frame-based representations of cur¬

riculum information, usually in the form of topic units (or “modules”) arranged in a curricu¬

lum network or taxonomy with instructional units that specify specific tutorial interactions.

ID Expert, Expert CML, and IDE have explicit representations of instructional goals. ID

Expert, Expert CML, and MAIS incorporate expert systems in instructional design to aid

in the development of the knowledge base.

Explicit representation of strategic knowledge. Tutoring strategies should be

represented explicitly, and in a form that can be manipulated. In addition, domain knowledge

and tutoring strategies should be represented separately.

41

There is a wide variation in how the systems implement instructional expertise.11 PTA

uses rule-based tutoring strategies. Tutoring rules are represented explicitly in IDE and

Expert CML. Both of these systems, as well the the Byte-sized tutor, allow encoding of

arbitrary strategies. It is not clear what instructional expertise looks like in the Byte-sized

Tutor, or in ID Expert. In MAIS the teaching strategy is represented in computer code,

incorporating many numerical/statistical values. Though the strategy is opaque, MAIS is

unique in that instructional variables are clearly indicated. Training express, like PTA, has

fairly simplistic and fixed (though perhaps effective) instructional strategies, so there is less

need for explicit representation of strategic knowledge.

Implementation and evaluation for practicality and usability. It is no longer

very useful, as it was when ITS was in its infancy, to report on ITS systems or shells that

have not left the drawing board. In addition, when systems are implemented there is a

danger that they will not be practical or usable if they are developed in the isolation of

the lab. Evaluation should occur in concert with development, and arguments for generality

and usefulness should be supported with data. Ideally, this data should come from:

• incorporating realistically large knowledge bases,

• encoding multiple non-similar domains and teaching styles,

• use by many instructional designers with varying experience, and

• demonstrating that students learn from the resulting curriculum, and are comfortable

with the resulting learning environment.

Unfortunately, given the practical constraints and priorities under which research and

development groups operate, such complete evaluations have been infrequent. However,

systems will be judged by the diversity, depth, and instructional success of their use in

realistic situations.

“Unfortunately many of the references are not specific about the control structures used, and do not give

examples of typical instructional rules, so only a limited comparison could be made.

42

All of the systems described (except for Training Express) are very large projects that

have been designed over years by a number of people, and have been used to represent at

least one small instructional domain. So in a sense all authors are speaking from some

experience in having their systems used. However, none are being used “out in the field”

by instructional designers not closely associated with the original design teams. We can

assume, due to the omission of evaluative data in written descriptions of the projects, that

there are many unresolved issues, as will as untested features and capabilities of the systems.

It is hard to tell from the reports which of the many features described have been used in

a non-trivial way. Later (in Section 2.5) we give a detailed discussion of ITS evaluation

methods and advocate the inclusion of discussions of limits, unsuccessful features, and

design tradeoffs in the descriptions ITSs.

Student modeling and diagnosis. One ITS component that is weak in most of

the systems described is student modeling, and especially diagnosis. PTA and Training

express have runable student models with some diagnostic capabilities. However, they

are useful only in domains were the model tracing paradigm is applicable, i.e. domains

where the knowledge is procedural in nature, and can be realistically captured in an expert

system. Bite-Sized Tutor, IDE, and Expert CML have overlay student models. The MAIS

student model is numerical (which is usually seen as a detractor), and incorporates affective

variables. Though many of the systems incorporate some type of student model, little or

nothing is said about strategies for constructing or updating these models. This is probably

because diagnosis and the construction of student models is one of the least understood ITS

research areas—little can be said about it “in general,” which limits the incorporation of

“generic” student models into generic ITSs for the time being.

2.1.5 Summary of Generic Intelligent Tutoring Systems and Shells

In this section we gave several alternative definition of ITSs and gave the definitions of an

ITS emphasizing flexibility and generativity that we use in our work; tracked the history of

generic tutoring systems in the ITS literature, discussing key issues; presented an overview

43

of seven current generic tutoring systems; highlighted seven important characteristics of

such systems; and discussed design issues (including domain independence, scope, usability,

knowledge representation, student modeling, and evaluation) in light of the seven systems

described.

It is a major undertaking to build a general ITS framework or shell, because many of

the capabilities of an “ideal” ITS are needed, at least in primitive form, in order to create

a running system (for example, a student model and a student interface), and although

it is often desirable to focus research on a specific capability or issue, one has to have a

“critical mass” of functionality to test it with students or teachers. All of the systems

we reviewed are prototypes, in the midst of many-year development and evaluation cycles.

At least for restricted types of domains and tutoring styles, these systems do produce

reasonable curriculum specifications or computer tutors. But the jury on ITS shells is still

out. The systems use a diversity of frameworks and theoretical bases, with little design-level

commonality among them, and there is little evidence to allow us to evaluate their relative

successfulness or usability. Next we will describe how our research on the KAFITS system

relates to the issues and systems discussed in this section on ITS shells.

2.1.6 KAFITS and Generic Tutoring Systems

Here we relate the above discussion of generic tutoring systems to the KAFITS system.

KAFITS is designed to be powerful yet easily used and learned, and this is achieved by:

1. an interface which visually portrays the conceptual structure of the framework; 2. a

framework and conceptual vocabulary designed with users in mind (and with feedback

from users), 3. many powerful features which the beginning user can easily ignore; and

4. on-line help and assistance features. KAFITS adheres to the design guidelines given in

Section 2.1.3 for generic ITS shells:

1. it is domain independent, and facilitates the creation of curricula covering a large

number of diverse topics;

44

2. a user participatory design process was employed to develop a system that can be

used by instructors with no particular background;12

3. its design incorporates some aspects of Instructional Design Theory, and it facilitates

the implementation and testing of arbitrary tutoring strategies based on instructional

theories;

4. domain knowledge is represented explicitly in a domain knowledge base;

5. strategic knowledge is represented explicitly, and separately from the domain knowl¬

edge, in a strategic knowledge base;

6. issues of evaluation and design are addressed directly, and KAFITS use by typical

users is studied.

Like the other ITS shells described in this section we have used AI representational

methods to design a “generative” tutor. Like IDE we have a sophisticated knowledge

acquisition interface. Like the Bite-Sized Tutor we use an object-oriented representational

paradigm that allows for a flexible and modular representation of domain knowledge.

KAFITS is unique among the systems described in several ways:

• KAFITS explicitly represents strategic knowledge in a form that can be easily

modified, monitored and tested (see the description of parameterized action networks

in Section 3.1.7);

• KAFITS supports multiple tutoring strategies invoked opportunistically in re¬

sponse to the tutorial situation;

• the KAFITS overlay student model has several unique features, including

multi-layered inferencing, reasoning with uncertainty, and nonmonotonic reasoning,

as described in Section 3.3.

12They must be familiarized with the conceptual framework and the operation of the system, which takes

about one day for users testing and modifying the knowledge base, and about a week for users creating a

knowledge base from scratch (see Section 5.3.2).

45

• KAFITS emphasizes usability by domain experts or instructional experts who are

not programmers. Other systems are intended to be usable, but their designs seem

more focus on generality than usability. Other studies do not clearly address the issues

encountered when teachers try to use the systems.

• Similarly, there is little evidence of evaluation of these other generic tutoring systems.

We axe conducting a formative evaluation in the form of a case study of three

users. Our primary goal is to study the issues that arise in the endeavor of doing ITS

knowledge engineering with teachers; it is not our goal to develop the most powerful

or general ITS shell from first principles.

This work is also more limited than some of the projects described in two respects: we

do not incorporate expert system models of domain expertise or rule-based representations

of student knowledge; we do not model expertise in instructional design to guide the design

of the knowledge base; KAFITS has not yet been used in multiple domains or with multiple

experts; and it does not incorporate a runable student model for procedural skills.

2.2 Instructional Theories and Intelligent Tutoring

Though we do not focus on evaluating or implementing specific instructional theories,

consideration of existing learning and teaching theories is essential for several reasons. First,

we borrow from several instructional theories in designing the KAFITS framework. Second,

in designing a representational framework that is general enough to encode diverse strategies

or rules, the ITS designer needs to be aware of the range of forms and content of existing

theories. In this section we will review aspects of instructional design theory relevant to

ITS design, including those used in the KAFITS system.

46

2.2.1 Instructional Design Theory

Instructional Design Theory (IDT, sometimes called Instructional Science, or Instruc¬

tional Design) is “a discipline that is concerned with improving one aspect of education: the

process of instruction... [It is] concerned primarily with prescribing optimal methods of in¬

struction to bring about desired changes in student knowledge and skills” [Reigeluth 1983a,

pg. 4]. In describing what IDT, is it is useful to relate it to other areas of inquiry. Reigeluth

[1983a, pg. 6] writes: “the field of education can be viewed as being comprised of knowledge

about curriculum, counseling, administration, evaluation, [and] instruction...Instruction can

be viewed as being comprised of five major activities: design, development, implementation,

management, and evaluation.” So instructional design is a sub-field of instruction, which

is in turn a sub-field of education.13 It is “concerned with understanding, improving, and

applying methods of instruction” [pg. 7].

The major difference between instructional science and learning science (which includes

instructional psychology and aspects of cognitive psychology) is that the former is primarily

a prescriptive science, while the later is primarily descriptive. The primary purpose of IDT is

to prescribe optimal methods of instruction, while the primary purpose of learning theory is

to describe human learning. IDT can (and should) base its prescriptions on learning theory.

Though learning theory is primarily descriptive, it is often stated in prescriptive terms,

such as “to increase long-term retention, ensure that knowledge is organized into stable

cognitive structures;” but such principles are not concrete enough to be classified as in¬

structional design principles. Instructional design principles must include specific instruc¬

tional methods, for example: “to increase long-term retention, begin instruction with an

overview... then gradually elaborate on each aspect” (both of the above quotes are from

Reigeluth [1983a, pg. 23]).

13Reigeluth [1983a] also discusses how the various sub-fields interrelate and overlap.

47

2.2.2 In Defense of IDT

ITS designers have, for the most part, ignored the instructional design field and (in those

ITS projects that have any theoretical basis at all) focused on principles from cognitive

psychology.14 There are several likely reasons for this. One is that AI has strong historical

links to cognitive psychology (and cognitive science). The two fields share much terminology

and some of the same interests, such as discovering how the mind works. The second reason

is that ITS and EDT historically have some fundamentally different perspectives on human

learning. IDT has Skinnerian roots, usually employs stimulus response theories, emphasizes

the measurement of learning, and often tightly constrains the learner’s experience. Teaching

systems (both on line and non-computer-based) designed with IDT can seem restrictive and

regimented. In contrast, cognitive scientists have championed research on problem solving,

learning by doing, and mental models—all of which usually imply more open-ended teaching

situations and less emphasis on measuring the student’s learning. Still another reason ITS

has learned more toward cognitive psychology than IDT is that IDT tends to focus on

(relatively) well understood types of knowledge, such as facts, procedures, and simple skills.

ITS researchers often emphasize the learning of more complex (and more interesting) forms

of knowledge such as metacognitive skills, problem solving heuristics, and mental models,

and there is a belief that these more complex types of knowledge are more important yet

are not being taught in schools. ITS researchers also have a tendency to have a somewhat

anarchistic view of education, viewing the methods of the current educational system as

dull, mechanical, and ineffective—and IDT is often associated with the existing educational

system (and also with industrial training).

Regardless of the reasons most ITS researchers have ignored IDT, IDT has much to

offer. For one thing, even though complex knowledge is both crucial and taught poorly in

schools, students still need to learn the more “basic” forms of knowledge—for their own

sake, and as a foundation for more complex knowledge. Also, more is understood about the

14This situation is gradually changing, and lately there have been several ITS papers incorporating IDT

and several IDT papers incorporating cognitive psychology results [e.g. Tennyson & Rusch 1988, Merrill

1983, Gagne 1985].

48

basic types of knowledge; for example, hundreds of papers have been written on concept

learning, many involving empirical research. In contrast, teaching “mental models” is not

as thoroughly studied—in fact there is not even an agreed upon definition of it. IDT has

more concrete strategies and rules to offer than cognitive science. For example, IDT findings

suggest the number and type of examples to give when teaching a concept. Compare this

with the idea (found in the cognitive science literature) of “apprenticeship learning” [Collins

et al.1986], which, though significant, is much less concrete or refined. Therefore, a tradeoff

exists between focusing on types of knowledge for which we have more complete and detailed

theories, yet may be less important or less interesting to researchers (such as concepts and

procedural skills), vs. focusing on the (perhaps) more important and interesting types of

knowledge for which we have a less complete understanding (such as mental models and

metacognitive skills).

Actually, the important distinctions are not between IDT and cognitive science, but:

1. whether basic or complex knowledge should be focused on, and 2. whether the learning

situation should be structured or more open ended. IDT has, for historical reasons (which

become less valid as time goes on), been associated with basic types of knowledge and

structured learning situations, and, until recently, has not based its principles on deep

causal theories of how the mind/brain work, as cognitive science tries to do. However,

IDT is in fact concerned with all forms of knowledge, including complex knowledge, and all

methods of instruction, including unstructured ones, and instructional theorists have, for the

past five or so years, been incorporating cognitive science into their theories. The the main

issue is, as mentioned above, that in order for a principle to be useful as an instructional

design principle, it must be fairly concrete and specific, incorporating specific instructional

methods. We simply do not know enough yet about more complex forms of knowledge to

be able to prescribe many instructional principles for them, at least as successfully as has

been done for basic types of knowledge.

49

2.2.3 What Can Be Gleaned From IDT

Instructional theory prescribes instructional methods for instructional situations. Reige-

luth [1988a] calls these prescriptions instructional design principles. They are written in

terms of instructional design concepts. The principles describe relationships (causal or other¬

wise) between the concepts. According to Reigeluth, there are three kinds of instructional

design concepts which make up the language within which the principles are expressed:

conditions, methods, and outcomes. Most instructional design principles can be expressed

in descriptive or prescriptive ways. The descriptive way looks like this: IF <condition

X exists > AND <you perform the actions of method Y> THEN <the result is outcomes

Z>. However, the prescriptive formulation of principles are more useful: IF <your goal is

outcomes Z> AND <condition X exists> THEN <perform the actions of method Y>.15

One of the design goals of the KAFITS system is to provide a semantics (vocabulary)

and syntax (structure) for representing instructional strategies. These strategies can come

from educators, domain experts, or from the literature. In exploring the literature we axe

looking for representational components that are: 1. general enough to be used for many

strategies, 2. specific and concrete enough to be implemented on a computer, and yet 3.

simple or intuitive enough to be understood and used by educators without a great deal

of training. Unfortunately, since the instructional design field is (like all “soft” sciences)

quite diverse and without a common underlying framework, there is no clear indication

of any generally accepted representational components in the literature. However we have

found three areas where generalizations can be made that axe useful for ITS designers. The

first is in classifying instructional strategies as macro-strategies vs. micro-strategies. The

second common element is the use of knowledge-type classification schemes. The third is

a description of severed general areas of instruction that must be included in any complete

instructional theory. We will discuss each of these below.

15This reformulation works only if the outcomes are desirable, otherwise one would not want to use them

as goals.

50

Micro vs. Macro Levels

Instructional design theories or strategies usually describe components of instruction

at either of two levels: the micro level or the macro level. The micro level deals with

how to teach single ideas (concepts, facts, principles, etc.). Merrill’s [1983] Component

Display theory and Gagne’s [1985] theory of instruction are micro-level theories. The macro

level deals with sequencing, summarizing, and synthesizing a number of ideas, and involves

curriculum design. Examples are Reigeluth’s Elaboration Theory [1983b], and Ausubel’s

Advanced Organizer theory [1963].

Knowledge Classification Schemes

A common thread for many writers in both instructional theory and learning theory

is the classification of different types of knowledge. Bloom’s Taxonomy of Educational

Objectives [1956], listing over 30 categories of educational objectives (things one might

want to teach) is one of the earliest and best known of these.16 This early attempt was

a synthesis of the thinking of a panel of educational theorists. Unfortunately, it did not

clearly distinguish (subjective) knowledge from (observable) behavioral objectives. Gagne

[1985] gives a more modern classification in terms of the changes in behavior that are used

to infer that learning has occurred. His theory is based on five types of learned capabilities:

intellectual skills, cognitive skills, verbal information, motor skills, and attitudes (and his

theory has many sub-classifications of these five). Gagne is one of the field’s main proponents

of the idea that different types of learning require different types of instruction. Merrill’s

Component Display Theory [1983] also relies heavily on a knowledge classification scheme, as

does Reigeluth’s Elaboration Theory of Instruction [1983b]. There is an extensive literature

dealing just with concepts, distinguishing many types of concepts and concept learning

[Tennyson & Park 1980, Hunt 1962].

16The knowledge is arranged in six main categories: knowledge, comprehension, application, analysis,

synthesis, and evaluation.

51

Cognitive scientists tend to use classifications that are less elaborate, yet derived from

tested theories of how the mind works. Anderson’s ACT* theory [1983] distinguishes declar¬

ative from procedural knowledge. Many Al-based theories of learning and instruction, and

many Al-base tutoring systems also use a procedural-declarative distinction, though they

do not all define these categories in the same way. Half [1988] classifies existing AI tutors as

being either expository (teaching declarative knowledge, and using primarily dialogue as the

instructional method), or procedural (teaching skills, and using primarily a coaching-like

environment as the instructional method.).

Basic Areas of Instruction

Here we fist several areas of instruction that cover most of the range of instructional

methods found in the literature. In the literature one finds different instructional and

psychological justifications, and different approaches to implementing, each of these “areas.”

We will not discuss these justifications and approaches.

1. Pre-instruction. Before introducing an idea do one or more of the following: relate

it to other things that have been learned, motivate the student to want to learn the

thing, or give an overview of what is to be learned.

2. Post-instruction. After something has been taught, do one or more of the following:

summarize it, or relate or synthesize it with other ideas that have been presented.

3. Exposition. Giving examples, explanations, definitions, etc. Issues include how,

when, and what kind of exposition to give.

4. Practice. Allow the student to use the new information. Issues include: How much

should the student practice, and with what tasks? Should she get more examples, or

be asked more questions? What style of practice should be sued: rote, learn by doing?

5. Feedback. Give appropriate feedback after student actions. Issues include: When

and how to respond to the student’s behavior. Should students be told whether they

were correct, given hints, or told the correct answer?

52

6. Remediation. Give additional material if the student has a misconception, does not

learn with the standard instructional method, or shows improper understanding of

something previously taught and presumed to have been learned.

7. Assessment. Determine when a student has learned something, or when any of the

tutor's objectives have been met.

These areas of instructuion are not all needed for every instrucitonal sitiation, but an

ITS shell be able to represent and use them all. In sum, we suggest that generic ITS

frameworks have mechanisms for: 1. distinguishing macro and micro levels of instruction,

2. distinguishing knowledge types, and 3. incorporating all of the basic areas of instruction

listed above, and 4. allowing for substantial student control (see Section 6.3.4).

2.2.4 Component Display Theory

Component Display Theory (CDT) 'Merrill 1983] is an instructional theory dealing

with the micro level of instruction. We describe it because we borrow from CDT in the

design on the KAFITS conceptual vocabulary, and because it provides a good example

of an instructional design theory that is conceptually dear, powerful, and operationally

concrete. Unlike most other instructional design theories, the concepts and prescriptions in

CDT are described at a detailed operational level, making parts of it amenable to computer

implementation.

CDT defines a descriptive language for the concepts, conditions, methods, and outcomes

of instruction. The language consists of three taxonomies: one for describing student per¬

formance/behavior (learning or behavioral objectives), one for describing subject matter (a

knowledge type classification), and one for describing instructional behavior or actions. We

have borrowed primarily from the vocabulary of subject matter, called the performance-

content matrix (PC-matrix). CDT also describes a prescriptive model for teaching. This

model includes a mapping from behavioral objectives to expository and inquisitory presen¬

tations (with the PC-matrix serving as an intermediary in this mapping). In the original

53

u
o

o
Cxj

(X
u
ft.

t,
o
C/i

hJ

£ w

FIND

USE

REMEMBER

fact concept prodedure principle

TYPES OF CONTENT

Figure 2.1 Merrill’s Performance-Content Matrix

design for this study we had planned to incorporate aspects of this mapping, but did not,

for reasons described in Section 2.4.

The Performance-Content Matrix

CDT assumes Gagne’s [1985] hypothesis that different types of learning require differ¬

ent types of instruction (and different ways to evaluate the learning).17 The Performance-

Content (PC) matrix (see Figure 2.1) is a key contribution of CDT. Previous theories have

given classifications of types of knowledge or instructional objectives which are hierarchical

in nature [eg. Bloom 1956]. There are many attributes of instructional content which are

relevant to the instructional strategy used, and the space of types of knowledge is mul¬

tidimensional. A hierarchical classification fails to capture some important structure of

knowledge, making knowledge classifying ambiguous. Merrill’s two dimensional classifica¬

tion is more expressive, usable, and intuitively clear them hierarchical schemes.

Since one of the goals of CDT is to have a prescriptive system that is understandable by

teachers and instructional designers (as distinct from researchers and theorists), the matrix

lTGagne and Merrill do not seem to make a clear distinction between types of learning and types of

knowledge, and I think they mean the same thing in this context.

54

is relatively small (three by four), even though finer distinctions are possible. For the

same reason (ease of use or felicity) Merrill does not attempt to devise a many-dimensional

model of knowledge types, which might be more theoretically appealing or complete. The

insight that led to the PC-matrix was seeing the need to classify knowledge (or learning)

according to both performance level and content type. CDT includes three performance

levels: remember, use, and find (create); and four content types: facts, concepts, procedures,

and principles. The matrix cells for “use fact” and “find fact” are blanked out in the matrix,

since, by (Merrill’s) definition, facts can only be remembered and recalled (i.e. to use a fact

is to remember it). Therefore there are ten fundamental knowledge types in CDT.18

Mapping from Objective to Knowledge Type to Instruction

CDT describes a method for mapping behavioral objectives to knowledge types, and

prescribes a method for mapping knowledge types to instructional methods. To map

from behavioral objectives to [content types] CDT uses a template representation of objec¬

tives similar to: GIVEN <stimulus representation> OF <stimulus constraint EXPECT

Cbehavioral constraint> BY <behavioral appearance> WITH <criterion>. For exam¬

ple: (1) GIVEN pictures OF new-examples EXPECT [the student to be able to] classify

BY sorting; and (2) GIVEN a-description OF an-event EXPECT [the-student-to] discover-

relationship BY experimentation. To determine the [content type] a lookup table is provided

that maps from descriptions like the one above to one of the [content types] shown in the

P C-matrix.

Merrill’s mapping from knowledge types to instructional presentations uses interrogatory

and inquisitory “presentation forms” such as: asking for definitions, asking for classifications

of items, giving generalities (definitions), giving instances (examples), giving hints, and

giving contextual information. CDT provides a mapping from knowledge types to sequences

‘‘Merrill makes finer distinctions to the performance levels, such as distinguishing between recalling ver¬

batim vs. paraphrased, in some situations, and Reigeluth [1983b] suggests some refinements to the content

types.

55

of presentation forms.19 Merrill’s theory states that some of the presentation forms are

necessary and sufficient to learning the subject matter (called “primary” presentation forms)

and others are not necessary but are used to enhance the efficiency or effectiveness of the

learning (called “secondary” presentation forms). The reader is referred to Merrill [1983]

for a detailed description of the rules for determining the presentation forms.

2.2.5 The Merging Paths of ITS and IDT

As we alluded to earlier, ITS researchers have ignored IDT because of a mismatch in the

goals, methods, and historical roots of the two fields. However, these fields are becoming

decreasingly dissimilar. Increasingly, instructional theories are addressing higher order skills

and basing their theories on cognitive principles. As ITSs move into more varied and

realistic instructional settings some issues that IDT has been studying for decades become

more salient. Even though most instructional theories or models are too general or vague

to be immediately incorporated in computer systems, IDT has a wealth of empirical and

theoretical information ripe for use by the ITS community.

Our overview of IDT has been quite narrow. To give the reader a flavor for the range

of relevant issues covered by IDT, and how IDT could guide some aspect of ITS design in

the future, we list several ITS issues, and note one IDT theory that is relevant for each.20

• Representation of pedagogical information, motivation. Ausubel’s Advance

Organizer model [Ausubel 1963] structures learning around a hierarchical organization

of the concepts. To insure that instruction is both meaningful and relevant, he suggests

first presenting an overview (at an appropriate level of abstraction) of the subject

matter, relating it to other concepts near it in the hierarchical structure, and then

using successive differentiation, presenting more general or inclusive ideas first.

19One drawback of CDT is that the prescribed presentation forms are given in a fixed linear ordering.

20We do not necessarlity agree with the the content of any of these theories, we only wish to demonstrate

the range of relevant issues covered in IDT.

56

• Student modeling, longitudinal effects. Though not an instructional theory,

Piaget’s developmental model [Varma & Williams 1976], which proposes that a stu¬

dent’s position within a sequence of stages of cognitive growth determines the types

of knowledge that can be learned, can be used to design instruction according to a

model of the student.

• Tutoring strategies, primitive tutorial actions. Skinner’s Operant Conditioning

theory [1957] focuses on the use of (and types of) reinforcement given to the student.

• Tutorial session management, assessment. Bloom’s Mastery Learning model

[Bloom 1984] proposes frequent assessment of student performance and provides in¬

structional structures that try to insure that all (or most) learners demonstrate a

predetermined mastery performance level before moving forward in the curriculum.

• Learner control, types of knowledge. Flavell [1981] and Schoenfeld [1985] em¬

phasize metacognitive skills—mental processes that monitor and manage one’s current

cognitive processes.

• Affective factors, group learning. Thelen’s Group Investigation Model of teaching

[Joyce &: Weil 1986, Chapter 2] focuses on how to integrate independent and group

investigation within a democratic process that respects the input of all of the students.

2.2.6 Summary of Instructional Theories and Intelligent Tutoring

In this section we defined instructional design (or instructional theory) and explained

why we focused more on instructional design than learning theory. The need for instruc¬

tional strategies that mention specific instructional methods was emphasized. We argued

that ITS designers should incorporate more instructional design theory into their systems,

and hypothesized reasons why they have not in the past. From the instructional design

literature, three recommendations for generic ITS’s were given: distinguishing micro from

macro instructional levels, incorporating knowledge classification schemes, and incorporat¬

ing seven basic areas of instruction (pre-instruction, post-instruction, exposition, practice,

57

feedback, remediation, and assessment). We then described Merrill’s Component Display

Theory, because we have borrowed from it in designing our conceptual framework, and

because it illustrates an expressive, usable, and implementable instructional design theory.

Finally, we alluded to the breadth of issues covered by IDT that are relevant to ITS design

by giving examples of IDT theories and pointing to ITS issues they address.

2.2.7 KAFITS and Instructional Theory

The KAFITS framework incorporates the following principles and features inspired by

instructional design theory:

• KAFITS’s primitive tutorial actions and default tutoring strategies incorporate the

seven “basic areas of instruction” identified in Section 2.2.3.

• KAFITS’s overall control structure, the Four-level Decision Model, is based on micro

and macro levels of instruction (see Section 3.1.3).

• KAFITS incorporates a knowledge-type classification scheme based on Merrill’s PC-

Matrix (described below), which helps the expert articulate and distinguish instruc¬

tional objectives, and facilitates the creation of tutoring strategies that distinguish

between different types of knowledge.

• the KAFITS topic Part relationship allows subsumption networks of concepts as in

Ausubel’s theory of menaingful learning. [Ausubel 1963].

• the KAFITS performance/mastery topic levels allows stragegies to duplicate mastery

learning, as discussed in [Bloom 1984].

A modified PC-Matrix. Gagne’s [1985] hypothesis that different categories of

knowledge (learned capability) require different methods for promoting the learning of that

capability,21 though not proved in a strict sense, it is generally accepted in instructional

21 Gagne actually refers to “outcomes” (i.e. behaviors) rather than “knowledge.”

58

theory. In ITSs, the Gagne hypothesis calls for multiple tutoring strategies that are sensi¬

tive to knowledge categories. We have chosen to base our knowledge type classification on

Merrill’s Performance-Content (PC) Matrix [1983] and its conceptual simplicity compared

with other classification schemes.

Our representational framework (described in Section 3.1.6) includes several modifica¬

tions to Merrill’s PC matrix. First, we make the distinction between Basic knowledge types

(the ones in the PC Matrix) and Complex types of knowledge types (including metacogni-

tive skills, scientific inquiry skills, mental models, and creativity). We found this necessary

in order to include many higher level abilities that are not in Merrill’s PC Matrix.22 Also,

we have added a meta-knowledge23 level to Merrill’s matrix and divided the use level into

apply-use and apply-problem-solve (see figure 2.2). Apply-use refers to the ability to employ

knowledge in a context where it is clear that the knowledge is needed. Apply-problem-solve

refers to using a piece of knowledge with the additional ability to recognize the need to use

it in an open problem solving context.

KAFITS incorporates content types as node types in the topic network and incorpo¬

rates performance levels as levels within each topic. For example the topic “gravity” is of

type concept and the designer can specify presentations for the remember, apply-use, and

problem-solve levels within this topic.

The KAFITS system could be used to represent and experiment with multiple alterna¬

tive instructional theories. We originally intended to encode several instruction theories,

including Merrill’s, using the KAFITS tools, but this was not done because we realized that

it was enough for the domain expert to encode his own ideas about how to teach his domain

without adding the additional, and obfuscating, task of learning and/or being constrained

to specific instructional models.

22 Merrill’s Component Display Theory prescribes very concrete and specific instructional actions based

on the characteristics of the target behavior. Complex knowledge types are not included in Merrill’s theory

because they are quite difficult to define or prescribe how to teach at the necessary level of precision, [true

acc. to new stuff?]

23Meta-knowledge is knowledge about knowledge, such els when to use it, why it is usefull, whether it is

hard to learn, etc.

C©nnnpEes IKimowiledg® / §MHls

General prob. solv. skills
Metacognitive skills
Scientific inquiry skills
Formal logical stalls
Mental models
Creativity
etc.

HBssSc Knn©wil(sdlg® / SDdHIls

MODIFIED PERFORMACE-CONTENT MATRIX

(Content Type)

METAKNOWLEDGE

generality

CREATE

instance

problem-
solve

APPLY

use

REMEMBER

i§§

Fact Procedure
Concept Principle

Figure 2.2 A Modified Performance-Content Matrix

(P
erform

ance L
evel)

60

2.3 Empirical Research and Iterative Design

In ITS research, and in most sub-fields of AI, there is an intimate melding of the theoret¬

ical and the practical—those of us doing research and building systems are both scientists

and engineers. We must balance the desire to build systems that works with the desire to

discover new (or challenge existing) theories and models. In this section we discuss how

research methodology and systems design methodology can be combined in the context

of ITS research. (In later sections we the related topics of discuss knowledge acquisition

methods (Section 2.4) and evaluation methods (Section 2.5).)

2.3.1 AI Research

Research methods and systems design methods used in main stream AI are applicable to

the ITS sub-field. Buchanan [1987] describes AI research as a cyclic process with theoretical,

engineering, and analytical phases. He suggests that research includes all of these steps at

least once:

- Theoretical Steps:

1. Identify the problem.

2. Design a method for solving it.

- Engineering steps:

3. Implement the method in a computer program.

4. Demonstrate the power of the program (and thus the method).

- Analytical steps:

5. Analyze data collected in the demonstration.

6. Generalize the results of the analysis.

61

These research steps are typically repeated in a cycle from theorizing to engineering

to analysis and back to theorizing. Though the steps may seem too obvious or general to

use as a basis on which to design a study, Buchanan enumerates them to point out that

much of the research reported in the field is lacking in one or more key areas, including:

clearly identifying the goals of a study; stating the theoretical underpinnings; describing the

scientific and/or engineering methodology; building a system which implements the theory;

and evaluating/generalizing data. 24

Cohen & Howe [1988a] distinguish three types of AI research: theoretical AI, empirical

AI, and applied AI. Their discussion focuses on empirical AI, which they describe in com¬

parison to theoretical and applied AI. Theoretical AI is purely analytical—its hypotheses

can be proved without implementation. Empirical AI, on the other hand “tells us things

about the behavior of AI systems—the interactions of knowledge representations, inference

methods, algorithms...that we could not anticipate from purely theoretical AI” (page 3).

Applied AI deals with the practical issues of implementing existing theories, models, or

systems in realistic situations. Empirical AI, on the other hand, aims at developing and

experimenting with new methods.

Empirical AI science has important distinctions from other sciences. Cohen &: Howe

[1988a] point out that empirical AI research focuses on investigating human artifacts, in

contrast to behavioral (or physical) science research which is about investigating naturally

occurring phenomena. Behavioral science research is about “teasing apart the components

of behavior and their causal relationships,” asking “why does [some natural system] behave

this way,” and typically uses methods such as searching for factors and statistical hypothesis

testing. In contrast, empirical AI is about “putting all the components together in one box

to produce behavior,” asking “what knowledge representation and algorithms do we need to

make a system that performs [in some desired way],” and the most commonly used method

is a cyclic design process [Cohen & Howe 1988a, pg. 18].

24For example, Buchanan [1988, pg. 16] says that “with AI programs, designers often advance many

interdependent claims at once [and] do not state explicitly what those claims are ... this is reprehensible

scientific behavior.”

62

ITS Design Methods vs. Research Methods

ITS research involves empirical AI,25 and Buchanan addresses empirical AI (in Cohen

& Howe:s classification) in his six research steps. Empirical AI has elements of theory and

application. Buchanan’s steps emphasize the need for ITS designers/researchers to clearly

state research goals, evaluate their systems, and generalize findings. There are also many

applied, pragmatic aspects to ITS research, as ITS researchers are increasingly aware of the

importance of human factors and interface issues [Bonar 1991, Frye et al. 1980], and, by

its very nature, ITS must be tested in the field before researchers can be confident of their

theories. Pragmatic concerns for moving ITSs out of the lab and into the classroom, home,

or workplace are discussed in Section 6.5 and in [Baker 1991, Johnson 1988, and Woolf

1990].

In this study we combine an ITS design methodology with an ITS evaluation method¬

ology. We re-interpret Buchanan’s research steps as follows for ITS design/research:

1. Identify research questions, posit hypotheses, describe the underlying pedagogi¬

cal/psychological theory;

2. Choose an instructional domain, a domain expert, a system architecture, a software

design method, and an evaluation method that address the questions and hypotheses

of step 1;

3. Build an intelligent tutor (this step includes software design, knowledge acquisition

and human factors considerations);

4. Test the tutor (in dry runs and/or student trials);

5. Analyze the test data;

6. Generalize the results, make conclusions related to the questions and hypotheses, and

(usually) start over again with step 1 to refine the program and/or the theory.

25It could be argued that some ITS research, including our present study, is empirical research but not

empirical AI research, since it does not contribute significantly to the general body of AI knowledge and

theory.

63

In this study we:

• discuss ITS evaluation methods (part of steps 2 and 5 above) in general (Section 2.5.3),

and describe our evaluation which incorporates formative evaluation and case study

methodologies;

• discuss ITS usability design issues (Section 2.3.2), and give our own results on usability

(Section 5.5.4);

• discuss knowledge acquisition (part of step 3) issues (Section 2.4); and give results

from our study of ITS knowledge acquisition tools and methods (Section 5.4);

• expand on steps 3 and 4 in our description of a user participatory ITS design process

(below).

2.3.2 Iterative and Participatory Design

Both Buchanan and Cohen & Howe emphasize the cyclic nature of AI research.26 Iter¬

ative design is also strongly recommended throughout the literature in computer usability

and human-computer interaction (HCI).27 In studies of software intended to be used by

people there is a high degree of uncertainty as to the outcomes. Baker [1991, pg. 152],

in discussing computer based training, notes that “what technology is almost guaranteed

to do is to generate, by its very existence, outcomes and applications that were not previ¬

ously considered...nor imagined by the...designer.” Similarly Gould [1988, pg. 7] offers these

general observations on designing systems based on studies of users:

• Nobody can get it right the first time,

• Development is full of surprises,

26Whiteside et al.[l987, pg. 12] refers to cyclic design as “incremental, evolutionary, and conscious

iteration.”

27HCI studies are often from the perspective of software development and application, rather than the

perspective of pure research, but the principles given in the HCI literature hold for any user-focused research

even if the computer system is not intended for the marketplace or workplace.

64

• Developing user-oriented systems requires living in a sea of changes.

Therefore continuous testing and refinement, i.e. iterative design, is needed to ensure

usability. In the context of research (as opposed to software design) this suggests a formative

evaluation methodology (which we discuss in more detail in Section 2.5.2).28 However, the

use of iterative design along with formative evaluation still does not address some important

issues—users must be in the design/evaluation loop. Gould [1988, pg. 4], in addition to

recommending iterative design, gives these principles for system design:

• Early and continual focus on users—i.e. direct contact with users to understand

cognitive, behavioral, and social characteristics of their task and task environment.

• Integrated design. Design, build, and test all components of the system in parallel.

• Early and continued user testing. Users, under observation or some other form of

measurement, do real work with prototype systems.

Participatory Design

A recent trend in HCI and usability research, called “user participatory design” (or

“participative design” [Blomberg & Henderson 1990]), involves a shift from user-as-subject

to user-as-co-researcher. Ascertaining how users conceptualize their domains and how they

conceptualize the computer system is an essential part of studying usability. Researchers

must account for the conceptual models the user brings to the task, and determine how

these models might help or hinder the model of the system that the designer wants to

portray. For example, people have experience with desktops, file cabinets, and street maps,

and these conceptions may help or interfere with their understanding of a computer tool.

Whiteside et al.[1987] discusse the importance of “contextual research” (studying users

during real work) in usability studies, saying: “human action as observed derives its mean-

alterative design becomes a formative evaluation if one keeps data on the issues encountered, the changes

made to the system, and the results of these changes. Systems building becomes research when the goal is

to explore the important issues and report to others, rather than to build a system that works.

65

ing from the context in which it occurs” (pg. 19). Designing for usability means not only

satisfying external functionality and performance criterion, but ensuring that the user is mo¬

tivated and informed. Therefore, determining the user’s experience as well as her observable

behavior is important.

In HCI research (and in knowledge acquisition research as well) the researcher is often

inextricably entangled with what is observed. He influences the data by the choice of

questions asked, by instructional remarks and other informative interventions, and simply by

being present as the user uses the system (Whiteside et. al 1987). Therefore, as mentioned

previously, traditional experimental methods are often inappropriate; and when the goal is

to uncover the users experience of a system, which is un-observable, traditional experimental

methods have no bearing.

The above mentioned goals of (1) determining users’ conceptual models, and (2) deter¬

mining users’ experience of the system, are facilitated by having the user be a co-researcher

(i.e. participatory design). Just as the researcher is inextricably involved with the sub¬

ject, the subject shares responsibility in discovering the experience of working with the

system. The researcher “explains what is of interest; there is no thought of concealing the

conditions for fear of contaminating the data...[and the user, as co-researcher, helps] direct

the discussion, indicates relevant areas for exploration, and responds to the [researcher’s]

interpretations” [Whiteside et. al, pg. 26].

We have discussed Al research and how research methodology and system design

methodology can be combined. This study is an investigation of 1. an ITS knowledge

acquisition process and 2. ITS knowledge acquisition tools. Below we discuss usability

design principles we needed to be aware of in designing the knowledge acquisition tools (we

discuss knowledge acquisition methodology in Section 2.4).

66

2.3.3 Usability and Interface Design

ITS knowledge acquisition tools should adhere to established human factors design prin¬

ciples, especially if they are designed to be used by instructors. Nickerson & Pew [1990, pg.

42] give several:

1. Make it hard for the user to inadvertently cause a disaster.

2. Make the user feel that s/he are doing the task rather than instructing the computer

to do it (for example, by using direct manipulation of icons).

3. Modularize applications in terms the user’s tasks, rather than programming conve¬

nience.

4. Use simple metaphors to explain task organization (for example, the “desktop”).

5. Limit interactive access to when it is needed.

6. Help the user “navigate” within the information available.

Nelson [1990] gives a further discussion of navigation issues in the context of using

Hypertext. His studies have indicated that a majority of users experience confusion and

disorientation in trying to use a large Hypertext document. This problem applies to any

large knowledge base where there are many links between the objects. Designers of interfaces

should make moving between linked items intuitive, and provide methods for the user to

know his context (“you are here”) within the knowledge base.

Miller [1988] notes that in designing an ITS interface one must consider users’ cognitive

capabilities and limitations, and the knowledge and cognitive structures they are likely to

bring to the task.29 “People combine [existing] knowledge with their observations of the

structure and behavior of the interface to construct a conceptual model of the system”

(pg. 145). He gives three characteristics of a good conceptual model: clarity, coverage,

29Miller’s article discusses ITS interface issues in the context of the student, but the principles he gives

are general human factors principles, equally applicable to an interface for knowledge acquisition.

67

and sound level of abstraction in suggesting that interfaces be designed to offer a good

conceptual model to the user. Other discussions of ITS interface design can be found in

[Bonar 1991, Frye et al. 1988].

2.3.4 Summary of Empirical Research and Iterative Design

In this section we pointed out that ITS research (like most AI research) blends aspects

of both research (discovering knowledge) and engineering (building artifacts) and must

combine scientific methodology with design methodology. We discussed “empirical AI”

(which covers almost all ITS studies) as compared with “theoretical” and “applied” AI

[Cohen & Howe 1988] and as compared with research in other fields, and we re-interpreted

Buchanan’s [1987] six steps for AI research in terms of ITS design/research. We discussed

how an iterative design method fits the needs of both human factors (usability) concerns and

the cyclic evolutionary nature of AI research. We then discussed how a user participatory

design process also supports usability goals. Finally we presented interface and human

factors design principles which should guide the design of ITS interfaces (student interfaces

as well as knowledge acquisition interfaces).

2.3.5 KAFITS Research and Design Issues

Since in this study we are both evaluating the artifacts we build and improving their

performance, an iterative design process, incorporating evaluation at many stages, has been

used. Since usability of our system is important, we have followed a user participatory

design process as well (in Section 2.3.1 we summarize results of our study that argue the

need for user participation).

Each of Nickerson & Pew’s six human factors design principles (see above), as well as

the issues raised by Miller about the need for ITS interfaces to support cognitive models, are

addressed in the KAFITS system and/or discussed in our analysis of the study (in Section

2.3.2). Our “empirical AI research” combines several evaluation methodologies, including

68

qualitative evaluation methods, formative evaluation, and a case study, as discussed in

Section 2.5.5.

2.4 Knowledge Acquisition and Intelligent Tutoring

Here we discuss the most important and difficult aspect of building ITS knowledge

bases—acquiring the domain expert’s knowledge. A wide range of expertise is needed

to build an intelligent tutor. ITS designers, in the tradition of AI, have long recognized

the need for domain experts and cognitive scientists, and recently there is an increased

recognition of the importance of expertise in instructional science and human factors. In

addition to these forms of expertise, wre advocate for the participation of practicing educators

to insure that intelligent tutors are realistic and anticipate pragmatic issues. Two kinds of

knowledge must be acquired, domain knowledge and pedagogical knowledge,30 and there

are two issues in getting this knowledge into a computer tutor: knowledge acquisition and

knowledge representation. We are interested in methods for eliciting (acquiring) knowledge

from experts and methods for representing what experts communicate. Acquisition and

representation are closely related, since the framework used to represent knowledge will

constrain and/or support the elicitation process.

ITS researchers have addressed knowledge representation, but, for the most part, have

not dealt explicitly with knowledge acquisition issues (except for task analysis studies).31

However, knowledge acquisition has been studied in AI, and we can relate this research to

ITSs. Therefore, in this section we present a fairly complete (though in some cases shallow)

review of AI knowledge acquisition methods and tradeoffs, both for the edification of the

interested reader, and to describe and justify the methods we used for this study.

30“Pedagogical knowledge” includes tutoring strategies and domain-specific information about how to

teach the curriculum.

31 Much has been written about the process of acquiring knowledge for CAI (a process called authoring or

courseware development). These inquiries have some useful advice to offer the ITS designer in areas such as

organizing working sessions with educators, choice of media, and screen and graphics design. However, for

the most part, design guidelines given for courseware development have little to offer ITS designers since they

produce fixed instructional scripts with no explicit models of teaching, domain knowledge, or the student.

69

2.4.1 Knowledge Acquisition Issues

Knowledge acquisition is the transfer and transformation of expertise from people into

a form that can be used by machines (Buchanan et. al 1983).32 It is one of the first

steps in the design of expert systems (including ITSs) and is the biggest bottleneck in the

knowledge engineering process. (Hoffman [1987, pg. 53] states that “the identification and

encoding of knowledge is one of the most complex and arduous tasks encountered in the

construction of [an expert system].”) Though expert systems have existed for some time,

there is as yet no consensus on the best way to go about the knowledge acquisition process.33

However, a corpus of knowledge acquisition methods, all of them appropriate to building

ITSs, have been identified and partially standardized, and advantages and disadvantages

of some of these methods have been documented. Before describing specific knowledge

acquisition methods we summarize several of the most important issues facing AI and ITS

knowledge engineers: mappings from domain tasks (and skills) to knowledge acquisition

methods for eliciting descriptions of those tasks; automation of the knowledge acquisition

process; important characteristics of domain experts, knowledge engineers, and domains;

and secondary goals of knowledge engineers.

Mapping tasks to methods. Gaines & Bose [1988, pg. xviii] refer to the “piecemeal

nature of techniques and tools” in calling for a more systematic approach to determining

the best knowledge acquisition methods for each application. The issues receiving the most

attention in mainstream knowledge acquisition research are: 1. the delineation and analysis

of methods, and 2. the analysis of domain (or task) characteristics for determining the best

32Related terms: “knowledge engineering” is the process or methodology for acquiring, representing, and

using qualitative models of systems (i.e. building and expert system) [Gaines Bose 1988]. “Knowledge

elicitation,” “the process by which facts, rules, patterns, heuristics, and operations used by humans to solve

problems, in a particular domain, are elicited” [Garg-Janardan & Salvendy 1988] (also called “knowledge

extraction”), is a part of knowledge engineering. For the purpose of this paper knowledge acquisition,

knowledge engineering, and knowledge elicitation are synonymous, unless otherwise stated. Note also that

expert systems are often called “knowledge-based systems.”

33Hoffman [1987, pg. 54]: “No systematic research has been conducted on the question of how to elicit an

expert’s knowledge and inference strategies;” Gruber [1988 pg. 3]: “there is little consensus on a methodology

for knowledge acquisition.”

70

methods to use. AI researchers are slowly converging on a mapping from domain or task

characteristics to knowledge acquisition methods [Bose 1988].34

Automating knowledge acquisition. Though most knowledge acquisition is cur¬

rently done by hand,35 there is a movement away from protocol analysis and interviews

toward computer-based interactive methods using elicitation tools. Many of the knowl¬

edge acquisition methods we list later can be automated. Also, computer-based methods

are used to check the consistency and completeness of knowledge bases. In addition, ma¬

chine learning can be considered a form of knowledge acquisition—analogy-based learning,

explanation-based learning, concept learning, and other automatic inductive and deductive

learning methods are sometimes included in a broad definition of knowledge acquisition.36

Gilmore & Self [1988] give an overview of applications of machine learning to ITS. Studies

have been conducted using machine learning to infer student models and to incrementally

improve teaching strategies in ITS systems [Dillenbourg 1988, Kimball 1982].

Characteristics of domain experts and knowledge engineers. There is wide

agreement about desirable characteristics in selecting domain experts (DEs, or “subject

matter experts”) (see Prereau [1987], McCaslin & Boord [1990], McGraw [1989], Slagle &

Wick [1988]). These characteristics include:

• knowledgeability, self-assuredness, and credibility (the DE’s expertise should have

been acquired by successful task performance over a long period of time);

• communication and cooperation skills (the DE must be a “team player” and be capable

of communicating personal knowledge, judgment, and experience);

• commitment, availability, and managerial support (the domain expert and his/her

organizational superiors must support a substantial time commitment).

34Some of their concerns are related to our discussions about knowledge types (Section 6.3.3).

35Hoffman [1987, pg. 62] says that “in general, it takes two years to develop a prototype and about five

years to develop a full-scale system.”

36See Gruber [1988] for a discussion of machine learning techniques applied to knowledge acquisition.

71

Less is said in the literature about important characteristics of knowledge engineers, but

McGraw [1989] mentions that the ITS knowledge engineer wears many hats, including that

of knowledge analyst, communications facilitator, and instructional designer. 37

Secondary goals of knowledge engineers. Knowledge engineers usually have sec¬

ondary goals, other than eliciting knowledge, including:

• learning about the domain from the expert,

• establishing rapport with the expert,

• ascertaining the needs and preferences of users,

• and instructing the domain expert in the concepts of AI.

These goals must be considered when planning the knowledge acquisition process and

choosing the participants.

Other issues. There are important knowledge acquisition issues discussed in the lit¬

erature which we have not mentioned, but which we will provide references for: acquiring

knowledge from multiple experts [Shaw & Gaines 1986, and LeClair 1988], meeting the

needs of both novice and experienced users of knowledge acquisition tools [LeFrance 1989,

Kopec &: Latour 1989], and how to maintain an evolving knowledge base over time [Barker

& O’Conner 1989, and K. Murray 1988].

ITS vs. Other Expert System Domains

The vast majority of knowledge acquisition research is done in the context of traditional

expert systems, and intelligent tutoring systems differ from traditional expert systems in

severed significant ways. In some respects intelligent tutoring is such a difficult area that

new and challenging issues are encountered that do not exist for prototypical expert system

37In addition, Slagle & Wick [1988] discuss how to select a good applications domain for expert systems,

and in Section 6.3.2 we discuss how tutoring systems measure up in their scheme).

72

applications. In other respects the ITS state of the art is far behind the state of the art for

prototypical expert system domains, so that some important knowledge acquisition issues

have barely been addressed in ITS research.

As mentioned in a previous chapter, ITS is more than just an applications area for expert

systems. In fact, if we use Slagle & Wick’s [1988] “method for evaluating candidate expert

system applications,” ITS would seem a rather poor expert system application. Slagle &

Wick list 24 “essential features” and 16 “desirable features” for expert system domains. ITS

rates high on some features, including “task is knowledge intensive,” “task not essential to

deadline,” “hard to transfer expertise,” and “task identified as a problem area,” but ITS

faxes poorly with many more features, such as “task is not language intensive,” “task requires

no common sense,” “expert is articulate,” “experts agree on good solutions,” “solutions

are explainable,” and “task does not require read-time response.” However, as mentioned

previously, ITS research is justified for many reasons even if it is a non-optimal applications

area for AI technology.

One of the maun differences between traditional expert system applications and intelli¬

gent tutoring is that ITS research does not (except in rare cases) try to simulate human

tutoring expertise. It uses human tutoring expertise to guide the design of tutoring rules,

but the end goal is not to simulate human behavior. There are two reasons for this. First,

we can only hope to approximate the simplest aspects of humam tutoring, being constrained

by the limitations of the computer. The types of information that are essential to a human

teacher aire much more subtle, unconscious, and immeasurable (facial expressions, students’

personalities, etc.) than the information used by ITSs. And, perhaps more importantly,

even if we could simulate human expertise, it may not be appropriate to do so. Learning

via a computer and learning via human discourse are very different, and the most powerful

and efficient strategies for teaching in these environments are likely to be equally different.

Another difference between tutoring systems and traditional expert system domains is

that cognitive fidelity is much more important in tutoring system knowledge bases. This

73

makes the knowledge more difficult to acquire and much more difficult to evaluate (since

we can never know with certainty what happens in an expert’s head).

In summary, tutoring is not an easy domain in which to build AI programs, compared

to most other expert systems domains. The acquisition of domain knowledge is made more

difficult by the need for cognitive fidelity, and by the need to represent (even if shallowly)

complex types of knowledge (such as intuitions and mental models) as well as procedures

and rules. The acquisition of strategic knowledge is difficult because we do not have clear

models of pedagogy for computer tutors (nor do we have operational models of human

tutoring), making tutoring knowledge difficult to acquire and represent. Therefore, although

knowledge acquisition methods used in mainstream AI are applicable to ITS, the methods

or when they are best used may differ for ITS.

Current ITS Knowledge Acquisition Research

Perhaps for reasons mentioned above, almost all ITS studies that deal with knowledge

acquisition have dealt with only a small number of the important knowledge acquisition

issues, falling into one of three categories:

• Generality. The systems mentioned in Section 2.1.3 on generic ITS frameworks ad¬

dress knowledge acquisition in that they constitute frameworks and languages for

representing knowledge. These projects, however, do not address the methods or is¬

sues involved in acquiring the knowledge, except (in several cases) to specify that it

be done in a top-down or bottom-up fashion.

• Machine learning. One way to acquire knowledge is to let the computer program learn

by itself (leaving the human out of the loop). ITS efforts in machine learning were

mentioned earlier in this Section..

• Cognitive and procedural task analysis. The knowledge acquisition area that has

received the most attention to date in ITS is task analysis [Means & Gott 1988,

Lajoie 1986, Cerri 1988]. Procedural task analysis involves creating a procedural

74

representation of expert problem solving behavior. Cognitive task analysis infers

underlying cognitive structures and processes, and is used to study both expert and

novice behavior. (A further discussion of task analysis is found in Section 2.4.2).

Though the three areas above are important, we believe that ITS researchers should,

on the whole, pay more attention to other traditional AI knowledge acquisition issues such

as: What are good methods for acquiring a teacher’s knowledge and building a knowledge

base (perhaps as a function of the domain or task)? What signposts, issues, tradeoffs, and

pitfalls does one encounter in trying to represent that knowledge? This study addresses

these questions in the context of building a physics tutor with the KAFITS system. We

also summarize a wide range of knowledge acquisition methods (below), noting how they

apply to ITSs construction.

2.4.2 Knowledge Acquisition Methods

In order to provide ITS designers with an overview of commonly used knowledge ac¬

quisition methods, we mention the entire range of knowledge acquisition methods used in

AI, describing how they apply to eliciting knowledge from domain experts and educators.

Knowledge acquisition methods and tools can be categorized along many dimensions, for

example: whether they are manual or computer-based [Boose 1988]; whether they involve

natural or contrived situations for the expert [Shadbolt & Burton 1989]; the amount of

domain understanding required of the knowledge engineer; and the knowledge engineer’s

level of involvement in knowledge engineering sessions (passive vs. active). Our organiza¬

tion of knowledge acquisition methods is synthesized from Hoffman [1987 and 1989], Bose

[1988], Garg-Janardan &; Salvendy [1988], and Shadbolt & Burton [1989], and includes the

following methods (each described later in detail): “analysis of formal documents” and

“tutorial sessions” are often used to bootstrap the process, giving the knowledge engineer

enough information to propose an initial system architecture and to plan how he will work

with the domain expert; “judgment tasks” can be used to develop an initial conceptual

framework for a knowledge base; “analysis of off-line tasks” and “interviews'’ are typically

75

the work horses of knowledge acquisition, and are the main methods used for task analysis;

and “on-line test-and-refine tasks” are used to test, modify, and extend a knowledge base.

These methods are not mutually exclusive and are often combined.

Analysis of formal documents. Formal documents (a term borrowed from McGraw

[1989]) such as texts, manuals, data bases, and other references, can provide a starting place

for acquiring domain knowledge, and tutoring knowledge can be gleaned from instructional

literature on theory and practice. But this is only a beginning, and it is essential to work

closely with domain experts and educators to check and modify the information gained from

other sources. Sub-categories include:

• Manual acquisition. Text can be an initial source of the knowledge engineers famil¬

iarity with the domain. A prototype knowledge base can even be generated from text

sources before consulting with the domain expert.

• Automated acquisition. Text can be automatically analyzed (the frequency and jux¬

taposition of words, for example) to yield the concepts and associations that might

form the baseline for a domain [Shaw & Gains 1986]. Such methods tend to result

in a large number of of spurious concepts, so they are not good for consistency or

relevance, but they may be good for completeness, reminding the expert of areas of

the domain they have not thought to mentioned.

Tutorial sessions. The expert can explain the concepts, procedures, tutoring strate¬

gies, etc., of the domain to the knowledge engineer (who might be taking the role of an

apprentice), perhaps walking him through tasks or problem solving. This yields a useful

first pass at the domain knowledge, and gives the knowledge engineer enough information

to plan future knowledge acquisition sessions. Again caution is warranted: an expert’s ver¬

bal knowledge of his problem solving or teaching skills will probably be incomplete and in

places erroneous.

Judgment tasks. Originally taken from psychological and social-science experimental

methods, these tasks involve rating, ranking, creating taxonomies, or sorting pre-defined

76

stimuli [Hoffman 1989]. They are a type of (very) “structured interview” (see below).

Several systems have been built to automate these tasks and perform a variety of types

of analysis on the data [Shaw &: Gaines 1986].38 Judgment tasks are especially useful in

domains where the rules or strategies are fuzzy or not well articulated, yet performance is

repeatable. Sub-categories include:

• Grid generation, hierarchy classification, and concept maps. The expert is guided

though the generation of tables or graphs which diagramitically show relationships

between ideas.

• Card sorts. Objects represented on cards are sorted in various ways, according to

whatever characteristics the expert deems important. Card sorts are useful for dis¬

covering structure in knowledge. For example, having a teacher sort descriptions

of word problems could yield a useful classification scheme, such as the categories:

qualitative/intuitive, equation generation, and quantitative.

• Repertory grids. Repertory grids [Shaw 1981] organize numerical ratings of instances

along a variety of bipolar dimensions. The grid is analyzed statistically to determine

correlations or causal rules relating the dimensions.

Analysis of (off line) tasks. The expert is observed in action, solving a domain

problem or tutoring (and see Section 2.5.3 for a discussion of cognitive task analysis vs.

procedural task analysis). Parameters of this method include: whether to ask the expert

for explanations as he works; whether to tape the session and/or perform a protocol analysis;

whether to observe the expert at a real task during part of his normal work day, recreate a

historically archived task situation, or invent a hypothetical task situation. Sub-categories

include:

• Familiar tasks. The expert is observed performing a familiar everyday task.

38Rules (relationships between features) which best account for the data can be generated automati¬

cally, and automatic analysis can reveal structure in knowledge by constructing useful classifications and

taxonomies.

77

• Tough or unusual cases. The expert is given a difficult or extreme case problem. This

can reveal more refined reasoning.

• Constrained tasks. The expert performs a familiar task with contrived constraints on

time or some other resources, or is not given some of the information he is normally

given. He is forced to make approximations or extrapolations, use heuristics, etc. that

might not occur in a normal situation. For example, a student works at a computer

and the expert monitors and assists the student from another computer. Here the

communication band-width is quite limited compared to face-to-face tutoring.

• Generating analogies. The expert analyzes or solves problems (cases) by comparing

them with other cases (historical or standard cases). Similarities and differences in

the cases and in the actions the expert would take are noted.

Interviews. The knowledge engineer questions the expert. This can be done in con¬

junction with a task (see above).39 Sub-categories include:

• Unstructured interview. Opportunistic questioning is an acceptable way to acquire

the initial scope and goals of a domain. It is also useful to repeat unstructured

interviews at various stages in the knowledge acquisition process to generalize, refine,

and reorganize the knowledge as it is being acquired.

• Structured interview (also called “focused” interview). The knowledge engineer plans

what questions or tasks will be given to the expert prior to the knowledge acquisition

session. To do this the knowledge engineer needs some understanding of the domain.

The knowledge engineer also pre-determines whether there are constraints on what he

can say. Specific guidelines for conducting interviews with the intention of protocol

analysis can be found in Erickson & Simon [1984].

• Brainstorming. Creative problem solving, or idea generation (done without criticism

or refinement of solutions) can be useful to get a feel for the scope of the domain, and

39Very loosely, we can see the discussion of analysis of tasks as relating to what to observe, and the

discussion of interviews as relating to how to observe it.

78

can be useful when the problem solving strategies of the domain have not previousl

been well articulated (in texts, manuals, etc.). Brainstorming is also useful when

interviewing a group of domain experts.

• Decision analysis. Decision analysis techniques [Brown 1989, Hart 1986] can be used

to pinpoint and analyze critical decision points in problem solving or teaching.

On-line testing and refining of the knowledge base. Using any one or a combi¬

nation of the above methods a first-pass knowledge base can be created. Then the expert

can directly inspect the contents of the knowledge base (using an interface), or run the

expert system or tutor and observe its behavior. She can add, delete, modify, qualify, re¬

organize, or generalize the facts, concepts, rules, strategies, etc. for verity, completeness,

efficiency, and coherence.

Comparisons of Knowledge Acquisition Methods

In the discussion of knowledge acquisition methods above we have indicated how each

could be used in ITS design. Below we summarize comparisons of the methods that were

found in the literature.

Interviews vs. other methods. Hoffman [1988] says that, although unstructured

interviews are by far the most often used knowledge acquisition method, they have been

shown to be one of the most inefficient. Also, experiments by Shadbolt & Burton [1989] in¬

dicate that protocol analysis of interviews performed significantly worse than other methods

they analyzed, both in the resulting domain coverage and the effort it required. Hoffman

warns that transcription and analysis of interviews takes at least 10 times as long as the

interview (and often much longer). He points out that much information is lost in a taped

interview, so protocol analysis is not only difficult but often not as useful as one expects.

Yet it is difficult and disrupting to interrupt an expert very often while problem solving,

so it is still useful to tape problem solving sessions and go over them later with the expert.

79

“The moral here is that the interviewer should take copious notes and not rely passively on

audio tapes” [Hoffman 1987, pg. 56].

Structured vs. unstructured interviews. From his experiments, Hoffman con¬

cludes that structured interviews are more efficient than unstructured ones. He found that

special tasks (i.e. contrived tasks) were more useful than natural tasks and familiar cases

for getting tacit or non-conscious knowledge, and for focusing on specific areas of the knowl¬

edge. However, constrained or contrived tasks can make the expert uncomfortable, so they

should not be over-done.

Similarly, Shadbolt concludes that contrived techniques did at least as well as a struc¬

tured interviews of a familiar task in effort expanded and domain coverage. He found that

contrived tasks (such as card sorts and grid constructions) tend to yield declarative knowl¬

edge, while natural tasks (such as familiar tasks and structured interviews) tend to yield

more procedural knowledge.

Multiple experts. Lastly, Shadbolt concludes that using several experts with any

single knowledge acquisition method yields more coverage than using several methods with

the same expert.

2.4.3 Summary of Knowledge Acquisition and Intelligent Tutoring

In this section we first discussed the following knowledge acquisition issues identified

in the AI literature: mapping tasks and domains to knowledge acquisition methods; au¬

tomating knowledge acquisition; important characteristics of domain experts, knowledge

engineers, and domains; and secondary goals of knowledge engineers (such as establishing

rapport with the expert). We then compared ITS with other expert system domains, and

discussed current ITS studies that deal with knowledge acquisition. Finally, we catalogued

a number of knowledge acquisition methods applicable to various stages of building an

ITS knowledge base, as summarized in Figure 2.3, and summarized some studies that have

compared knowledge acquisition methods.

• Analysis of formal documents

- Manual acquisition

— Automated acquisition

• Tutorial sessions

• Judgment tasks

— Grid generation, hierarchy classification, concept maps

— Card sorts

- Repertory grids

• Analysis of (off line) tasks

— Familiar tasks

— Tough or unusual cases

- Constrained tasks

— Generating analogies

• Interviews

— Unstructured interviews

— Structured interviews

- Brainstorming

- Decision analysis

• On-line testing and refining of the knowledge base

Figure 2.3 Knowledge Acquisition Methods

81

2.4.4 KAFITS and Knowledge Acquisition

Most ITS studies that deal with knowledge acquisition fall into one of three categories:

architectures for generic shells, applications of machine learning, and task analysis of domain

expertise. In contrast this study deals more directly with the issues of mainstream AI

knowledge acquisition (though we also designed a generic shell architecture), and we discuss

methods, tradeoffs, and tools for working with instructors/domain experts to acquire their

pedagogical knowledge.

Knowledge Acquisition Methods Used

We used several knowledge acquisition methods to elicit pedagogical knowledge from the

domain expert, the main methods being the structured interview and on-line test-and-refine

tasks. We used several types of structured interview methods, including brainstorming, con¬

cept mapping, and script generation (see Section 5.1) to define the curriculum and tutoring

strategies. In addition, we allowed the KAFITS representational framework to provide

a structure for many of the sessions (for example, conceptualizing the domain content in

terms of topics, misconceptions, hints, etc., guided our planning of knowledge elicitation ses¬

sions). In the knowledge acquisition literature structured interviews are recommended over

unstructured interviews, and protocol analysis of taped interviews is discouraged. There¬

fore we used structured interviews when possible (especially during the design phases of

the project), did not tape interview sessions, and followed Hoffman’s [1988] advice to take

copious notes during interviews.

After the domain content was encoded in the knowledge base, on-line test-and-refine

tasks were used to debug, modify, and restructure the knowledge base. By using different

teaching strategies (such as “skim” and “detailed”), and testing multiple alternative paths

through the curriculum, the expert was able to test the knowledge base for correctness,

completeness, and coherence. Unlike most knowledge acquisition interviews, in which the

domain expert is interviewed so that the knowledge engineer can represent and enter the

expert’s knowledge, many interviews in this study served to help the domain expert repre-

82

sent his own knowledge in terms of a specific framework (KAFITS). Another fairly unique

aspect of our process was the inclusion of design team members called “knowledge base

managers” who did the data entry and syntactic debugging of the knowledge base, allowing

the domain expert and knowledge engineer’s time to be used efficiently.

In addition to structured interviews and on-line test-and-refine tasks, several other

knowledge acquisition methods were used, including analysis of formal documents and un¬

structured interviews. Domain tutorial sessions were not needed because the knowledge

engineer was familiar with the domain being taught (mechanics). Task analysis was not

done during this study because: (1) we did not observe the domain expert solving physics

problems (since we were not building an expert system in the domai)n, (2) we did not study

students solving problems because we relied on the domain expert’s knowledge of previous

studies of misconceptions in the domain, and in addition we were not building a runable

(cognitively valid) student model, and (3) we did not observe the expert tutoring because

we did not focus on the acquisition of tutoring strategies (though taped tutoring studies

that we administered prior to this project influenced the KAFITS design, as described in

Section 5.4.1).

Knowledge Acquisition Issues Addressed

Knowledge acquisition issues we discussed in this section are addressed in our study as

follows:

• Mapping tasks to knowledge acquisition methods. In Section 5.1.1 we describe

the ten-step process we followed to design the knowledge base for the statics tutor.

One unique aspect of our method is that the domain expert’s representation and

conception of curriculum knowledge evolved through classroom-like, CAI-like, and

finally ITS-like representations.

83

• Automating knowledge acquisition. KAFITS does not incorporate automated

knowledge acquisition techniques or machine learning methods, but does automati¬

cally check the consistency of some aspects of the knowledge base.

• Important characteristics of domain experts, knowledge engineers, and

domains. In Section 5.1.2 we discuss important characteristics of domain experts

and knowledge engineers which we abstracted from our observations. In Section 4.1.2

we discuss how our choice of domain limits our conclusions.

• Secondary goals of knowledge engineers. We found all four of the secondary

goals mentioned mentioned—learning about the domain, establishing rapport, ascer¬

taining the expert’s needs, and instructing the expert in AI concepts—to be important

in building the statics tutor, and we discuss these goals in Section 5.1.

• Other issues. KAFITS was designed to meet the needs of both experienced and

novice users, as discussed in Section 3.5.1. Though we did not elicit expertise from

multiple experts, we had two people testing and modifying the knowledge base si¬

multaneously (and one of the knowledge base managers, Kim, was knowledgeable in

physics), so some issues related to having multiple experts building a knowledge base

are relevant .

2.5 ITS Evaluation Methods

AI, and therefore ITS, axe relatively new fields having unique characteristics: their

research and engineering goals are closely coupled, as are evaluation and design methodolo¬

gies. As mentioned in Section 2.3, these fields have not matured to a point were principled

scientific methodology is commonplace. Therefore in this section we offer a fairly complete

compendium and discussion of evaluation issues, paradigms, and methods applicable to

ITS research. For completeness we mention a wide range of methods, but focus mostly on

methods applicable to formative qualitative studies, because the results of this study rely

primary on formative qualitative evaluation. Since few general discussions of ITS research

84

methodology exist, one purpose of this section is to inform the reader of the range of meth¬

ods available and the tradeoffs involved in selecting them. Another purpose is to justify our

choice of evaluation methods, because some of the methods we employ are fairly uncommon

(or not commonly understood) within the AI and ITS fields.

We begin our exposition by describing the current state of evaluation in ITS research.

Then we describe three complementary overarching research paradigms. Then we describe a

number of more specific common and uncommon evaluation methods. Finally we note how

the evaluation methods used in our study of the KAFITS system relate to the evaluation

methods listed.

2.5.1 The State of ITS Evaluation

It is generally accepted that a good evaluation methodology is lacking in most AI re¬

search ; the situation may be even worse in the ITS sub-field. Here are two harsh but

typical critiques: “[Claims of ITSs] are based on testing that typically is poorly reported,

inconclusive, and in some cases totally lacking” [Rosenberg 1987, pg. 7], “existing ITS liter¬

ature is a barren source for good examples of outcome measurement” [Baker 1991, pg. 252].

40 What factors contribute to the lack of sound evaluation—why is it so difficult or rare?

Of the many possible reasons we will cite only a few. As a research field ITS is relatively

new and “evaluation is not standard practice in part because we don’t have formal research

methods, standard experimental designs, and analytic tools” (Cohen & Howe [1988, pg. 1];

said of AI research, but applicable to ITS research). Also, research in ITS (in contrast to

most AI expert systems research) is lacking an objective model of the expected behavior,

i.e. the ITS field does not have concrete models of tutoring expertise (see discussion of ITS

vs. traditional expert systems in Section 2.3.1). In addition, evaluating ITSs in realistic

situations has been difficult because of the logistics of interfacing with classrooms and (until

recently) the complexity and cost of the hardware on which ITSs are typically built [Woolf

40For other discussions of ITS evaluation, see Park et al.[l987], Koedinger & Anderson [1990], Shute [1990],

Baker [1991], Littman & Soloway [1988].

85

(in press)]. In sum, implementation is just beginning to be common, evaluation is typically

ad-hoc and shallow, and testing in realistic instructional settings is rare.41 This is not sur¬

prising considering the reasons given above, and the fact that intelligent tutoring combines

difficult issues from many disciplines: cognitive psychology, human factors, instructional

theory, knowledge representation, etc.

Difficulties like those mentioned above do not prohibit ITS evaluation—it is essential—

but we have to be creative about how we do it. It is not the case that in order to make

a substantial contribution to the field ITS researchers have to evaluate the instructional

effectiveness of their systems in controlled experiments.42 “...As a field, we are not obliged

to adopt ‘scientific’ evaluation criteria, but should design our own” [Cohen & Howe 1988a,

pg. 3] (said of AI, but applicable to ITS). There is a wide range of evaluation methodologies

applicable to ITS research, suited to many types of research goals and constraints, and we

catalogue a number of them below as grist for the mill for ITS designers. First we describe

general categories of evaluation methods or evaluation “paradigms,” and then we describe

specific evaluation methods.

2.5.2 Research and Evaluation Paradigms

In choosing an evaluation method one must determine: 1. the research goals, questions,

or hypotheses addressed, 2. the phenomena to be observed or parameters to be measured, 3.

the experimental procedure and data collection method, and 4. the data analysis method. In

order to justify the methods we employ in this study, and also to suggest a partial mapping

from goals/hypothesis/phenomena/parameters to data collection and analysis methods, we

describe three categories of research/evaluation methods which emobdy different (but not

41 The situation with regard to ITS evaluation is slowly improving as the field matures. Five years ago

reports of un-implemented systems were common; today implementation is almost expected, yet evaluation

is uncommon and usually ad-hock. If this trend continues, within five years some form of evaluation might

be normal, and within ten years the field may boast of principled evaluation based on accepted methods and

metrics.

4JCohen & Howe [1988b, pg. 19] note that “because we are not trying to reduce complex phenomena

to their causal antecedents, we do not need to run large groups of subjects in experimental and control

conditions...analytic techniques...are fundamentally reductionistic, and so are not much use unless one’s goal

is to identify the components of complex [naturally occurring] behavior.”

86

mutually exclusive) research paradigms: formative evaluation, qualitative evaluation, and

case study evaluation. These paradigms are not exclusive, in fact we combine all three in

this study.

Qualitative Research

Though the distinction between qualitative and quantitative seems fairly obvious, it can

be non-trivial to determine whether a study constitutes qualitative research or not. Bogdan

& Biklen [1982, pg. 27] give five features of qualitative research:43 44

• The researcher is the key instrument—subjective judgement is involved in collecting

the data, be it note taking, photographs, videotapes, etc.;

• It is descriptive—the data collected is primarily in the form of words or pictures rather

than numbers, and anecdotal evidence is common;

• It is concerned with process rather than only outcomes or products;

• Data tend to be analyzed inductively—abstractions and theory are built “bottom up”;

and

• “Meaning” is of essential concern—the researcher is interested in the beliefs, attitudes,

and perceptions of the participants/subjects.

Quantitative research, on the other hand, is usually characterized by the traditional

“scientific” research paradigm, including data collection, control of variables, and statistical

or numerical analysis, and is often deductive, intending to prove or disprove a hypothesis.

The traditional scientific research paradigm is a positivist approach, with an emphasis on

facts and the causes of behavior, assuming that one reality or one correct answer exists,

and research is only a matter of measuring it. In contrast, qualitative research assumes

43Not all qualitative research satisfies all of these criteria—it is a matter of degree.

44See [Patton 1980, pg. 88] for a “check-list of evaluation situations for which qualitative methods are

appropriate.”

87

a phenomenological approach, “that the world is not an objective thing out there, but a

function of personal interaction and perception” [Merriam 1989, pg. 17].45 46

Formative Evaluation

Formative evaluation is a process in which empirical data is collected during the devel¬

opment process, and incremental improvements are made to a system based on this data

[Patterson & Block 1987, pg. 26]. Formative methods are often used to “define and re¬

fine...goals and methods during the design process”.[Littman & Solowav, 1988, pg. 210], or

to get more clarity on what the salient issues are in a field of inquiry. Summative evalu¬

ations, on the other hand, test the effectiveness or correctness of a final product, and the

researcher must be fairly clear about the research goals and the range of possible outcomes

at start of the study.

Focus on Qualitative Formative Methods

The discussions above (and in Section 2.3.1) suggest that the traditional scientific re¬

search paradigm is not appropriate for many ITS studies. If it is most important to

document or prove that an ITS system or method “works,” (which is often particularly

important when when the indended audience is a funding agent or the world outside one's

field of research) then summative and quantitative methods may be best. But for ones

research colleagues, who are less concerned with whether “it works” than they are with

which aspects work, which don’t work, and (most importantly) how or why, qualitative and

formative evaluation methods are often most appropriate. Rosenberg [1987, pg. 7] says:

“ITS implementors use primarily quantitative methods. In an area such as tutoring, this is

probably a mistake.” Buchanan [1988, pg. 1] agrees: “...at present time, AI has to be more

concerned with qualitative statements of regularities than statistical statements because the

“Bogden & Biklen [1982 pg. 31] point out, however, that “the irony of it is that scientists in the hard

sciences...do not define science as narrowly as some of those who emulate them.”

46See Glaser & Strauss [1967, especially Chapter 5] for a method for analyzing large corpora of qualitative

data.

88

framework for being more precise does not yet exist.” In addition, Littman Sz Soloway

[1988, pg. 210] suggest that “[since] building ITSs5 is still somewhat of an art...for the

time begin formative evaluation seems more appropriate for designers of ITSs.’ Since we

are mainly concerned with exploring key issues in ITS knowledge acquisition rather than

demonstrating that a particular piece of software or computer curriculum is more effedctive

than brand or method “X,” we use several evalution methods, most of which are qualitative

and formative.

Exploratory Research and Case Studies

Designing a research study requires familiarity with previous related work, accounting

for the results of past studies, and usually using or extending previously applied methods or

metrics. However, in some areas there has been little groundwork and it is difficult to design

research studies. We call such areas “exploratory” areas of inquiry, and call research in these

areas exploratory research. Exploratory areas of inquiry have the following characteristics:47

• there are no generally acknowledged experimental or evaluation methods, standards,

or metrics;

• important issues, tradeoffs, and problem areas are not well documented; and

• little evaluative data is available from previous studies.

Based on these criteria, our study of ITS knowledge acquisition with educators is ex¬

ploratory research. The goal of exploratory research is to better understand the problem, to

discover what the important issues are, and begin to form theory where little or none exists.

The case study method is well suited to exploratory research since it “aims to uncover the

interaction of significant factors characteristic of the phenomena [being studied],” and is

“particularly suited to situations where is impossible to separate the phenomenon’s vari-

47Before committing to do research in such an area the scientist must first determine that the area has

not been ignored because it is trivial, intractable, or unimportant.

89

ables from their context” [Merriam 1988, pg. 10].48 The case study is a research paradigm,

not a specific method, and “what makes [an] inquiry a case study is the decision to fo¬

cus the inquiry around one instance” [Merriam 1988, pg. 44]. In so doing one can collect

data of a more detailed and subtle nature than is possible if one spends the same resources

on many instances. The case study researcher typically immerses himself or herself in a

complex situation and tries to make sense of it—to highlight phenomena and distill cate¬

gories and principles from complex experience, and assumes that “nothing is trivial, that

everything has the potential of being a clue which might unlock a more comprehensive un¬

derstanding of what is being studied” [Bogdan Sz Biklen 1982, pg. 28]. This contrasts with

traditional science in which variables are controlled to minimize uncertainty and obfuscating

complexity.

2.5.3 Evaluation Methods

Below we outline an array of evaluation methods, descriptions of which were found

scattered throughout the AI, psychology, and education literature. We give examples of

each method from the ITS field, describing commonly used methods first, then uncommon

ones. The methods are not mutually exclusive, and are often used in combination. Most of

the methods axe applicable to qualitative research and formative research, but many could

be performed in either qualitative or quantitative contexts, and many could be used as

preliminary tests (which lead to the design of a system), as formative studies (done during

the design of a system), or summative studies (done with a completed system).

An Overview of Common ITS Evaluation Methods

First we describe the four most common evaluation methods used in ITS research:

existence proofs, quantitative studies, semi-quantitative studies, and cognitive studies.49

4®Case studies can be quantitative, but are usually qualitative studies, and Merriam [1988, pg 57] notes

that “a case study design can be used to test theory, but a qualitative case study usually builds theory.

49Some of the methods are described as being less than adequate when used alone. Note that this is not

necessarily a reflection on the ITS study associated with that method because: 1. some studies employ

90

Existence proofs. “Existence proof’ is the term used for a study which bases its

conclusions on the successful performance of a system, and is the most common evaluation

method used by ITS (and AI) researchers. Usually generalizations from existence proofs are

limited because they are not based on an underlying theory (they don’t prove or disprove

anything), don’t mention design tradeoffs or ideas that did not work, and don’t provide

reasons why various aspects of the system did work. Existence proofs usually propose new

architectures or design methods, and if combined with other evaluation methods (such as

cognitive studies, comparison studies, or inductive evaluation, each described below) can

be informative. Sub-categories include:

• Description of a prototype system. Showing that a program achieves its goal behavior

is usually the weakest form of existence proof, and is stronger if the goal behavior is

stated clearly and precisely before the program is built and/or tested. For example,

Burke &: Ohmaye [1990] show that using a case-based approach to tutoring is possible.

• Turing test. By showing that a program simulates human behavior researchers can

argue for the cognitive validity of their systems or show that a program has ade¬

quate knowledge to simulate expertise. Documented human behavior can be used as

a standard, or the system’s output can be judged by outside evaluators to be indis¬

tinguishable (within some parameters) from expert performance. For example, Woolf

[1984] showed that her architecture for planning tutorial discourse could simulate

documented instances of tutoring from three domains.

• Toy domains. A theory or computational model is shown to work in a very constrained

situation. The prototypical example in AI is the “blocks world.” An example from

ITS is Burton & Brown’s WEST tutor [1982] which aimed to teach discovery skills

in the context of a simple computer game. Toy domains are used to eliminate the

large number of variables (some of them uncontrollable) inherent in realistic domains,

so that a general theory can be demonstrated. But generalizations from toy domains

more that one method, and 2. earlier studies were more exploratory in nature and are not expected to be

as methodologically rigorous as more recent ones.

91

should be made with caution because experience has shown that “scaling up” AI

systems is fraught with difficulties [Buchanan 1987].

• Inductive proof. A system is used with multiple (usually a few) domains or users

and an argument is made for its generality. For example, the Byte-sized architecture

[Bonar et al.1986] has been used to build tutors in electricity, PASCAL programming,

economics, and hydrostatics. The strength of an inductive argument rests on the

size and diversity of the successful instances.

Quantitative studies. Though we focus mainly on qualitative (and semi-

quantitative) methods, for completeness we mention some exemplary quantitative sum-

mative evaluations in the traditional scientific paradigm.50 Quantitative studies, thus far

rare in the ITS field, are characterized by statistically significant student populations, ex¬

perimental and control groups, and/or pre- and post-testing.

Excellent examples of quantitative evaluation can be found in many papers by Anderson

and colleagues, and Shute and colleagues. Both of these researchers have shown that learn¬

ing with intelligent tutors can result in significant improvements over classroom learning,

and, equally important from a methodological standpoint, have documented surprises and

“negative” results, as described below.

Typical evaluation metrics include: mastery levels (amount learned), learning rates

(efficiency), retention, transfer and generalization of skills, and the range of learned abilities

across a population. For example Anderson et al. [1985] compared students using the LISP

tutor with students completing similar exercises on their own (both groups received the

same lecture and reading material) and found the the LISP group learned in 33% less time,

and scored 43% higher on final exams. Research does not have to be completely rigorous

to be worthwhile: Bonar et al.’s [1988] study of the PASCAL ITS did not include a control

group, but they compared students using the tutor with records of standard classroom

50The reader is referred to standard text books on statistical and quantitative analysis for descriptions of

quantitative methods.

92

courses and found that it took about three times as long to learn the same material in the

classroom vs. using the computer tutor.

Quantitative studies can also be used to explain individual differences in student behav¬

ior and demonstrate predictive correlations between learning variables. For example, Shute

&: Glaser 11990], in a study conducted with the Smithtown economics tutor, showed that sci¬

entific inquiry behaviors (such as hypothesis generation and testing) were significantly more

predictive of successful learning than standard measures of general intelligence. In another

study of the LISP tutor, Anderson [1990] found that students’ acquisition and retention

abilities explained variance in computer tutoring situations and predicted performance on

paper-and-pencil exams.

Extremely few ITS papers report surprising results or results that contradict the original

hypothesis.51 But sharing such information is crucial if researchers are to learn from each

others’ mistakes. One example a report of unexpected results is Shute’s 19901 study of

two computer learning environments for electricity, one environment supporting inductive

learning and the other supporting deductive learning. Her hypothesis that learning efficiency

would be enhanced in the deductive mode was disproved—she found that there were no

main effects of the learning environment on either learning outcome or learning efficiency.

But she did discover that students with high working-memory capacity performed better

in the deductive environment. In a study of the LISP tutor Schooler & Anderson [1990]

discovered that there was an advantage to delayed feedback in terms of errors, time on task,

and the percentaige of errors that subjects corrected. In another study of the LISP tutor

Corbett & Anderson compared four types of feedback and discovered that feedback did not

affect the mean learning rate or post-test performance. The findings of these two studies

were unexpected and in apparent disagreement with Anderson’s ACT* theory of cognition

51Cohen [1991, pg. 26] found only 12 out of the 150 papers in the 1990 AAAI Proceedings discussed

unexpected or negative results. He lists a number of methodological problems and indicates that they can

be traced to the fact that systems are rarely based on models. “Lacking models of how systems are expected

to behave, we will see no predictions, no hypothesis, no unexpected results or negative results, only assertions

that a system works.”

93

[Anderson 1983], leading the authors to re-interpret how the theory applied to the learning

situations in the experiments.

Semi-quantitative studies of system components (sometimes called “quasi-

experimental” studies). As alluded to previously, ITS researchers do not need to complete

summative tests of the educational impact of full-functioning tutoring systems in order to

contribute to research in the field. Here we list studies that use quantitative metrics to

explore individual factors or features, but do not involve controlled studies, and use data

pools too small to allow statistically significant conclusions.

ITS systems are complex and people are (clearly) more complex, therefore determining

how ITSs will behave in realistic situations can only be accomplished through empirical

methods. For example Murray et al. [1990], in a study of an analogy-based tutor for

remediating physics misconceptions, mapped out locations in an analogy network where

subjects experienced cognitive dissonance and changes in understanding. They found that

most subjects experienced a significant change in understanding when presented with care¬

fully sequenced analogies, and that many did not change until they were given a causal

(molecular) model of the underlying physics of situations.

In some cases the success of ITS components can be evaluated without student pre-

and post-testing. For instance, when the goal of a component is to diagnose student errors

or generate new problems, the “hit and miss rates” can be tested. For example, in an

evaluation of the PROUST system, Johnson [1988] reports that of 206 solutions to the

rainfall programming problem, PROUST analyzed 81% completely (i.e. was able to come up

with a consistent model of the student’s underlying intentions in constructing the problem

solution). He goes on to specify which aspects of student programs the system has difficulty

diagnosing, and to suggest future improvements to the system. Similarly Sleeman [1982]

reports that, in one test, his LMS system’s “mal-rules” were able to account for 12 out of

27 incorrect student solutions to algebra problems.

Also, researchers can analyze how users utilize various features of a tutor. Winkels et

al. [1986] report on a detailed analysis of the frequency with which students use various

94

Unix-mail commands from one coached session to the next. Similarly, Kimball [1982], in an

evaluation of a tutor for symbolic integration, reports on student use of help and assistance

features, and on the program’s ability to recognize points in the tutorial where the student

learned something new.

Cognitive studies and task analysis. Perhaps the most commonly used research

method in ITS is observing the behavior of domain teachers (or experts) and students (or

novices). Usually such studies are used to inform the design of the tutor rather than to

test a theory of expertise, instruction, or learning, so they are not evaluation methods per

se. (See our discussion of cognitive and task analysis methods for knowledge acquisition

in Section 2.4.2.) Evaluation of a computer tutor occurs when the tutor is tested and on¬

line results are compared with studies of human behavior. Two types of task analysis are

discussed in the literature: procedural task analysis and cognitive task analysis.

Procedural task analysis (usually called “task analysis” or “rational task analysis”)

involves studying the behavior of an expert to generate a formal procedural representation

of some skill, and has long been used to identify and classify elements of expertise for the

purpose of instruction [Gagne 1974], More recently, cognitive task analysis is being used

to infer the goals, attitudes, rules, and underlying cognitive structures or models of experts

[Bonax & Soloway 1985, Means & Gott 1988, Lajoie 1986, Payne 1988].

Cognitive analysis has also been widely used to describe the mental structures and

misconceptions that students or novices bring to the learning task [Clement 1982, Koedinger

& Anderson 1990, Cerri 1988, VanLehn 1988, Littman & Soloway 1988]. Procedural and

cognitive task analysis have been used to study instructional expertise as well as domain

expertise [Winkels et al. 1986, Lewis et. al 1990, Collins & Stevens 1990, Lepper & Chabay

1988, Leinhardt &: Greeno 1986].

The most common methods for task analysis are audio or video taped problem solving

sessions, clinical interviews, and protocol analysis.

95

A Compendium of Less Common ITS Evaluation Methods

Below we describe less common evaluation methods that are applicable to ITS research.

Outside Assessment. Though outside assessment is not usually a proof of anything,

the opinions of experts, or of a large number of users or potential users of a system, does

carry some weight, and it can be significant if there is agreement. Sub-categories include:

• On-site expert evaluation. Experts observe and assess the behavior of the system,

for example, several teachers observe students using an ITS and rate its teaching

effectiveness. Both structured and informal means of gathering data are possible.

• Panel of experts (sometimes called a “blue ribbon panel”). A select group of experts

is questioned by convening them or though correspondence. This method can be used

in the proposal stage of a research project to substantiate the importance of a prob¬

lem statement or the feasibility of an experimental approach, or can be used after a

study to document the acceptance or feasibility of one’s conclusions. A hyperbolic

example is the following: documenting that 80 % of the editorial boards of the Arti¬

ficial Intelligence and Cognitive Science journals believe that your research problem

is “highly significant” and your approach is “feasible,” which would argue heavily for

the importance of a study, and thus the importance of the conclusions.

Comparison studies. “Comparison study” refers to a broad class of methods which

compare (note similarities and differences between) the behavior or design of a system vs.

some standard or other system. It is important to compare one’s work with previous work,

and comparisons with other systems are often invoked in ITS papers. However comparisons

usually only serve to put one’s study in context with previous work and do not add new

knowledge to the field. Comparisons are strengthened if they include qualitative or quan¬

titative data and detailed comparisons of program function adit y, behavior, or educational

effects. Sub-categories include:

96

• Gold standard.52 Judge system performance against a well known successful case or

standard. For example, Ford [1988] evaluates his tutor in the Highway Code domain

by determining how well it lives up to a fifteen-criterion definition of “intelligence” in

ITSs suggested by Self [1985b].

• Theoretical corroboration. Arguing or proving at a theoretical level that other systems

can be simulated using a new (usually more general) system argues for the generality

and extendibility of an approach. For example, Dillenbourg [1988] proposes a three

dimensional system for classifying ITSs, and describes how his PRO-TEG system and

six other ITS’s compare using this scheme.

• Empirical Corroboration. In a field as complex as ITS empirical evidence of one’s

claims is usually needed. Empirically demonstrating that the features or tutoring

behavior of an ITS accounts for that of another system establishes a provable base

line.

• Duplication. Simulating the behavior of another system (for example, showing that

an ITS can be configured to simulate Anderson’s LISP tutor) cam establish a base line

from which to extend the findings of previous work.

Internal Evaluation. Internal evaluations [Littman & Soloway 1988] study the re¬

lationships between a program’s architecture and its behavior, and often involve in-depth

analysis of program traces and data structures. Sub-categories include:

• Knowledge level analysis. Addresses the question: what could a program infer from

its knowledge structures assuming unlimited inferencing capability (i.e. arbitrary algo¬

rithms)? For example, in his GUIDON project Clancey [1982] analyzed the structure

of the domain and control knowledge in the MYCIN expert medical diagnosis system.

He determined how limitations in the knowledge representation would limit its effec¬

tiveness in computer tutoring. As a result of his analysis he re-designed the system

(to make NEOMYCIN) so that it would support tutorial reasoning.

52Term borrowed from Cohen & Howe [1988a].

97

• Process analysis. Addresses the question: how do a program’s algorithms determine

and limit its behavior? For example, Littman & Soloway [1988] analyze the limitations

of what the PROUST system can infer about the student, based on how it represents

and diagnoses the programming task (and the student’s model of programming). They

analyze cases were PROUST could not completely diagnose students’ programs and

give recommendations for how the system could be improved to accommodate these

failures.

• Ablation and substitution experiments [Cohen & Howe 1988a]. A part of a system

(a component, feature, rule, etc.) is removed (or replaced with a more primitive

version) and one observes how the system’s performance is affected. It is usually

clear that performance will suffer, but exactly how and how much it suffers can be

surprising, and yield information about the knowledge or inferencing capabilities of

the components. For example, Corbett & Anderson [1990] conducted a study in which

the feedback mechanism of the LISP Tutor is altered or removed. They report on the

effects to student mastery, learning time, and attitudes (self-perception, confidence,

and enjoyment).

Miscellaneous off-line testing. “Miscellaneous off-line testing” refers to methods

(not mentioned in other categories) that do not directly use the computer or the program

under study.

• Debriefing interviews, user questionnaires, and surveys. Questionnaires and surveys

can be used in interview form or via a written questionnaire (useful when collecting

data from many people). They are often used to collect data about the reactions and

beliefs of users before and/or after a study; for example, Schofield and Verban [1988]

interviewed students and teachers involved in a study of Anderson’s LISP tutor to

discover barriers and incentives to using computers in schools.

98

• Wizard of Oz experiments. Using a person to simulate the behavior of a proposed

system53 can test aspects of a program design before the effort is expended to imple¬

ment it. For example, Sandberg et. al. [1988] collected data to inform the design of

an intelligent help system for a text editor by having an expert assist a user (novice)

by communicating via a low bandwidth terminal setup that attempted to constrain

the expert to act as the proposed computer tutor would.

• Matching, ranking and sorting tasks. Subjects are presented with stimulus (often on

cards, unless the task is automated) and asked to match, rank, or sort them. Such

tests are useful to ascertain categories or relationships that a person uses implicitly,

but does not have explicit knowledge of.

2.5.4 Summary of ITS Evaluation Methods

ITS research takes place in the midst of great excitement and promise, yet also in the

midst of great complexity and uncertainty. Principled evaluation of ITS systems, though

important, is unfortunately uncommon. Discussions of evaluation methodologies and de¬

scriptions of tradeoffs among evaluation methods are also rare in the ITS field—which

motivated us to compile descriptions of a number of paradigms and methods applicable to

ITS evaluation. In this Section we first described several research/evaluation paradigms:

qualitative (vs. quantitative), formative (vs. summative), and case study. We suggested

that formative and qualitative methods are most appropriate for most ITS research and

we described how case study methods fit the needs of “exploratory research.” Then we

described a compendium of evaluation methods, summarized in Figure 2.4, giving examples

from ITS research. It is hoped that our presentation will 1. stimulate additional discussion

about ITS evaluation, and 2. inform interested readers of the wide variety of methods they

can use.

Though we have recommended that formative and qualitative studies be used when the

audience is one’s research colleagues, since evaluation is so uncommon it is more important

53Interestingly, computers are usually used to simulate human performance, but here one does the opposite.

Existence proofs

- Description of a prototype system

- Turing test

— Toy domains

- Inductive proof

Quantitative studies

Semi-quantitative studies of system components

Cognitive studies and task analysis

Outside assessment

— On-site evaluation

— Panel of experts

Comparison studies

- Gold standards

- Empirical corroboration

— Theoretical corroboration

- Duplication

Internal evaluation

— Knowledge level analysis

— Process analysis

- Ablation and substitution experiments

Miscellaneous off-line testing

— Wizard of Oz experiments

- Matching, ranking, and sorting tasks

- Questionnaires and surveys

Figure 2.4 Evaluation Methods

100

to pick any evaluation method suted to the research questions that one is comfortable with

and use it.

The key to turning ITS systems building into research can be summarized as follows:

1. be clear about why you are building a system and relate your work to previous work;

2. record design decisions and what works and doesn’t work as you build a system;

3. use a system in ways that challenge its performance;54

4. report unexpected and “negative” results (“air the dirty laundry”) as well as successes,

and describe why a system works (if it does at all) and why it doesn’t work in some

situations; and

5. generalize results beyond the specific application.

2.5.5 KAFITS Evaluation

As mentioned above, our study combines several evaluation paradigms: it is a case study

and a formative evaluation, and it incorporates primarily qualitative evaluation methods,

though some quantitative analysis is done. Our major source of data was (field) notes

(as in most case studies). We also collected data from computer traces of student runs,

traces of domain expert editing sessions, and paper worksheets used by the domain expert.

Though most of the analysis is of the field notes and program traces, we employ a number

of other evaluation techniques to get a bearing on important issues from several directions,

as described below.

The study also constitutes an existence proof that a knowledge acquisition interface

can be used by a teacher to build an intelligent tutor, and it constitutes a weak inductive

proof of the usability of the interface, since three users were involved. We performed some

54Cohen & Howe [1988b, pg. 9]: “by testing a program at its known limits we can better understand

its behavior...we can push its limits by providing imperfect data...restricted rescources...and perverse test

cases.”

101

quantitative analysis involving a number of variables, such as the size and complexity of

the knowledge base, the time it took to complete various design steps, and the total devel¬

opment time per hour of on-line instruction (see Section 5.3.2). In addition, we included

a comparative analysis of KAFITS vs. other generic tutorig systems in Section 2.1. Also,

we conducted an audio tapped debriefing interview at the end of the study (described in

Appendix C) and tested the statics tutor on about 20 subjects as part of the evaluation, as

described in Section 5.2.

Chapter 3

DESCRIPTION OF THE KAFITS SYSTEM

In this chapter the KAFITS system, including the domain and strategic knowledge bases,

the underlying knowledge representation and control mechanisms, the user interfaces, and

the student model, are described. Though the system evolved over the duration of the case

study, we describe it here in its final state, and in Chapter 5 we discuss how the system

changed in response to feedback from users. We describe the KAFITS system first, then

the research method (in the next chapter) because some familiarity of the system is needed

to understand the description with the research methodology. Note that included in this

chapter is a description of the interface for creating and modifying tutoring strategies, a

prototype of which was built, but not tested with the domain expert. All other components

described were used by the domain expert.

3.1 Description of the Representational Framework

3.1.1 Domain and Strategic Knowledge Bases

The KAFITS system is designed to represent pedagogical knowledge—i.e. knowledge

related to teaching and learning in domain. Pedagogical knowledge includes how to teach

the content, examples of concepts, questions that determine subject mastery, hints for

questions, knowledge about prerequisites, common errors, etc. KAFITS is designed to

represent expertise in teaching a domain—not expertise in solving problems in a domain

102

103

(i.e. pedagogical knowledge is distinct from performance knowledge).1 As in many tutoring

systems we impose a clear separation between the domain-dependent knowledge (the domain

knowledge base) and the engine that interprets this knowledge [Clancey 1982]. Unlike

most tutoring systems we represent strategic knowledge (i.e. tutoring strategies and rules)

explicitly and declaratively (i.e. in data structures rather than Lisp code) in a strategic

knowledge base (see Figure 1.2).

Strategies specify how to use the domain knowledge base content. For example, the

domain knowledge base contains information about topics and about relationships between

them (the topic network) and strategies in the strategic knowledge base define how to tra¬

verse this network when tutoring (see Figure 1.2); the domain knowledge base contains links

between topics and numerous “presentations” having different functions (such as giving ex¬

amples, introducing a topic, etc.) and the strategies determine which of these presentations

will be used, and in what order; the domain knowledge base contains information for giving

hints, revealing the correct answer, and strategies determine how and when to use this in¬

formation. The strategic knowledge base is quasi-domain independent, i.e. some strategies

axe intended for any instructional domain (i.e. any domain knowledge base content) while

others are designed to work for specific curricula.

3.1.2 Object-Oriented Representation

The representation of the domain knowledge is object-oriented. The object-oriented

paradigm allows knowledge to be used for multiple purposes, facilitating modularity and a

reduction in information redundancy [Bonar et al. 1986]. For example, the knowledge in

KAFITS needed to define, summarize, test, remediate, give an example of, and/or teach

a KAFITS topic is stored in close association with the topic. As in the Byte-sized Tutor

[Bonar et al. 1986], teaching strategies and student modeling methods can be inherited and

associated locally with the topic and presentation objects. We describe the objects in the

KAFITS system below, in order of importance.

'However, it is possible to combine a domain expert system with a KAFITS-based tutor.

104

Topic: Gravity

Type: Concept
Prerequisites:
Parts:....
Summary:....
Motivation:....
Definition:....
Remember-level:.
Use-easy level:
Use-typical level:....
Diagnostic-questions:...
Critical-misconceptions:..
Wrap-up:...
Local-strategy-restrictions

Presentation: Gravity-easy-1

Type: Multiple-choice
Intro-text:
Diagram-set-up: ...
Question-text:....
Answer-descriptions:...
Correct-answers:....
Answer-reason:...
Hints: ...
Congratulate: ...
Challenge:...
Elaboration:...
Give-away:....

Figure 3.1 Topic and Presentation Attributes

Topic. Topics represent units of knowledge that can be taught, remediated, summa¬

rized, etc. (see Figure 3.1 for the attributes of topic objects). They are categorized according

to content type, for example concept, fact, or procedure. Each topic has several performance

(and mastery) levels associated with it (adapted from Merrill’s [1983] Performance-Content

matrix, as described in Section 2.2.4). Topics have pointers (including various types of

prerequisite, part-of, and related-misconception links) to other topics, forming a topic net¬

work (as in Figure 1.3). Topics have pedagogical information such as summary, motivation,

examples, etc., that reference presentation objects (see the arrow in the figure).

Presentation. Presentations specify expository or inquisitory interactions with the

student (see Figure 3.1 for the attributes of presentation objects). They are composed of a

task (such as a multiple choice question or problem solving exercise) and an environment

for doing the task (such as a picture or a simulation of a physical system). Presentations

also contain the breadth of possibilities for responding to the student, such as hints, con¬

gratulations, elaborations of answers, etc.

Mis-KU. Buggy student knowledge is represented in Mis-KU objects (mis-knowledge

units). Mis-KUs represent misinformation (wrong facts), misconceptions, and buggy rules

105

or procedures. Mis-KUs contain information pertaining to diagnosing themselves, and re¬

mediating themselves.

Lesson. Lesson objects are pedagogically motivated groupings of topics reflecting a

particular pedagogical view or goal. They are used to define high level goals for a tutorial

session. Typically, a lesson specifies a small number of goal topics, and a default strategy

to be used for the session. Lessons provide a level of abstraction or large granularity for

incorporating the “glue” between topics [Lesgold 1988].

Example and Question. Examples and Questions axe objects that allow for more

flexible Presentations. Examples set up an environment or situation for the student, such

as a simulation, a picture, a set of tools, etc. Questions give the student a task, such as

a multiple choice question, a problem to solve, or simulation manipulation to carry out.

Normally, presentation objects automatically incorporate the slots of an example and a

question, and example and question objects are not needed. However in some cases the

situation or task is re-used. For instance, there are many possible tasks that could be given

to a student for a single situation (such as a specific blocks world set up). Conversely,

a single task (such as the question “Which force is greater?”) could be presented in a

variety of situations. To reduce redundancy, each task or situation can be defined once, and

presentations can consist of a paired example and question.

Storage-unit. Storage-units axe objects used to store static global information that

otherwise would reside in computer code and be inaccessible to the user. {Random-text}

is one object of type storage-unit. A random phrase from a set of similar text items is

returned by a computer function that that takes a keyword as input (for example, given

:GREETING it returns a random item from “hello,” “hi there,” “hi,” or “greetings ’). These

random text strings are incorporated into some strategy actions (such as Tell-correctness,

which can say “you are right,” “that is correct,” etc.). The user can modify these items or

create new random text items by using the Browser to edit the {Random-text} instance.

2There is a slot for each keyword, and the contents of the slot is a list of text items.

106

With storage-units the user can have ready access to a wide variety of system parameters

that would otherwise be inaccessible parts of computer code.

Other objects. The KAFITS framework incorporates three other types of objects:

pictures and sounds, which contain information allowing the tutor to incorporate graphics

and sound, and crane-booms-setups, which specify configurations of the simulation.

3.1.3 Layered Decision Model

Various schemes for organizing tutorial expertise in computer tutors have been proposed.

Clancey [1982] used networks and a production rule formalism to identify admissible instruc¬

tional actions. Woolf [1984] used a three layer “transition network” which defined states

(“pedagogic states” “strategic states” and “tactical states”) and default state transitions.

Similarly, Breuker et al. [1987] used a three layer control structure having goals, strategies,

and tactics. Others have described the decisions as falling into the categories “what to say,”

“when to say it,” and “how to say it.”3 All of these schemes include some form of layered

system going from abstract to more specific decisions until a concrete decision is made. Our

scheme is a decision model related to the above schemes and to instructional design theory.

It is designed to be understandable to instructors and to be easily assimilated into their

model of pedagogical decision making.

Instructional theory typically divides instructional methods into the micro level (how to

teach a single instructional emit) and the macro level (selection, sequencing, and synthesis

of instructional units) [Reigeluth 1983a]. We use a refinement of this perspective, consisting

of four decision levels. The macro level is refined into a lesson level and a topic level (see

Figure 3.2). The micro level is refined into a presentation level and a response level. In

the control structure of the program, these decision levels are nested control loops. One or

more topics contained in each lesson, one or more presentations in each topic, and zero or

more tutor responses to the student’s response to each presentation.

3Since we are not concerned here with issues of discourse or natural language generation, text is ‘canned

or template text, and “how to say it” issues are bypassed.

107

Figure 3.2 Four-Level Decision Model

Lesson level. At this level decisions are made concerning the high level goals of

the instructional session. The need for a lesson level is supported by Reigeluth’s [1983b]

description of “sets” of topics taught together according to a specific type of knowledge type

relationship, introduced with an “epitome”, and followed up by a “within-set-synthesize,”

which relates the topics in a lesson.

Topic level. The topic decision level deals with choosing which topic to teach next.

For instance, teaching strategies at the topic level determine which path is taken to traverse

the topic network. Decisions about comparing, contrasting, synthesizing, introducing, and

summarizing topics are made at the topic level. Decisions about remediating misconceptions

are also made at this level.

Presentation level. The presentation decision level deals with the selection and se¬

quencing of presentations such as analogies, definitions, examples, graphics, and simulations.

Response level. The response decision level deals with sequencing low level tutorial

transactions, and with how to respond to the learner’s actions, including the quantity and

type of feedback to be provided.

108

The four-layer decision model determines the default behavior of the tutor, but the

tutor is not constrained to follow this model, there are several ways to override it. First,

the student can interrupt the session to go back, skip forward, or jump to another part of

the curriculum. Second, the designer can specify a local branch for remediation (to another

part of the curriculum) associated with a particular student response. Third, evidence for

misconceptions can accumulate and the tutor periodically diverts the session to remediate

the pending or suspected misconceptions. Lastly, meta-strategies determine at a global level

when to switch from one tutoring strategy to another.

3.1.4 Object Mixins

KAFITS uses a “flat” hierarchy and “mixins” to organize its object types. This method

contrasts with a strict hierarchical organization of objects in an inheritance network, a

method which was implemented in our early design of KAFITS and is often seen in frame

and object-based AI systems. Before describing the method we eventually used, we describe

the more standard hierarchical approach, and why it was rejected.

In the hierarchical classification paradigm each object type has a parent (or class or

super-type) and zero or more children (or sub-classes or sub-types), forming a tree structure

(see Figure 3.3). The leaves of the tree contain instances. Each object is a specialization

of its parent, inheriting the parent’s properties (slots, slot values, methods) and having

a few properties specific to itself. For instance, a top level class could be “topic,” with

sub-types of topics called concepts, skills, facts, etc. (see Figure 3.4). Each sub-type could

in turn have its own sub-types, such as procedural-skills and problem-solving-skills, and so

on, making further distinctions, such as the subtraction-procedure and the long-division-

procedure. Such an organization has the advantages of procedural inheritance. For instance,

default Summarize and Diagnose procedures could be defined for all topics, and each sub¬

class could specialize this procedure to its own needs. However, this way of implementing

object inheritance was replaced with a flat hierarchical “mixins” scheme because the flat

109

Figure 3.3 Hierarchical Object Organization

(Not implemented in the final system)

110

Key:

Figure 3.4 Flat Hierarchy for Minns

hierarchy is less complex, more easily implemented, and more understandable to teachers

(and we did not need the additional power afforded by the strict hierarchical scheme).

In a flat hierarchy there are only two levels. The top level contains the main object types

and mixins for the types; and the lower level contains the instances. Minn objects are like

other objects, except their sole purpose is to be combined with other objects (i.e. the slots

and methods of the mixin axe added to the object). Each instance has one main parent

(an object type) and specializes the attributes of this parent by adding the attributes of

mixin objects designed to be combined with the object type. For example, in Figure 3.4 the

topic object type has mixins that modify the basic topic object with attributes for concepts,

difficult topics, etc. The Force topic in the figure is a difficult scientific concept having three

mixins.4 The user specifies a set of mixins when a new instance is created.

* Note that Figure 3.4 is only an illustration of how mixins work, and does not reflect the mixins in

KAFITS. In fact the topic types in KAFITS are indicated by a “topic-type” slot.

Ill

3.1.5 Representing Curriculum Structure

Our representation of curriculum includes topics categorized according to knowledge

type, several types of topic relationships, and performance and mastery levels within the

topics. Borrowing from Merrill [1983] we distinguish content types from performance levels

(see Section 2.2.4). We implement content types as node types in the topic network and

implement performance levels as levels within each topic. For example the topic “gravity”

is of type concept and the designer can specify presentations for the remember, apply-use,

and problem-solve levels within it.

Topic Types. Our knowledge type categorization distinguishes “basic” vs. “complex”

knowledge. Basic knowledge types correspond to the content types in the Modified PC-

matrix described in Section 2.2.4 (facts, concepts, procedures, and principles). Complex

knowledge types, such as mental models and physical intuition, (see Figure 2.2) are loosely

defined as any type of knowledge not accounted for in the Modified PC-Matrix. Nodes in

the topic network axe classified as: fact, concept, procedure, principle, complex, composite,

synthesizer (there are no synthesizers in the statics topic net), or Mis-KU5 (misconception)

(see the key in the lower left of Figure 1.3). Facts, concepts, procedures, and principles are

defined in Appendix B. Composite nodes represent a collection of topics of different types.6

For example, Linear Equilibrium is a topic of type composite; it is composed of three

parts, LE-intuition, LE-concept, and LE-principle. Synthesizer nodes are used to represent

a relationship between two topics (such as a comparison of two topics—see description in

Section 5.4.3).

Topic Relationships. Links between nodes in the topic network indicate relation¬

ships between topics. There are three basic types of topic relationships: critical-mis-ku,

part, and prerequisite. We found it necessary (as explained in Section 2.2.7) to further

refine the prerequisite relationship into five types of prerequisite relationships, depending

5Mis-KUs are not a topic per-say, since they are represented using a their own object type.

6Normally a topic has parts of its own type, for example, a concept has sub-concepts as its parts, and a

procedure has sub-procedures as its parts.

112

on how shallowly or fully a topic’s understanding is needed: familiar, deep-familiar, easy,

typical, and difficult. The first prerequisite level, familiarity, indicates that the student

must only have been introduced to (given a summary, definition, or example of) the pre¬

requisite topic. We also found the need for a “deep familiarity” prerequisite, meaning

familiarity with a topic and all of its parts. There are prerequisite relationships for each

mastery level (eg. {Linear-equilibrium-intuition} is an easy level prerequisite of {Free-body-

problem-solution}). Tutoring strategies (at the topic level) use the node and link types in

determining the order in which to present topics.

Topic Levels. Our modified PC-matrix distinguishes these “performance levels:”

meta-knowledge, remember, use-apply, use-problem-solve, and create. In designing the

topic network for statics we found that the knowledge referred to by some topics was lim¬

ited to a single performance level (“use-apply”), and in these cases we needed another way

to distinguish levels of performance. As a solution we include “mastery levels” for each

performance level. We allow three mastery levels (easy, typical, and advanced) for each

performance level. Mastery levels make the student model more precise and have allowed

us to simulate “spiral teaching,” as described (in Section 5.4.3). The performance and

mastery levels are implemented as slots within each topic (see Appendix H). Though the

statics tutor uses only five performance/mastery levels (remember, use-easy, use-typical,

use-difficult, and meta-knowledge) many more are possible, up to a maximum of three

mastery levels for each performance level in Figure 2.2.

3.1.6 Conceptual Vocabulary

Representing Tutoring Expertise

We have been involved in an ongoing effort (see Section 5.4.1, and Murray [1987])

to define a set of representational primitives (a conceptual vocabulary) for describing the

objects, attributes, and events of tutoring. Tutoring strategies (regardless of whether they

are represented as rules, decision networks, strategies, etc.) involve conditional actions

113

(IF/THENs).7 We are converging on a limited vocabulary for the antecedents (i.e the “IF”

parts, sometimes called predicates or situations) and the consequences (i.e. the “THEN”

parts, sometimes called actions or results) of strategic decisions. Our goal is to develop a

vocabulary that is complete and expressive enough to adequately represent the majority of

the domain expert’s strategies, and conceptually simple enough to allow domain experts to

formalize their knowledge in a language that is intuitive and comfortable (see Section 5.4.2

for a discussion of the tradeoffs in designing expressive yet simple vocabularies).8

Antecedents. There are four types of antecedents: curriculum-characteristics (eg.

factual-topic, difficult-question), discourse-parameters (eg. many-examples-were-given,

last-question-was-wrong), student-model-parameters (eg. knows-topic, has-misconception,

prefers-explanations), and internal system parameters (such as the PAN switches described

later) which are variables that keep track of internal system states for control purposes.

Therefore the conditional parts of rules are written in terms of characteristics of the content,

the state of the discourse, the state of the student model, and internal system parameters.

Consequences. There are two types of consequences: assertions that assert a fact or

value (IF xx THEN ASSERT yy, or IF xx THEN SET yy to zz), and actions that result in

observable tutorial behavior (IF xx THEN DO yy). The conceptual vocabulary includes a

set of primitive tutorial actions, such as Hint, Define, Remediate, etc., some of which are

shown in Figure 3.5.

Elements of the Conceptual Vocabulary

The KAFITS framework was designed through a combination of experience with educa¬

tors, taped interview studies (Section 5.4.1), and considerations from instructional design

7In the KAFITS system tutoring strategies are represented in action networks, as described in the next

section, but this discussion is intended to apply to any scheme for representing tutorial expertise.

8 At this time tutorial goals are not explicitly included in our strategies because this additional complexity

was not needed. However, some studies have indicated that complex tutorial decisions are goal-oriented

[Stevens & Collins 1977], therefore goals and plans may be included at some future date.

114

Response level actions:

Topic level actions:
• Set-up-environment

• Teach
• Introduce-task

• Motivate
• Ask-question

• Summarize
• Give-reaction

• Define
• Congratulate

• Teach-prerequisites
• Challenge

• Teach-paxts
• Give-hint

• Diagnose-critical-
• Reveal-answer

misconceptions

• Diagnose-topics-knowledge
• Give-answer-reason

• Give-examples
• Elaborate-on-answer

• Wrap-up
• Encourage

• Tell-whether-correct

Figure 3.5 KAFITS Primitive Discourse Actions

115

Figure 3.6 Elements of the KAFITS Conceptual Vocabulary

theory (Section 2.2.7).9 The KAFITS conceptual vocabulary consists of the names of the

entities, properties, and relationships used in the system, and is the language in which

knowledge about curriculum and teaching is expressed. Technically, the KAFITS “frame¬

work” consists of the conceptual vocabulary plus a structure specifying how the things in the

vocabulary are related or structured. For example “topic level” and “presentation level”

are part of the vocabulary, and the Four-level Decision Model which defines how these

levels are related is part of the structural framework; “topic” objects and “presentation”

objects are part of the vocabulary, and the fact that topics reference presentations to specify

interactions with the student is part of the structural framework.

The conceptual vocabulary consists these categories of entities: decision levels, object

types, object’s attributes (slots), strategy parameters, and strategy actions, as illustrated in

9See Section 3.6 for a discussion of extending the framework and conceptual vocabulary.

116

Figure 3.1.6.10 11 The names in several of the categories overlap (which can cause confusion

when first learning about KAFITS), as illustrated by the numbered dots in the figure. For

example, dot “1” illustrates that “Motivation” is a topic slot which contains canned text,

“Motivate” is a primitive action which uses this canned text, and “Motivate?”is a PAN

switch used in strategies to indicate whether motivation should be given. Figure 3.1 shows

the attributes of topic and presentation objects.

3.1.7 Strategy Representation

Strategic information in KAFITS is represented with parameterized action networks

(PANs). We first describe action networks, then parameterized action networks.

Our work on action networks is an extension of earlier work on discourse action networks

[McDonald et al. 1986] and tutoring action networks [Woolf & Murray 1987]. Action

networks have the look of conventional transition networks with “nodes” (states) and “arcs”

(predicates) as one would find in ATNs [Woods 1970]. However, “actions” are used in

the place of states, and “situations” (groupings of predicates) are used in the place of

predicates. The motivation to modify the ATN architecture (as employed in Woolf [1984])

by replacing states with actions was based on the observation that ATNs were designed

for natural language parsing and are non-deterministic.12 Non-deterministic of uncertainty

has no counterpart in discourse generation, which requires a planning rather than a parsing

formalism [McDonald et al. 1986]. In ATNs, arcs represent predicates which can have

10“Curriculum Representation” elements are also shown, which include node types, topic relationships,

and topic levels. Topic relationships and topic levels are topic attributes. Most node types correspond to

the topic-type slot and some correspond to object types (such as Mis-KUs and Synthesizers).

11A more complete conceptual vocabulary for ITSs could include these additional categories: explanation

types (eg. behavioral, causal, component, attribute, etc. [Stevens & Steinberg 1987]); types of student

inquiries (eg. what/how/why, action/event/state [Gilbert 1987]); and types of examples (eg. extreme case,

near miss, anchors, analogies [Murray 1988]).

12Nodes in the ATN formalism represent accepted definitions for incoming tokens and arcs represent tests

made on those incoming tokens. Non-determinism was motivated by uncertainty or the need to wait for

an accumulated global interpretation before the system could be confident about the local interpretation of

each token being scanned.

117

side effects and can expand recursively (invoking other ATNs). Both of these features were

needed for language recognition, but are not necessary for discourse planning.

In contrast to ATNs, in action networks the arcs (situations) represent Boolean com¬

binations of predicates, and are not allowed to have side effects. Also, in action networks

the nodes can expand recursively (invoking other networks) as in classical and hierarchical

planners [Sacerdoti 1974].13

The left side of Figure 3.7 shows the Give-Feedback PAN. Lozenge-shaped nodes repre¬

sent actions and arcs represent situations. After an action is completed all arcs emanating

from that node are evaluated to determine which arc “passes” (using a conflict resolution

scheme if several arcs pass), and program execution continues at the action pointed to by

the arc that “passes.” Oval nodes, such as the Congratulate node, represent calls to other

action networks. Small circular nodes are either Empty nodes or Exit nodes. When control

is passed to an Exit node (or when no arc emanating from the current action passes) the

PAN is exited and control is returned to the PAN that called it (if there is one).

Arcs can be of several types: Always, Else, predicates, or Boolean combinations of

predicates (using And, Or, and Not). The predicates refer to (1) the student model (for ex¬

ample, student-knows-topic or response-ok), (2) characteristics of the domain (for example

task-is-difficult, or topic-is-conceptual), or (3) “switches.” Switches define the parameteri¬

zation of the network and constrain the possible paths through the PAN. A set of switches

called “Helpful” is shown in the middle of Figure 3.7. Switches are either on or off. A

set of switches with a particular setting is called a “switch register.” For example, the

Helpful switch register is defined to congratulate, but not challenge, the student. Notice

that some of these switches correspond to predicates in the Give-Feedback PAN. When the

Give-Feedback PAN is combined with the Helpful switch register, the action network shown

13We have chosen not to implement the classical top-down goal reduction type of planner for two reasons.

The first is Occam’s Razor. We have not yet encountered the need to incorporate all the power of classical

planners, such as backtracking, constraints on actions, and reasoning about subgoal interaction. The second

reason stems from our goal of conceptual simplicity and usability. Action networks, with their intuitive

flow-chart like appearance, are easier for the domain expert to create, modify, monitor, and conceptualize

than the plan operators of classical planners.

118

"Helpful"

S ELABORATE

□ CHALLENGE

13 REACTIONS

□ ONE-HINT

S HINTS

□ GIUE-REASON

0 GIUE-AIUHV

□ CONGRATULATE

g]TELL-CORRECTNE$S

□ ENCOURAGE

Figure 3.7 PAN 4- Switch. Register = Strategy

to the right in the Figure results.14 Thus, a “Strategy” is defined as a PAN combined with

(constrained by) a switch register.

Parameterized Action Networks

Parameterizing action networks allows many alternative strategies to be represented

using a single PAN. Rather than defining new action networks for each tutoring strategy,

generic action networks are instantiated in multiple ways depending on the context at run

time. For example, three of the arc tests in the Give-Feedback network correspond to

switches: encourage, congratulate, and tell-correct. There are six different possible on/off

combinations of these switches. Rather than defining six separate action networks, one for

each case, we can define one PAN and six switch registers to cover all of the possibilities. The

uThe resulting action network to the right in figure 3.7 is an illustration of how the Give-Feedback PAN

behaves when the Helpful switch register is active. The resulting action network is not actually instantiated

by the system. The Give-Feedback PAN is traversed by the system according to the values of its predicates,

some of which depend on the current state of the student model, and some of which (the switches) depend

on active switch registers.

119

domain expert can more easily create a new switch register than another action network.

Also, having fewer action networks cuts down on the size of the strategic knowledge base

and commensurate knowledge management problems.

The above explanation has included a simplification that we now remove. Actually, a

switch register is associated with a set of hierarchically connected PANs, called a PAN*

(“pan star”). The PAN* associated with a PAN includes the PANs it calls, plus all the

PANs they call, and so on, recursively. For example, there are eight PANs in the PAN* for

the Default Response Strategy (one of which is the Give-Feedback PAN), and four PANs in

the PAN* for the Default Topic Strategy.15 A switch register is defined for each PAN*. This

explains why there are more switches in Figure 3.7 than are needed for the Give-Feedback

PAN. A Strategy, then, is a PAN* combined with a switch register.

PANs vs. Production Rules. Action networks borrow features from production

system formalisms as well as from network formalisms. Situations (multiple predicates) are

associated with actions (nodes), in the manner of a production system. Discourse context

is encoded in the structure of the network. Every situation (arc) implicitly includes as

one of its constituent predicates the actions (nodes) from which it came. As in production

systems, if multiple situations are true, a conflict resolution scheme is used to determine

the next action. The single notational framework has the flexibility of a production system

and the contextual record-keeping ability of a network formalism.

Though production rules are well suited for making assertions (IF xx THEN ASSERT

yy), they can be awkward or unwieldy for representing control information (IF xx THEN DO

yy) [Clancey 1986, Lesser 1984]. They obscure the difference between control and strategic

information, and hide the structure of the strategic knowledge. Control information elicited

from human experts often has a clearly defined structure. This structure is lost in the

extremely modular format of production rules. Also, context is often important in rules

elicited from humans. Structure and context are incorporated into production rules by

15The PANs for the default strategies are not shown here. Recall that there are strategies for each of the

four Decision Levels. Unless otherwise specified, a “default strategy” is used at each level.

120

using ad-hoc antecedents or goals, but such information corresponds to the programming

or implementation level of design, and is irrelevant to the cognitive level of design. Users

should have a conceptually sound view of a system’s control information and should not have

to deal with information or decisions at the implementation level [Gruber 1987]. Structure

and context axe represented explicitly in PANs, i.e. the possible actions before and after an

action are clearly indicated.

As an illustration, the arc that goes from the Positive-Encourage node to the Congrat¬

ulate node of the Give-Feedback PAN (left side of Figure 3.7) could have been written in a

production rule formalism as follows:

IF: 1. current goal is to Give-Feedback, and

2. last-action (i.e. the context) was Positive-Encourage, and

3. student-response-ok, and

4. Congratulate switch is on

THEN Congratulate

One such rule would have to be written for each arc in the network. The graphical PAN

representation of Give-Feedback is more appropriate for ITS knowledge engineering than 13

textually represented rules (there are 13 arcs in the network) such as the one above because

there are less entities to manage in the knowledge base, and because PANs provide a visual

model which supports a robust cognitive model of the control process.

Changing strategies

The domain expert can define many alternative strategies—strategies for general tu¬

toring styles and strategies tailored to specific segments of the curriculum. The KAFITS

system can change the active strategies (there is one active or current strategy for each

of the four decision levels) in the midst of a tutoring session. A strategy is changed by

either changing the current PAN* or changing the current switch register (for one of the

four decision levels).

Strategies can change dynamically during the tutoring session in three ways: at the local

level, at the global level, and via student control. At the local level, an individual lesson,

121

topic, or presentation can specify that a specific strategy be used. This local decision is

stored in a slot of the instance and is editable like any other slot. At the global level, “meta¬

strategies” select the current strategies (see Figure 3.2). Meta-strategies are represented as

IF/THEN rules. They probe the conditions of the student model and the domain model, and

are checked periodically during program execution.16 For example, IF student-is-floundering

THEN USE Helpful-switch-register.

Lastly, the student can interrupt the tutoring session to change the strategy. The student

is given a menu of choices, such as “more feedback,” “less feedback,” “more information,”

“less information,” etc., which map into a change in the settings of the switches.17

3.2 Description of the Interfaces

The Knowledge Acquisition Interface is designed to reify the KAFITS representational

framework, facilitating the organization and encoding of the domain expert’s knowledge.

The Knowledge Acquisition Interface has two components: an interface to the domain

knowledge base (the Browser) and an interface to the strategic knowledge base (the Strategy

Editor), which we describe in this Section. In this section we also describe the session

monitors (tools that allow the domain expert to access information about the tutoring

session) and the interface to the student. See Appendix D for a listing of all the menu

operations available to the KAFITS user.

3.2.1 The Browser

The Browser allows the domain expert to inspect, modify, and test the objects in the

domain knowledge base. Figure 3.8 shows the Browser about to be used to Browse the

16Meta-strategies and the meta-strategy interface have not been implemented yet.

17This feature has been implemented, but we have little data as yet on whether students can or choose to

make use of it.

122

w Tutor Browser 1:56:20 PM ©

*** TUTOR OBJECT BROWSER RNO EDITOR ***

Selected Slot HIMTS of instance {LE-1 MTU ITIOM-EHSY1}.

Object Types Instances (of the type) Slots (of the instance)

Description of {LE-1 MTU ITIOM-EflSV1}, o<n) {PRESENTflTI OH):
:mxms ({example-mi xm) {questiom-mixin)>
:M0TES ("If a makes sense question is asked here It uiould seem best to hold it until after the respo
:REFEREMCED-BV <{LIMERR-EQUILIBRIUM-INTUIT IOM)>
:SET-UP < STRRT-CRRME-B00H {MOUIMG-THE-nflSS}>
: RMSUIER-TVPE : flULT IPLE-CHOICE
:QUEST IOM-TEXT "How would you expect the tension force in the cable (TC>

to change if the hanging weight were mooed to the left?"
:RNSWER-OESCRIPT1ONS <"Tens ion force increases." "Tension force decreases."

"Tension force remains the same.*)
:CORRECT-flMSUERS < 2 >
:COMGRRTULRTE "In order to confirm your thinking you may try the simulation. *
:HIMTS ("Try using the simulation and moving the hanging weight

to the left and right. Think about what two things are
holding up the boom and how they share the Ioad.*)

:01UE-RURV ("Uhen you moved the weight to the left you may have noticed that the force of the walI
(FU> holding up the boom is greater and the cable tension <TC> is reduced.*)

:RERS0M ("If you think of the weight moved for to the left, It
rnnw 4fr***4 4k«« mm* I I I m mmm»I MI www a/ 4Wa

Figure 3.8 The Browser

Menu Bar _

Message Window

Browser Tables-

Pop-up menus-

Output Window-

w Tutor KE Student Menu Tutor Browser 2:40:36 PM 0

1 TUTOR OBJECT BROUiSER RNO EDITOR

Dlscrlptlon of Instonca (GRRUI TV—FORCE—ERSV1) Is shoon baloo.

Object Types
TEAnPCEJ-
(LESSOR)

(nis-KU)
(PICTURE)
(PREShRlHt I UR) '

Instances(of the type) Slots (of the Instance)

(question)
(souno)
(STORRCE)
(TOPIC)

(FORCE—OR-US-BV—COMFUSIOM-T

(6RRUlTV-^aft(g-gRav‘T)- 1
(CRRUI TV—F0RCE-ERSV2>

(ORRUI TV—FORCE-TVPICRL1)

(CRRUI TV—FORCE—TVPICRL2)

(IDERT-FS-RRV—M0RE7-N0—RORE)

{IOEMT-FS-RMV-HORE?-VES-ROR_

(IDERT-FS-CRUSE-FU)

RRSUER-OESCRIPTI OHS

RMSUER-TVPE
CB-inYEftyenriOH-rURCTIW
CHRLLEHGE

COMGRRTULRTE

CORRECT-RRSUERS

ELRBORRTE

GIUE-RURV

ft.

Neui Instance
New Inst. w. miHins

Oescribe types

i
L

.0
MIXINS < (EXAnPL£-t1l XIM) I
MOTES <) t
REFEREMCED-BV <(0RRUITVy

: IMTRO-TEXT -TMo fol loolrt

tM* nortMom haoispMoro
hmlspHar*

RESPORSE-STRATEGV MORnflll
SET-UP (SHOU-PICTURE (EK

RMSUCR-TVPE ABC-CHOICE:
QUEST I OM-TEXT -Utich p
fiMSUEA-OESCRIPTIOMS <“Tho parson In Austro

UIELU Instance

EDIT instance

COPYInstance

DELETE Instance

BROtUSE instance

TEST the instance

Hdd instance note

Documentation on slots

Ulew cross-refs

Student Model Status

Uindou

Ulew slot

Edit slot

Slot Documentation

Browse slot

LISP Inspect

th a person at

* of grovity?*
la foals lass Oue to tha tendency to fall off.

’The parson In Australia foals lass t>acausa s/ha Is farther froa tha Equator. ’
"The parson In tha U.S. feels lass because s/ha is farthar froa tha E^ator and spins ao
'Both foal tha sane forca because eoch Is the saae distance froa the Zarth'M center.*)

0IUE-AURY 'With only seal I variations, the pull of grwlty has the
sowe eogrtl tude anywhere on the Earth. The direction of
the pull Is a I ways ’down*, toward the center of the Earth.*

REASON "The pull of gravity is caused by oil of the Earth's mss

*e slowly

USERI Killed region saved

_2
IQI |;.-i:„ .u.■1

Figure 3.9 Components of the Browser

123

slot Hints of the presentation LE-Intuition-Easyl (the user had previously Viewed LE-

Intuition-Easyl, and its description is shown in the Browser output window at the bottom

of the figure).18 At the top of the Browser a message window informs the user of warnings,

gives brief instructions, and orients the user by giving information about the operation just

completed. Below the message window are three tables from which the user can select (from

left to right) an object type, and instance of that type, and a slot of the instance. Below

the tables are three pop-up operations menus, one for each table (only the last operation

performed is shown when the menu is not popped up). Figure 3.8 shows the user clicking

on the slot operations pop-up menu and selecting “Browse slot”. Figure 3.9 shows the

operations for all the tables (the user can only see one pop-up menu at a time).

The Browser Output Window is a scrollable window in which information and listings

are printed. When the user chooses to edit an instance or a slot an Editor Window appears,

wherein the user can modify current values.

The Browser has the standard editing operations, viewing, copying, creating, editing,

deleting, and also has these operations on instances: testing, browsing (viewing all objects

that reference or are referenced by an object), adding documentation notes, viewing exam¬

ples of and restrictions on slots, and inspecting the student model values associated with

an instances. See Section 5.5.4 for a discussion of how the design of the Browser evolved in

response to user input.

3.2.2 The Strategy Editor

The interface for creating and modifying PANs is shown in Figure 3.10. PANs are

represented as editable graphic networks. Creating, deleting, repositioning, and testing

18The domain expert invents the names of the instances that he creates. LE-Intuition-Easyl is the first

presentation for the easy level of topic Linear Equilibrium Intuition. The Instances table of Figure 3.8 scrolls

through an alphabetical listing of instances (presentations in this case, of which there are 81 defined for the

statics domain).

24

Figure 3.10 PAN Editor

nodes and arcs is done by clicking (or double-clicking) on a node or arc. The figure shows

a menu of operations shown when the user clicks on a node.

Creating or editing a switch register involves clicking buttons to toggle switches on and

off. The editor for switch registers is shown in Figure 3.11.

3.2.3 Session Monitoring Tools

The system runs on two physical monitors (screens): the “student screen” (a color

monitor) shows either the tutorial session (Figure 1.5) or the Browser (Figure 3.8); the

“knowledge engineering screen” (a large black and white monitor) is used for development

and knowledge engineering and shows the monitoring tools. The system has four monitoring

tools. Three of them are shown in Figure 3.12. The monitoring tools are invaluable in

helping the teacher understand the progress of a tutorial session in terms of the curriculum,

the flow of control through tutoring strategies, and the student model. These tools also help

125

Response strategy RESPONSE-SIRRTEGV-TEST-5:

□ RE-RSK-QUESTION-RFTER-RERCTION

E! ELABORATE

ECHALLENGE

El REACTIONS

E3 ONE-HINT

El hints

E GIUE-RERSON

El GIUE-RLURY

□ CONGRATULATE

□ TELL-CORRECTNESS

□ ENCOURAGE

□ IGNORE-RESPONSE-STRRTEGY

1 Clear Set all

C Done H
[Reuert 1

Abort

Figure 3.11 The Strategy Switch Editor

teach and reinforce the syntax and semantics of the KAFITS representational framework

by providing visual models of concepts and structures of the framework. Each is described

below.

Topic net display. The first monitoring tool is a graphic display of the topic network

(see Figures 1.3, and 3.12), in which topics are highlighted to follow the tutor’s traversal of

the curriculum during a trial tutorial session.19 The user can also click on the topic nodes

to edit or inspect topics.

The size, shape, and scale of the topic net window can be adjusted, allowing the user to

zoom in or back to see specific areas of the curriculum.

Event Log. The second tool is an Event Log which gives a detailed trace of the deci¬

sions and inferences made by the tutor, including the evaluation of each student response.

This trace is written to a text file to allow analysis of real or dry-run tutorial sessions.

19We have considered giving the student access to the visual topic network, but have not tried it yet.

126

Topic Network

Topic Level Displays

Hjwc

iLiNdK-uaiiiiKiuM-Miicina ■■

R8TIIMTIM M

BIMHITIO*

RfltSHIfR

imam

» ust-wiem. «

USI-OIMICOU

MfMRRV

uum.u#

Event Log

Trace Window
noTionrc-TOPic {Lir€w-€OuiLieeiur»-innji riori
DCF IMC-TOPIC (LlMCFR-COUlLieeiun-irmjlTlOfi)
OCOSir«W<XT-€*SV-PRES£fiT«TiaP: fUnCPA-COUH
3TAPT-*«CS€WAT I on {LC-IMTUlTlOrt-CPSVI)

START-CXRTPLE: (L£~ t flTU I TI OT*-€RSV l)
START-OUCSTIOM- (UE— INTVJI T 10T*-£/*SV 1)

*«*oon**-o*‘J CORRECT 14:42.5
FIMISH-OUCSTIOI (LE-INTUI TlO*-£*SVI)

START-PRCSCHTRTIOfT (IMOUI«C-PLPV-iJlTV»-Sirw
FlMSH-€XRr*H_£ (LE-1 NTH ITI Of*-€PSV i)

START-CXWLE (ir«DuifiC-ow-uiT>^Siru_PTio»
FimsH-ewnc { inquire-pi-Pv-ui th-sinulat

FimsH-ppcscMTnTiai (iNouiR€-PU»v-uiT>4-sir*
FiniSH-€X*m_E (L£-irfnjlTlO*-€ASVi)

FmiSH-PPCSCHTRTlOn (L£“ INTUITI Of^-£PSV 1)
O«X)SlM0-f«3T-€PSV-PRESefTRTI0ri- (LI fCAR-€QU IL
STRflT-PRCSEMRTIOfl- (L£-1 flTXJ IT10f*-£R$V2)

uscai

Figure 3.12 Monitoring Tools

127

PAN monitors. The third tool is a graphical representation of the PANs, which

trace the flow of control through the action networks invoked by highlighting PAN nodes

(see left side of Figure 3.7).20 The domain expert can see control flow from one PAN

to another and from action to action within a PAN. This visual tracing facilitates testing

and modification of the strategic knowledge base, and provides the domain expert with a

concrete visualization of what can, at times, be a complex control structure.

Topic Level Display. The fourth monitoring tool is the Topic Level Display, which

details the current topic and pending topics (see Figure 3.13). Pending topics are stacked

underneath the current one. For example, three Topic Level Displays are shown, with

Linear-equilibrium-principle being the current topic. That topic is being shown to the stu¬

dent to satisfy a “familiarity” level prerequisite of Linear-equilibrium-intuition (the middle

Display), which was in turn presented as a “part” of Linear-equilibrium (the bottom Dis¬

play). The text on the left side of each Topic Level Display shows the levels at which

the topic cam be taught, with an arrow indicating the current level being presented to the

student. On the right are the Student Model values of each level (the student model is

described in Section 3.3).

An important feature of the knowledge acquisition interface is that it is easy for the

domain expert to move back and forth between testing the curriculum (running it as a

student) and modifying it with the Browser. The teacher can interrupt the session at any

time to display information about objects, display the status of the student model, change

strategies, or edit objects. He then returns to the tutorial session were he left off.

3.2.4 Student Interaction

The interface between the tutor and the student is a critical component of any com¬

puter tutor, but it is not being evaluated as part of this study. The character of the student

interface and the types of computer/student interactions allowed depend critically on the

20The PAN monitor is not shown in Figure 3.12, and when used it takes the place of the topic net on the

knowledge engineering monitor.

128

t
topic levels

f
student model values

Figure 3.13 Topic Level Display-

instructional domain (i.e. are not domain-independent). As mentioned previously, presen¬

tation objects are used to define interactions with the student. The are composed of an

environment (or task-situation) and a task (or question) for the student to accomplish (or

answer) within that environment. The standard media which KAFITS provides are pic¬

ture objects, sound objects, and text. In the statics domain, the crane boom simulation

and static crane boom pictures were added. KAFITS comes with three standard types of

student interactions, and is designed to make it easy to add others.

Below we describe the student interaction types and the crane boom simulation (the

learning environment for the statics domain) in particular. We also describe the “student

initiative” capability, which adlows the student to control the tutoring session.

Interaction types. Student behavior is processed according to the type of interac¬

tion. Currently there are three types of domain-independent interactions provided: multiple

choice, type-in, and numeric; and three interaction types defined for the statics domain,

crane-boom-value, crane-boom-point, and crane-boom-vector. Crane-boom-value interac-

129

tions ask the student to manipulate the simulation so that one or more of the 30 parameters

is in a specific range. Crane-boom-point interactions ask the student to point to (click on)

a place on the crane boom, and crane boom vector interactions ask the student to draw

(click and drag) a vector on the diagram. For each type of interaction two functions are

defined: one to set up the environment and record the student’s response or behavior, and

the other to process (evaluate) the student’s response or behavior.

New interaction types are easily incorporated into the tutor by defining new get-student-

response and process-student-response functions. Each type of interaction defines its own

language for specifying the possible student behaviors. The teacher uses this language to fill

in the Possible-answers slot of presentations. For example: for multiple choice the teacher

needs only enter the text of the choice interactions, such as “high,” “medium,” and “low.”

For crane-boom-vector interactions, the size (in Newtons), angle, and location is specified

(for example: SIZE 8-12 ANGLE 40-50 START left-end-of-bearn). It is straightforward to

implement new interaction types, such as parse-sentence, or keyword-match, to the KAFITS

system (see Section 3.6).

The interactive simulation. The crane boom simulation can be shown non-

interactively, as in Figure 1.4, or it can be brought up in interactive mode for student

experimentation. Also, the student can call up the simulation at any time to freely explore

in it, to manipulate the configuration of the boom, cable, and weight to measure forces,

angles, and distances. Meters display any combination of 30 variables (Figure 1.4 shows two

variables displayed) and as many as 18 different force vectors and vector components can be

made visible (the figure shows one vector). The instructor determines which labels, meters,

force vectors, etc. will be displayed for a given tutorial presentation. In free exploration

mode the student can make these choices.

Student initiative capability. Giving the student control in a computer tutoring

session is very important. Students should be able to choose the content and style of the

information and tasks presented to them, and should be able to explore and inquire freely.

In KAFITS the student can interrupt the tutorial session at any time and choose among

130

many commands. For instance, Figure 3.14 shows the pull-down menu options that are

provided when the student is asked to answer a multiple choice question, and instead clicks

the button to interrupt the tutor to execute a command. The student can ask for hints and

explanations, and interrupt the presentation to visit another part of the curriculum. As

well as having control over the course of a tutorial session, the student can get information

about what the tutor is doing, and can inspect some aspects of the student model and the

teaching strategies.21

Determining which student options are most important, how to encourage students

to exercise these options, and the effect that numerous student-initiated options have on

student learning are important issues outside the scope of this research. The options we

have implemented are meant to increase the flexibility of the tutor and suggest the range

of possible student initiatives, but we have not conducted empirical tests on this aspect of

the tutor.

3.3 Layered Overlay Student Model

3.3.1 Purposes for the Student Model

One of the most important features of intelligent tutors is their ability to tailor instruc¬

tion individually for each student. The student model is the dynamically updated knowledge

base that records the tutor’s inferences about the student’s current state of knowledge.22

VanLehn [1988] lists four common uses for student modeling: measuring the level of mastery

to enable advancement, offering unsolicited advice when the student needs it, generating

problems at the right level of difficulty, and adapting explanations to what the student al¬

ready knows. Our design philosophy has been to postpone implementation of features until

“This is consistent with the concept of “collaborative tutors,” as discussed in Section 6.3.4.

“Learning styles and preferences, historical data about the student, etc. are also stored in some student

models. It is also possible to have separate dynamic knowledge bases for the student model and “discourse

model” which keeps track of the current and past states of student-tutor interactions (a separate discourse

model was included in early implementations of the KAFITS system).

131

Tension force increases. R>
Tension force decreases.
Tension force remains the same

O
»INTERRUPT«
I**************************

Giue me a hint
Tell me the answer
♦ I*************************

Teach a Topic
Describe a Topic
Test my knowledge of a Topic
*********************iii****

Make student comment
Display session status
Change the teaching style
Play with the SIMULATION
************+*************

REPEAT the last Presentation
SKIP the Presentation
SKIP the Topic
SUSPEND the Session

Figure 3.14 The Student Initiative Menu

a need has been established through working with the domain expert, by student trials, or

from information needed by some other part of the tutoring system (see Section 5.5.3). Our

tutor has minimal functionality in many respects, and the focus of the software development

has been on the knowledge acquisition interface. Therefore VanLehn’s list is useful to us

in allowing for future extensions to the system, but is not useful in deciding how to design

our student model or diagnosis mechanism. The KAFITS student model was designed, not

from first principles about how to model or communicate knowledge, but in response to the

structure of the representational framework

In designing our student model and diagnostic mechanism we used a scheme for consid¬

ering the purposes for student models that is based more on practiced than theoretical

concerns. Below we list these purposes in order from most essential to least essential:

132

1. Record keeping. Minimally, the student model keeps records that prevent instruc¬

tional material from being given repeatedly (unless the repetition is intentional). It

should be able to answer the question “Has X been given to the student yet?”

2. Appropriate information level. Student models usually are able to answer the

question “Does the student know X?” ITSs use this information to give instruction

that is neither too boring (easy) nor too complex (difficult).

3. Remediation. Some student models can also diagnose common bugs or misconcep¬

tions in student knowledge. The purpose of diagnosis is to enable remediation of

the bug or misconception or to postpone teaching something that a misconception

impedes the learning of.

4. Parameterizing tutorial behavior. Finally the information in a student model can

be used to alter the way a tutor presents information. This corresponds to VanLehn’s

“generating problems at the right level of difficulty” and “adapting explanations to

what the student already knows.”

KAFITS address each of the above student model purposes. The record keeping function

of the student model is particularly important for the KAFITS framework because of the

curriculum flexibility KAFITS supports. For instance, in a knowledge base editing session

the domain expert had inadvertently set a system switch to ignore the student model. Due

to circular paths in the topic network he was given the same topic four times (each time

fulfilling a different part or prerequisite role). If the student model had been activated he

wrould have been given the topic only once (assuming he answered its component questions

correctly). KAFITS models whether the student “knows” each topic (item 2 above), and

also diagnoses and remedies misconceptions (item 3 above). Finally, KAFITS parameter¬

izes tutoring behavior according to the student model (item 4) by incorporating multiple

strategies which can be selected according to the student model.

133

3.3.2 Representation Issues

At the implementation level (putting aside issues of cognition and pedagogy for the mo¬

ment) there are two main issues in student modeling. The first is representation, i.e. what

data structures should be used to model the student’s knowledge state, and the second is di¬

agnosis, i.e. what procedures should be used to infer the student’s knowledge state. Clearly,

representation and diagnosis issues are closely linked. First we discuss representation.

All student models have a data structure representing each chunk of knowledge that the

student is supposed to learn, or, equivalently, knowledge chunks representing a subset of the

knowledge of experts in the domain. The KAFITS student model maintains its own separate

code space (similar to a blackboard), containing data structures corresponding to each

topic (and presentation, as explained later) given to the student.23 Many student models

also have representations for incorrect, buggy, or sub-optimal (i.e. usable but inefficient)

knowledge. The KAFITS student model uses Mls-KUs to represent incorrect facts,

misconceptions, and buggy skills (there is no mechanism for accounting for sub-optimal

knowledge).

There are two classes of student models found in intelligent tutors: overlay student mod¬

els and runable student models. Runable student models are rule-based systems (like expert

systems, but the term “novice system” might be more appropriate) that can be interpreted

(run) to produce behavior. Runable models can be run to predict a student’s response to

a task, and they can be run to compare the student model with a model of an expert’s

knowledge (as encoded in a domain expert system). Runable models are usually used for

tutors that emphasize procedural skills, since it is procedures that can be represented in

production rules. In contrast, overlay student models are not runable, they declaratively

record the student’s level of understanding for each knowledge chunk. Overlay models are

usually used in tutors that emphasize non-procedural knowledge. The KAFITS framework

assumes a curricular representation of the domain knowledge rather than an expert system

23Student model data structures are not created until they are needed. This limits the size of the data

base and eliminates the need to initialize the student model at the start of a tutorial session by creating

empty data structures for ail of the relevant instances in the knowledge base.

134

representation of domain knowledge. Though it contains a “procedure” knowledge type it is

geared more toward teaching non-procedural knowledge such as concepts, principles, facts,

and (shallowly represented) complex knowledge (see Section 3.1.6)—therefor an overlay-

student model is employed.24

As in many ITSs, KAFITS uses an overlay student model with a bug library. However,

instead of assigning a simple symbolic or numeric value for each topic or bug, as in traditional

overlay models, the KAFITS student model maintains a separate global code space (similar

to a blackboard). Though our student model was designed more from pragmatics than

theoretical concerns, is does have several innovative features not found in traditional overlay

student models, as described below.

Multi-layered inferencing. Traditional overlay student models record a value (usu¬

ally true or false), indicating whether the student is assumed to “know” or have learned

each topic or skill. Our student model makes inferences at several levels of granularity

allowing more precision and expressiveness than found in traditional overlay models (see

Figure 3.15). There are five layers of data and/or inferencing: lesson, topic, topic level (cor¬

responding to the performance/mastery levels of the topic), presentation, and transaction

(individual student and tutor actions). The values derived at each layer come from a set of

symbolic values, and these values are unique to that layer (the layer’s range, shown to the

right of each layer in the figure). Each value is determined as a function of the values at the

next lower layer (the layer’s domain). For example, the student model value of a presenta¬

tion is one of: :shown-only, :correct-with-many-hints, :correct, :wrong-with-answer-given,

or :wrong-no-answer-given.25 The student model value of a topic level is a function of the

values of its component Presentations.

Reasoning with uncertainty. The inference rules and language used to express

knowledge in the student model explicitly represent and reason with uncertainty [Cohen &

24We think that KAFITS could also be useful as a tool for creating, testing, and modifying the production

rules of a procedural-skill oriented tutor, but have not attempted this yet.

25The set of possible values for each layer were designed to be expressive enough to support the inferencing

required, yet not too complicated or more numerous than necessary. We are still determining an optimal

vocabulary for the values of each layer.

passed
finished
started
no-info

c Topic Level value

known
shown
assumed-known
no-info

known
shown
some-wrong
no-info

inference

t inference

shown-only
correct-w-many-hints
correct
wrong-w-answer-given
wrong-no-answer-given

Raw Data:
tutor actions,
student responses
and tutor feedback

Figure 3.15 Layered Student Model

136

Gruber 19851. For example, we incorporate the terms “no-info,” “shown,” and “assumed-

known” into the representational language. “Shown” is used to indicate that a topic or

presentation (or a part of one) was presented to the student and that there is not enough

evidence has accumulated to determine whether the student knows or does not know it. The

topic value “assumed” allows the domain expert to initialize the student model with some

topics assumed to be known unless the system accumulates evidence to the contrary. The

“suspected” Mis-KU value also represents student model uncertainty, as compared with the

“confirmed” Mis-KU value.

Nonmonotonicity allowed. Nonmonotonic inferencing involves making inferences

where assumptions are made which may have to be abandoned in the light of new in¬

formation. Nonmonotonic inferencing is needed in KAFITS for two reasons. First, the

teacher can initialize the student model so that the student is assumed to know certain

topics, but these initial values change if the system accumulates contradictory evidence of

the student’s knowledge of a topic. The second reason stems from the flexibility of the

curriculum representation. When the tutor tries to teach a topic it infers the level of the

student’s understanding of the topic based on how well she did on the topic’s component

presentations. But these presentations may be given again for other reasons, such as for

teaching another topic, or as the result of a student initiative. Therefore evidence of the

student’s understanding of a topic can change even though that topic is not currently being

explicitly taught. We have a straightforward method for dealing with nonmonotonicity:

only raw data, not inferences, are stored (i.e. inferences are not cached), so that inferences

always refer to the most recent student behavior.26 Raw data is stored in the transaction

layer, and includes only information with no uncertainty, such as the student responses to

answers, how many hints were given, etc. By allowing inferences to flow from the raw data

up the data layers every time a value is used, the value of a topic may change over time

even though that topic may not have been visited. Recalculating values every time they

axe accessed has not affected the response time of the tutor perceptibly.

26We do not include a truth maintenance system in KAFITS, therefore while the system deals with

nonmonotonicity, it does not do “nonmonotonic reasoning” in the traditional sense; we call this type of

capability “cheap nonmonotonic reasoning,” or “on-demand inferencing.”

137

3.3.3 Diagnosis and Remediation

“Diagnosis” in KAFITS is data driven (bottom up). Since we are not trying to match

combinations of student behaviors to expert behaviors, as is done in some intelligent tutors,

combinatorial search is not needed in our diagnostic mechanism. Lists of suspected-mis-

kus and confirmed-mis-kus are maintained and checked periodically to activate remediation

scripts (in accordance with the current tutoring strategies).27

The functions (or rules) that infer values for each student model data layer from raw

data are “global” methods for determining student model values. KAFITS also provides

“local” means for setting student model values. The Remediation-info presentation slot is

used to add evidence that a topic is known or misunderstood based on a single student

answer. This slot is used to locally add evidence that a Mis-KU is suspected or confirmed

based on specific answers. In the statics tutor there is no global method for updating Mis-

KU values, but in general we assume diagnostic functions exist which look at raw data and

student behavior to determine whether mis-knowledge exists.

3.3.4 Other Student Model Features

Inspecting the Student Model. The domain expert can inspect the information

in the student model in several ways. A pull-down menu has options for “full” or “brief’

summaries of the values of all topic and Mis-KU data structures in the student model. The

full summary also shows the values for the levels within the topics and Mis-KUs. A Browser

operation is provided to view the student model data structure for any topic, Mis-KU, or

presentation instance. Also, the topic level monitors (Section 3.2.3) show the values of the

levels of the current topic during a tutorial session.

Student Profiles and Saving the Student Model. The student model can be

saved and loaded. This allows the student (or teacher testing the system) to quit in the

27We do not rule out the possibility of top-down model driven forms of diagnosing topic and Mis-KU

values should KAFITS be used for a domain which includes a sophisticated micro-world environment with

coach-like tutoring strategies.

138

middle of a session and continue at another time. It also allows the teacher to create a

library of prototypical student profiles that can be loaded to initialize the student model (for

example, one for students who have had previous physics experience, one for students with

previous science experience, and one for students with little science or math experience).

3.4 Knowledge and Data Management Features

In this section we describe the methods and tools used to automatically record, organize,

and manage knowledge and information in the KAFITS system. The information is stored

in text files, some of which also contain Lisp source code. First we describe the files used to

manage the domain knowledge base and the files used to store data collected while KAFITS

is running.

3.4.1 Managing Domain Knowledge

Two files are needed to manage the domain knowledge base: the saved-instances file,

which is a record of the contents of the entire knowledge base, and the edit-record, which

records changes made to the knowledge base.

Saved-instances file. The domain knowledge base, containing all of the instances of

the objects in the system (topics, presentations, lessons, etc.) is written to a text file called

the saved-instances file, since the domain knowledge is included in the code “image” of

the tutor (see Section 3.6) the saved-instances file is not needed to ran the tutor, but it is

useful to have available on disk for reasons described below. The saved-instances file has

two purposes. First, it is organized to be readable by humans, allowing the domain expert

139

to reference information when it is not desirable to do this using the browser.28 Second,

the instances saved in the file are in the form of Lisp code (macros), for example:

(NEW-TOPIC :NAME GRAVITY

:TOPIC-TYPE CONCEPT

:PREREQUISITES (FORCE-DEFINITION)

:PARTS (WEIGHT-VS-MASS CENTER-OF-MASS)

:SUMMARY ‘‘Gravity is a force which pulls things...’’

:MOTIVATION ‘‘Gravity is a very important force that..’’

:USE-EASY (GRAVITY-TWO-PEOPLE GRAVITY-PERSON-BLDG)

The knowledge base is created by loading the saved-instances file after the KAFITS

system is loaded. A new or modified knowledge base is saved by writing a new saved-

instances file to permanent memory (the Mac’s hard disk).

Appendix I shows a portion of a saved-instances file. First each lesson is listed in

alphabetical order. Then each topic is listed in alphabetical order. After each topic the

presentations it references are listed in alphabetical order. After each presentation the

instances it references are listed (crane-booms, pictures, sounds, other presentations, etc.).

The resulting listing is organized hierarchically, with miscellaneous instances nested inside

presentations, and presentations nested inside topics.29 Instances that are referenced twice

are not listed twice—a comment “see listing above” is written in its place. All instances

that were not referenced by topics or presentations (i.e. not accounted for above) axe listed

alphabetically in a separate section at the end of the file.

In addition to the Lisp-readable representations of all the instances in the knowledge

base, the saved-instances file contains several text sections designed to help the domain

28For example, the domain expert can take a hard copy of this file home and proofread it, and later use the

browser to make corrections. As another example of using a saved-instance hard copy, assume the domain

expert wanted to replace all occurrences of the word “friction” in the knowledge base with “frictional force.

Using the browser it would be tedious to replace all occurrences of “friction,” and even more tedious to

first find them all. A much simpler alternative is to bring the saved-instances file into a text editor and

replace all “friction” with “frictional force” with one editor command. Note that these changes would not

be incorporated into the system until the next code image was created.

29Topics are not nested inside lessons—all lessons are listed at the beginning of the file.

140

expert inspect the knowledge base. First is a table of contents which indexes all the topics

and Mis-KUs. At the end is a cross reference of all presentations, showing the instances

in the knowledge base that refer to each presentation.30 This feature has been useful

in checking for inconsistencies and other errors in the knowledge base. For example, a

presentation that is not referenced by anything is likely to have a typo in its name. Following

the cross reference is a list of the instances that were referenced but were not created. This

provides another way to check the consistency of the knowledge base. Unless the domain

expert is in the middle of entering domain knowledge in the knowledge base, all instances

that are referenced should exist. At the end of the saved instances file the total numbers of

topics, Mis-KUs, presentations, and instances (of all types) are given.

Edit records. As the domain expert uses the Browser to add to or modify the knowl¬

edge base, the changes are written to a text file called the edit record. The edit record

serves two purposes. First, the changes being made exist only in the computer’s temporary

memory, and are lost when the KAFITS program is exited, so the edit record is a perma¬

nent record of these changes. The next time the system (i.e. the code image) is loaded the

knowledge base reflects the state of the saved-instance file when the code image was created.

Every time the user starts up KAFITS, he must load his edit record to re-instantiate the

changes he has recently made.31 The edit record, like the saved-instance file, contains Lisp

code (in a form that can be loaded by Lisp and also read by humans) and various non-code

comments. Appendix K has a sample edit record.

The second purpose for the edit record is to allow the knowledge engineer to trace

the evolution of the knowledge base and the use of the Browser through time. One can

analyze edit records to get information about the use profile of the Browser and the types

of modifications made (time, date, and user’s name are recorded). Also, the user can insert

a typed-in comment into the edit record. For instance, if the domain expert is making a

30The hierarchical structure and table of contents makes it easy to locate any topic and to see the pre¬

sentations used for that topic. However, one cannot easily locate a presentation in the file unless one knows

the name of the topic(s) it is associated with. The cross reference facilitates lookup by presentation name.

31 When the Browser is started up, the user is asked to select his edit record file, which is then loaded

automatically.

141

modification to the knowledge base and has a question for the knowledge engineer, but the

knowledge engineer is not there, the domain expert can enter a comment such as “I’m not

sure if this was right—does it have to be a positive number?” Later, the knowledge engineer

can inspect the edit record to see what changes the domain expert has made and read the

comments.

The edit record contains incremental changes to the knowledge base. Periodically, when

a new version of the system is compiled, the edit record is loaded on top of the saved-

instances file, and a new saved-instances file is created. When the code image is loaded it

reflects the recent changes made by the domain expert. A new (blank) edit record file is

started for the domain expert.

Edit records also allow multiple users and/or multiple editing purposes. For instance,

several domain experts could be working on different parts of the curriculum at the same

time, each with his/her own edit record. Also, an edit record can be created to record

changes to the knowledge base that axe for a specific purpose, but not intended to be

permanent changes, such as modifications to the knowledge base for “AAAI-90 demo.”

3.4.2 Data Records

The system maintains several files of data records—i.e. files that are updated while

KAFITS is running. One, the edit record, was mentioned above. The others are described

below.

Session trace file. The session trace file is a record of the tutor’s decisions, the

tutor’s actions, and the student’s actions in a tutorial session. The system has a feature

which allows the student to interrupt a tutoring session and type in a comment, which is

recorded in the session trace file. A sample session trace file is in Appendix L. The session

trace file can be analyzed by the knowledge engineer or the domain expert to gather data

about student use of the tutor.

142

Session listing file. There is one session trace file for each tutorial session. The

session listing file lists of all of the tutorial sessions that have been run (i.e. all the session

trace files created), along with the time, date, and name of the student.

Student model file. The student model can be saved at any time during a tutoring

session (though it is usually saved at the end of one). For each saved student model a

student model file is created, containing Lisp code which, when loaded, sets the student

model to the state it was in when the model was saved. This allows a student to quit in

the middle of a lesson and continue later where she left off. The saved student model can

also be analyzed for data about the student’s final knowledge state at the end of a tutoring

session.

3.5 Help and Assistance Features

A software system that has many features and operations, as does KAFITS, has the

potential to be confusing or overwhelming to the user. Such systems need features to assist

the user in managing these options. Also, the KAFITS knowledge base is large and contains

many types of things with diverse relationships between them—there is the potential for the

user to get lost in the knowledge base. The user needs assistance in navigating though and

gathering information about the knowledge base. The KAFITS system has several on-line

help and assistance features, outlined below, to help the user use the system and navigate

the knowledge base.

3.5.1 Assistance

On-line help/info system. A hierarchically structured help system has been

implemented.32 Included in the help/info text are explanations of some important KAFITS

framework concepts, descriptions of the Browser and KAFITS menu operations, explana-

32 A “hierarchical” structure is one organized to show various subsumed levels of granularity, for example:

a book has parts, chapters, sections, subsections, paragraphs, etc.

143

tions of the various types of objects and data files, etc. The help/info text is loaded from a

text file. This text file has a simple syntax for specifying the hierarchical relationships. It

is relatively easy to add new information to the help/info system by editing a text file (no

knowledge of Lisp programming is needed).

Browser message window. At the top of the Browser (Figure 3.9) is a small window

called the Browser message window which indicates what the user just did and/or should

do next while using the Browser. One purpose of these messages is to confirm the successful

execution of operations that have no visual repercussion, for instance: “The topic {Newtons-

law} has been deleted.” Another purpose is to direct the user’s attention to the appropriate

location on the interface, for instance: “The slot Hints of the instance {Crane-boom-small}

has been printed in the output window below.”

Disaster avoidance. When the user performs an operation that has serious reper¬

cussions, such as deleting an instance, or exiting the tutor, the system asks if s/he is sure

they want to do that.

Slot documentation. By selecting Slot-documentation from the slot operations pop¬

up menu (see Figure 3.9) the user gets the following information: the purpose/description

of the slot; restrictions on the value of the slot; and example values of the slot. The domain

expert can use this feature when he forgets what a slot is for or what kind of information

is stored in a slot.

3.5.2 Knowledge Base Navigation and Information Features

In a large knowledge base the user often has difficulty knowing “where he is” or what

things are related to the thing he is looking at. KAFITS has several features to assist the

user in this area.33

33In Section 3.2.3 we described the Monitoring Tools, which are designed to help the domain expert

know were s/he is in the dynamic context of running or testing the curriculum and strategies. This section

describes methods related to viewing the (static) knowledge base itself.

144

Cross references. All instances have a slot called Referenced-by, which lists the in¬

stances that point to the object. This slot is updated when a saved-instance file is created,

when a code image is created, or when the user selects the “calculate cross references” menu

operation.

Browser tables. The current type, instance, and slot are highlighted in the three

tables on the browser panel (see Figure 3.9). This reminds users of the instance that

contains a slot (if s/he is working on a slot), or the object type of an instance (if s/he is

working on an instance).

The Browse operation. By selecting the Browse operation the user can see all of

the objects connected to (i.e. those pointing to and from) a given object. The connected

objects are shown in the instance table (i.e. they axe not just listed for viewing—they

can be selected and operated upon). This feature allows the user to move easily though

the knowledge base via related instances. Another operation, called View-cross-references,

shows (in the browser output window) the objects related to an instance, and describes the

nature of these relationships.

Topic summaries. As described previously, the topic net gives a visual representation

of the relations between topics. Nodes in the net can be clicked on to browse or get concise

“summary information” about each topic.

Show-all-slots feature. A tool is provided which allows the user to list the contents

of a single slot for all instances of a given type. For instance, if the user wants to know

which presentations have more that one hint, he could use this tool to print the Hints slot of

all presentations. This is much more efficient than viewing each presentation individually.

3.5.3 Consistency and Error Checking

ITS knowledge acquisition systems which guide the user, step by step, through the

creation of a curriculum knowledge base can significantly constrain the content and structure

of the knowledge base in their attempt to minimize errors. KAFITS is an open-ended

145

knowledge acquisition system that does not constrain the order information is entered,

which allows for flexibility, but admits more possible errors. To reduce several types of

errors we have implemented a small number of features to detect user errors, as described

below.

Slot data type warnings. All the slots (of all object types) are defined to be of a

specific data type, and the value of each slot is restricted to the required data type. Example

data types are: text, a pair of words (symbols), a pointer to a topic, a list of presentations,

an integer, etc. When the user creates a new instance or edits an instance slot values are

checked to make sure they are of the correct data type. If an error is found, a warning

message such as: “slot HINTS of instance {CAR-3} is: 102, but should be a text string; for

example: ‘hello there’.”34

Topic net consistency checker. The topic net (Figure 1.3) and the domain knowl¬

edge base are not completely integrated. That is, when the user makes a change in the topic

net (using the topic net editor) the change is not automatically reflected in the Browser,

and vice versa. The user must run the topic-net-consistency-checker (by a menu selection)

to make the topic net and the domain knowledge consistent. When this is done, the user is

prompted to add or delete items from the net or knowledge base to enforce consistency.

Cross references for consistency. The cross reference and null-reference sections

at the end of the saved-instance file (mentioned in Section 3.4.1) allow the user to locate

instances that are never used and instances that are referenced but do not exist.

3.5.4 Other Interface Features

Select-screen-configuration. At the beginning of a session the user can specify the

hardware screen configuration from a menu of pre-defined configurations, such as: color

34The user is not forced to correct these errors, since there may be rare cases when the user is intentionally

using a value of the wrong data type. However, if the user types something in the edit window which defies

Lisp syntax, such as having a missing or extra quotation mark (“like ’’this”) he is given an appropriate

message and is not allowed to exit the editor until this is fixed or the editing is aborted.

146

monitor, two page monitor, color monitor with two page to the right, etc. The positions of

all windows, menus, graphics, etc. are adjusted accordingly.

User types. The KAFITS system incorporates three “user types:” student, teacher,

and programmer. The user can change the user type via a menu operation (described

in Preferences below). Teacher mode is the usual mode of operation—meant to be used

by the domain expert and knowledge base managers. In student mode the user can not

invoke the Browser or change the knowledge base. In programmer mode, used only by the

knowledge engineer or Lisp programmer, error messages are more detailed and technical.35

Proposed additions would extend the number of user types to have different modes for new

vs. experienced users of the system, and different modes for domain experts vs. knowledge

base managers.

Preferences. The user can customize certain aspects of the KAFITS software to

his/her personal taste. The Preferences feature allows the user to set several options,

including the user type, whether or not to have the session trace window visible, and the

name of the default edit record. The setting for these options can be saved (in a “preferences

file”) and are automatically loaded the next time KAFITS is started.

Short cuts. There are many features that allow the user to take sort-cuts or combine

operations, some of which are described below.

At the top of the object type table is an item called Recent-instances (which can not

be seen in Figure 3.8 because it is scrolled off the top of the object type table). When this

item is selected the instances table is loaded with a list of all the instances recently selected

or operated upon (as opposed to the normal situation in which the instance table has a list

of the instances of a certain object type). This circumvents selecting the instance from the

long alphabetized list of items of a given type (the usual way of selecting instances).

The user can specify (via the Preferences feature) an often used operation to be executed

when an item in a table is double-clicked. A different double-click operation can be selected

35There are other differences between the modes, which we do not described here.

147

for each of the three tables (type, instance, and slot). For example, the user can specify

that when an instance in the instance table is double-clicked, it is browsed, and that when

a slot in the slot table is double-clicked, it is edited.

Some of the most important KAFITS interface operations can be executed by a com¬

mand keystroke, as well as via menu selection. For example, the command-B key starts the

Browser.

3.6 Implementation

The KAFITS system is programmed in Allegro Common Lisp on a Macintosh computer.

Standard Common Lisp is used except for interface functions (graphics, windows, menus

etc. that are particular to the Mac II computer) and a knowledge representation language

called KR. We designed KR to extend the functionality of the object language that comes

with Allegro Common Lisp. Below we give an overview of implementation issues related to

hardware, software, installation, portability, and extendibility.

The hardware platform. KAFITS runs on a MAC II36 (or a Macintosh II family

computer with higher functionality) with a hard disk and 8 megabytes of RAM memory.

Two monitors are needed. A high resolution color monitor is used for the actual tutorial

presentations and for the Browser. A two page high resolution black and white monitor

is used to display the monitoring tools and the Strategy Editor. A less powerful hardware

platform is needed to rim only the tutor without the knowledge acquisition interface (which

is all that is needed for a student or a teacher who wants to run a tutor designed by another

person). The exact specifications of this simpler platform have not yet been determined.

Software needed to run KAFITS. The KAFITS code is released in a Lisp “code

image” format. With each new version of the KAFITS code or new version of the domain

knowledge base a code image (compiled version of the source code) is created. The code

36 Apple Computers Inc.

148

image (which includes the crane boom simulation and the statics knowledge base) takes

1.4 megabytes of hard disk space. To run the tutor and knowledge acquisition interface

one needs the code image, and two folders37—one containing startup files, and the other

containing data files. The startup files are needed to initialize the system at load time. The

data files are updated as KAFITS is being run. These files are described in more detail in

Section 3.4. Applications software for creating and editing sounds and pictures, and storing

these in “resource files,” is needed if one wants to create sounds and pictures to include in

the curriculum. To run the statics tutor one also needs the resource files for the pictures,

sounds, and cursors it uses.

The network editor. A software tool for creating, displaying, and editing graphic

networks of nodes and arcs was built. This general tool was used to implement both the

topic net editor and the PAN editor.

Portability and the KR language. KR acts as an intermediate programming layer

between the KAFITS system and the knowledge representation language provided by the

Lisp software platform. The KR language includes features of both object oriented lan¬

guages and AI frame-based languages. The basic functionality of objects, methods, and

frames is incorporated from the Allegro Object-LISP package.38 In designing KR, the Al¬

legro Object-Lisp inheritance mechanism was modified, and many additional features -were

added, including object mixins, slot facets, “unknown” values, and type checking. All op¬

erations on the knowrledge base are programmed using the KR language. Therefore the

KAFITS implementation is independent of the knowledge representation language of the

underlying Lisp softw’are platform. This makes it easier to port the system to another Com¬

mon Lisp based softw-are environment (e.g. one based on CLOS). There is no need to rewrite

3TuFolder” is Macintosh language for “directories” in other operating systems.

3*The original implementation of KAFITS was on an HP-9000 series computer using the knowledge repre¬

sentation language HPRL. The KR language was written (and the KAFITS system rewritten to be based on

KR rather than HPRL) when the KAFITS code w'as ported from the HP-9000 to the Mac II. Many features

of HPRL which do not exist in the Allegro Object-LISP package are included in the KR language.

149

the KAFITS software to accommodate a new software environment or a new underlying

knowledge representation language—only the KR language needs to be rewritten.39

Extendibility

When starting to build a tutor using KAFITS, some extensions or modifications to

the representational framework are usually necessary. Most of these extensions require pro¬

gramming, so Lisp programming experience is assumed for those implementing the changes.

The KAFITS code has been written so as to make most of these code modifications easy,

but (until future software versions are written) some modifications are more cumbersome,

as noted below. “Essential” aspects of the representation 1 system (as described in Section

6.3.2), such as the four-level decision model, are not meant to be altered. Belowr we sum¬

marize aspects of the representational framework (not the interfaces) that can be modified.

Most domains require the addition of new object types or object mixins and, for the ob¬

jects already provided, require slightly different slots and slots default values. All of these

changes are quite easily made, and are automatically reflected in the domain knowledge

base Browser.40 Most domains also require a modification of the topic level scheme (see

Section 3.1.5) which requires adding or changing the relevant topic slots.

Low-level programming is needed, to make new topic-types or topic levels apparent in

the topic network monitor and the topic level display monitors.

Creating new tutoring strategies is fairly straightforward using the Strategy Editor (but

the editor is still in early prototype form). The names of the strategy parameters (an¬

tecedents) and primitive tutorial actions (consequents) can be created “on the fly” while

designing strategies, but the implementation of parameters and actions must be accom¬

plished by straightforward Lisp programming of the required functions.

39However, in moving to another programming environment all the graphics-related software, including

the net editor package, would have to be rewritten—no small task!

40The details of how to make these changes at the code level can be obtained from the author.

150

Each new domain has its own learning environment (or environments) (unless only

pictures are used for learning “situations” and only multiple choice and numerical answers

are used for student “tasks”). KAFITS has a flexible mechanism for incorporating new

learning situations and task types. First the programmer creates a new KAFITS object

type which contains for specifying the parameters for the environment (eg. the cable length

and beam angle of the crane boom simulation).41 Then the programmer must define a

finite set of “task-types” (or answer-types) that describe canonical interactions between

the student and learning environment (eg. make-point, make-vector, and change-value

for the crane boom simulation). For each task-type two methods (Lisp functions) are

defined: get-student-response, and process-student-response. Get-student-response invokes

the environment (unless is is already active) in a configuration appropriate for the task

type. When the student is finished with the task process-student-response determines the

correctness (and other properties) of the student’s behavior by checking the state of the

environment.

New information is easily added to the on-line help/assistance system, as mentioned in

Section 3.5.1. It is also easy to add new functions to the student initiative menu (Section

3.2.4).

The most difficult aspect of altering the KAFITS framework is modifying the student

model and diagnostic rules, which axe represented in Lisp “structures” and procedures.

High-level functions are provided for asserting (“tell-dynamic-model”) and inquiring (“ask-

dynamic-model”) student model values from other code modules. However, what the stu¬

dent model does with new information, and how it puts information together to respond to

inquiries, must be programmed at the Lisp level. The student model “layers” described in

Section 3.2.4 are clearly evident in the source code, but there is no general mechanism for

modifying the structure.

■"The learning environment must be built with programmatic “hooks” (Lisp functions) that allow the tutor

to configure and invoke the environment and access any information about the state of the environment that

is needed for tutoring or student diagnosis (eg. number-of-vectors-created).

151

Also, KAFITS does not have mechanisms (such as “demons”) which continuously mon¬

itor students behavior as they perform tasks (possibly over the course of learning several

topics)—these must be implemented in the learning environment.

Chapter 4

RESEARCH METHODOLOGY

In this chapter we outline our sixteen month study involving the construction of a tutor

for statics by three educators, and describe our methods of collecting data. In Section

2.5.2 we described several research/evaluation paradigms, including formative evaluation,

qualitative evaluation, and case study, and explain why all three of these paradigms were

chosen for this study. Below we discuss how the choice of subjects, domain, and methodology

could effect our ability to generalize the results of this study. Then we discuss our data

collection methods and research study time line.1

4.1 Description of the Case

As discussed in Section 2.5.2, the case study method trades the advantages of large

sample sizes and statistics-based conclusions for depth and diversity of analysis, which

contrasts the traditional scientific methodology where experiments are designed to eliminate

or factor out differences between samples. In case studies it is crucial that the characteristics

of the “case” be described. In this section we describe in detail four components of the case

under study: the subjects, the experimenter, the domain and the lack of a stable system,

and discuss how each of these components affect our ability to generalize the results.

1 Also, see Section 5.4.1 for a description of the design of the preliminary KAFITS system that existed at

the beginning of the study.

152

153

4.1.1 Description of the Subjects

The primary evaluation method is a case study of a domain expert using the KAFITS

system over sixteen months to design and test a tutor in statics. Two other subjects, whom

we call “knowledge base managers,” also participated. Our conclusions about the usability

of the system and our identification of important issues in this research area are based on

our experience with these three subjects, therefore it is important to describe these subjects

and ascertain how closely they correspond to typical potential users of the system.

The main case study subject. Dr. Charles Camp, a physics teacher at the Amherst

High School (Amherst, MA) was chosen as the primary subject of the case study. His

significant experience in teaching physics, his past involvement in research on science mis¬

conceptions, and his proximity to the research laboratory where KAFITS was developed,

made him an excellent candidate for this study. He has taught physics at the high school

level for over 25 years. He was part of a research team at the University of Massachusetts

Scientific Reasoning Research Institute which conducted a five year study identifying mis¬

conceptions in Newtonian mechanics and studied classroom-based methods for remediating

these misconceptions.

Camp had had some experience with computer programming and some exposure to

artificial intelligence concepts before we embarked on this project. He had taught introduc¬

tory computer programming (APL and PASCAL languages) to high school students, and

had no previous experience with Lisp or Macintosh computers. He attended a three week

Teacher’s Institute on Intelligent Tutoring Systems in the summer of 1988 held at UMass,

which introduced basic AI and ITS concepts to classroom teachers organized into small

groups to design story boards and screen layouts for hypothetical computer tutors.

First knowledge base manager. Frank Linton worked on the project as a knowl¬

edge base manager for approximately one month (totaling 70 hours) in the early phases

of creating the domain knowledge base. He is a graduate student in education at UMass

studying instructional applications of computers. He had worked as an industry consultant

in instructional design for many years prior to becoming a graduate student. Linton had

154

little experience programming and a fair amount of experience using computers for word

processing at the time he joined the project. He also had some familiarity with intelligent

tutoring systems concepts.

Second knowledge base manager. Kim Gonzalez worked on the project as a knowl¬

edge base manager for 550 hours over a seven month period toward the end of this study.

She is a UMass graduate student in education studying science education. Her undergradu¬

ate degree is in physics. She had had very little experience using computers before starting

on this project. She had no experience with data bases, computer programming, AI, or

ITSs.

The knowledge engineer. The author was the knowledge engineer during this study.

Though the KAFITS system is designed to be used extensively by the domain expert, the

role of the knowledge engineer is crucial in the ITS design process (as it is in the design of

any AI expert system). The knowledge engineer must initially train the domain expert how

to use the system2 and must be on call to answer questions the domain expert has while

using the system.3 That the same person conducted the experiment, designed and built the

knowledge acquisition system, and acted as the knowledge engineer in this case study limits

the ability to generalize of the results. We have no reliable information at this time on the

amount of training it would take, or the key issues that would arise, if KAFITS were used

by another knowledge engineer.

The author has a bachelors degree in the instructional domain (physics) and has par¬

ticipated (in years past) in cognitive studies of misconceptions in the instructional domain

[Murray et al. 1990]. The author attempted not to have any direct influence on the design of

the curriculum content, letting the domain expert make all important decisions—however,

we did have many conversations about the curriculum, and the author’s experience in the

domain probably had some effect. But this is not an unusual situation in knowledge engi-

2Our experience is that some of the concepts involved in using KAFITS are too difficult to be conveyed

with simple written procedural instructions, such as one gets when buying a commercial word processing

program.

3However, the domain expert did use the system successfully on about 30 days without help, including

daily several weeks without the knowledge engineer being available.

155

neering; it is actually necessary that the knowledge engineer have some experience in the

domain or learn the basic concepts and structure of the domain if he does not already have

this knowledge. Therefore the author’s previous experience is beneficial in terms of his

ability to do knowledge engineering, but may be detrimental generalizing our experience to

ITS knowledge engineering by an arbitrary knowledge engineer.

It is also worth mentioning that Camp and the author were acquainted prior to this

project, which made the initial stages of the research more informal than would be the case

for an arbitrary knowledge engineer and domain expert.

4.1.2 Discussion of the Prototypicality of the Subjects

Here we argue that the three subjects chosen form a reasonable basis for generalizing to

other users of the system, and other non-programmers involved in ITS design. Designing an

ITS in an instructional domain is at least as complex as writing a text book in that domain.

Like designing a textbook, it is a major undertaking, and the product can have great impact

and can be used by many people. It is not every teacher who produces a text book, but

rather those who are more experienced and motivated than the average—i.e. exceptional

teachers. Similarly, we can expect that only above-average or exceptional teachers are

capable and motivated enough to participate in designing the intelligent computer tutors of

the future. These tutors are designed and built by exceptional teachers, and used by other

teachers (as are text books or sophisticated curriculum materials).

Also, we do not expect instructors to participate in ITS design without at least an intro¬

ductory exposure to basic AI and ITS concepts. The undertalcing is too complex to expect

even exceptional teachers to start participating in ITS design “off the street.” Therefore,

we claim that Camp, as a highly experienced teacher having had some basic exposure to

computers, AI, and ITS, though not a prototypical high school physics teacher, is a proto¬

typical domain expert on an ITS design team (in Section 5.1 we discuss characteristics of a

good domain expert, and the expected training time). We had the additional good fortune

156

that Camp was knowledgeable in cognitive studies of misconceptions in his domain—which

is desirable, but not necessary, for the average ITS domain expert.

There are different purposes for using a system like KAFITS and different ways to

participate in the design process other than being a domain expert. The knowledge base

manager’s function is to input the knowledge as specified by the domain expert,4 and test

the curriculum for obvious errors (i.e. errors not related to the domain content). Another

potential user is the teacher who receives a KAFITS-based tutor and wants to make small

modifications to it to suit the needs of his/her class. Still another potential user is the

ITS evaluator who runs the ITS with students to ascertain its instructional effectiveness,

and perhaps modifies the knowledge base to improve it or to test alternative curricula or

strategies.

We argue that the two knowledge base managers who participated in this study are

prototypical “low-end” users, i.e., they represent the minimal amount of training and ex¬

perience for using an ITS knowledge acquisition interface. One of the knowledge base

managers (Gonzalez) had very little experience with computers, yet was experienced in the

domain (physics), but had no experience teaching the domain. The other knowledge base

manager (Linton) had some experience in computers and ITS concepts, but was not a com¬

puter programmer, and had no experience in the domain. We further argue that between

the three participants the spectrum of types of potential users is represented—at least well

enough to make some tentative conclusions in this exploratory study of the ITS knowledge

acquisition process.

4.1.3 Choosing the Domain

Below we discuss the choice of statics (or physics) as a domain and note characteristics

of this domain that might affect generalizations about building tutors in other domains.

4in our study the domain expert originally specified the curriculum on paper worksheets.

157

Mechanics (sometimes called Newtonian mechanics) is the part of physics that deals with

the relationship between the forces on objects and their movement though space. Statics is

the part of mechanics that deals with systems of objects in a static arrangement—i.e. where

no motion is involved. The statics tutor focuses on teaching a qualitative5 understanding

of key introductory statics concepts. Simple equations are included in the curriculum but

solving equations to obtain numerical answers is not included.6

We chose this content area for several reasons. First, we wanted the curriculum to

contain interactive simulation so that the student could be actively engaged in exploring

concepts and testing hypothesis. We already had available to us a crane boom simulation

designed to be used in conjunction with teaching statics. It was designed and built in a

collaborative effort by researchers and programmers from UMass and San Francisco State

University, as part of a project called Exploring System’s Earth [Duckworth et al. 1987].

The second reason for choosing statics was the availability of the domain expert, a master

physics teacher who has participated in cognitive studies of learning and teaching mechan¬

ics, including misconceptions in statics. Third was the author’s previous experience doing

research on computer-based method for remediating statics misconceptions [Murray et al.

1990].

Several studies of the United States educational system [U.S. Department of Education

1983, National Science Foundation, 1983] point to the importance of teaching science and

mathematics subjects, and to the poor quality of students’ understanding of these subjects.

This also affected our choice of the statics domain (vs. non-technical domains).

Mechanics (and therefore statics) stands out among most other science and math do¬

mains in the amount of research effort aimed at understanding common misconceptions

5Dealing with causal and spatial relations rather than quantities and calculations.

6Simple force equations are used in the curriculum, but problems involving several equations or trigonom¬

etry are not included. Qualitative understanding would, in the larger curriculum of an entire physics course,

lead to solving quantitative (equation-based) statics problems. Also, in the early design stages it was decided

that the statics topics friction and torque would not be included and that a brief introduction to vectors

would be included in the curriculum.

158

[Clement 1982]. This is only partially a plus for statics, however, since one reason so much

research has been done is that mechanics is notoriously difficult to learn.

An important characteristic of instructional domains is the type of knowledge that must

be mastered. Physics, and especially the area of physics addressed by the statics tutor,

deals primarily with conceptual knowledge and physical principles (and less well-defined

types of knowledge such as mental models and physical intuitions). Some other domains

are primarily procedural, for instance how to answer the telephone, and how to do long

division and teaching them often involves demonstrating skill application and practice with

individual procedure steps. Still other domains are primarily factual in nature, such as

geography and botany, and teaching them often relies on memorization and classification

learning.7 Of course most domains have a mixture of many types of knowledge, but usually

they are taught so that certain types of knowledge are emphasized. The most effective

computer tutor designs for each type of knowledge may differ considerably, so generalizations

of this study are more relevant for domains involving conceptual or principle knowledge than

procedure or factual knowledge.

Anderson [1988] compares intelligent tutors for procedural knowledge with those for

“declarative” knowledge. Procedural knowledge, in Anderson’s theory, is non-verbal knowl¬

edge used to perform skills. Declaxative knowledge, which in Anderson’s scheme includes

concepts and principles, is consciously available to be analyzed and thought about.8 In

procedural tutors the knowledge to be learned is represented in production rules that can

be run. Anderson thinks tutors for declarative knowledge are more difficult to design:

“the major difficulty posed for [declarative knowledge] tutoring systems is that declarative

knowledge cannot be rim...so the criterion ‘if the student can use it he knows it' does not

apply...” In any case, intelligent tutors that focus on procedural knowledge have tradition-

7We refer here to the way these domains are usually presented in educational settings. It is conceivable,

and perhaps desirable in some settings, to focus the instruction on other aspects, such as botany concepts

or physics facts.

8The process of learning often involves first learning something at at the declarative level, such as tips

for how to ski, and then assimilating it through practice at the procedural level, such as the unconscious

(and difficult to articulate) information about skiing that a practiced skier has.

159

ally been designed quite differently than those focusing on declarative knowledge, so any

generalization of this study to procedural knowledge tutors is limited.

To summarize, the domain chosen (statics) has been identified as relatively important

by the educational community, and much research has investigated instructional techniques

and common misconceptions for this domain. It has also been documented that statics is

difficult to learn. The statics tutor focuses on conceptual knowledge, physical principles,

and physical intuition, which are probably more difficult to teach than procedural or factual

knowledge. Though it is easy to envision a KAFITS-based tutor that teaches facts, or

relationships between facts, we are not certain how KAFITS would fare in teaching a domain

consisting of primarily procedural knowledge.

4.1.4 Unstable Software Platform

In accordance with the user participatory design process and formative nature of the

evaluation, the system underwent many revisions during the course of the study. The par¬

ticipants in this study were able to suggest changes to the system and saw these suggestions

manifest; this was a motivating factor for them. However, the unstable nature of the soft¬

ware made learning and using the system more complicated. On occasion a new release

of the software (as often as every two or three weeks during some periods) would contain

a programming bug. Usually when something went wrong the user’s first reaction was to

think s/he had done something wrong, and try to figure out how to mend it—leading to

frustration if the problem was due to a programming bug. Also, it would sometimes seem

that just as they got used to the way things were, the software would change. The changes

were improvements, but it still took effort to learn or accommodate.

In this aspect the study does not represent a typical use of the KAFITS system to build

a tutor. Future users of the system (assuming for the moment that the software remains

stable) would be using a final version of the system (incorporating many changes that make

it easier to use than previous versions) and they would not have to deal with the frustration

continually changing software.

160

IP
m
A
S
IE

a
(statics curriculum design)

2
(input LE-curriculum)

3 .

(debug LE-curriculum)

(test LE-curriculum)

(input and debug remaining curriculum)

J J o N D M A M J J

\ 1989 1990

Figure 4.1 Study Time Line

4.2 Case Study Time Line

In this section we outline the progression of events in the case study. The study tran¬

spired over a period of 16 months from June 1989 through September 1990 (see Figure 4.1).

We have divided the period in to five phases, which cover instructing the domain expert in

KAFITS, curriculum design, implementation, and testing with students.9

Phase 1. Initial curriculum design—months. June to mid August 1989. The

domain expert worked solidly10 with the knowledge engineer (and at times by himself) for

6^ weeks at the beginning. This was the most intensive work period of the study. The

knowledge engineer familiarized the domain expert with ITS concepts and the KAFITS

framework (see Section 5.1.2 for a list of what a domain expert needs to know to use

9In Section 5.1.1 each phase is further refined and described.

10 “Solid work” means three to five days a week for two to five hours a day. “Weekly” means once a week

for two to five hours on that day. The domain expert also worked some hours at home, as described in

Section 5.3.2.

161

Figure 4.2 Linear Equilibrium Part of Curriculum

KAFITS). The curriculum was designed at the topic grain size (i.e the entire topic net was

designed) and details of presentations for several of the topics were begun.

After Phase 1 the domain expert’s participation was weekly until the end of the study,

except for two weeks of solid work in Phase 5. The expert worked in the research lab on 60

days over the 13 month period spanning Phases 2, 3, 4, and 5.

Phase 2. Entering the Linear Equilibrium portion of the statics tutor—

1^ months. Mid August to late Se-ptember 1989. At the beginning of Phase 2 the first

knowledge base manager (Linton) joined the research team. Our initial curriculum focus

(indeed our focus for most of this study) was the 8 topics in the linear equilibrium portion

of the topic network (called the “LE curriculum,” see Figure 4.2). These topics formed a

stand-alone curriculum unit that could be designed and tested independently of the rest of

the statics curriculum. During Phase 2 Camp cogitated about the curriculum details in this

area and filled out worksheets (see Appendix M) for the instances of topics, presentations,

and crane booms, which he gave to Linton to enter into the knowledge base. Camp also

drew sketches (on paper) of graphics to be shown with some of the presentations.

162

Linton first built the topic network, entering the information for the approximately 40

topics of the statics curriculum and tested the topics and topics links at a syntactic level.

Next he entered the presentations for the LE curriculum as Camp created them. Linton

also used a drawing program (Canvas (tm)) to create the graphics for 18 pictures for this

part of the curriculum, according to Camp’s sketches.11 Linton’s work with the research

team ended at the end of Phase 2. During this time he spent 36 hours entering data, 34

hours testing the data, and 43 hours creating graphics.

Phase 3. Debugging the linear equilibrium curriculum—2 months. October

through November 1989. At the start of Phase 3 the domain expert was trained in the use

of the Browser. During Phase 3 he exercised the curriculum that was entered by Linton in

Phase 2, and debugged and edited the knowledge base. He worked weekly over this period,

a total of nine times. At the end of this period he thought that the LE curriculum was

ready to be tested with students.

Phase 4. Testing the linear equilibrium curriculum—5 months Early Decem¬

ber 1989 through late April 1990. There is a fair amount of temporal overlap of Phases 4

and 5 (see Figure 4.1). They are described separately because they are functionally different

and involve independent tasks.

The linear equilibrium portion of the curriculum was tested four times during Phase

4.12 Between each test modifications were made to the knowledge base and the KAFITS

program according to what was observed.

The first test (Test #1) involved eight associates of the lab (students, faculty, and staff)

who used the tutor and typed in their comments as they were using it. The testing took

two weeks (December 7th to 21st). Test #1 was intended to determine whether the tutor

was ready to be tested on high school students—either by bringing them into the lab, or by

bringing a computer to the high school. After some minor modifications, it was determined

11 Some presentations required the crane boom, and others required diagrams or pictures. The crane boom

configurations were specified by Camp on paper work sheets.

12There were no other tests involving students during this study, therefore the LE curriculum was the

only portion tested with subjects.

163

that the system was indeed ready, and it was decided that we would bring students into the

lab.

The second, third, and fourth tests were administered by Gonzalez and involved volun¬

teer high school students coming to the lab to use the tutor for one to two hour tutoring

sessions, for which they were remunerated $10. All of the subjects were students in Camp’s

physics classes, who had covered in class the material which Camp thought was prerequisite

for the statics tutor. In addition they had already been introduced to the main concepts of

the statics tutor, including linear equilibrium, gravity, static forces, and Newton’s Laws.13

Students worked either alone or in pairs. The tutoring sessions were all at least partly

supervised, with Gonzalez sitting next to the students for part or all of the session and

talcing notes. After each session the participants were asked these questions:14

1. What kind of physics experience have you had?

2. Did you find the use of the tutor easy? If not, which aspects were confusing or

difficult?

3. Did you enjoy using it? Why or why not?

4. Did you learn anything by using the tutor? If so, what?

5. What additional features would you like to see included in it? Why?

6. (Where applicable:) Did you enjoy using the tutor with another student? How would

it have been different if used alone?

7. Any other comments about the tutoring session?

The three tests were given as follows:

• Test #2: February 22nd, three students worked separately.

13Charlie intended the tutor to be used to reinforce and deepen existing knowledge in statics, not teach it

for the first time.

l4Some the the interviews were taped and notes were taken during others.

164

• Test #3: March 22nd, four students participated, two as a pair and two independently.

• Test #4: April 20th, four students participated, two as a pair and two independently.

On this day, unlike the others, Camp observed the sessions.

Phase 5. Expanding the Knowledge Base—9 months. Early January through

August, 1990. During Phase 5 the knowledge base was expanded to include all the topics

in the topic network (Figure 1.3). All of the topics had been instantiated in Phase 1,

but most were empty or contained only topic summaries or definitions (only topics in the

LE curriculum were complete). During the first four months (January through April)

Camp worked exclusively on designing the contents of the extended curriculum (including

incorporating misconception objects (Mis-KUs) for the first time) and filling out work sheets

which Gonzalez entered into the knowledge base. From early May through early August

(three months beginning with the last student trail) both Gonzalez and Camp exercised

the curriculum and made changes, often working side by side. Gonzalez finished her work

with the project in early August and Camp worked alone using the Browser for the final

two months of the study.15

4.3 Data Collection

The main form of data collection for this study was field notes. Ninety three pages

of notes were taken, covering 55 sessions in which the knowledge engineer interacted with

the domain expert. Notes were not taken for about thirty of the sessions, since on many

days (especially toward the end of the study) Camp came in and continued his work in¬

dependently. The journal notes include numerous diagrams and sketches, and about 40

short quotes by the domain expert. There were also several large newsprint sheets of brain¬

storming notes and diagrams generated by the domain expert and knowledge engineer from

the eaxly design stages of this study. A separate notebook was kept to record thoughts

15 At the completion of the study the entire statics curriculum was still not ready for students, and Camp

continued to work on it.

165

and information related to this study that was not associated with actual sessions with

the domain expert, to keep data from knowledge engineering sessions separate from other

notes. A daily record of all modifications made to the code was also kept. This was used

to determine the dates when KAFITS features were added or when code bugs were fixed.

Highlights of the journal notes were transcribed into print in two ways: a chronological

listing, and a categorization according to the issues addressed.

In addition two types of data files were analyzed. Edit record files were analyzed to

obtain rough quantitative data on the time spent on various types of knowledge base modi¬

fications, and session record files (which include typed-in comments from the student) were

analyzed to make conclusions about trial runs of the tutor.

Finally, a two-hour post-study interview was done with Camp. Though the interview

was audio taped, we did not do a detailed analysis of a trascript of this interview for this

study. However we list the questions asked and include many exerpts from the interview in

Appendix C.

Chapter 5

RESULTS, ANALYSIS AND DISCUSSION

This research project was unique among ITS research in that we studied ITS knowledge

engineering with educators and include empirical data about the design steps taken. Our

intent was to identify and explore issues and to suggest potential solutions in a new area of

study—ITS knowledge acquisition with educators. Therefore we use formative evaluation

and case study research methodologies, which allowed us to accomplish two things: 1.

develop a benchmark (“existence proof’) of a workable ITS shell and knowledge acquisition

method that can serve as a base line for further work; and 2. identify tradeoffs and problems

encountered in using the computer system and knowledge acquisition method that can serve

as constraints on (or guidelines for) future work. Our research methodology has allowed us

to suggest an upper and lower bound for ITS designers, describing what might work (and

in one case has) and cautioning about what might not work.1

Littman & Soloway [1988] discuss the importance of doing both “external” and “inter¬

nal” evaluations of ITSs—we do both in this study.2 External evaluations involve assessing

the behavior of the system in relation to users, while interned evaluation analyzes the rela¬

tionship between the system’s architecture and its behavior. Unlike most external evalua¬

tions, ours will focus on the relationship between the system and the domain expert rather

than the system and the student. We evaluate the power, usability, and efficiency of the

KAFITS system based on computer work logs (edit records), comments from the domain

expert, and field notes taken by the experimenter. We also discuss cognitive considerations

‘This could also be framed as providing sufficiency and constraint conditions on ITS design.

2Though we concur with their advice on the general types of evaluation needed, we do not follow many

of Littman & Soloway’s specific suggestions, since they focus on modeling the student.

166

167

in the design of the system. Littman & Soloway describe internal evaluation as answering

questions such as: “What does the system know?” (i.e. what could be inferred from its

knowledge given infinite processing), and “Wfiat can the system do?” (i.e. given what it

knows and its ability to infer, what can it tractably infer?). Our internal evaluation includes

an assessment of epistemological and representational aspects of the conceptual vocabulary

and curriculum representation.

Chapter 3 described the KAFITS system, the use of which is our benchmark for an ITS

shell usable by educators; the first section of this chapter describes our benchmark knowl¬

edge acquisition process (or method), and the remainder of this chapter addresses issues

and tradeoffs encountered. We document our ITS design process, give quantitative results,

and discuss knowledge representation issues, interface design issues, and cognitive consid¬

erations. Results, analysis, and discussion are combined and interleaved for readability.

5.1 ITS Knowledge Engineering with Classroom Teachers

In this section we describe our design process3 for building the statics tutor, discussing

the steps taken. We also discuss the knowledge and skills domain experts and knowledge

engineers need.

5.1.1 Steps in the ITS Design Process

The design process was reminiscent of “ontogeny recapitulating philogeny”—that is, de¬

velopment of the statics tutor over the course of the study roughly paralleled the evolution

of computer aided instructional systems over the last few decades. Specification of instruc¬

tional content passed through classroom-like, CAI-like, and finally ITS-like phases. The

3The terms “the design process” and “knowledge acquisition method/process” both refer to the process

we followed to build the statics tutor. In general there are also design steps for designing the learning

environment and studying student pre-conceptions of the domain, and these steps are part of the ITS design

process but not part of the “knowledge acquisition process.” We did not do need to do these two steps

because they were essentially complete when the project began.

168

process was one of moving from script-like, procedural, linear representations of the content

to increasingly declarative and more flexible representations. The design process addressed

this general question: how can a teacher’s conceptions of subject matter and teaching meth¬

ods be transformed from general knowledge based on classroom and one-on-one instruction

to a detailed yet flexible conceptualization that is appropriate for computer-based tutor¬

ing? Two parallel tasks were necessary. The first was guiding the teacher through a series

of structured interviews which defined and refined their knowledge according to a specific

representational framework (KAFITS in this case). The second task involved training the

teacher in the skills and concepts needed to design an ITS. The ITS design process described

below is the guidance method. The training method, which was interleaved with the design

process, is described in Section 5.1.2 (although the reader will find some mention of training

in the description of the guidance method).

Figure 5.1 shows an outline of the design process—the knowledge acquisition method

used to design the statics tutor. The steps cover the four phases mentioned in Section 4.2:

Phase 1 (initial curriculum design) has been refined into steps 1 to 7, Phase 2 (entering

the LE curriculum), Phase 3 (debugging the LE curriculum), and Phase 4 (testing the LE

curriculum) correspond to steps 8, 9 and 10, respectively. Finally, in Phase 5, steps 5, 7-9

were repeated for most of the remaining statics curriculum. A detailed analysis of the time

it took for each step is found in Section 5.3.2. Below I give a detailed description of each of

the steps.4

Overview meetings. During the first meeting with the domain expert (Dr. Charles

Camp) we discussed our goals and the available resources. I gave an overview of these

aspects of the KAFITS framework: the domain knowledge base, the topic network, tutoring

strategies, and the student model. I also mentioned the availability of the crane boom

4For this (and only this) section of the paper the author found it stylistically preferable to refer to himself

in the first person singular, because this section discusses the author’s interactions with the domain expert.

169

1. Overview meetings

2. Content Brainstorming

3. Design classroom script

4. Design topic network

5. Design CAI-Iike scripts

6. Design default tutoring strategies

7. Fill in work sheets

8. Knowledge base data entry

9. Semantic debugging of knowledge base

10. Student trial runs

LE Curriculum

*>1
Remaining

Curriculum

>2

)»3

>«
J

Figure 5.1 ITS Knowledge Acquisition Method

(The Design Process)

simulation and some curriculum materials written by others for topics related to the crane

boom.5

Content brainstorming. Taking several factors into account, including the availabil¬

ity of the crane boom simulation, we arrived at a general idea of the the high level content,

and some rough behavioral objectives for students. Camp wanted the tutor to teach a basic

qualitative understanding of Newton’s laws for static situations. He wanted to “try to stay

away from the big and the messy” and said “even though the simulation calculates the

numbers easily [we should] avoid getting mired in [numbers]” [6/15/89]. Camp’s behavioral

goals were for students to write force equations for simple crane boom configurations and

answer some qualitative questions that would indicate a good intuitive grasp of the material.

We discussed the knowledge that the average student was assumed to have before starting

the tutor. Camp described common misconceptions in statics and the difference between

misconceptions and “stuck points” (or “stall out places”), where students often get hung

5The first three meetings were held in Camp’s office at the high school were he taught so that he would

be more comfortable. Among the materials I brought were large sheets of newsprint for brainstorming

activities. After the third meeting all meetings were held at the UMass lab.

170

up or need extra help. At the end of the brainstorming sessions we had sketched a high

level topic network, containing ten nodes and five prerequisite relationships.6

Classroom script. To anchor discussion of the curriculum in a concrete and familiar

context, I next asked Camp to design an outline for classroom-style lessons of the subject

matter, including key examples, explanations, and questions. He framed his goal this way:

“we need a sequence of qualitative problems that will move the student along to a good

understanding” [6/15/89]. The script was at the level of a detailed overview; it did not in¬

clude remedial or advanced material and did not branch for misconceptions. The classroom

script afforded a more concrete example of what Camp wanted to teach.

Topic network. We analyzed the classroom script to produce a hierarchical list of

topics and sub-topics, clarifying the content to a greater level of detail than in the high level

network produced during content brainstorming. Next I introduced Camp to some basic

aspects of the KAFITS framework, that the topics are arranged in a semantic network,

each containing presentations specifying student-tutor interactions. We organized the list

of topics into a network, at first without attending to the semantics of node types or

link types. The goal was for completeness and circumscription of the curriculum. Next

I instructed Camp in additional aspects of the KAFITS framework including: knowledge

types, topic levels, and types of relationships between nodes. I also introduced the “spiral

teaching” effect noted in Section 5.4.3. These new concepts allowed important distinctions

and relationships in the network to be articulated, and the network was refined accordingly.

For instance, the distinction between principles and procedures helped Camp sort some

subject matter into more refined topics.

C Al-like scripts. • At one point, after several hours discussing fine points of the topics’

contents and relationships at an abstract level, uncertainty and ambiguity about the scope

and overlap of the topics became an issue (i.e. What did each topic represent?). This may

seem like a trivial problem, solvable by writing a clear definition or behavioral objectives for

6Only 6 of these high level topics eventually made it to the final 41 node topic net; the rest were pruned

out as we refined the scope of the curriculum.

171

each topic, but fuzzy areas kept arising and our discussions were straying too far from the

presentations Camp had designed for the classroom script. To move toward the concrete

and specific again, I asked Camp to compose CAI-like tutorial scripts, or “story boards.”

For each script he was to assume that a student started at one of the topic nodes and took

a typical path which would pass though several nodes. This was done, starting at several

high level topics, so that much of the curriculum was considered. These detailed scripts

specified curriculum features such as diagrams, crane boom configurations, motivations,

summaries, explanations, examples, tasks, hints, and branches according to student behav¬

ior. They were written in terms of presentations and topics, and contained much of the

information needed for topic and presentation objects. These scripts were CAI-like because

all curriculum paths and branches were explicitly specified.

Designing default tutoring strategies. Next I introduced the concept of strategies

that would determine: 1. How to traverse the topic network, 2. Which of the available

presentations would be given, and 3. What type of response was to be given to the student

(these correspond to the topic, presentation, and response decision levels in Figure 3.2).

Before strategies were discussed ideas and constraints for tutoring were discussed in terms of

“rides.” For example: “to teach a composite topic teach all of its parts,” “teach sub-concepts

before other sub-parts,” “check that a topic is not already known before teaching it,” and

“don’t congratulate the student after a correct answer if they got it wrong previously.”

Some of these rides were suggested by Camp and some by me. The very structure of topic

and presentation objects automatically suggests certain possibilities and orderings, which

could also be seen as rules. For example, topics have a slot called Motivation, which should

come near the beginning of teaching a topic; and presentations have a slot called Hints,

which should be given (if at all) soon after an incorrect student answer.7 Taking all of the

“rides” into consideration I drafted preliminary strategies for the topic and response levels.

Early drafts of the strategies were like scripts, showing the order of all of the actions as

if all would be included (as in the most verbose possible strategy). Later versions were in

rThough most of the structure of KAFITS objects was determined before the case study began, several

object slots were added or changed over the course of the statics curriculum design as a result of suggestions

from Camp or needs that I perceived while working with him.

172

terms of flexible action networks (PANs) and switches (see Section 3.1.7 for a discussion

of PANs, and Appendix E for diagrams of the final strategies). Three strategies for the

presentation level were discussed. The default presentation strategy was trivial: to give the

presentations for a topic level in the order they appeared in the topic’s slot. Camp also

designed a presentation strategy specifically for the {FBD-identify-forces} topic, which is

shown in Appendix E. We also discussed using a bridging analogies strategy [Murray et al.

1990] for some topics, although this was not implemented.

KAFITS worksheets: re-designing for flexibility and modularity. Camp was

informed that the instructional context of topics and presentations is not predetermined

when the curriculum is conceptualized in a flexible way allowing for multiple strategies. For

example, he could not assume that {Linear-equilibrium-concept} would be, in all situations,

preceeded by {Linear-equilibrium-intution}, or that a topic’s definition would be preceeded

by its motivation, or that an answer-reason will be preceeded by the answer give-away

because different strategies could order them differently. I also introduced the student

initiative feature, which allows students to jump from one part of the curriculum to another.

Consideration of these additional degrees of flexibility created a need for the components

of the curriculum to be modified toward modularity and multiple uses (with dependencies

on other parts made explicit if possible).8 Camp was also advised that information relevant

to many different strategies should be included in all objects (or as many as are feasible,

in order to maximize the flexibility made possible with multiple tutoring strategies); i.e.

most instance slots should be filled in (eg. most topics should have a motivation, summary,

examples, etc.). With these suggestions in mind, Camp re-designed the curriculum for the

final time, specifying it at a level detailed enough for entry into the computer.

To facilitate data entry I designed paper worksheet forms with templates showing the

information required for topics, presentations, Mis-KUs, and crane-boom objects (see Ap¬

pendix I for samples). The templates served as reminders of the attributes of objects as well

as worksheets for curriculum design. Camp needed to be introduced to some basic syntax

8Designing for complete flexibility was not feasible—tradeoffs are discussed in Section 5.4.3.

173

at this point, since the contents of slots were restricted by data type (for example: a list of

numbers, text, an integer, etc.).

Knowledge base data entry. To enter Camp’s curriculum into the computer, Linton

(the first knowledge base manager) first created blank topics for all nodes in the topic net.

Linton ran preliminary local and globed tests of the knowledge base and tested the the tutor’s

flow through the topic network using a strategy called Skim, which traverses the network

according to prerequisite and other topic relationships, giving only a brief description of

each topic (which at this point was blank), without trying to “teach” the topic. Then

Linton entered and tested the information from the topic and presentation work sheets.

The tests were mostly syntactic, checking that the material was entered as specified by the

domain expert. Linton needed one hour of instruction about the basics of the Browser to

get started using it (though more time was spent learning additional features). Being the

first extensive user of Browser, he had many suggestions that resulted in code modifications.

Semantic debugging of the knowledge base. Next Camp performed a semantic

debugging of the computer-based curriculum. He ran the tutor, tried numerous combina¬

tions of student responses and strategies, and made many changes to the knowledge base

using the Browser. (Camp was trained in basic Macintosh concepts and basic Browser fea¬

tures just prior to this). The first runs were performed with verbose strategies, so that all

elements of the curriculum would appear. Test runs were performed choosing all correct

answers, then all wrong answers, then a mixture. Less verbose strategies were then used, to

test the flow of the tutorial dialog when some components of the curriculum were skipped.

Student trials. Nineteen subjects test ran the LE curriculum. Camp and Gonzalez

analyzed the test results to improve the knowledge base. A description of the student trials

is given in Section 5.2.

In summary, the above description provides a schematic view of our design process. The

steps also serve as a methodological framework for others building ITSs and engaged in ITS

knowledge acquisition. The design process assumes that the instructor (or knowledge base

174

managers) will actually build a tutor, doing most of the knowledge entry and testing, and

it assumes a knowledge engineer is available to supervise the process.9

5.1.2 Training the Domain Expert

Here I discuss what the domain expert needed to know and how he was trained, and

make general suggestions for training ITS domain experts.

Encouraging a Vision of the Final Product

Very early in the design process the teacher should be encouraged to form a fairly

concrete vision of the look and feel of the proposed tutor. Fortunately, we were able to

show Camp both a prototype of the crane boom simulation and an example of a small

prototype KAFITS-based tutor in operation, including examples of tutoring sessions and

the Browser in use. These experiences significantly clarified his conception of the look and

feel (but not the content) of the proposed tutor (a more detail discussion of the importance

of a concrete context in training is given in Section 5.5.2). Though I had explained the

functionality of the simulation to him earlier, its potential as a learning tool became much

more apparent when he played with the system. He envisioned scenarios for asking students

to draw force vectors on free-body diagrams that he did not consider when given only

pictures and a description of the simulation (“It was really good that we looked at the

[simulation] yesterday” [6/30/89]).10

A Galaxy of Knowledge

Teachers have much to learn on the road to becoming ITS domain experts. As mentioned

above, the domain expert was trained in parallel with the early design steps. An overview

of the galaxy of knowledge needed by the domain expert for this project is shown in Figure

9However, an almost identical process could be followed in cases were the knowledge engineer interviews

the domain expert to extract knowledge and then does the data entry and testing him/herself.

10Camp also had numerous suggestions for improving to the simulation, most of which were implemented.

175

5.2 (at the start the teacher already knew some of the items under the domain pedagogy

category, and bits and pieces of other categories from an ITS Summer Teacher’s Institute).

I claim that most of the knowledge listed will be need by a domain expert involved in

building any intelligent tutor, if they participate in design, implementation, and testing.11

Training in Instructional Theory

Originally I had planned to introduce the domain expert to instructional design theories

(by Reigeluth, Merrill, and Gagne, as mentioned in Section 2.2), and encourage him to

incorporate instructional design principles into the curriculum. I soon realized that this

would lead to an information overload and detract from the goals of the study. It was

enough for Camp to re-conceptualize his own ideas about teaching statics in terms of the

KAFITS framework and to participate in a formative evaluation of the KAFITS interface,

without assimilating new theories of instruction. Learning and applying instructional design

principles so that they are second nature could have taken additional months. Also, these

principles usually consist of constraints on the content and form of the material presented to

the student, whereas Camp was already sufficiently constrained by the limitations inherent

in representing human teaching knowledge in a computer.12 Therefore, the only elements

of instructional theory used were those that were already incorporated into the KAFITS

framework (see Section 2.2.7).

As a benchmark for the degree of information complexity a knowledge engineer can

introduce to a domain expert, consider our use of knowledge types. Appendix B shows

a handout which explains knowledge types. After reading this document, Camp said “I

thought it was really quite clear...a reasonable thing to ask [a domain expert] to do...a lot of

the examples in the handout are from domains I am familiar with” [7/7/89]. At this point

11 More powerful knowledge acquisition interfaces will minimize the need to know the details of syntax and

representation framework.

12Camp demonstrated his understanding of this constraint during a session where we were talking about

the difficulties of designing sophisticated tutoring strategies that might approximate some human tutoring

capabilities: “We could put a probe on their forehead for telling if they are confused, and we need one

attached to their butts to see how much they are wiggling around ’cause they’re bored” [6/5/90].

176

• Basic ITS and AI concepts.

- Distinction between declarative and procedural information; objects, slots, classes,

instances, semantic networks.

- Lisp basics (code as data, source code vs. compiled code).

- Familiarity with expert systems (rules).

- Familiarity with seminal ITS research and ITS systems.

• The KAFITS framework.

— Conceptual vocabulary.

— Overall structure (four-level decision model, etc.).

— The student model.

— Tutoring strategies (switch sets and PANs).

• The KAFITS interface.

— Macintosh basics (using the mouse, Mac file folders, windows, menus).

- Basic syntax ((lists), :KEYWORDS, “text”).

— Using the Browser (operations, help features, etc.).

• The learning environment.

— Using the crane boom simulation (dozens of features and parameters).

— The student interactions and the accessible information about student behavior.

- Canonical specifications of crane boom configurations.

— The student interface and student initiative feature.

• Design process and knowledge management

- Computer information storage concepts .

— Familiarity with knowledge modularity issues (see Section 5.4.3).

- Filling out template forms and managing edit records and trace files.

• Domain pedagogy.

- Abilities and knowledge of average (and non-average) students.

- Common misconceptions and buggy knowledge.

- Key examples, questions, and explanations, prerequisites, etc.

— Teaching strategies (that have worked in the classroom or one-on-one tutoring).

- Relevant cognitive and educational research.

— Other sources of curriculum knowledge (such as workbooks, textbooks, films, etc.).

Figure 5.2 Knowledge Needed by the Domain Expert

177

he had assimilated the information at a recognition level, meaning he understood quite well

when I talked in terms of knowledge types, and could engage in discussions about subtle

issues. However, his understanding was not integrated at the recall level, since he could

not on his own give definitions of knowledge types, and several weeks later he became fuzzy

about the meanings of knowledge types, saying “a lot of water’s gone under the bridge since

[I read that handout]!” [8/2/89].13

There is a tradeoff between letting the teacher use his practical knowledge and domain

expertise vs. constraining him to use principles from instructional theories. Constrain¬

ing him too much may “cramp his style” and inhibit creativity and intuition, yet some

instructional principles are very powerful and have a high likelihood of improving instruc¬

tional quality. One solution to this tradeoff is having the domain expert learn instructional

principles and then modify them according to his practical knowledge and decide the most

effective and practical contexts in which to apply them. However, the concepts and guide¬

lines of instructional theory are not trivially applied, and it may take an unreasonable

amount of time to practice using them in various contexts to gain sufficient mastery. This

was evidenced in several situations in which I recommended an instructional design princi¬

ple to Camp (such as having a conceptual prerequisite to a principle) and he agreed that it

was a good idea, but later was not able to piece together the reasoning for the decision he

had made.

Training for Other Users

The guidance and training methods described above are best suited for domain experts

who are novices at using KAFITS. The method is designed to incrementally introduce the

concepts and representational framework as they are needed, in parallel with the design of

13By the second month of the design process we had labeled all topics according to knowledge type. As

mentioned above, knowledge types helped Camp clarify his organization of the curriculum. I had originally

thought we would eventually design different strategies for each knowledge type, but this was not done

because of the problems of introducing too much new instructional theory, and because the scope of the

study was to study knowledge acquisition of domain knowledge, not strategy knowledge.

178

the curriculum.14 Domain experts who do not build a tutor from scratch, but modify an

existing tutor, will need to know less. Knowledge base managers need to know as much

about the KAFITS interface as the domain expert, less about the KAFITS framework, and

little about ITS concepts and domain pedagogy.

5.1.3 Working with the Domain Expert

In this section I describe several experiences or aspects of working with the domain

expert which I believe is of general concern to ITS knowledge engineers.

Opportunism in design guidance. As in many design processes, the pre-

implementation stages of the ITS design process involved alternating between creative,

expansive, brainstorming phases, where “completeness” was a goal, and contracting, refin¬

ing, pruning phases, where “concreteness” was a goal. As knowledge engineer I needed to

be sensitive to when it was most propitious to step back for a global overview or analysis

and when it was appropriate to focus in and refine, get concrete, and/or implement. As

mentioned, the design process described is only a schematic; in any particular knowledge

engineering session bits from several phases may have been present, and I had to make deci¬

sions about the appropriateness of leaving the main objective to review material or preview

future issues.

Opportunism in training. The earlier description of the design process showed sev¬

eral occasions where I introduced the domain expert to new material needed for the next

design step. In addition to having a general plan for how and when this information should

have been be communicated, I had to be prepared to make opportunistic training decisions.

For instance, I had planned on introducing knowledge types after the topic network was

complete, at which time I had planned to refine the curriculum by determining the knowl¬

edge types of the topics. But I found it necessary to introduce knowledge types earlier than

that because it helped Camp clarify some of his thoughts about how to divide the curricu-

14 A domain expert who is already familiar with the KAFITS framework can skip many steps, and domain

experts who are interviewed by a knowledge engineer but do not use the KAFITS system (as in more

traditional AI knowledge acquisition) clearly will not need to learn as much or go through the same process.

179

lum into discrete topics [7/5/89]. On another occasion [7/20/89], when I asked Camp to

design CAI-style scripts, he said he needed to know what kinds of student parameters he

should assume he had access to, since the branches in the script should depend on student

behavior. At this point I introduced more detail about the KAFITS student model, long

before I had planned to.15

Scaffolding and context in training. In general, one does not want to overwhelm

the domain expert with information, and it is best to introduce new information in a

context in which it makes sense and can be used.16 This is consistent with constructivist

learning theories [von Glasersfeld (in press)] and apprenticeship teaching theories [Collins

et. al 1986]. As an example of the power of learning in concrete and realistic instructional

contexts, consider the following. Approximately eight months before this study began,

Camp attended a three week ITS Summer Teacher’s Institute17 in which he was introduced

to ITS and AI concepts, and worked in small groups to design simulation environments

and “story boards” for hypothetical intelligent tutors. I was therefore surprised when, after

only one day of working with Camp on this study he said “[Now I have a] hell of a lot

better idea of the name of the game,” not as a criticism of the Summer Institute, but as an

expression of a picture that had finally become clear to him. The institute’s designers (I

was one) included group work to anchor the participant’s knowledge in experience and give

them a chance to apply what they had learned, but the participants were not as constrained

or guided as they would have been if they had been designing actual ITS systems within a

clear implementation framework.

As mentioned in the discussion on training, it is important for the domain expert to

have an early vision of the “look and feel” of the proposed tutor—and the more concrete

and realistic this vision the better. Teachers not exposed to intelligent computer tutors will

have difficulty envisioning the range of possible actions and decisions a computer tutor could

15During this discussion Camp suggested severed student model modifications which were later

implemented.

16My notes indicate that I was often concerned about overwhelming and/or discouraging Camp with too

much information. Fortunately he had a high tolerance for complexity and ambiguity.

l7At the UMass Dept, of Computer and Information Science.

180

take.18 Their specification of computer-based curriculum will be more limited bv their con¬

cept of curriculum as preparation for classroom lectures and activities. Therefore exposing

new domain experts to working ITSs in domains similar to theirs is highly recommended.

The usefulness of lateral thinking. As knowledge engineer I often had to strike a

balance between focusing the discussion on content relevant to the ITS and allowing the

discussions to stray as the domain expert circled around for a landing, or spun off on a

tangent. Apparently, it is extremely rare that classroom teachers have the opportunity to

talk with an interested party about what they teach, the way they teach, and the problems

that come up in their teaching. Working with an ITS knowledge engineer is one such oppor¬

tunity. The motivational aspects of this opportunity mitigated the frustration and tedium

that were part and parcel of ITS construction. Camp’s tangential thoughts and anecdotal

classroom stories served several purposes. They were divergent (“lateral”) thinking pat¬

terns that often led to creative solutions or reminders of important information. In addition,

even as the content of discussions seemed to drift away from necessary information, they

anchored the discussion and Camp’s thoughts in the concrete reality of a classroom or one-

on-one tutoring situation. It was apparent that forcing the discussion to remain focused on

creating knowledge base instances would have been frustrating, dry, and overly abstract for

Camp.

The domain expert’s initial knowledge. I have mentioned elsewhere that some of

the ideas a domain expert brings to an ITS project can be detrimental to the ITS design

process, such as notions of classroom teaching which limit his concept of the range of

possibilities the intelligent tutor affords. But our discussion would not be complete without

noting that a good domain expert comes to the work with a wealth of essential knowledge.

Numerous times during the curriculum design Camp demonstrated his vast and detailed

knowledge of teaching high school physics, as evidenced by the quotes in Figure 5.3.19

18The situation is probably even worse for teachers not exposed to any type of computer aided instructional

system, though exposure to traditional CAI might limit the teacher’s sense of the range possibilities for ITSs.

19These quotes also illustrate that Camp was quite sensitive to whether students were actually learning

and believing what was presented, as opposed to simply wanting them to get correct answers to questions.

181

• “An awful lot of the mistakes are made in the preliminary parts [of the free body

diagram solution]” [6/26/89J.

• “Not many that get the free body diagram right get the sum of forces [equaling zero]

wrong” [6/26/89].

• “Let’s stay away from cans of worms like friction” [7/5/89].

• “That area [around {Types-of-forces}] is a nasty little area in there,” and jokingly:

“Unfortunately I know too much about it from [involvement in classroom physics teach¬

ing research projects]” [8/29/89].

• “Fortunately we are not trying to teach the dynamic third law; I’m convinced nobody

knows how to teach that...and fortunately nobody believes it [anyway]!” [12/12/89].

• “[In my participation on research in classroom methods for teaching physics] the thing

I’ve learned mostly is how hard it is to [teach this material]. There are really some

problems in teaching this stuff.” [1/9/90].

Figure 5.3 Quotes by the Domain Expert on Teaching Physics

ITS designers should search for domain experts with this level of understanding about the

subject matter.

The complexity and magnitude of designing an ITS. Though Camp worked

very productively and (to us at times surprisingly) enthusiastically on this project for its

entire duration, the magnitude and complexity of the task before him was sometimes a

source of frustration and momentary exasperation, as exemplified by the quotes in Figure

5.4. Tolerances for uncertainty, ambiguity, and complexity are desired characteristics of ITS

domain experts. Camp was a good candidate for this project in this respect; he started

working on the statics tutor in the dawn of his growing understanding, well before having

a detailed picture of the overall KAFITS system.

Making efficient use of the domain expert’s time. A substantial commitment

is needed by the domain expert to design an ITS from scratch. Camp had many other

commitments (school teachers’ commitments during school session are usually numerous

and overwhelming), so his time was precious. Having knowledge base managers on the

182

• “[There are] sure a hell of a lot of options!” [6/15/89].

• “Boy, there’s plenty of room for creative thinking here!” (said somewhat sarcasti¬

cally, but with excitement, putting his head down on the desk, shaking it, grinning)

[6/15/89].

• “Boy, there’s a lot of levels to think about this thing on!” [7/30/89].

• “When you pass out your dissertation you better give them a bottle of Tylenol!”

[7/30/89].

• “When I think about the range of ideas we have here on this paper [a printout of the

knowledge base] I sit back and say ‘woah!’ We have enough physics ideas here to choke

a horse!” [9/18/89].

Figure 5.4 Quotes About ITS Design Process Complexity.

design team helped us make the best use of Camp’s time. (See Section 5.3 for an estimate

of the time commitment needed to design the statics tutor.)

Most of Camp’s participation was once a week. This is, in part, disadvantageous com¬

pared with more frequent visits.20 Progress on this project was more efficient during the

periods when Camp came in frequently (several days a week) and was “on a roll.” Camp

had to build complex mental models of the KAFITS software and his curriculum and have

these readily accessible in his mind for efficient work.21 Camp’s life as a teacher was so full

during the school session that it took a significant amount of time (about a half hour or

more within each session) to get re-established after a week’s break. On several occasions

Camp expressed his frustration with the (necessary) infrequency of his work with me, for

example: “Getting my head around this whole [topic network] is mind boggling. Getting

my head around parts of it [at a time] is no problem. If I had my druthers I'd take a team

of about four physics teachers and work on it for six months” [2/14/90].

However, in our case, having the domain expert come weekly did have some advantages.

Modifications to the KAFITS system to add new features or re-conceptualize aspects of

20During the school year frequent visits may not be possible.

21 Even “simple” tasks like driving a car or using a hand held calculator require complex mental models

[Young 1983].

183

the framework often took weeks, and fixing code bugs sometimes took days. In many ITS

design efforts the simulation environment will be built or modified while the tutor is being

built (the crane boom simulation underwent substantial modifications according to Camp’s

recommendations), amid spreading the teacher’s involvement over a longer time allows a

more complete system to be developed.

The amount and complexity of information the domain expert must learn, and the

“preciousness” of his time, highlight the importance of usability and effectiveness for the

knowledge acquisition interface. Structures and concepts that are visually reified act as

reminders of the underlying framework and limit the user’s cognitive processing load.

Computer vs. classroom instruction. On several occasions Camp commented on

hypothesized benefits of computer tutoring as compared to classroom instruction. When

the simulation was first described to him he was impressed with the possibility of animating

the objects in a statics problem and the possibility of showing diagrams being constructed

piece by piece, for example having the vectors of a free body diagram added one at a time.

He described how he had often been frustrated that textbook or blackboard diagrams do

not easily convey important concepts because of their static nature and limited number of

pictures. He also thought that the computer tutor would give more instructional leverage to

less advanced students, who benefit more from repetition and diagrams. He also liked the

idea of being able to allow more than one right answer to questions, so that correct answers

with different shades of meaning or emphases were possible. He noted that putting more

than one correct answer in textbook or handout questions sometimes leads to confusion

due to the delayed feedback, saying “[students] are left in suspense too long” [8/7/89]. In

contrast, the immediate feedback potential of computer tutors allows students to be told

that theirs was not the only correct answer, or be given a reason why another correct answer

was preferred.

184

Summary of the Design Process

In this section we described our “design process” (or knowledge acquisition method) for

building the statics curriculum.22 It has ten steps spanning design, implementation, and

testing activities, and should serve as a first pass road map for other ITS knowledge engi¬

neering efforts. We also described the content of and methodology for instructing/training

the domain expert in the concepts and skills required.

The design process is a schematic which does not show the overlap of steps. Since there

actually was overlap, the need for the knowledge engineer to make opportunistic guidance

and training decisions was discussed (training was interleaved with design, and new concepts

were introduced as needed). The wide range of knowledge needed by the domain expert

was listed, most of which, we anticipate, would be needed by a domain expert involved

in designing and implementing any intelligent computer tutor. Important characteristics

of domain experts were noted, including a high tolerance for complexity and ambiguity,

significant knowledge of the pedagogy of his domain, and the ability to make a significant

time commitment. Important knowledge engineering skills were noted, including flexibility

in moving between expansive brainstorming phases and refining concretizing phases, bal¬

ancing listening with guidance, and sensitivity to when new concepts need to be introduced.

See Section 2.4.2 for a discussion of the knowledge acquisition methods we used.

We pointed out the value of giving the domain expert a clear vision of the look and

feel of the final product, including the possibilities for student-tutor interaction, early in

the design process. We also described tradeoffs involved in teaching the domain expert new

instructional theories.

We gave anecdotal evidence for potential frustration of domain experts involved in this

type of project, and noted how precious their time is. Having knowledge base managers on

the design team and designing the KAFITS interface for usability mitigated the size and

22 For the remainder of the document the author will use the first person plural.

185

complexity of the demands placed on the domain expert and allowed us to make efficient

use of his time.

5.2 Results of the Statics Tutor Test Runs

As mentioned in Chapter 4, 19 subjects test ram the LE curriculum, including 8 lab

associates and 11 high school students, in four test groups, each separated by about a

month. It took an average of about 1.5 hours to complete the LE curriculum. Two of

the tutoring sessions involved pairs of students running the tutor; the rest were one-on-one

tutoring. The domain expert was interested in getting feedback about the quality of the

student interactions and the pedagogical quality of the lesson. However, the experimenter

was mainly interested in how the domain expert and knowledge base manager gathered

evaluative information and used the Browser to modify the knowledge base. Below we will

describe and give results of the statics tutor test runs and discuss these results.

Suggested Changes from Student Trials

Students’ comments (both verbal and typed) and observations by the test administrator

(Gonzalez) lead to several dozen minor changes to KAFITS code and the statics knowledge

base. There were between five and twenty suggestions per session (with about 30% overlap

from duplicate comments), which we regard as a low number, considering the amount of

curriculum presented and the complexity of what the students saw. That relatively few

suggestions were made and that most of them were superficial leads us to these hypotheses:

1. the look and feel of the KAFITS student interface was minimally acceptable, 2. the

LE curriculum was minimally acceptable; and 3. Camp and Gonzalez’s test runs (semantic

debugging) of the domain knowledge base were fairly thorough.23

23Note, however, that had we been measuring whether students learned physics, more changes would

probably have been made.

186

Although changes were made to both KAFITS code and the knowledge base in between

each of the four test groups, the quantity of suggested changes per session did not decrease

noticeably from the first to the last test group. This indicates that the curriculum quality

(which started at an “acceptable” level) had not begun to “level off” yet. We cannot

estimate how many more student trials it would have taken to have student comments level

off to a “very low” number. Due to fundamental limitations in the “intelligence” of the

computer tutor, the needs of all students could never be met at a level comparable to one-

on-one human tutoring, and perhaps the quantity of student comments would always be at

the level observed in our tests.

Suggested changes to the domain knowledge base were of several types, including: word¬

ing (eg. spelling and grammar), pedagogy (eg. answers or explanations that didn’t make

sense), and format (eg. a question being too big so that part of it scrolled off the window

before it could be read; a picture that was shown before its text description rather than after

it). Gonzalez’s analysis of session trace hies to produce summaries of student comments

went smoothly. Camp’s and Gonzalez’s editing of the domain knowledge base to account

for student comments also went smoothly. Camp used his own judgment to decide which

of the suggestions warranted changes in the knowledge base.

Student Comments and Critiques

Most of the subjects reported overall enjoyment of their tutoring sessions, though there

were moments of frustration. On the average they did not seem to learn a great deal of new

material, but they found several features of the tutor helpful. To give the reader a feel for

the student’s experiences, we include the following student comments, first positive ones,

and then critical ones.24 There were substantially more critical comments than positive

ones, but the vast majority of critical ones concerned problems or questions with specific

pieces of the curriculum content, and only general comments are listed below.

24 All quotes in this section are paraphrases.

187

Positive comments:

• The overall [dialog] flow seems to be smooth and continuous....Once I became familiar

with how the system worked [menus, etc.] things seemed to run quite smoothly [session

175].

• The hints were very helpful, providing ways of thinking about the problem I hadn’t

thought of [session 234A1.

• It is helpful that the tutor gives more than one way of answering the questions [session

256].

• Being able to see the vectors change and meter values change without having to

calculate the numbers is nice [session 234A].

Critical comments:

• There is too much reading [text] in some areas [session 234A].

• The tutor gives too much information after you get the correct answer [session 249].

• The flow of the tutor does not make sense to me here. It does not go back to the

crane boom simulation problems [session 252].

KAFITS code and strategy changes. A small number of Lisp code and tutoring

strategy changes (about 15) were made as a result of student trials.25 This number is

small partially because the system was exercised significantly by the domain expert and

knowledge base managers prior to student trials, and suggested changes were made at that

time. Code changes from the student trials included the interruptable menu feature, the

trace file format, and changes to the simulation (eg. changing the vector colors for more

visibility). Also, about three code bugs were discovered by students, suggesting that no

matter how much the design team exercises the software, students will think of new ways

to use it—therefore, student trials were essential for working out code bugs.

“Strategies were represented in computer code in the version of KAFITS used for the student trials.

188

Most of the code changes were strategy related. A single strategy was used for the

duration of each tutoring session; the “default” response strategy, which is rather verbose,

was used for the first three test groups, and a less verbose strategy (called New-r-brief) was

used for the fourth test group. Students were not shown how to use the student initiative

menu (Section 3.2.4) to alter the current strategy. An often repeated comment during the

first three test groups was that the tutor was too wordy (see critical comments above).

Yet in the fourth test group (with the less verbose strategy) two students mentioned that

they would liked to have seen an explanation or elaboration after they answered a question

correctly, just as they did when then they answered a question incorrectly. Their wish would

have been granted if the default response strategy were in use rather than New-r-brief. This

weakly demonstrates the potential utility of multiple tutoring strategies and the need for

student control of tutoring style. As a result, of these comments a feature was added to the

student initiative menu that allowed students to get an answer explanation and elaboration

of the previous presentation.

Several other strategy changes were suggested and later implemented, including: a stu¬

dent initiative feature allowing the student to backtrack and review or re-answer the last

presentation given; and a modification to the response strategy so that the student was not

congratulated (for example: “that’s good”) when she answers correctly after her second or

third try at the question.

There were several useful suggested code and strategy changes that we did not implement

(but plan to), including: the capability for a student to see her progress in the lesson (for

example, to know whether she was almost done); a “there is only one possible answer left”

message given when the student has tried all but one answer choice unsuccessfully; a “you

have already tried that choice” message given when the student answers the same way twice;

and the capability for advanced students to skip the easy level presentations in all topics.

189

Other Student Trial Observations

Camp intended the statics curriculum to be used after the learner had some initial

exposure to important concepts from a classroom or textbook. He also assumed (see Section

4.1.3) that the tutor would be most useful to students of average or below average ability.

All of the high school participants had had one semester of physics and were currently

enrolled in an advanced physics class. About half were of greater than average ability and

the other half were of average ability in their physics classes, according to Camp. Therefore

the students that volunteered for this study were not optimal from the perspective of the

anticipated instructional leverage of the statics tutor, which was expected to have greatest

impact on average or below average students. Camp’s intentions and assumptions held true,

as evidenced by the following sample of student comments:

• I didn’t learn any new concepts, but it was helpful as a review or supplement [session

234].

• The tutor helped clarify some ideas about statics [session 232].

• It was good as a review for material already learned, but not to learn it initially

[session 245].

Different learning styles were noted. One student [session 232] spent a lot of time playing

with the crane boom simulation; he enjoyed exploring various crane boom configurations

and tried to discover rules governing the force vectors. This student took the longest to

finish the LE curriculum, 2| hours.

The pair of students in group #4 worked well together and had many motivated ex¬

changes. Fewer student comments were typed during this session than during the other

one-on-one sessions, perhaps because students tend to interact with the computer less when

they can communicate with each other.

The pair of students in group #3 was mismatched—one student was familiar with Mac¬

intosh computers; the other student was not totally fluent in English and had no familiarity

190

with Macs. In this session the first student tended to take control and not include the

second student (who seemed timid) in decision making.

Domain expert observation. Test #4 was unique in that Camp sat nearby and

observed the sessions. This was the first time Camp had ever witnessed anyone being given

the curriculum he had designed, and, significantly, he said there were “no big surprises”

from his observation of the two one-on-one sessions and one paired session. Camp thought

that his presence may have affected the confidence of two of the students. In addition he

thought that using the tutor with pairs of students was “valuable.”

Student comment facility. Students were quite willing to take the time to type in

their comments. This may have been because they knew they were part of an experiment

or software evaluation. Also their willingness to enter comments may have been due to the

fact that students rarely have the opportunity to critique the teacher (though they would

undoubtedly have much to say) and the KAFITS student comment facility provided such

an opportunity.

Summary of the Test Runs

In summary, the KAFITS student interface was fairly robust and complete after being

exercised by the knowledge engineers and the domain expert, and the statics knowledge

base was fairly bug free after being debugged by the domain expert. However, student

trials did result in the detection of interface and knowledge base bugs, leading to important

modifications. The LE curriculum tried runs, involving 19 subjects and taking an average

of 11 hours, went fairly smoothly. The overall style and content of the curriculum was

acceptable according to students and according to the domain expert who observed four

students running the tutor. However, several of the students, who were on the average

more advanced in physics than students for whom the statics curriculum was thought to be

optimal, complained of it being too wordy, and said it gave a good review of the material

but that they did not learn anything new.

191

These were supervised lab experiments, and we were not particularly concerned with

student learning. We assume that many changes would need to be made to both the student

interface and the statics curriculum for it to be robust enough to be used in a classroom, but

the student trials suggest that the KAFITS system (both the framework and the interface)

is a viable tool for designing, implementing, and testing ITS curriculum.

5.3 Quantitative Analysis of the Curriculum and Design

Process

The driving questions for quantitative analysis of the data are:

• How can the size and structure of the knowledge base be measured to allow for com¬

parative analysis of knowledge bases?

• How much effort is required by each participant in each step of designing the statics

tutor?

• Approximately how much time did it take (per hour of instruction, and per curriculum

topic) to design the statics tutor?

Much of the analysis is approximate, entailing estimations and extrapolations (we explic¬

itly note points of estimation and approximation in our discussion below). We consider this

acceptable since we are only looking for order of magnitude answers to the above questions.

5.3.1 Curriculum Size and Complexity

Here we give metrics for analyzing and comparing the domain knowledge base and

describe the size and complexity of the topic net, the entire domain knowledge base, and

the LE portion of the curriculum.

192

The Topic Network

Following are important characteristics of the topic net:

• Total nodes: 41.

• Breakdown by completeness of node: 24 full topics, 8 empty composite topics, 7

overview topics, and 2 (full) Mis-KUs.26

• Equivalent full nodes: 28.27

• Node fullness ratio: (28/41) 0.68.

• Total topic net links:28 51.

• Links per node: (51/41) 1.2.

• Topic time: (assuming an average of 6 hours to rim the entire curriculum)) 8.8 minutes

of instruction per topic.

The total nodes, node fullness ratio, and links per node can be used to compare the

statics topic net with other topic nets, or to compare parts of the statics topic net with

each other. The total number of nodes may not yield a fair comparison, since some portion

of them will be empty or only partially completed; the equivalent full nodes is a better

method for comparison. The links per node is a metric of the complexity of the network.

Since we have no data on KAFITS topic nets for other domains, these figures are provided

26A “full” topic contains presentations for teaching it; an “overview” topic contains no presentations,

but may contain a motivation, summary, wrap-up, etc.; and “empty” nodes contain only pointers to other

nodes. Topics may be overview or empty intentionally, or because they have not been completed. All of the

composite topics in the statics curriculum are empty (i.e. their whole is equal to the sum of their parts).

27The equivalent full nodes gives an indication of the size of the curriculum that is independent of how

many nodes are empty or overview, and is calculated as follows: empty nodes count as one twentieth of a

full node, and overview nodes count as one fifth of a full node. This roughly reflects both the time it takes

to implement the node and the on-line tutoring time for full vs. empty vs. overview topics.

28The number of topic net links does not give a complete picture of the topic relations. Implicit links

(such as ordering determined by text order in a slot), and local links (such as reaction and remediation links

associated with particular question answers) are not included.

193

for comparison with future topic nets, and to compare the LE curriculum with the entire

statics curriculum, which we do below.

The Domain Knowledge Base

Following are more figures (not related to the topic network) for the domain knowledge

base:

• Total knowledge base instances: 252.

• Breakdown according to object type: 38 topics, 2 Mis-KUs, 81 presentations, 48

pictures, 40 crane-booms, 43 others (including pictures, sounds, storage instances,

lessons, examples, and questions).

• Object type ratios: (81/41) 2.0 presentations per node;29 (81/26) 3.1 presentations

per full node.

• Total transactions: 511;30 about 12 transactions per node.

• Domain knowledge base (Saved-instances file) size: approx. 200 kbytes of text/source

code on disk; 90 hard copy pages.

The presentations per node gives a measure of the amount of subject matter in (or the

“depth” of) the average topic. Technically, presentations are used to represent expository

and inquisitory interactions with the user. However, when an expository interaction is

a block of text, it is entered as a text string (i.e. there is no need to create an entire

presentation object just to store a block of text).31 Therefore, to get another perspective

29“Nodes” are used rather than topics so that Mis-KUs will be included.

30Transactions are the smallest units of discourse. Each block of text stored in a slot, and each picture,

simulation, etc., accounts for one transaction (randomly chosen text is which is not included in this figure).

All KAFITS text is canned. A more complicated method for calculating the number of potential student

transactions would be needed for generated text. The number of transactions may be a more useful metric

for comparing the size of a KAFITS knowledge base with other computer-based curriculum than the number

of topics or presentations.

31 Object slots that contain information for interacting with the student can point to a presentation or

contain text.

194

on the amount of information in the knowledge base and to enable comparison with other

computer tutoring systems, we total the potential student “transactions,” the text strings in

the knowledge base. Each slot (including Motivation, Definition, Question. Hint, Reaction,

etc.) counts for one transaction if the slot contains text to be given to the student.32

Linear Equilibrium Part of the Curriculum

The following data are for the LE curriculum (see Figure 4.2):

• Total topics: 12.

• Breakdown according to object type: 12 topics, 16 presentations.

• Object type ratios: (16/12) 1.3 presentations per node; (16/7) 2.3 presentations per

full node.

• Equivalent full nodes: 8 (7 full topics; 2 empty topics, {Linear-equilibrium} and

{Vectors}; and 3 summary topics, the parts of {Vectors}).

• Node fullness ratio: (8/12) 0.67.

• Total links: 14 (only links from LE topics).

• Links per node: (14/12) 1.2.

Much of the most detailed data for this study was taken during the development of the

LE curriculum. Values for node fullness ratio, links per node, and object type ratios for

the entire curriculum are quite similar to those for the LE curriculum. This allows us to

extrapolate some data from the LE curriculum to the entire curriculum.

32Six of the primitive actions (the default hint, tell-wrong, tell-ok, encourage wrong, encourage-ok, and

congratulate) use randomly chosen text from pre-defined sets (see Section 3.1.2) if the corresponding pre¬

sentation slot is empty—these are not included in the total transactions.

195

Tasks

Development Training

Steps Design

Implementation

Figure 5.5 Project Task and Step Terminology Relationships

5.3.2 Design Steps and Person-hours

Here we look at the person-hour effort involved in building the statics tutor. There are

many perspectives for analyzing available data and many relevant variables to compare,

including: curriculum part (the LE curriculum vs. the entire curriculum); participant roles

(domain expert vs. knowledge engineer vs. knowledge base manager); project steps and

tasks (development vs. training vs. design vs. implementation). Below we present and

analyze the data, describing and comparing variables.

Figure 5.5 shows the relationships between the terms we use to describe the design

process (this diagram is also a schematic of the layout of Figure 5.6). There are two kinds

of “steps:” design and implementation. Within each step there are two kinds of “tasks:”

development (which includes production and guidance)33 and training. “Training” refers to

the initial instruction for how to carry out a task, plus all other instruction not related to

any specific task, such as teaching about the KAFITS framework, ITS concepts, etc. The

table in Figure 5.6 contains a detailed analysis of person-hours involved in the project. It

is organized with project steps in the rows and project tasks in the columns. A description

of each of the steps was given in Section 5.1.1.

Person-hour Analysis Table description and assumptions. Below we explain

the table in Figure 5.6. The notes below the table explain exceptions to the assumptions

and calculations given here.

1. We make a working assumption that there is no overlap between steps.

33 “Guidance” refers to ongoing guidance related to the task at hand.

196

Who k
Note Step

Total

days

Lab

hours

Home

hours

Total

hours

Train

-ing

Dev¬

elop.

LE-dev

-elop.

Stat.

dev.

1. C-l Overview .5s 3.5 0 3.5 3.5 0 0 0

2. C Brainstorm 2.5s 12.5 5 17.5 6.2 11.2 2.8 11.2

3. C Class. Script 2s 10 4 14 5 9 2.2 9

4. C Topic Net 2s 10 4 14 5 9 2.2 9

5. C-2 CAI Script 2s 10 10 20 5 15 15 45

6. C Strategies 1.5s 7.5 3 10.5 3.8 6.7 1.7 6.7

7. C Work Sheets 4.5s 22.5 9 31.5 5 26.5 26.5 79.5

8. L-3 Data Entry NA 52 ~0“ 52 3 49 49 147

9. C-4 Debugging 9w 27 4.5 31.5 4 27.5 27.5 82.5

10.G-5 Testing NA 30 0 30 3 27 27 81

Design (steps 1-4, 6) 43.5 16 59.5 23.5 35.9 NA 35.9

Implement, (steps 5, 7-10) 141.5 23.5 165 20 145 NA 435

Totals all NA 185 39.5 224.5 43.5 181 154 471

Table Notes:

1. The overview step differs from others in that the teacher had no home hours and the entire step

constitutes training time.

2. An estimated 6 hours extra home hours over a vacation period was added.

3. Linton’s hours were recorded by him, not estimated by the number of days he worked: 36 hrs. data

entry plus 17 hours to organize and test the knowledge base (I subtracted from his 34 hours an

estimated 17 hours wasted on unnecessary organization because there was no knowledge base save

feature yet) equals 52 hours. Linton’s time does not include time spent on picture drawing: 43 hours

for 18 pictures (2 of which were not for the LE curriculum).

4. Estimation for semantic debugging: 3 days off line, 4 days on-line to “first pass,” plus estimated 2

more days on line before testing, equals 9 days.

5. Gonzalez’s hours spent setting up and administering tests are estimated as follows: preparation 5

hours, administration 15 hours, data collection 10 hours, totaling 30 hours.

Figure 5.6 Person-hour Analysis for Building the Statics Tutor

197

2. Total days. The estimated number of days working: “s” means solid time (approx¬

imately daily work), “w” means weekly time. All other numbers in the table are in

hours.

3. Lab hours vs. home hours: We estimate that solid days are 5 lab hours and 2 home

hours, and weekly days are 3 lab hours and 1/2 home hours.

4. Total hours is lab hours plus home hours.

5. Training time is estimated to be one half of the lab time until after step 6, then it is

estimated on a step by step basis.

6. Development time is total time minus training time.

7. LE curriculum Development time for those steps that were relevant to the entire

curriculum (steps 2, 3, 4, and 6) is estimated to be 25% of total development time.

For other steps it is equivalent to the development time.34

8. The development time for the statics curriculum was estimated as follows: For steps

1-4, and 6 it is equivalent to the total development time; for the rest of the steps

it is four times the LE development time, times 0.75, for an assumed (and quite

conservative) 25% efficiency increase.

9. Key for “Who” column: C- Camp, L-Linton; G-Gonzalez. For notes see the num¬

bered notes below the table.

10. Subtotals—design vs. implementation. Steps 1, 2, 3, 4, and 6 apply to the design

of the entire curriculum. The implementation subtotal includes only steps working

on the LE curriculum, and does not include design work. The LE development total

includes design and implementation, and does not include training or time spent on

other curriculum parts.35

3<There are 41 nodes in the topic net. The LE curriculum has 12 nodes, or 25% of the total (also, the LE
curriculum has (8/28) 29% of the equivalent full nodes of the entire curriculum). Therefore we estimate

that the LE curriculum development time is 25% of the development time for the statics curriculum.

35I.E. the difference between the LE development column and the implementation subtotal. As a data

cross check, note that the total for the LE development column (151.1 hours for LE work, which includes

198

Domain Expert KB Managers Knowledge Engineer All Total
Train. Devel. Train. Devel. Train. Guidance Train. Devel.

Design 22.7 36.8 0 0 22.7 3.7 46 40.5 86.5

Implem. 14 203 6 234 20 32 40 469 | 509

Totals 36.7 240 6 234 42.7 35.7 86 510 596

277 240 79 596

Figure 5.7 Time vs. Participant Role

11. Totals are for design of the entire curriculum, i.e. all ten steps (or equivalently, design

steps plus implementation steps).

Person-hours vs. participant role. Figure 5.7 shows a breakdown of the time

commitment vs. participant role for the entire statics curriculum. The domain expert and

knowledge base manager hours are from the training and statics development columns of

Figure 5.6. Steps 8 and 10 from Figure 5.6 were summed for the knowledge base manager

time, and the remaining steps in Figure 5.6 go toward domain expert time. The knowledge

engineer’s time (which was not included in Figure 5.6) consists of training time and guidance

time. Knowledge engineer training time is equivalent to the domain expert training time

plus the knowledge base manager training time. Knowledge engineer guidance time is

estimated at 10% of the domain expert development time plus 5% of the knowledge base

manger development time.

Analysis and Comparisons

Summary calculations. The total time spent to build the statics tutor is estimated

to be 596 hours. This includes training and development for all participants, and does not

include development of the KAFITS system, development of the crane boom simulation,

or time spent creating picture graphics. It took (596/41) 14-5 hours per topic net node to

build the statics curriculum. Assuming the entire curriculum provides an average of six

hours of teaching it took (596/6) 98.8 hours per hour of on-line instruction to build the

all non-training time) is equal to the implementation subtotal of the development column (142 hours of LE

work for only implementation steps) plus 25% of the design subtotal for the development column (because

25% of 36.8 hours is the part of the design time used for the LE curriculum).

199

statics tutor. These numbers are estimates intended to yield order of magnitude figures.

We believe that they are applicable to similar ITS projects using KAFITS, to within 50

percent.

Factoring out training. Training time is considered to be one-shot, i.e. a participant

is instructed in something only once, regardless of the size of the curriculum. Reminders

or reviews of this information are considered to be “guidance,” which is included in the de¬

velopment time for the domain expert and knowledge base managers. The domain expert’s

total training time was about 40 hours, spread over about 24 working days, interleaved with

production work.36 The total training time was (37.5+6+43.5) 87 hours, or (87/596) 14.7%

of the total time. Factoring out training time it took (.853x596/6) 84.3 hours per hour of

on-line instruction (i.e assuming prior training). This is the time to create each additional

hour of instruction, assuming training is complete.

Following are comparison figures expressed in percentage of the total time:

As a function of role: The knowledge engineer’s, domain expert’s, and knowledge

base managers’ efforts were (79.2/596) 13.3%, (280/596) 47.2%, and (234/596) 39.4%, re¬

spectively, of the total time. The domain expert’s time was comparable to the knowledge

base managers’ time, which was about three times as much as the knowledge engineer put

in.

As a function of step: Design took (86.5/596) 14.5%, and implementation took

(507/596) 85.5% of the total time. I.E. implementation took about six times as much effort

as design.

As a function of task: Training was ((37.5+43.5)/596) 14.7%, and development

was ((243+228+35.7)/596) 85.3% of the total time. Note that knowledge base managers’

36We do not include time from the ITS Summer Teacher’s Institute in the domain expert’s training

time. The domain expert learned many general ITS concepts in this institute, but this covers only a small

percentage of the total training material (see Figure 5.2).

200

training time was only (6/37.5) about one sixth as much as the domain expert’s training

time, even though they had comparable development times.37

5.3.3 Analysis of Other Data

All of the above figures were based on the nature of the tasks and amount of days spent

on each task. Below we analyze data from edit records and work sheets (which have the

dates of design and data entry on them) and note how these data compare with the above

figures.

Edit record data exist for 69 separate working days.38 About 25% of these days consisted

of creating instances from work sheet data, and the remaining 75% involved testing and

editing the curriculum.39

A cursory analysis of edit record data gave the following figures:

• The average time it takes to enter one worksheet form into the knowledge base using

the Browser, i.e. create a new instance, is about 25 minutes (data ranges from 19 to

30 minutes).

• Data from editing records logged during test runs of the statics tutor indicate that

the average time it takes to find a bug in the curriculum and edit the knowledge base

to fix the bug is about 6 minutes (data ranges from 2.4 to 11.6 minutes with outliers

removed).

• From Camp’s and Gonzalez’s edit records, we can hypothesize that there was an initial

start-up time for using the Browser, during which the average time it took to make a

37It is only a coincidence that total design time is almost equal to total training time, and that total

implementation time is almost equal to total development time.

380n some days there was more than one editing session. We cannot give the total number of editing

sessions or the total amount of time spent editing, because some edit records were combined, and some data

were lost. The breakdown of person vs. how many days for which editing information exists is: Linton 7,

Camp 15, Gonzalez (or Camp and Gonzalez working together) 47—totaling 69.

39There were a total of 18 worksheet entry days, consisting of 25% of Gonzalez’s edit record days, 70% of

Linton’s edit record days, and none of Camp’s edit record days.

201

change was about 11 minutes; i.e., we saw a two-fold improvement in efficiency after

a start-up period lasting one to three editing sessions.

• The data do not confirm or reject the hypothesis of a longitudinal trend toward

increased efficiency over the months as improvements were made to the Browser.

Comparison of actual time vs. extrapolated time. Some of the numbers in

Figure 5.6 for the entire curriculum are extrapolations based on data from the LE curriculum

(justified because the LE Curriculum and the entire curriculum were shown to have similar

characteristics). It would be desirable to compare the extrapolated total time to build the

statics tutor (596 hours) with the actual time Camp, Gonzalez, and Linton worked over

the sixteen months of the study. Unfortunately the development work was not closely

monitored in Phase 5, after the LE curriculum was tested, when the most of the remainder

of the curriculum was designed, entered, and debugged.

Camp’s total time was well recorded—he put in a total of 75 days (27 solid days and 48

weekly days) over the course of the entire study (29 of these days were totally unsupervised).

The previously given method for estimating total time (7 hours per solid day and 3.5 hours

per weekly day) gives a total of 357 hours. This figure corroborates (is only about 25%

more than) the estimated 280 hours in Figure 5.6. Linton worked only during Phase 2,

and his time has been given as 52 hours (see note 2 in Figure 5.6). Gonzalez put in a

total of 550 hours (according to payroll data) in Phases 4 and 5. A task/time analysis

of Gonzalez’s participation is difficult to determine. It was estimated that she spent 30

hours supervising the student trials. She also spent some time developing a small KAFITS

tutor explaining how to use the crane boom simulation (which was not completed). A fair

amount of time was non-productive, due to time spent reorganizing edit records before we

had a clear system for managing them, and hardware problems (Lisp system crashes and

bad floppy disks) leading to loss of data which had to be re-entered. Also, during many of

the editing sessions in Phase 5, Gonzalez and Camp tested and modified the tutor together,

which confounds calculations of total hours spent editing.

202

The estimated total knowledge base manager time for building the statics tutor is 240

hours (Figure 5.7). Subtracting Linton’s 52 hours leaves 188 hours for Gonzalez’s effort.

That 188 of her 550 hours were spent on work directly contributing to the implementation

of the statics tutor is not unreasonable, given the above discussion. In summary, though

an analysis of the actual time spent by the participants is too uncertain to show close

corroboration with the figures extrapolated from the LE curriculum, the actual time spent

is comparable to the extrapolated time.

5.3.4 Summary of the Quantitative Analysis

Our estimations indicate that the 41 node (39 topics and 2 Mis-KUs) statics curriculum

would provide an average of six hours of on-line instruction. Its design and implementation

took about 14 hours per topic, each topic representing an average of about 9 minutes of

on-line instruction. It took approximately 100 hours to produce each hour of on-line

instruction (85 hours if training is not included), which is comparable to the estimated

design time for conventional CAI given in the literature [Gery 1987].40 This figure is to be

interpreted with caution,41 and suggests that computer tutors with the “intelligence” and

flexibility inherent in a KAFITS-based tutor can be built with effort comparable to that of

traditional CAI.

The following comparisons were calculated for building the statics curriculum: the total

training time was about 40 hours for the domain expert and 6 hours for the knowledge

base managers; the domain expert and knowledge base managers put in a comparable

amount of time, which was about three times as much as the knowledge engineer put in;

and implementation took six times as much effort as design.

40Our estimate includes training and development time for the domain expert, knowledge base managers,

and training and guidance time for the knowledge engineer. It does not include time to create picture

graphics or program the simulation environment.

41 The hours of development per hour of instruction is not a rigorous comparative metric, in part because

the longer students take to learn, the more efficient the design process seems, using this measurement.

203

The figures above for the entire curriculum were extrapolated based on figures for the LE

curriculum. An analysis of data from edit records and work sheets for the entire curriculum

shows slight corroboration with some aspects of, and otherwise does not contradict, the

extrapolated figures.

5.4 Knowledge Representation Issues

Human knowledge, whether about driving a car, designing a space craft, or teaching,

does not exist in neatly defined, clearly named packages—it is inherently complex, densely

connected, fuzzy, and ambiguous. Yet to use knowledge in computer tutors we try to repre¬

sent it in individual units with clear structure. The problems of classifying and organizing

human knowledge to create external representations have been dealt with extensively from

many different perspectives in philosophy, psychology, education, library science, computer

science, etc. (eg. [Mervis & Rosh 1981, Winograd & Flores 1986]). Brachman & Levesque

[1985, pg. xiii] note that “there are tremendous subtleties in the notions of ‘representation,’

‘knowledge,’ and their combinations” in AI knowledge representation. That so much effort

has been spent on the problem, and that this effort has not resulted in any widely accepted

general solutions, attests to its salience as a fundamental issue in ITS knowledge acquisition.

In this study we do not contribute to the general theory of knowledge representation. We

discuss key issues related to knowledge representation and describe how these issues were

discovered and handled. In addition we discuss the design of the KAFITS framework, pay¬

ing particular attention to the conceptual vocabulary, and discuss problems and potential

solutions in designing highly flexible and modular domain knowledge bases. First, however,

we discuss experiences that influenced knowledge representation in the original prototype

KAFITS system.

204

5.4.1 Development of the Original KAFITS Framework

It took several years to develop the KAFITS framework and software that served as

the prototype for this study. Many changes were made during the course of this study,

but the basic structure and vocabulary remained fairly constant. In the first month of

the study we noted (in the research journal) that the KAFITS framework was anticipating

many of Camp’s needs, indicating that he “was on the right track” [6/30/89]. Many times

in our early conversations Camp would ask: “but how do we deal with [so-and-so],” and

the author would answer that the framework could account for it in [such-and-such] a way.

Examples of KAFITS features that anticipated his questions are: multiple correct answers,

reactions (allowing short responses particular to each possible student answer), diagnosis

of misconceptions, synthesizer nodes, and elaborations to correct answers-plus many other

such features.

How was the prototype framework developed? What were the reasons for design deci¬

sions? Unfortunately, the years previous to the start of the case study were not as closely

documented as the case study itself, but we can describe some foundation for the concep¬

tual vocabulary. There were two main sources of information: personal experience working

with educators, and instructional design theory literature, most notably the work of Merrill

[1983], Reigeluth [1983] and Gagne [1985].42 We will not attempt to analyze why we used

certain parts of instructional design theories and not others; the author assimilated much

from articles and books over the years and included a small part of this information into

KAFITS—only what the author thought to be immediately useful and understandable to

users.

Personal experiences that influenced this study but took place before this study in¬

clude working with many educators trying to formalize their curriculum and instructional

knowledge. We worked with:

• Three college professors who were associated with our research group;

42Familiarity with other ITS systems must also have had some influence our design decisions, but not in

specific ways that we can document.

205

• Four high school and college educators associated with the Exploring Systems Earth

project, centered at San Francisco State University; and

• A dozen high school teachers who participated in the UMass ITS Summer Teachers’

Institute.

We also conducted an informal study with eight associates of our lab (most of whom

were also teachers) on tutoring strategies and primitive tutorial actions, which involved

group analysis of taped tutorial sessions.

We succeeded in extracting from these experiences a set of ubiquitous “primitive”

tutoring actions, some general patterns or scripts for tutoring actions, and parameters

and reasons for the actions. The list of commonly occurring actions is not surprising,

and corresponds to many of the topic and presentations slots: motivations, examples (of

different kinds), definitions, prerequisites, summarizing, hinting, elaborating, etc. Common

strategies or patterns include (this is a small subset): refraining—reflecting the student’s

ideas back to her with irrelevant information filtered out and important aspects emphasized;

alternating between focusing in on details and stepping back to overview, summarize, or

give a context or reason; beginning instruction with declarative statements—definitions or

procedure descriptions—and then continuing with an example or operationalization; and

offering met a-comments such as “this is a hard one.” Since this study did not focus on

representing multiple alternative tutoring strategies, most of these were not incorporated

into the case study. Similarly, strategy parameters were not studied much in the case study.

In summary, the prototype KAFITS conceptual vocabulary evolved over years in re¬

sponse to working with educators to represent pedagogical knowledge. It was modified

according to the findings of this study to produce the final KAFITS conceptual vocabulary

(Section 3.1.6). Despite all of this foundational work, the vocabulary is relatively simple—

of the many dozens of descriptors identified, covering a broad band of behavior and many

shades of meaning, only a few were used, mainly due to our goal of simplicity. We in¬

cluded those terms which seemed necessary and clearly explainable, even though a larger

vocabulary would have been more precise.

206

5.4.2 Conceptual Vocabulary and Semantic Uncertainty

The KAFITS conceptual vocabulary (see Section 3.1.6 for a description) is a language for

representing knowledge about curriculum and teaching. The KAFITS vocabulary worked

well in this study, and constitutes a benchmark for further efforts. There were many issues

and tradeoffs involved in designing it, and in this section we discuss design considerations

related to the understandability and uncertainty of vocabulary terms and discuss how pro¬

cedural knowledge affects the declarative meaning of terms.

Vocabulary Understandability

Our goal was to minimize abstract and technical terminology, and to minimize

complexity—but still maintain a workable degree of flexibility, power, and clarity. We

cannot give formulas for how these decisions were made, but will describe the tradeoffs

involved, and give examples of specific decisions made.43

In the original framework the term “KU,” or knowledge unit, was used for what eventu¬

ally became “topic” objects. Terms such as “topic” or “subject-unit” were initially avoided

because they lacked precision and had differing meanings in different mundane contexts.

The term “knowledge unit”44 seemed a more technically precise term for a piece of domain

knowledge of arbitrary knowledge type and arbitrary grain size. However, in trying to ex¬

plain the system to educators we often found that this term was confusing; its meaning

didn’t stick in their minds, but drifted and got fuzzy from one training session to the next.

Some users confused knowledge unit with “slot” or “object,” both of which, in different

senses, are also units of knowledge. So we changed it to the term “topic” which, though

less precise, has not caused confusion. In contrast to the case of “knowledge unit,” is the

case of the term “Mis-KU,” where we decided to stay with a more technical term. In the

early system design we wavered about calling Mis-KUs “misconceptions,” because the lat-

43 And see Section 2.2 for a discussion of how the Performance-Content Matrix was designed with usability

in mind.

440riginally coined by Deborah Servi [1986].

207

ter term has the advantage of being commonly understood. But it was not precise enough,

since we wanted a term that would stand for any type of buggy knowledge, whether mis¬

conception, misinformation, skill-bug, etc. The term “Mis-KU” did not cause confusion,

probably because it did not bring competing interpretations to the user’s mind.45

Semantic Uncertainty

In analyzing the documented instances of terminological uncertainty from the case study

we found two useful distinctions, one between ambiguity and fuzziness, and the other be¬

tween intentional and inherent uncertainty.46 Terms can be uncertain because they overlap

with other terms (“ambiguity”) or because the boundaries of the term are unclear (“fuzzi¬

ness”). The ambiguity problem manifests itself in questions such as “Is this thing an X

or a Y?”—where “this thing” is something you are trying to classify. It occurs when there

is more than one term available for similar things. The fuzziness problem manifests itself

with questions like “What is an X?” and occurs when the uncertainty does not concern

similar competing terms. Example questions revealing fuzziness are: “What is supposed to

go in the elaboration slot?” and “What is a composite knowledge type?”

Uncertainty in the conceptual vocabulary was either “intentional” or “inherent”. In¬

tentional terminological uncertainly occurs when a term is created with intentional

fuzziness or ambiguity.47 As an example of intentional uncertainty consider the term “mo¬

tivation.” Prior to and during this study, the following ways to motivate or introduce a

topic were identified:

45In hindsight, there are some KAFITS terms we would like to have changed, but the effort to re-tool the

code and teach the new term to the expert in the midst of the study was prohibitive: “K-bug” (knowledge

bug) would be more self-explanatory than “Mis-KU;” “situation” is more precise than “example;” “task”

is more precise than “question.” We think these new terms would work as well or better than the existing

terms, but will not know unless they are tried.

46There are more rigorous ways of categorizing semantic uncertainty, but we will keep it simple here.

47It may appear unusual or sound self-serving to say that any uncertainty that is not intentional is inherent.

Actually, any particular instance of ambiguity or fuzziness could probably be engineered out, perhaps at

a cost of increased complexity or by being more esoteric. But there will always be some uncertainty in

terminology, and getting rid of it in one place moves it elsewhere (for example, replacing a term with

several more precise terms takes care of uncertainty at one level, but the new terms will have their own

uncertainty)—some amount of uncertainty is inherent.

208

• Playing: allow the student to play or explore in order to get an intuitive feel of the

domain from a concrete context;

• Reminding: remind the student of previous knowledge (and relate it to the current

topic);

• Enticing: pose a question or describe a phenomenon that instills curiosity;

• Persuading: motivate the need to learn by posing a problem that is not solvable

without new knowledge;

• Advanced organizing: give the big picture or road map; and

• Epitomizing: give a concrete prototypical example or anecdote which epitomizes the

topic (this term borrowed from Reigeluth [1983b]).

But only one slot, Motivation, was implemented to cover all of these possibilities. We

mentioned all of the possible senses of Motivation to Camp, and left it up to him to decide

what to put in Motivation slots. Similarly the Wrap-up topic slot could be used to conclude

a topic by elaborating on it (giving incidental information, e.g. “by the way...”), comparing

or contrasting it to other topics, summarizing the content or purpose of a topic, or cleaning

up “white lies” (dealing with previous simplifying assumptions)—but only the Wrap-up slot

was implemented and covers all of these possibilities.

The above examples involve intentional uncertainty, where uncertain in terms’ precise

meaning allowed for flexibility of its contents and uses. Intentional uncertainty is useful

when the domain expert does not need to explicitly distinguish between the meanings of a

term in a tutoring strategy. As an example of a case were a term was refined into several

more precise terms, consider “feedback,” which was refined to allow for strategies that

differentiated types of feedback. Early versions of KAFITS had one term, “feedback,” for

what was eventually refined into “reaction,” “give-away,” “reason,” and “elaboration.”

There were also cases of inherent terminological uncertainty. For example, the

distinction between topics and Mis-KUs was not always clear. A “common misconception

209

to one teacher may be an “important topic” to another. Camp decided to call {Force-

on-vs-by-confusion} (confusing forces on objects with forces by objects) a topic, yet called

{Tension-on-vs-by-confusion} a Mis-KU. His reasoning was that the former was a topic he

assumed every student needed to be taught, while the latter was something to be remediated

when a student was diagnosed as having the misconception. Similarly, there were times when

Camp was not sure whether the feedback he wanted to give the student was an answer-

reason or an elaboration. Similar uncertainty was documented with the terms motivation

vs. summary, summary vs. definition, and concept vs. principle. Though each individual

instance of terminological uncertainty could probably have been engineered out, some degree

of uncertainly is unavoidable, and the exact meanings of many terms will come only through

common understanding from a dialog between domain expert and knowledge engineer.

Level of abstraction. Uncertainty in terminology is often closely relate to design

decisions about the level of abstraction or generality of terms in a system. For instance,

we believed that having fewer first class object types in the KAFITS framework facilitated

understandability and extendibility, and also made the KAFITS interface simpler. For

example, we decided that the general term “motivation” was more appropriate than its

refinements, and that “feedback” was too general and needed refinement. A related issue is

deciding what entities in the system will be “first class objects.” Topics are first class objects

in the KAFITS system. We chose not to have “fact,” “procedure,” etc. (the knowledge

types for topics) be first class objects. Rather, the knowledge type is indicated by a topic

slot.48 (See the discussion of mixins in Section 3.1.4.) In brief, the designer must balance

terminological precision with usability when deciding the appropriate level of abstraction

of terms.

Next we discuss another significant source of terminological uncertainty, the conflation

of declarative and procedural knowledge.

48We also limited the proliferation of first class objects in the following cases: Mis-KU objects were used

rather than types of mis-knowledge (“misinformation,” “procedural bug,” etc.); and “example” objects were

used rather than types of examples (extreme cases, analogies, counter examples, etc.).

210

Interaction of Declarative vs. Procedural Knowledge

In a sense, the “meanings” of terms depend fundamentally on how they are used. In AI

systems this concerns the distinction between declarative and procedural knowledge. Ideally,

ITS designers (and the designers of all expert systems) try to represent declarative and

procedural knowledge separately. This is done with the working assumption that declarative

and procedural knowledge are independent, that a piece of knowledge can be represented

without regard to how it is used, and that a piece of knowledge can be used in multiple ways.

This assumption is exactly what gives KAFITS its flexibility and power—for example, a

topic is represented in a way that allows it to be used to teach, summarize, give examples,

etc. However, we found much evidence attesting to the fact that declarative and procedural

knowledge are highly interdependent. Specifically, the meaning of a term (or slot) can not

be separated from how it is used—in fact one can make an argument that quite the opposite

is true: that a term’s meaning is completely determined by how it is used.

For example, Summary is a topic slot that contains text. We could have called the slot

“topic-slot-7,” or “foobar,” but “summary” is a more useful term because it reminds the

user of its intended meaning.49 What does “summary” really mean? It depends on how

strategies use it.50 Strategies could conceivably use it in several ways: to summarize after

teaching the topic, to preview the topic, to provide a stand-alone overview of the topic, or to

review a topic after it was taught.51 Each of these potential uses provides a different sense

of the term “summary,” and that meaning affects what the teacher specifies as the slot’s

content. An “official” meaning of “summary” might have been put in a user’s guide or on an

on-line help system, but in our case it was a shared meaning stemming from conversations

between the domain expert and the knowledge engineer.

49Lenat et. al (1981, pg. 71) calls inappropriately reading meaning into symbol names a “knowledge

illusion.”

50 Actually a slot name’s meaning depends on how strategies use it and on how it is related (implicitly or

explicitly) to other bits of information in the knowledge base.

51 That there are so many potential meanings of the term might indicate that we should have used a more

precise term (or several) in its place.

211

There were several other instances of procedural vs. declarative interdependence doc¬

umented in the case study. On different occasions the meanings of the Summary and

Elaboration slots were unclear to Camp without reference to how they were used in the de¬

fault strategies. There were also instances of co-dependence between two or more meanings:

the meanings of Motivation and Prerequisite depend on which comes first (i.e. whether pre¬

requisite means prior to motivating a topic or prior to teaching it); the meanings of the

Summary and Definition slots were seen by Camp as co-dependent because both summary

and definition could be given while teaching a topic, so they should not say the same thing.

Summary of Tradeoffs in Designing the Conceptual Vocabulary

One of the main design issues of the KAFITS conceptual vocabulary was the uncertainty

(i.e. fuzziness and ambiguity) of its terms. Some degree of terminological uncertainty is

unavoidable, but in specific cases it can be repaired by replacing a term with a clearer one or

replacing a term by several more precise ones. However, the introduction of esoteric terms

or unchecked expansion of terminology has negative effects on usability, so new terms should

not be introduced unless a clear need is perceived. Also, some terminological uncertainty is

intentional and allows flexibility because multiple senses of a term allow multiple uses.

One source of terminological uncertainty is dependence of (declarative) meaning of terms

with how they are used (procedurally). Although independence of declarative and procedu¬

ral knowledge is a useful working assumption, determining the meanings of attributes in a

computer system often defies this assumption. And though the separation of declarative and

procedural knowledge is a crucial aspect of the KAFITS system, we found ample evidence

in the case study that the meaning of slots has some dependence on the strategies that

access them. Fortunately, even though there were instances where procedural knowledge

was intertwined with declarative knowledge, the working assumption of their independence

was still used and useful.

Usability implies sufficient simplicity and understandability. Problems with conceptual

terms often stem from confusion with other terms in the conceptual vocabulary, or with

212

the mundane use of words. Ultimately, empirical data or experience is needed for any

determination of usability.

5.4.3 Flexibility and Modularity in the Domain Knowledge Base

The previous section on conceptual vocabulary and semantic uncertainty dealt with

the general meaning of KAFITS slots (and other terms). In this section we discuss issues

concerning the contents of the slots—specifically, how the contents can be designed to allow

for the potential flexibility inherent in the KAFITS framework.

To take advantage of the power of multiple tutoring strategies the domain knowledge

base must be designed with a high degree of flexibility. There are two types of flexibility

involved: “object sequencing” and “action selection.” Object sequencing flexibility

refers to the diversity of potential paths through a space of similar objects. For example,

a variety of strategies can be designed for traversing the topic net (a space of topics and

Mis-KUs), and (though we did not take advantage of this capability in the statics tutor)

a variety of strategies for traversing a space of presentation objects (for example, a space

of positive and negative examples). Action selection flexibility refers to the capability

to choose and order primitive actions in numerous ways according to strategies. Another

way to think about action selection flexibility is to say that the objects in the knowledge

base are represented so that they can have many uses (eg. Mis-KUs can be remedied and

diagnosed).

If a topic or presentation is written in a way that assumes a certain instructional con¬

text (what comes immediately before it in a tutoring session) then it is less flexible; and

when it is given to the student in a context that was not intended it will not make sense.

Therefore, topics and (to a lesser extent) presentations should be relatively modular and

context-free—independent of sister objects, when possible. But it is difficult to design the

knowledge base contents so that the flexibility allowed by multiple tutoring strategies can

be taken advantage of. As mentioned previously, human knowledge is not easily repre-

213

sented in modular, independent chunks. Several issues have been identified: granularity,

interdependence, structure, and discourse flow; each is discussed below.

Knowledge Granularity

Our answer to the question “How big is a topic?” is based on pragmatics rather than

epistemology: a topic should be whatever size the expert needs it to be, i.e. if the expert

wants to refer to a chunk of knowledge (for example as a prerequisite of another topic)

the system should have an abstract representation for it. Conversely, even if a topic could

technically be broken into many parts, this should not be done if the whole topic is the only

thing that is ever referred to.52 The KAFITS system has three mechanisms for chunking

domain knowledge: the lesson object, topic levels, and the Parts attribute, each described

below.

The lesson object (see Section 3.1.2) is the first chunking mechanism. Topics can be

grouped arbitrarily in a lesson, and, by specifying a teaching strategy in the lesson object,

they can be taught with a particular pedagogical style or perspective. 53

Topic levels, distinguishing levels of performance and mastery within a topic, are

the second mechanism for dealing with grain size. Slots and strategies can refer to these

levels individually, such as in teaching only the use-easy level of a topic. Without levels

within topics, entire topics would have to be created to be able to refer to each level of

performance / mastery.

A third mechanism for chunking is the Parts topic attribute. Using this attribute,

topics at any level of curriculum generality can be represented and the topic network can

have hierarchical relationships of arbitrary depth (eg. we can create topics as general as

“introductory statics,” and as specific as “equilibrium of static forces in the x direction for

52Often it would be possible to re-interpret the presentations or levels within a topic as entire topics.

“We did not make much use of the chunking capability of lesson objects in the statics tutor, but as

an example use: four different lessons could be created containing the same group of topics but taught in

introductory, review, qualitative, and quantitative perspectives, by specifying different tutoring strategies in

each lesson.

214

two simple bodies”). If the knowledge that a parent topic refers to is more than the sum of

its parts, then the parent topic contains instructional material, otherwise the parent topic

is empty (it only points to its part topics); teaching it is equivalent to teaching its parts,

and knowing it means knowing its parts.

Normally the parts of a topic should be of the same type as the parent topic. For

example, a concept has conceptual parts, and a procedure has procedural parts. But some

groups of topics that the domain expert wanted to refer to could not be categorized according

to knowledge type because they were the union of several different types of knowledge. To

address this we created a node type called composite. The parts of a composite topic can

be of any topic type (eg. {Linear-Equilibrium} has parts {Linear-equilibrium-concept},

{Linear-equilibrium-intuition}, and {Linear-equilibrium-principle}).

Knowledge Modularity vs. Interdependence

To allow flexibility, topics should be designed modularly, with all dependences on other

topics made explicit (as in prerequisite relationships)—Lesgold (1988) calls this “internal

coherence.”54 Though our goal was to design topics modularly we were often faced with

situations in which topics were inherently interdependent or overlapping. For example,

the student has to know something about {Types-of-forces} to fully understand {Linear-

equilibrium}, yet some understanding of {Linear equilibrium} is prerequisite to learning

about {Types-of-forces}. These two topics are prerequisites of each other, an untenable

situation for most ITSs. Also, some knowledge is about the relationship between two

topics and should not be contained in either one of the topics exclusively. The KAFITS

framework has two mechanisms for dealing with topic interdependence: synthesizers and

spiral teaching, each described below.

54The same is true for presentations, which are more flexible if written independently of other presen¬

tations. However, one can safely assume a fair amount about presentation order within a topic level. In

addition, in some cases the relationships in a section of the topic net so tightly constrain the ordering of

topics that one can make assumptions about topic order.

215

Some of the curriculum concerned relationships between two topics and could not prop¬

erly be associated with any single topic. Lesgold [1988] emphasizes the need to provide

curricular “glue” to relate topics. The Motivation and Wrap-up topic slots (as well as the

Introduction and Conclusion lesson slots) are appropriate places to mention how topics are

related, but this relationship is only salient for the topic whose slot has the information.

Reigeluth [1983b] uses the term synthesizer for instructional components used to interrelate

and integrate individual content units. KAFITS includes a synthesizer node type which

points to two or more topics and compares or contrasts them. Like the composite node

type, it is not a knowledge type and was created to address a representational need. In the

end, synthesizers were not used for the statics curriculum (Motivation and Wrap-up slots

were used to compare topics), but we give two hypothetical examples of how strategies could

use synthesizer objects. One possible strategy relates two topics the student has learned:

after a topic is taught check whether a synthesizer connects it with another known topic,

and if so, teach the synthesis material. Another possible strategy connects new information

with existing information before the new information is presented: before a topic is taught,

check whether a synthesizer connects it with an already known topic and, if so, present the

synthesis material.

Spiral Teaching

In classroom teaching and one-on-one tutoring topic interdependence is often dealt with

using some form of “spiral teaching” [Van Heuvelen 1987]. In the prototypical example of

spircil teaching several topics are presented at an introductory level, and then again at a

more advanced level, and so forth, as many times as necessary. We have had some success

in implementing spiral teaching in KAFITS, by utilizing the levels of performance/mastery

and the ability to encode different levels of prerequisites. As Lesgold [1988] points out: “the

concept of prerequisite [relations between topics in tutoring systems] has been inadequate

in the past.” KAFITS incorporates a refinement to the typical prerequisite relationship by

allowing levels of prerequisites (corresponding to the different types of prerequisite links in

Figure 1.3, see Section 3.1.5).

216

Using this refined encoding of prerequisite relationships, along with the ability to en¬

code topic part-whole relationships, KAFITS produces spiral teaching.55 For example,

{Linear-equilibrium} has {Linear-equilibrium-intuition} and {Linear-equilibrium-principle}

as parts. {Linear-equilibrium-intuition} has {Linear-equilibrium-principle} as a famil¬

iar prerequisite. When {Linear-equilibrium} is taught it first starts to teach {Linear-

equilibrium-intuition}, which in turn needs {Linear-equilibrium-principle} to be taught at

the familiarity level. Later (after {Linear-equilibrium-intmtion} and {Linear-equilibrium-

concept} have been taught), {Linear-equilibrium-principle} is revisited, this time taught at

the easy level.

Alternative Curriculum Structures

Many structures for curriculum have been proposed in the literature: networks, tables,

trees, scripts, etc. When humans teach they are free to organize topics in any way and

use any strategy to traverse this organization, and they can choose different structures for

different needs. However, in the KAFITS system the method for structuring curriculum

must be consistent to reduce complexity in the representational framework and the resulting

confusion for users.56 The basic curriculum structure of the KAFITS system is flexible:

topics (and Mis-KUs) are arranged in a network; the topics are of different types; the

relationships that link the nodes of the network are of different types; and each topic

has levels of understanding. The specific topic types, link types, and level names used in

the statics tutor were developed to be general, but are prototypes, likely to change when

a sufficiently different domain is represented. Below we discuss alternative methods of

structuring curriculum and how these fit into the KAFITS system.

Some curriculum structures are hierarchical or tree-like. For example Ausubel’s [1963]

“meaningful learning” theory suggests that each discipline consists of sets of hierarchically

organized concepts. Burton’s [1982] Buggy system uses a lattice to represent subsumption

55The resulting tutoring is similar to a breadth-first traversal of the topic network.

56 However, with a given structure, strategies can be designed to traverse that structure in many ways.

217

relationships between skills and sub-skills. Tree and lattice structures are kinds of networks,

so tree and lattice structures are easily implemented in KAFITS by using the “part” link.

Some curriculum structures use a prerequisite network structure, such as Gagne’s [1985]

“essential prerequisites” and the BIP system’s “curriculum information net” [Barr et al.

1975]. Goldstein’s [1982] genetic graph is a network structure which represents analogy,

refinement, generality, and buggy relationships between procedural rules. These are all

network structures, so they could also be implemented using KAFITS by implementing the

appropriate link types.

The methods above do not sufficiently account for the overlapping or multi-perspective

nature of knowledge. Lesgold’s [1988] “curriculum goal lattice” accounts for the fact that

there are many views on the same curriculum material. He shows how curriculum for

an electricity tutor can be taught from the perspective of circuit types, electricity laws,

electricity concepts, or problem types. Though teaching from each perspective gives an

approximately identical set of student explanations and tasks, each perspective results in

a different ordering of the explanations and tasks. KAFITS has the capability to model

this behavior, since it has lesson objects “above” topics which can specify high level goals

and strategies, and presentation objects “below” topics, which can be referenced by more

than one topic. However, though the goal lattice can be implemented using the KAFITS

framework, we relied on the spiral teaching method mentioned above to account for topic

overlap in the statics curriculum.

Statics Domain Dimensions

During the statics tutor case study many curriculum structures were discussed (the

discussions being initiated by both the domain expert and the knowledge engineer) that

constituted different views (or perspectives or dimensions, as in Rissland et al. [1984])

on the curriculum material. Most of these were not implemented in the course of the

case study but are worth mentioning because they illustrate the multidimensional na¬

ture of curricula and how KAFITS can represent these curricula structures. For instance

218

Pedagogical Dimension Levels or Values

Intuition/Application force existence, force direction (opposite), force mag¬

nitude (equality), write equations, solve equations

(quantitative)

Difficulty/Complexity (or mastery) easy, typical, difficult problems

Problem Types/Contexts hanging objects, falling objects, rolling objects, in¬

clined planes, colliding objects, exploding objects, etc.

Force Type tension forces, gravity forces, rigid body contact forces,

compressible body contact forces, etc.

Spatial Orientation horizontal forces, vertical forces, all orientations, rota¬

tional (torque)

Figure 5.8 Perspectives for Teaching Newton’s Third Law

there are many approaches to teaching that bodies exert equal and opposite forces on

each other, i.e. {Newtons-third-law}. Figure 5.8 shows several perspectives (dimensions)

and levels of presentation for each perspective.57 Each of these perspectives has substan¬

tial overlap with others, and theoretically each perspective could be a topic, for exam¬

ple: {Qualitative-newtons-third-law}, {Quantitative-newtons-third-law}, {Understanding-

inclined-planes}, {Understanding-collision-situations}, {Horizontal-forces}, etc.58 It would

be exceedingly difficult to represent the curriculum so that {Newtons-third-law} could be

taught from all of these perspectives, but it is possible to incorporate them in a limited way.

One way to implement these dimensions in tutoring involves conceptualizing the curricu¬

lum in terms of a table, with one of the dimensions in the rows and another dimension in the

columns. For example, for a table containing force types vs. problem type, teaching could

involve moving across the rows and columns according to some strategy, such as teaching

all force types for each problem type (see Figure 5.8). (This scheme can be extended from

a two dimensional table to an array of arbitrary dimensions.) Though conceptually sim¬

ple, tabular representations of curriculum are restrictive. For example, a straightforward

method for simulating spiral teaching, one we did not adopt, involves a tabular representa-

57The dimensions listed are not arbitrary; they all have pedagogical relevance which we will not explain in

detail here. In classroom instruction many divergent examples of a concept are usually necessary to promote

a deep understanding. Multiple views and contexts are useful for teaching a single topic because students

learning is context dependent.

58 White & Frederiksen’s [1986] model evolution instructional strategy is similar, teaching the same material

from increasingly more sophisticated perspectives.

219

tion of curriculum with one dimension (rows) for topics and the other (columns) for levels

of difficulty. In this method spiral teaching involves weaving back and forth over all topics

from simple to more difficult levels. Though workable, this method is too restrictive, and

much of the flexibility of network representations is lost when a tabular representation is

used, and topics would be confined to a rigid ordering.59 As in our implementation of spiral

teaching, the topic levels of KAFITS could be used (if they were renamed for some topics)

to incorporate multiple perspectives in a limited way.

Discourse Flexibility vs. Context Dependence

As stated above, the tutor’s flexibility is directly related to the modularity and inde¬

pendence of the knowledge base contents. We have mentioned that complete modularity

and independence is not possible, so the goal of the knowledge engineer is to achieve, or to

help the domain expert achieve, the highest degree of context independence feasible, given

the difficulty of the task. We found that, in practice, it is often difficult for the domain

expert to design curriculum that assumes no global discourse context because to do so he

must consider many alternative paths through the topic net and alternative permutations

of the primitive actions (see Section 5.5 for a discussion of cognitive factors). For instance

{X-axis-forces} is a part of {X-axis-equilibrium} and is also a part of {FDB-WRITE-

EQUATIONS} (as shown in Figure 1.3), so {X-axis-forces} could be reached from two

different paths, each having a different discourse history. Also, prerequisite relations can

ensure that one topic has been taught before another but not that the prerequisite topic

was presented immediately before (it could have been taught at any time in the past). As

a third example of the difficulty of context independence, the domain expert was advised

that the answer-description could not assume that hints were given, since some strategies

do not give hints.

59 Actually there is some flexibility inherent in the tabular method—two teaching strategies are possible.

Moving straight down a column results in teaching a single topic at all levels of difficulty (i.e. depth first

traversal); moving straight across a row results in teaching all the topics at the same level of difficulty (i.e.

breadth first traversal).

220

Designing too much modularity into the knowledge base can result in abrupt or choppy

tutorial discourse. Making every chunk independent can (at least with canned text systems)

lead to repetition and can prevent smooth transitions between ideas (topics). We have

taken a pragmatic approach to this tradeoff, resulting in a compromise between curricular

flexibility and smooth discourse: designing with modularity is encouraged, but not required

of the domain expert. The domain expert is not expected to test every conceivable network

path and combination of primitive actions but, rather, tests many paths with several tutorial

strategies and adjusts the knowledge base for smooth discourse. This approach worked well

in this study, and student trials indicated that the tutorial discourse for the statics tutor

was reasonably smooth.60

A related problem is that when a change is made to the domain knowledge base, the

domain expert must keep in mind the many ways that the modified information could be

used, including how it might affect nearby topics or presentations, and various potential

trajectories through the topic net. Potentially even more difficult is changing or adding

tutoring strategies. Though the domain expert tries to consider different possibilities when

designing the curriculum, his vision of the range of possible situations will be somewhat

limited by what he knows of the existing strategies. For example, after the third set of

student trials Camp noted that it would be feasible for advanced students to skip all the

easy level presentations. This would require that the easy and typical level presentations

would have to be written so that the easy level could be skipped and teaching could start at

the typical level. We never implemented this strategy change, but it is possible that many

of the presentations would have had to be edited had we done so.

5.4.4 Summary of Knowledge Representation Issues

In this section we first described how the original KAFITS framework (especially the

conceptual vocabulary) grew out of experience doing knowledge engineering with educators,

60However, we did not experiment with very diverse strategies in this study, therefore the degree of

difficulty in designing smooth discourse with more elaborate strategies is an open question.

221

Knowledge Repre¬

sentation Issue or

Problem

Design Tradeoffs Solution or

KAFITS

Mechanism

Vocabulary

Understandability

Minimize overly ab- -vs.- Maximize

stract or technical flexibility, clarity,

terms expressiveness

Analysis of empiri¬

cal evidence of

confusion

Vocabulary

Uncertainty

Minimize ambiguity -vs.- Some uncertainty is

and fuzziness unavoidable and

some is useful and

intentional

Allow ambiguity

that provides flexi¬

bility without con¬

fusing the user

Vocabulary

Simplicity

Minimize -vs.- Maximize clarity

size and complexity and expressiveness

of vocabulary

Introduce new

terms

only when need is

demonstrated

Level of

Abstraction

Minimize prolifera- -vs.- More first class ob-

tion of first class ob- ject types increases

ject types expressiveness

Use slots to specify

some sub-categories

Knowledge

granularity

Knowledge is chunked at many levels of abstraction Lessons, topic lev¬

els, Part slot, com¬

posite topic type

Modularity &:

Interdependence

Maximize knowl- -vs.- But some interde¬

edge modularity pendence is

unavoidable

Synthesizers, spiral

teaching,

“glue slots” (Moti¬

vation, Wrap-up)

Discourse Flexi¬

bility &: Context

Dependence

Maximize -vs.- Maximize flexibility

smooth flow of dis- and context

course transactions independence

and ideas

Interface al¬

lows easy movement

between testing and

modifying

Figure 5.9 Summary of Knowledge Representation Design Tradeoffs

222

analysis of taped tutorial sessions, and the instructional design literature. We then described

knowledge representation design tradeoffs, documenting examples from the case study when

possible, and gave suggestions or mechanisms which address knowledge representation is¬

sues. The issues were organized into two categories: conceptual vocabulary/semantic un¬

certainty, dealing with the general meaning of KAFITS terms, and curriculum flexibil¬

ity/modularity, dealing with the contents of the KAFITS knowledge base. The table in

Figure 5.9 summarizes the knowledge representation issues identified, the design tradeoffs

involved, and KAFITS mechanisms that constitute partied solutions. We also gave evidence

that the declarative meaning of terms can depend on how they are used procedurally.

We mentioned several alternative curriculum structures, including knowledge hierar¬

chies, sub-skill lattices, prerequisite networks, genetic graphs, curriculum goal lattices, and

curriculum views (pedagogical dimensions), and indicated how each could be implemented

within the KAFITS framework. We also showed how the statics curriculum could be taught

from a number of pedagogical perspectives.

5.5 Cognitive Considerations, Interface Design, and User

Participation

Some of the issues and tradeoffs identified in this study are epistemological in nature,

related to fundamental characteristics of knowledge such as terminological fuzziness and

ambiguity, and the massively interconnected nature of knowledge; these epistemological

issues were discussed in Section 5.4. Other issues identified are psychological in nature,

having to do with human cognitive capabilities and limitations. In this section we document

issues related to the domain expert’s cognition and discuss how cognitive considerations

affected the design of the KAFITS interface and the knowledge acquisition methodology.

We also discuss the importance of user participation in designing KAFITS.

223

5.5.1 Procedural Nature of Curriculum Mental Models

Norman [1983, pg. 7] makes a useful distinction between conceptual models and mental

models. A conceptual model is a model that a designer or teacher invents in order to provide

an appropriate (accurate, consistent, and complete) representation of a system to a user or

student. A mental model is a naturally occurring evolving property or structure in a human

mind. Mental models are by their nature incomplete, unstable, and runable; and are not

necessarily accurate. Below we discuss one case where a KAFITS conceptual model was at

odds with the domain expert’s mental model.

Normally teachers are exposed to predominantly linear representations of instructional

material, such as in textbooks and lesson plans, and the experience of teaching itself is,

of necessity, composed of a linear ordering of events. Thus it is not surprising that we

have found that teachers’ mental models of the instructional process tend to be linear

and procedural.61 62 This is in sharp contrast with the declarative nature of domain

knowledge represented in intelligent tutors. For instance, we have found that perceiving

the KAFITS topic net as a declarative representation of relationships between topics is

difficult for those who, like most teachers, are not trained in computer science.63 There

is a persistent tendency for teachers to interpret the network as a procedural specification

of topic ordering.64 Camp himself noted this tendency: “It’s hard to get away from linear

types of notions [about teaching, when one is] teaching [in the] classroom all the time”

[7/5/89],

61 Observations concerning teachers are from experiences working with over a dozen high school and college

teachers over several years.

62Garg-Janardan & Salvendy [1988] report similar findings (in the expert systems field) of users confound¬

ing process (procedural) and content (declarative) knowledge. They hypothesize that the expert’s internal

schema, compiled over a history of solving problems, contains process and content knowledge, and suggest

that it is not feasible to attempt to structure knowledge elicitation to elicit only one or the other.

63The network is (in part) a set of prerequisite constraints and hierarchical relationships between topics,

not a specification of how topics will be ordered when tutoring.

6,fThey seem to have little trouble accepting an explanation of the declarative nature of the network when

it is presented to them, but fall back into procedural interpretations of it when designing tutors.

224

We observed four phenomena related to the difficulty of assimilating the declarative

nature of the topic network, described below. All of these occurred in the first months of

the study, after which Camp had a deeper understanding of the declarative nature of the

domain knowledge.

Confusing parts with prerequisites. We noted several instances where Camp in¬

terpreted the relationship between two topics as “topic X needs to be taught before topic

Y” and used a prerequisite link when the topics actually had a part-whole relationship and

the part link was more appropriate.65

Confusing evidence with action. On one occasion, while we were discussing Mis-

KU values in the student model, Camp said “so if it’s confirmed, then we go remediate it,

right?” He forgot for a moment that Mis-KIJ evidence in the student model does not imply

branching immediately to remediate, but that this information may (or may not) be used

at some later point to cause the Mis-KU to be remediated.

Inversion of a subordinate topic relationship. Figures 5.10 and 5.11 show non-

optimal topic relationships as drawn by Camp (on the left), along with the more appro¬

priate representation that was eventually included in the curriculum (on the right). Topic

{Gravity} is subordinate to (i.e. a part of) topic {Forces-at-a-distance}, as shown to the

right of Figure 5.10. Normally topic parts are taught before topics, so {Gravity} should be

taught before {Forces-at-a-distance}. Camp’s original sketch of the relationship between

these topics is shown on the left in the figure. He was thinking of the topic net procedurally,

and put {Gravity} before {Forces-at-a-distance}.66

Linearization of a subordinate topic relationship. {X-axis-forces} and {Y-axis-

forces} are subordinate to {FBD-write-equations}, as shown to the right of Figure 5.11.

Normally the first topic listed in the Part slot to be taught first, and Camp wanted {X-

65The difference is significant because strategies can specify that parts and prerequisites be ordered

differently.

66Similarly, beginning computer science students often have difficulty conceptualizing that in depth first

network traversal sibling nodes are evaluated before their parents, even though the search starts with the

parents.

As specified bv domain expert: Correct connections:

Figure 5.10 Inversion of Subordinate Topic Relationship

axis-forces} is taught before {Y-axis-forces}. His initial sketch of this relationship is shown

on the left in the figure. Again he was thinking of the net procedurally, showing the topics

in the order they would be presented to the student.

The above discussion underscores the importance of considering the compatibility be¬

tween the cognitive model offered by an interface or representational framework, and the

mental models that users bring with them to the task. If enough information is available this

compatibility should be considered during system design. In any case, software evaluators

should be aware of incompatibilities between cognitive and mental models. In some cases,

such as when the user has a misconception, the best approach to the incompatibility may

be to instruct the user in a new model, rather than alter the interface to reflect the user’s

model. This was the case for the domain expert’s tendency to see a declarative network as

a procedural network.

5.5.2 Cognitive Factors in Curriculum Size and Complexity

In Section 5.4.3 we discussed how tradeoffs between domain knowledge modularity,

knowledge overlap, and discourse smoothness made the domain expert’s job more diffi¬

cult. We found that the domain expert was more often frustrated by the sheer size of the

226

As specified bv domain expert: Correct connections:

Figure 5.11 Linearization of Subordinate Topic Relationship

knowledge base than these epistemological issues. In addition, it was observed that issues of

curriculum size and complexity were more pronounced than conceptual vocabulary issues.67

Here we document how cognitive factors relate to the size and complexity of the knowledge

base.

For most of the first two and a half months of the project Camp worked several days

a week and arrived at the final version of the topic network only after repeated revisions.

He had constructed a complex mental model of the curriculum, much of which involved

subtle reasoning and distinctions about the meanings of topics, their boundaries, and their

relationships (such as the meanings of and difference between {X-axis-forces} and {X-axis-

equilibrium}). For most of the later months of the project Camp worked weekly, often

focusing on a small part of the network for a long period of time; some the details of the

curriculum faded from his long term memory or were not immediately accessible without

reconstructing his reasoning process. He often found it difficult to “get his head around”

[his words] the entire curriculum, i.e. maintain an accurate mental model of it. Figure 5.12

has several quotes that illustrate Camp’s frustration with the magnitude of the curriculum

he was designing (see also the quotes in Section 5.3.1).

6TuThe biggest problem for Camp is not with the syntax or semantics of the framework, but with the

semantics of the [curriculum]” [lab journal 3/22/90].

227

• “There are so many fuzzy little pieces” [6/26/89, referring to breaking {Linear-

equilibrium} into parts].

• “I get really discouraged trying to think of which is the best way to [organize the topic

net]” [7/5/89].

• “Part of what’s taken a lot of time is all this checking back [to previous work sheets and

how] to make [this work sheet] different or consistent with [previous ones]” [8/3/89].

• “One of the big issues is: How does the person dealing with the content figure out

where they are?” [10/25/89].

• “It’s so easy to fall off the wagon with some of this stuff .. .1 start putting stuff in

[{Rigid-bodies}] that belongs in [{Newtons-3rd-law}]” [3/6/90].

Figure 5.12 Quotes about Curriculum Size

• “Oh God! we can’t do everything for everybody here! Argh!!” [7/30/89].

• “I keep thinking there is some awful path in there that is just insane, where if someone

stepped in there they would get garbage” [8/1/89].

• “No matter what way they go though here, fastways, backward, forward—you have

to make sure it makes sense!” [8/8/89].

• About test running the tutor to debug the curriculum: “After two or three wrong

answers I get my brain sort of unhinged as to where I am” [11/14/89].

Figure 5.13 Quotes about Modularity

A related problem, mentioned in Section 5.4.3, is the difficulty of designing the knowledge

base modularly, trying to account for the many possible paths through the curriculum and

various uses for each object. Keeping track of all of these possibilities puts strong demands

on working memory. The quotes in Figure 5.13 illustrate Camp’s occasional frustration

with these demands.

In summary, the curriculum is large and complex, and in order to design or modify it the

domain expert needs to maintain an accurate mental model. This complex mental model

can fade (become less accessible or less accurate in long term memory) if is it not used

(accessed) regularly. In addition, designing and modifying the curriculum requires having

228

large parts of this mental model in working memory to reason about multiple interactions

between pieces of it, and this is sometimes challenging. In the next section we describe

aspects of the KAFITS system and our knowledge acquisition design process designed to

mitigate these and other problems.

5.5.3 Design Principles

Our goals were to design the KAFITS system and the knowledge acquisition process for

power, efficiency, and ease of use. We have discussed some of the many design tradeoffs

and cognitive considerations involved in meeting these design goals. Here we abstract a set

of design principles which describe how we addressed the design goals and which also serve

as recommendations for future investigations of ITS knowledge acquisition interfaces and

methods. We list these design principles below, and in succeeding sections expand upon

them, giving examples of how they were followed.

1. Cognitive fidelity of the interface. The interface should provide the user with a

clear and accurate cognitive model of the underlying framework.

2. Accessibility and management of the domain knowledge. The user should be

able to view the (static) knowledge base in multiple ways and easily navigate among

related items.

3. Monitoring and testing the knowledge base. It should be easy for the user to test

and modify the knowledge base and monitor dynamic processes and data structures.

4. Assistance and efficiency of the interface. The interface should have features

which facilitate efficient work and provide assistance when needed.

5. Managing the curriculum development process. The knowledge acquisition

process should facilitate both the on-line and off-line aspects of building a tutor

throughout all phases of the project.

229

Cognitive Fidelity of the Interface

In designing the KAFITS framework we tried to follow this “conceptual simplicity de¬

sign guideline”: no conceptual aspect of the framework should be so complex that it can’t

be clearly represented visually in the interface.68 Though this guideline was not followed

completely, it helped us keep the representational structure simple. Visually reifying the

structure of the framework through the topic network display and the Browser reduces the

user’s working memory load by “off-loading” information to the interface that would nor¬

mally take up space in the user’s working memory, and reduces demands on long term mem¬

ory because the interface serves as a reminder of the underlying representational structure.

The following concepts and structures were given visual counterparts in the interface:69

• The structure of the curriculum and relationships between topics is reified by the topic

net graphical display;

• The topic level displays illustrate that topics are composed of several levels of under¬

standing;

• The hierarchical organization of information (i.e. the types, instances, and slots) is

reified by laying out adjacent type, instance, and slot tables in the Browser, with the

instance table visually changing when the type table is clicked on, and the slot table

visually changing when the instance table is clicked on;

• Strategies are reified by the graphical PAN displays and the switch set displays;

• The correspondence between Browser operations and the things they operate on is

reified by locating pop-up menus of type, instance, and slot operations directly below

the corresponding tables.

68This applies to the conceptual level of the framework. At the implementation level this restriction does

not hold.

69These interface features relate to the static information in the knowledge bases; later we will list features

related to dynamic information and processes.

230

Some structural aspects of the framework do not have corresponding interface realiza¬

tions, most notably the four-level decision model and the structure of the student model.

An interface showing the decision levels would be more important if we dealt more with

multiple strategies at each of the four levels, and could be added in the future. An interface

for the student model could also be added in the future, assuming a more general framework

for diagnosis and student modeling is developed (as will be discussed in Section 6.4).

Domain Knowledge Accessibility and Management

The user should be able to view the knowledge base from different perspectives and

different levels of abstraction and should be able to easily navigate among related items.

The Referenced-by slot, and the “recent-instances,” “browse-slot,” “browse-instance,” and

“describe-connections” browser operations allow the user to take note of and/or access

instances that are connected to the instance currently being worked on in the Browser. The

following features gave the user a variety of levels of granularity from which to view the

curriculum: the topic net shows the entire curriculum; topic level displays show the topic

levels of all current topics; the “describe topic details” operation on topic nodes gives an

overview of the presentations called by each topic level; and the Browser shows the lowest

level details of each topic and presentation.

Monitoring and Testing the Knowledge Base

It should be easy for the user to exercise the knowledge base, monitor how knowledge

base items are being evoked during tutoring, monitor changes in dynamic data structures,

and modify the contents of the knowledge base. Dynamic processes in the tutor are reified

by: highlighted topic net nodes that follow the path through the curriculum, highlighted

PAN nodes that follow the flow of control through strategies, and topic level displays that

show movement from one topic level to the next and show dynamically changing values of

the student model. In addition, the KAFITS interface facilitates easy movement between

testing and modification tasks, as mentioned previously.

231

Assistance and Efficiency Features

The non-technical background of the assumed user and the preciousness of the domain

expert’s time underscore the importance of assistance and efficiency features. Several help,

assistance, and efficiency features were provided, as described in Section 3.5.1, including: an

on-line help/info system, disaster avoidance, data type checking, and keystroke short-cuts.

In addition, the features listed in previous sections related to cognitive fidelity, knowledge

base accessibility, and monitoring are all assumed to contribute to easy and efficient use.70

Managing the Curriculum Development Process

The knowledge acquisition method should facilitate both on-line and off-line aspects of

the design, implementation, and testing phases. Two issues we encountered are worthy of

note: off-line support and file management, each described below.

Work sheets. When the statics tutor project began, we had envisioned much of the

design work being done on-line. However, we found that off-line tasks were sometimes more

appropriate, and that off-line support artifacts were needed.71 For instance, we envisioned

the domain expert working with the Browser to design the curriculum in much the same way

that a writer uses a word processor to design a document. But it soon became clear that

a paper worksheets would better fit our needs for opportunistic design and working on the

curriculum away from the lab (such as at home). Appendix M has samples of worksheets

used. Their format went through several revisions, according to input from the domain

expert and knowledge base managers (for example, the diagram sketching area to the right

on the topic worksheet was suggested by Camp as a way to get a quick visual overview of

the contents of the topic72).

70We make a tentative assumption that increased ease of use increases efficiency, but this has not been

tested and may not be true for some features or for advanced users.

71 It is conceivable that new software tools could be added that would alleviate the need for the off-line

tasks and artifacts we found necessary.

72Camp mentioned that a graphical topic overview such as this would be helpful to have on line, but this

was not implemented.

232

Knowledge base hard copy. At first the Saved-instances file (see Section 3.4.1) was

used only to store code representations of the knowledge base objects so that they could

be loaded back into the system. We thought the KAFITS interface would be a sufficient

tool for all tasks involving inspection of the knowledge base. But we found that a hard

copy printout of the knowledge base, formatted for readability (see Appendix I), had some

advantages. It was easier for the user to see at a glance (or on adjacent pages) all of the

information related to a specific topic or presentation. Also, the domain expert could take

the printout home and proofread it, marking changes for later revision.

File management. Although mundane, supervision in managing knowledge base ver¬

sions, paper forms, and edit records was important. Before the Saved-instances file feature

was completely working, Linton spent a significant amount of “non-productive” (in retro¬

spect) time combining and organizing edit records. Gonzalez initially started a new edit

record every working day and also tried to organize editing records according to purpose,

such as “new instances” and “modified instances.” It was eventually suggested that she

use a single edit record for a week or more, until the next version of the code-image was

created, but until this happened she spent a significant amount of non-productive time

managing, combining, and re-combining edit record contents. Accordingly, one of the jobs

of the knowledge engineer is to supervise and provide guidance on data file management.

5.5.4 User Participatory Design

Our user participatory design process has given rich and detailed information on usabil¬

ity. We used this information to improve the KAFITS system and the design methodology

and tried to follow two guiding implementation principles: 1. design in what the user needs;

2. don’t add anything else (Occam’s Razor). Below we argue for the importance of user

participatory design by describing features that directly resulted from user participation as

well as features that were designed without user participation that were not usable.73

73The prototype KAFITS system existing at the beginning of this study was in part based in several years

experience working with educators (see Section 5.4.1). These experiences had a significant effect on the

233

Features inspired by user participation. We believe the following features would

not have been conceived without user participation:

• topic level displays (Section 3.2.3),

• pop-up operations menus (Section 3.5.1),

• readable Save-instances file (Section 3.4.1),

• topic detail feature (Section 3.5.1), and

• numerous menu and Browser operations.

Features modified due to user participation. We delayed the implementation of

some features until sufficient experience working with users was gained to inform the design

specifics. This “wait and see” design attitude was quite useful since our conception of

features changed, or we discovered that some features were not needed, before we expended

the effort of implementing them.74 Below we list features which were conceived without

user participation, but were subsequently modified due to user participation:

• In the original framework all presentation objects had only slots for pointing to an

example instance (which specified the picture, crane boom set-up, etc.) and a ques¬

tion instance (which specified the question, hints, elaborations, etc.). KAFITS was

designed in this way for flexibility purposes, as explained in Section 3.1.2. However,

this extra level of indirection proved to be very frustrating for the users, so example

design of the representational framework, but very little of this prior experience involved on-line work, so

feedback about the KAFITS interface came mostly during this study.

74 As a programmer the author has experienced the common desire to implement new program tools, add

new features, and re-conceptualize representational structures based solely on his own experience using a

program. Code changes, usually for purposes of generality, clarity, and/or efficiency, can be made without

discretion if they affect only the implementation level, but caution must be taken if they affect the conceptual

level of the system or the interface to the user. The software developer is not a typical user, and his needs and

conceptualization of the software might differ radically from those of a typical user. Acting on the temptation

to add new capabilities to a system (sometimes called “creeping featurism”) can also drain valuable time

from a software development project. Thus an “implement only as needed” attitude is recommended.

234

and question slots were added (via mixins, described in Section 3.1.4) to presenta¬

tions. This was cited by one knowledge base manager (Gonzalez) as a substantial

improvement.

• The student model was not implemented until one or two months after the project

began, since during that time the domain expert had come sufficiently up to speed to

provide important suggestions for its design.

• On severed occasions the syntax of object slots was changed to improve usability, for

example, the correct answer slot, which contains a fist of indices into the answer-

description fist, originally contained the correct answers verbatim. It was originally

thought that the additional effort of representing the information twice would be

offset by not having the indirection of using an index, but this proved to be a false

assumption.

• Other user motivated changes included: changes to worksheet forms, changes to the

crane boom simulation, and changes to the conceptual vocabulary. Also see Section

5.2 for changes made to KAFITS due to data from student trials.

Answers without questions: features implemented but not used. Another way

to argue for the importance of user participation is to fist features that were implemented

without user input that were deemed inadequate or went unused.75 Such features include:

• the “recent instances” feature,

• the “topic details” feature,

• most of the command-key short-cuts,

• the help/info system,

• and several menu and browser operations.

75This is not a strong argument because the features may have been underutilized due to inadequate

training, poor interface design, or idiosyncratic characteristics of the participants.

235

With the help system in particular, we discovered that the design was not completely

responsive to the user’s needs. Most of the assistance the domain expert needed was along

the lines of “something funny is going on here” or “I thought I was here [in this mode or

function] but I ended up here.” A (standard, non-intelligent) help system is of little use

in such situations. After the first couple of months the domain expert had extremely few

conceptual questions regarding the framework or the interface. However, the knowledge

engineer did occasionally give unsolicited advice of a conceptual nature while looking over

the domain expert’s shoulder. If the domain expert had a misconception about the system,

or was in a situation where he could have used a more efficient method to accomplish a

task, he did not know it, and a traditional help system would not be useful.

However, failure to learn or utilize software features may be due to fundamental psycho¬

logical phenomena. In “Paradox of the Active User,” Carroll & Rosson [1987] point to two

tendencies of users using sophisticated software such as word processing programs: “peo¬

ple have considerable trouble learning computers,” and “their skills tend to asymptote at

relative mediocrity.” They claim that these are empirical phenomena and hypothesize that

they are due to fundamental conflicts in the user’s cognitive and motivational strategies,

rather than poor software design. They describe two “paradoxes.” The first paradox, called

“production bias,” is that people’s desire to get the job done often reduces their motivation

to learn new ideas, even when the new ideas might get the job done faster. The second,

called “assimilation bias,” is that irrelevant similarities between new information and old

information (eg. other features of the same program, other programs, or other technical

artifacts) cam mislead or blind the user so that they make assumptions about the software

that inhibit learning.

User participation and software testing. We have argued for the importance of

user participatory design by documenting aspects of the system that benefited from user

participation and aspects of the system that were poorly designed due to lack of user

participation. User participation is useful for software testing as well as software design.

For most of the study we had at least two users using the system. Each change we made

236

to the software was tested, if not rigorously then at least realistically by two users from the

target audience. (But this can be frustrating for them, as mentioned in Section 4.1.4.)

5.5.5 Summary of Cognitive Considerations and Interface Design

Designing systems for usability requires considering cognitive aspects of software use.

Since no a priori theory exists which will predict the cognition of an average user (or any

particular user), and since new technology, by its very nature, introduces unknown variables

into situations, user participation is crucial to ensure usability in software design. In this

Section we discussed several cognitive factors for designing ITSs:

1. Designers must evaluate whether the cognitive model they want to convey corresponds

with the mental model the user actually builds;

2. The user’s previous knowledge must be considered, especially when misconceptions or

confusion with mundane uses of terms could interfere with understanding the system;

3. Teachers’ mental models of curriculum tend to be procedural in nature (as documented

by four observed phenomena), and this must be considered when training them to use

a declaratively represented curriculum knowledge base.

4. The domain expert’s mental models of curriculum and software are complex and

put strong demands on working memory and long term memory (as documented by

numerous quotes);

5. Designing cognitive fidelity into the interface helps to convey the correct cognitive

model, reduces demands on working memory by off-loading information onto the

medium, and reduces demands on long term memory by reminding the user of the

underlying representational framework;

6. Failure to learn or utilize software features is sometimes due to a fundamental conflict

between the user’s goals of producing vs. learning, rather than poor software design.

237

We presented several ITS knowledge acquisition interface design principles for realizing

(and dealing with tradeoffs between) our design goals of power, efficiency, and ease of

use. These principles relate to: cognitive fidelity; facilitating accessibility, monitoring,

and management of both static and dynamic information; assistance and efficiency; and

providing support for off-line activities. We also gave two implementation guidelines related

to user participation: “include what the user needs,” and “don’t include anything else.” To

argue for these guidelines and for user participation in general, we documented features

affected by user participation, and features that were poorly developed because of lack of

user participation.

Chapter 6

SUMMARY AND RECOMMENDATIONS

In this Chapter we summarize the results and contributions of this study and discuss

limitations to the generality of these results and contributions. Then we offer several ex¬

tensions to our framework as recommendations to the ITS research community, including:

(1) a generalization of our software design which provides a context within which to com¬

pare KAFITS with other generic ITSs and serves as a design specification with which to

build future generic tutor shells; (2) a general theory for incorporating knowledge classifi¬

cation schemes (“K-types”) into intelligent tutors; and (3) a discussion of “collaborative,

inspectible, persuadable computer tutors.” Then we give a number of recommendations

for future research; and finally we offer recommendations to the educational community,

including a vision for how generic ITS systems could be incorporated into public education

and industry training.

6.1 Contributions

We have reported on the formative evaluation of a knowledge acquisition tool for intel¬

ligent computer tutors and on a case study of the tool being used by three educators to

design a tutor for statics. Using the case study and formative evaluation methodologies has

allowed us to describe a benchmark ITS knowledge acquisition tool and to identify key design

issues and design tradeoffs for building similar tools. We have also described a benchmark

ITS knowledge acquisition process and identified key design issues and tradeoffs for the ITS

design process. Below we summarize the main contributions of this study.

238

239

Involving Educators in ITS Design

We have demonstrated that it is feasible to involve educators in ITS construction at a

highly collaborative hands-on level, i.e. fully participating in design, implementation, and

testing.1 Building an ITS is analogous to writing a textbook in terms of the magnitude

of expertise and effort required, so we expect only select teachers to participate in ITS

construction. We listed several characteristics of instructors that make them good ITS

domain experts (see Section 5.1.2). We described the method and content of our instructor

training in Section 5.1.2 and summarize the overall time commitment below. Building an

ITS is at times frustrating for the domain expert (as described in Section 5.1.3); however it is

on the whole rewarding and enjoyable (see Appendix C). Finally, the domain expert’s initial

knowledge, mental models, and cognitive limitations must be considered when designing

knowledge engineering sessions and tools (see Section 5.5.2). For instance, we have identified

a tendency for educators to construct procedural internal representations of ITS curriculum

even when this information is declarative (non-procedural) (Section 5.5.1).

A Generic ITS Representational Framework

We have designed, implemented, and successfully used a generic framework for repre¬

senting “what to teach” and “how to teach it” in intelligent tutors. The framework in¬

cludes: a conceptual vocabulary that is designed for expressiveness and usability; a cur¬

riculum model consisting of a topic network, misconceptions, knowledge types, and levels

of performance/mastery within topics; a method for representing tutorial strategies (called

Parameterized Action Networks), and a method for overlay student modeling. Our frame¬

work incorporates some considerations from instructional design theory and is unique among

generic ITS frameworks in that multiple tutoring strategies are represented and dynamically

selected during tutoring.

1 Though others have built ITS shells intended to be used by non-programmers we know of no other

inquiry that studies educators’ use of such a system.

240

We discussed issues and design tradeoffs affecting the representation of domain knowl¬

edge in intelligent tutors and gave mechanisms and solutions for them (see Figure 5.9). The

main tradeoffs identified were: (1) the expressiveness/power/precision vs. the understand-

ability/simplicity/usability of the conceptual vocabulary, and (2) the modularity/flexibility

vs. smooth pedagogical/discourse flow of the curriculum. Although it is desirable to sepa¬

rate declarative and procedural knowledge in ITS knowledge bases, we have noted that some

degree of interdependence between declarative and procedural information is unavoidable

(Section 5.4.3).

An ITS Knowledge Acquisition Interface

We have implemented and successfully used a set of tools for acquiring pedagogical and

domain knowledge from instructional experts. The tools support an accurate and fairly

complete cognitive model of the underlying representational framework of the system by

visually reifying key system concepts and structures. Tools were built to browse (inspect

and navigate within) the knowledge base, modify the knowledge base, test the knowledge

base, and monitor the state of the system while it is tutoring. The tools also constitute

an experimental workbench usable by instructional researchers for rapid prototyping and

testing of curriculum and tutoring strategies. In Section 5.5.4 we discussed how our user-

participatory design process led to a highly usable system, and we discussed issues and

tradeoffs for designing powerful yet usable tools.

An ITS Knowledge Acquisition Process

We have outlined a process for involving educators in building an ITS using knowledge

acquisition tools. The ten-step process used to build the statics tutor (see Figure 5.1)

spans design, implementation, and testing, uses several knowledge acquisition techniques,

and enables the instructor’s conception of the curriculum to evolve through classroom-like,

CAI-like, and ITS-like phases. We have also identified important issues and tradeoffs for ITS

knowledge acquisition, covering issues of domain expert training, important characteristics

241

of domain experts and knowledge engineers, plus techniques and guidelines for conducting

knowledge acquisition sessions.

Quantitative Analysis of the Design Process

The statics curriculum covers 41 topics and misconceptions and represents about six

hours of on-line instruction.2 Our analysis of size, complexity, and other properties of the

topic network and knowledge base is given in Section 5.3 (these properties allow compari¬

son of the statics knowledge base with knowledge bases of other domains). The main result

of our person-hour analysis of the design process (in Section 5.3.2) is that it took about

100 hours to build the statics tutor per hour of on-line instruction,3 or about 85 hours of

development time for each hour of on-line instruction if training is subtracted. These fig¬

ures are (surprisingly) comparable to similar estimates for building traditional computer

aided instructional systems [Gery 1987], but should be interpreted cautiously because they

incorporate many assumptions and because hours of effort per hour of instruction is not

a very satisfactory metric for the effectiveness of ITS tools (see Section 5.3.2). The major

conclusion we take from these figures is that intelligent tutors with modular knowledge

representation and flexible tutorial response can be built with about the same effort as CAI

systems (which do not have this degree of flexibility). Additional figures are: implementa¬

tion took about six times as long as design; total training time was 40 hours for the domain

expert and 6 hours for the knowledge base managers; and the knowledge engineer’s time was

about one third the domain expert’s time. (See Figures 5.6 and 5.7 for additional results of

quantitative analysis.)

2Much of our analysis is extrapolated from data collected during the design and testing of the Linear-

equilibrium portion of the statics curriculum, which constitutes about one quarter of the entire statics

curriculum.

3This figure includes both production and training time spent by the domain expert, knowledge engineer,

and knowledge base managers to design, implement, test, and refine the statics tutor using the KAFITS sys¬

tem; but does not include the development of the KAFITS system itself, building the simulation environment

(the crane boom), or creating graphics pictures.

242

Other Contributions to ITS Research

The contributions mentioned above all relate to ITS knowledge engineering, the focus

of our study. There are several tangential contributions to the ITS field that are not related

to this focus:

• Student Modeling. Our overlay student model is more sophisticated than most student

models reported in the literature and has severed unique features, including nonmono¬

tonic reasoning, reasoning with uncertainty, and multiple levels of inferencing.

• Student Initiative. The KAFITS student initiative feature represents the beginnings

of a facility allowing students to have significant control over the style and content of

their learning (see also Section 6.3.4 below).

• Strategy Representation. Parameterized Action Networks (PANs), described in Sec¬

tion 3.1.7, are an efficient and powerful way to represent multiple tutoring strategies,

and facilitate easy prototyping and experimentation of tutoring strategies.

• ITS Design and Evaluation. The evaluation of ITSs is a research issue in itself, and we

have discussed and given examples of many evaluation methods and tradeoffs (Section

2.5). Our study is an example of using a combination of about a dozen evaluation

methods (mainly qualitative methods, with some semi-quantitative methods) to in¬

vestigate an exploratory research area.

Relation to Previous Work

Our survey and analysis of the AI and ITS literature (Chapter 2) in the areas of generic

ITS shells, empirical research and iterative design, knowledge acquisition methods, and

evaluation methods offers many general suggestions to ITS designers in each of these areas.

In Chapter 2 we also relate our study to previous work in these areas (at the end of each

of the sections). In addition, below (in Section 6.3.2) we propose a classification of ITS

systems which places our work in perspective with previous and future generic ITSs.

243

6.2 Limitations

Methodological Limitations

In Section 1.5 we noted general methodological factors which limit our ability to gener¬

alize our results, including: that we studied the building of a single tutor in one domain,

that there was only one teacher (and a total of three users of the software) involved in

the study, that the researcher’s objectivity was potentially affected because he was also the

knowledge engineer and software designer, and that the software was not constant over the

course of the study since it was periodically modified according to user needs. Limitations

due to the low number of subjects and domains is partially mitigated by the fact that our

original framework was designed from years of experience prior to this study working with

educators in computer tutoring (see Section 5.4.1).

Limits to the KAFITS System and ITS Design Process

Here we note specific limits to the contributions mentioned above (our list of limitations

parallels the list of contributions).

• Involving Educators in ITS Design. Though we have demonstrated that it is feasible

and useful to involve educators in ITS design, we have not demonstrated that incorpo¬

rating ITSs into education is beneficial or cost-effective. We discuss (below, in Section

6.5) issues in using KAFITS-built tutors in classrooms.

• A Generic ITS Representational Framework. Intelligent tutoring systems fall roughly

into one of two categories: curriculum-oriented tutors for teaching declarative knowl¬

edge (including concepts, facts, and principles), and expert system tutors which teach

procedural knowledge and contain rule-based representations of the domain and stu¬

dent knowledge (usually having sophisticated diagnostic capabilities). KAFITS is

most suited to building curriculum-oriented tutors for teaching declarative knowl¬

edge. Though the framework does not prohibit building other types of tutors, we

244

have no data yet on how KAFITS needs to be modified to build procedural tutors.

In Section 6.4 we discuss future research in these areas.

• An ITS Knowledge Acquisition Interface. We are confident that our domain knowl¬

edge base Browser and our monitoring tools are robust and usable (though many

improvements are possible).4 The strategy interface is still in prototype form; it has

not been used extensively by typical users. Similarly, the student interface an early

prototype. We discuss future research on the KAFITS interfaces below (in Section

6.4).

• An ITS Knowledge Acquisition Process. Since we have gone through our ITS de¬

sign/knowledge acquisition process in its entirety only in one domain, it is only a

base-line from which to build future ITSs.5 Our process does not include steps for

task analysis of domain expertise (because we were not representing procedural do¬

main knowledge) or cognitive studies of students’ misconceptions (since the domain

expert had participated in previous such studies) which are necessary for some do¬

mains.

• Numerical Analysis. The validity of our numerical results is particularly susceptible to

uncertainty due to our low number of subjects (and single domain). (Though we argue

for the prototypicality of the subjects in this study in Section 4.1.2.) The quantitative

results are meant to be order-of-magnitude and require further verification.

4 Note however that KAFITS is still a prototype system. For any type of software the effort required to

move the software from the prototype stage to a bug-proof “product” with documentation is considerable.

5This process worked for a domain expert who had some previous exposure to ITS concepts and otherwise

was not familiar with the design process. The design process (especially training) would have to be altered

for experts with more or less starting knowledge.

245

6.3 Recommendations and Proposals to the ITS Research

Community

6.3.1 Recommendations

In general, we have recommended more teacher participation in building ITSs and better

evaluation in ITS research. Specific recommendations for those designing ITSs or doing

ITS-related research are distributed throughout this document: in Section 2.1.3 we listed

six desirable features for ITS shells (or generic ITSs); in Section 2.2 we recommended

that ITS designers become more familiar with instructional design theory and that ITSs

incorporate knowledge type classification schemes; in Section 2.2.3 we listed seven “basic

areas of instruction” that we recommend be included in all ITSs; in Section 2.3.1 we listed

six steps to follow in doing ITS research; in Section 2.3.1 we recommended that an iterative

design process be combined with a user-participatory design process for building ITS tools;

in Section 2.4 we described a number of ITS knowledge acquisition methods (summarized in

Figure 2.3) and discussed tradeoffs in using them; in Section 2.5.3 we described a number

of ITS evaluation methods (summarized in Figure 2.4) and recommend using primarily

qualitative and formative evaluation methods for “exploratory” studies and for reporting

within the research community.

6.3.2 NEO-KAFITS and Class Z Tutors

Below we generalize the KAFITS representational framework to provide a pruned-down

design specification on which to base future work and to provide a framework for com¬

paring KAFITS with other ITS shells. We also discuss tradeoffs in deciding how much

“intelligence” or inferencing power to include in an ITS.

246

NEO-KAFITS

The KAFITS representational framework is a prototype and we do not expect future

research to duplicate it exactly as specified in this document—some of its features are more

essential than others. Therefore we offer a high level design specification of a generalization

of KAFITS, called NEO-KAFITS (after Clancey’s [1986b] NEOMYCIN, a generalization

of the MYCIN system).6 A high-level specification of the NEO-KAFITS generic ITS

framework is as follows:

1. Three knowledge bases are used. Curriculum objects and their attributes are stored

in a domain knowledge base. Tutoring rules or strategies, which access the infor¬

mation in the domain knowledge base to produce tutorial behavior, are represented

using a clearly defined set of actions and predicates, and are stored in a strategic

knowledge base. The system also has a dynamic knowledge base which includes

dynamically updated models of the student’s mental state and the tutorial discourse.7

2. Curriculum is represented in a curriculum or domain knowledge network which

includes topic nodes and other curriculum entities, such as Mis-KUs and Synthesizers.

3. The framework is object-oriented, including but not limited to these object types:

topics (used to specify the “macro-level” of instruction), and presentations (used

to specify the “micro-level” of instruction).

4. Topic objects are classified according to knowledge type (see the discussion in Sec¬

tion 3.1.5 on knowledge types).

5. The nodes of the topic network are related by a variety of topic links, which may

include, but are not limited to, prerequisite and subsumption links.

6NEO-KAFITS is a generalization of the KAFITS representational framework, but not the KAFITS

knowledge acquisition interface.

7Refinements on these three knowledge bases are possible, such as representing the student model and

discourse models in separate knowledge bases, and distinguishing diagnostic rules from tutoring rules. A

knowledge base for domain expertise is also needed for systems that include a performance model of domain

problem solving.

247

6. Topics can have multiple levels of understanding (or performance or mastery) (see

Section 3.1.5 for a discussion of topic levels).

7. Presentation objects define the expository and inquisitory interactions with the

user, including specifications of the learning situation and the task given to the learner.

8. A layered overlay student model is used which calculates its values as follows:

topics values are based on topic levels, topic level values are based on presentations,

and presentations values are based on individual student transactions (see Section

3.3).

The NEO-KAFITS representational framework is a powerful (general, extendible, flex¬

ible, expressive) and usable (understandable and non-complex) core on which to build

KAFITS-like knowledge acquisition tools. The following specifics of the KAFITS system

have been extracted: the four-level decision model; the use of PANs to represent strategies;

the specific types of topic network nodes and links; the specific topic levels; all but two of

the object types; the names of the object slots, primitive actions, and strategy parameters;

and most features of the KAFITS student model.

Like KAFITS, NEO-KAFITS is best suited for non-procedural domains which do not

require rule-based representations of expert and novice knowledge. It is also best suited for

directive (or curriculum driven) tutoring as opposed to reactive (or coaching or diagnosis

driven) tutoring.8 9 In addition, since it is curriculum-driven, domains with highly inter¬

active overlapping topics, in which it is difficult to distinguish individual topics or in which

many topics are taught simultaneously, are not well suited for NEO-KAFITS.10

aNote that considerable student control is still possible in NEO-KAFITS systems.

9These opinions are subject to change as a result of future studies using KAFITS in procedural domains

or with reactive tutoring strategies.

10Rich interactive learning environments are best suited for such domains, but representing domain knowl¬

edge in these domains is difficult, so guiding and measuring student learning will be difficult for any style of

computer tutor.

248

Class Z Computer Tutors: A Proposal

It is difficult to make direct comparisons of this work with other ITS research because re¬

search goals differ among research efforts. Unlike our work, most ITS research does not have

generality as a main goal, and instead focuses on: embodying a specific theory of cognition,

learning, or instruction (such as Anderson’s ACT* theory and Merrill’s component display

theory); applying a specific AI technology to computer tutors (such as machine learning or

case-based reasoning); and/or optimizing learning in a specific domain (such as algebra or

PASCAL programming). Efforts that do have generality as a main goal attempt to design

powerful and general frameworks but do not focus on usability, teacher involvement, or the

knowledge acquisition process (as was discussed in Section 2.1). However, in order to gen¬

eralize the results of this study and make recommendations for future work, we must put

this work in context with previous studies. Toward this end we define characteristics of a

class of generic ITSs that address our criterion for usability. The following characteristics

serve as design guidelines for realizing the goals of practicality and teacher participation.

• Separate domain and strategic knowledge bases. Domain knowledge and

strategic knowledge should be represented in separate knowledge bases. The tutoring

strategies or rules in the strategic knowledge base determine how and when to use the

domain knowledge. Domain knowledge should be represented in a flexible manner,

allowing multiple tutoring strategies to use it in diverse ways.

• Clearly defined representational framework and conceptual vocabulary.

The basic representational entities, their attributes, and the allowed relationships

between them should be pre-defined or defined early in the design process (though

minor modifications may occur during the ITS design).11 The syntax and semantics

of the data structures of the domain and strategic knowledge bases should be explicit

and general.

11 This contrasts with ITS projects which start with design goals for the performance of the final computer

tutor and then determine what representational and control formalisms will best suit their needs.

249

• Knowledge acquisition tools. Tools must be built which allow easy inspection,

monitoring, and modification of knowledge bases.

• Usability and understandability. The conceptual vocabulary and tools should be

designed to be used by educators who are not computer scientists.

We call intelligent tutors or ITS shells with these characteristics “Class Z computer

tutors.” Class Z tutors bridge the gap between ITS research and practical application of

this research, allowing educators to participate hands-on in ITS design and testing. For

reasons given in the next section, Class Z tutors will tend not to incorporate “state of the

art” AI technology that has not been “hammered out” and broadly tested (though they

may employ novel strategies or structures using proven AI technology). Because Class Z

tutors have clearly defined representational frameworks, their knowledge acquisition and

monitoring tools, student modeling methods, and student interfaces can be standardized

and used in many tutors.

To put Class Z tutors and the KAFITS system in perspective with each other and

with other ITS systems, we show a subsumption classification scheme of types of ITSs in

Figure 6.1. This hierarchy is sparse because it is a prescriptive classification designed to

emphasize and recommend important characteristics of generic ITS shells, not a descriptive

classification designed to compare existing ITSs.

There are five levels to the hierarchy: 1. ITSs are defined as in Section 2.1.1; 2.

Generic ITS shells are defined and described in Section 2.1; 3. Class Z tutors are

described above (we know of no system other than KAFITS that fits the definition of

Class Z tutors); 4. NEO-KAFITS as described above; and 5. the KAFITS system as

described in Chapter 3. KAFITS, NEO-KAFITS, and Class Z tutors employ AI modeling

and knowledge representation paradigms but do not include heuristic search of problem

spaces as is characteristic of many AI systems.12 We call them “low inference” systems, as

described next.

l2However, heuristic search is not excludedby these frameworks.

250

Generic ITS Shells

KAFITS
v_/

Figure 6.1 Class Z Hierarchy

251

“Low Inference” Intelligent Tutors

Our experience building the statics tutor suggests that practical and effective intelligent

computer tutors can be built without incorporating sophisticated heuristic search techniques

or runable cognitive models of expert and student knowledge. The exclusion of these ele¬

ments may seem detrimental, but we argue that it is sometimes desirable to build tutors

with these limitations.

Inferencing in tutoring systems can happen in three areas: domain reasoning, tutorial

reasoning, and diagnostic reasoning. The inferences performed by KAFITS in these areas

are few and not very sophisticated: (1) Since our representation of the domain knowledge is

not rule-based, we do not “reason” about the domain. (2) Our representation of strategies

uses a procedural network, which, unlike some rule-based methods of representing strate¬

gies, does not require search among alternative tutorial actions,13 and does not plan ahead

or backtrack. (3) Our student model performs inferencing through its several levels as

described in Section 3.3 but does not employ search techniques.

There are many areas where deeper forms of reasoning (more sophisticated search and

inferencing) could be added to KAFITS to calculate what is canned or pre-determined, for

example:

• generating natural language rather than using canned text;

• accepting natural language student input in the place of multiple choice menus and

mouse gestures;

• calculating which topics are prerequisites of other topics based on pedagogical prop¬

erties;

• inferring correct answers, hints, and answer reasons based on an underlying represen¬

tation of domain knowledge, and;

13Except for cases where a conflict resolution scheme is used to pick a node that “passes” because more

than one arc emanating from a node “passes.”

252

• making the tutoring strategies self-imp roving based on successful student achievement;

One reason we have not incorporated these more sophisticated computational mecha¬

nisms is that our study focuses on representational adequacy rather than inferencing power.

That is, we have attempted to identify primitive actions and properties that are sufficient

or necessary for encoding knowledge about what to teach and how to teach it, and have

represented most of this knowledge in shallow forms. But there is a more fundamental

reason for not incorporating some of this more sophisticated inferencing: the technology

required is, with the current state of the art, not robust enough and/or (in cases requir¬

ing detailed cognitive task analysis) is too labor-intensive to meet our goals for practical

intelligent tutors that can be built with educators participation.

If all the knowledge in KAFITS (except the student model) is stored (canned), can

it be said to be “intelligent?”14 Wenger [1987, pg. 5] describes the intelligence in ITSs

by comparing ITSs “generative” capability with traditional CAI, noting that traditional

CAI encodes an expert’s decisions while ITS encodes the knowledge and/or reasoning that

underlies decisions. KAFITS is generative in that it generates tutorial dialog and infers a

student model “on the fly” (at run time). The knowledge underlying this dialog is repre¬

sented explicitly in action networks. However, the distinction between encoding decisions

and knowledge is not clear cut, since we can treat any tutoring ride as a decision for which

there is a deeper reason or cause. For instance, the knowledge underlying KAFITS’s action

networks is not represented explicitly. In fact, the enterprise of AI can be seen as an attempt

to encode increasingly deeper (or more generative, abstract, and explicit) levels of meaning

toward, in the extreme, encoding first principles from which all other information can be

inferred.

As an illustration of this progression from encoding decisions to encoding general rules

and deeper principles, consider the following (“English-ized”) hypothetical ITS tutoring

rules and principles, where each item is intended to be an abstraction or reason encompass¬

ing the previous one:

14 We will ignore philosophical issues about the definition of intelligence.

253

1. If question-12 is answered wrong, give explanation-5.

2. If the student gets a question wrong twice, then give a canned explanation.

3. If the student is very confused, then give an additional level of feedback.

4. Give students several opportunities to think about each situation so that they may

learn from their mistakes, then scaffold feedback of increasing levels of specificity.

5. Learning happens through an active process of concept formation while trying to

account for new information within in the context of previous knowledge.

This progression of hypothetical ITS tutoring “rules” goes from the trivial to the im¬

possible. The first item illustrates the low-level coupling of diagnosis and action found in

(non-intelligent) CAL The second item illustrates a type of tutorial reasoning that is typical

of today’s intelligent tutors. A tutor using this rule must keep a record of the student’s

behavior, but the reason why the rule is applicable is not explicit. The third item is well

within the state of the art for ITS. A tutor using this rule must have abstract models of

the student’s mental state and the tutoring process.15 The fourth item states a pedagog¬

ical belief or strategy, and represents the principle behind the previous rule. It could be

operationalized in a limited way but is not precise enough to be part of a robust ITS (with

today’s technology). The final item is based on a theory—a psychological, or philosophical

assumption. It represents the reason for the previous principle and the purpose for the rule

above it. Representing and using knowledge at this level of abstraction is clearly out of the

reach of current technology.

The more abstract items listed above, as well as the potential additional KAFITS in-

ferencing mechanisms listed above axe conceivable, but may not be practical or tractable in

realistic settings. In the extreme one could ask: “Why go through all the trouble of defining

a curriculum and tutoring strategies at all? Why not use a deep causal representation of

15 A diagnostic strategy must infer the level of “confusion” from student behavior (such as number of times

asking for help), and the appropriate interpretation of “feedback” must be inferred based on the current

state of the tutorial session.

254

domain knowledge and its pedagogical properties, and let AI rules infer the relationships

and ordering of the subject matter?” The answer is perhaps obvious: the problem is in¬

tractable except in limited cases. Educational researchers have not successfully developed

a general, well defined theory for constructing curricula from first principles, so we will not

be able to program a computer to do so. The tradeoffs between “intelligence” and prac¬

ticality /usability implicit in the above discussion are illustrated in the continuum shown

in Figure 6.2. On a continuum of knowledge and inference sophistication, with CAI-like

systems simulating book- or lecture-style learning at one extreme, and future generation

ITS systems simulating human one-on-one tutoring at the other extreme, systems which

are geared toward teacher participation and realistic applications must focus on the less

sophisticated end of the spectrum.

Difficulty realizing ATs potential is not only due to limitations in human knowledge

but also limitations in our ability to represent human knowledge in machines. Much arti¬

ficial intelligence research is based on a reductionist assumption that all knowledge can be

represented in simple modular units and that complex behavior results from interpreting a

large number of these simple knowledge units with a simple mechanism [Winograd & Flores

1986, Simon 1981], and this reductionist assumption has yet to be substantially supported

empirically. Currently we have a limited repertoire of formalisms and mechanisms for rep¬

resenting knowledge (including rules, frames, and propositions). The vast majority of types

of human knowledge and skills (see the complex knowledge types in Figure 2.2) have not

been simulated non-trivially in machines. We have been able to model facts and simple

procedural skills, but language, mental models, complex problem solving, metacognition,

creativity, etc. have been simulated only in very simplified forms.16 One school of thought

hypothesizes that all that is missing is a critical mass of enough knowledge (Lenat et. al

[1986] write of “knowledge acquisition from strength”). But the successes of AI research

in toy domains has been notoriously difficult to scale up to realistic situations. Buchanan

16We have given evidence in this study of some seemingly intractable problems related to the fuzziness

and ambiguity of knowledge (Section 5.4.2).

ITS Research...a perspective

Book/
Lecture 1-on-l Tutoring

....knowledge and inference sophistication....

CAI
Next Generation AI ??

Class Z Tutors State-of-the-art AI

+ multiple domains

+ multiple teaching styles

+ realistic academic subjects

+ teachers participate in design

h-VS. -

* one topic ,

* one teaching strategy

* "toy* domains '

* for AI researchers

Figure 6.2 ITS and AI State of the Art—A Perspective

256

[1987], of the “paradox of increased knowledge,” argues that “we rarely can predict whether

the effect of more knowledge will be positive or negative.”

Therefore, in designing general frameworks for computer tutors with practicality and

usability as key goals, we must be aware of limitations in the state of the art of intelligent

systems, regardless of whether these limits are the result of insufficient knowledge base

depth and breadth, fundamental limitations of mechanisms used to represent knowledge, or

unavailability of articulated human knowledge.

We suggest that, given the current state of the art, ITS rules should be implemented

on the level of item three above, and that all such rules be annotated with the principles,

assumptions, and/or theories that justify them. This allows systems to be evaluated and

modified on the basis of their underlying assumptions and allows tutoring systems to explain

(in a limited way) why they are performing tutoring or discourse actions.

To guide ITS developers in deciding the depth or level of sophistication of reasoning

mechanisms they use, we suggest that three factors be considered: technical practicality,

human factors limitations, and educational needs, as described below.

• Technical practicality. The representational framework must be tractable for in¬

structional domains of realistic size and complexity. That an AI mechanism has been

used successfully in a limited context is not sufficient to assume it will scale up or

transfer to new domains.

• Human factors. For some knowledge, even if it can be represented tractably, the

state of the art may dictate that its representation is too complicated and esoteric for

use by those who are not AI researchers or programmers. If educators are to build

and experiment with intelligent tutors then they must understand, access, and modify

the encoded knowledge.

• Educational needs. Learning complex and deep forms of knowledge is essential in

most domains. The content of intelligent tutors should not be limited to the simple

types of knowledge that AI technology can currently represent. ITSs must attempt to

257

teach complex knowledge even if this knowledge must be represented in shallow forms

such as canned text.

Summary of NEO-KAFITS and Class Z Tutors

In this Section we gave eight high-level design specifications which generalize the

KAFITS framework (not the interface) by excluding all but essential features of the repre¬

sentational framework. The specification for proposed new system, called NEO-KAFITS,

is given as a core upon which to build future systems, and also serves to highlight those

features of KAFITS that are most central.

Then, to place our work in perspective with other ITS projects, we proposed a class of

ITSs aimed at practicality and usability by educators. We gave four guidelines for designing

the representational frameworks and interfaces for such systems, which we call Class Z

tutors. Class Z tutors facilitate educators’ full integration into the design, implementation,

and evaluation of computer tutors.

Finally, we discussed the appropriate amount of “intelligence” or inferencing sophisti¬

cation in intelligent tutors. We discussed tradeoffs in usability vs. inferencing power and

argued that Class Z tutors should be “low inference tutors,” given the current state of the

art of AI.

6.3.3 Toward A Theory of Knowledge Types

There is considerable lack of agreement in the ITS research community over optimal, or

even adequate, tutoring strategies (or rules) for computer tutors.17 This lack of agreement,

though somewhat attributable to divergent underlying psychological, cognitive, or episte¬

mological assumptions, can be largely attributed to the existence of divergent instructional

goads that are not clearly articulated. For example, disagreement over the optimal level of

feedback or learner control in intelligent tutors often boils down to differing priorities about

17There is also little agreement in the educational research community over optimal teaching strategies.

258

the type of knowledge to be learned. Consider these diverse pedagogical goals: (1) learn

specific domain facts and solve standard problems; (2) obtain a conceptual and intuitive

understanding of the content; (3) learn general problem solving and metacognitive skills.

Discussions of alternative tutoring strategies rarely articulate fundamental differences in

pedagogical priorities. The inadequate articulation of instructional goals or priorities is, in

part, due to the lack of a sufficient technical vocabulary for describing the subject matter.

Here we propose the beginnings of a model for “knowledge types” which provides a descrip¬

tive vocabulary for specifying instructional content and strategies in intelligent tutors.

We follow “Gagne’s hypothesis” that there are different types of knowledge (or “learned

capabilities”) and that there are different methods appropriate for promoting the learning

of each type (see Section 2.2.7). A knowledge classification scheme can be based on charac¬

teristics of the behavior that the knowledge allows, or can be based on an underlying theory

of cognition (or on both, as in Merrill [1983]).

The Procedural/Declarative Distinction

Gagne’s [1985] instructional theory, Merrill’s [1983] PC-matrix, and the KAFITS Modi¬

fied PC-matrix (Figure 2.2 and Appendix B), are examples of knowledge type classifications.

Knowledge type distinctions are made throughout the ITS literature, but the vast majority

of them are much less elaborate that the three schemes mentioned above. Many discus¬

sions of knowledge types in the ITS literature are founded upon the distinction between

declarative and procedural knowledge,18 yet instructional scientists are clear that we need

to distinguish many types of knowledge if we are to make headway in articulating ped¬

agogical principles. The procedural vs. declarative distinction not only lacks sufficient

expressiveness, it may actually be detrimental. VanLehn [1987, pg.60], speaking from an

AI perspective, says that the procedural/declarative distinction is “notorious...as a fuzzy,

seldom useful differentiation.” We recommend that the procedural/declarative distinction

18Other types of knowledge are mentioned, such as mental models, and common sense knowledge, but

these are not clearly defined; and some systems add minor refinements such as describing two classes of

procedural knowledge.

259

be abandoned (except in contexts where it has a precise meaning, as in the ACT* theory

of cognition) and that more descriptive and precise ones be used in its place.

Mapping From Observables to K-types to Tutoring Actions

Our model of K-types (knowledge types) will not prescribe a specific classification

scheme; it proposes properties for K-type schemes in general. We assume that knowl¬

edge classification will take a form similar to Merrill’s, in that operationally determinable

characteristics (such as behavioral objectives) of each piece of subject matter can be mapped

to a knowledge type and knowledge types map to instructional methods. A simplified hy¬

pothetical example of this two step mapping is: (1) If a student is required to read and

memorize a piece of information with the goal of being able to recall it verbatim in the

future, that piece of knowledge is classified as a fact. (2) Facts are taught by repeated

presentation of the information in different contexts until the student remembers the fact in

a novel context. This mapping can be done manually, or can be automated or assisted by a

rule-based system (as in [Merrill 1983]), but we believe that the classification of knowledge

and the selection of corresponding strategies should not be forced upon the instructional

designer (however, the system could suggest alternatives and argue against unusual designer

choices, giving reasons for its suggestions). K-type schemes represent both a descriptive and

a prescriptive model for instruction; they provide a language for describing the concepts,

conditions, methods, and outcomes of instruction, and they provide a prescription of how

to sensitize instruction to knowledge types.

K-type Internal Structure

A major feature of our preliminary theory of K-types is that all knowledge type represen¬

tations have a common structure. This common structure allows general representational,

inferencing, and control mechanisms to be built, and it also facilitates the pedagogical anal-

260

ysis of knowledge. We propose that all of the following attributes be represented for all

knowledge types:19

• Name—the indicator used to identify a piece of knowledge, such as the name of a

concept or procedure. Some K-types, such as facts, may not have names.

• Definition—a description, statement, or definition for the knowledge piece. It may

be a statement for facts, a definition (including necessary and sufficient properties)

for concepts, a list of steps for procedures, etc.

• Examples, including positive examples, negative examples, analogies, etc. Examples

may take different forms for different K-types (e.g. pictures for concrete concepts and

“walk throughs” for procedures).

• Components. Each K-type will have a characteristic method for representing sub-

parts (e.g. concepts are made of attributes and sub-concepts, procedures are made of

concepts and sub-steps, principles are made of concepts and relations).

• K-bugs. Each K-type will have a characteristic type of “mis-knowledge” (e.g. mis¬

conceptions for concepts, buggy rules for procedures, and misinformation for facts).

• Performance levels.20 Levels can be similar to the PC-Matrix levels, or can be any

of the other possibilities mentioned in Section 5.4.3. Each K-type could have its own

characteristic levels, such as levels of explanatory depth for principles, and levels of

detail for procedures.

• Strategies. Each K-type will have recommended methods for (1) conveying the

knowledge, (2) giving feedback, and (3) remediating K-bugs.

• Alternative representations. Each K-type will have characteristic alternative

methods for representing the knowledge, for example with pictures, text, graphs,

animated “walk-throughs,” etc.

19These attributes can be either stored or inferred.

20This is an extension to Merrill’s performance levels (Section 2.2.4).

261

Note that the overall structure of all K-types is the same, but that specifics of the

structure usually depend on the K-type (or sub-K-type, see below). In a tutoring sys¬

tem, all topics (knowledge pieces) may share additional attributes, as with the Motivation,

Prerequisites, and Summary slots of the KAFITS system.

Sub-K-types

We will assume for expository reasons that the K-type scheme is implemented in an

object-oriented ITS representational framework, although this is not required. The scheme

will define a number of K-type classes, and each topic (or instructional unit) will be an

instance of a K-type class, inheriting its default attributes and procedures.

For any knowledge categorization scheme developed there will be cases were refinements

to K-types (i.e. sub-types of the K-type classes) are needed. For instance, principles can

be descriptive or prescriptive [Reigeluth 1983b], concepts can be classical or fuzzy [Mervis

& Rosh 1981], and procedures can be linear or hierarchical. Sub-K-types will inherit

default values and procedures from their parents, and can override these defaults. The K-

type scheme designer must pay attention to complexity and usability issues; more baroque

schemes are less usable, and designers should avoid a proliferation of K-type distinctions

that do not map into concrete differences in tutorial behavior or knowledge acquisition

clarity (as was found to be the case in Bloom’s [1956] early knowledge taxonomy). Also,

tabular schemes, such as Merrill’s PC-Matrix, may be more understandable than hierarchi¬

cal schemes.

Domain Types

Domains tend to have characteristic overall structures, and K-type schemes can fa¬

cilitate articulating this structure. For example, Reigeluth [1983b] prescribes that each

domain be assigned an “organizing content type”—conceptual, theoretical (principle-like),

or procedural—that best fits the characteristics of the domain and the instructional goals.

262

His “elaboration theory of instruction” specifies methods for selecting and sequencing con¬

tent according to the organizing content type. Others have categorized domains according

to whether their structure is predominantly procedural, historical, structural, causal, teleo¬

logical, inferential, etc. (see also Wenger’s [1987, Chapter 15] description of types of domain

articulation). Domain types have characteristic links between topics, for example analogy,

physical-part, a-kind-of, etc.21 K-type schemes should incorporate, or at least provide guid¬

ance for, schemes for categorizing entire domains, and they should be useful in determining

optimal overall instructional strategies for domains (as well as for individual topics).

Benefits of K-types

We believe that K-types have the following benefits to ITS performance and the ITS

knowledge acquisition process:

1. K-types provide a precise vocabulary for articulating the domain expert’s instruc¬

tional objectives;

2. K-types provide a technical vocabulary allowing ITS designers to articulate charac¬

teristics of instructional content, facilitating comparison among ITSs;

3. K-types facilitate ITS content representation by providing clear inter-topic struc¬

ture and extra-topic structure;

4. K-types facilitate the decomposition and organization of high level curriculum

goals, content, and tasks;

5. K-types facilitate the acquisition and representation of domain content and tu¬

toring strategies;

21Wenger [1987, pg. 331] describes several “justification types,11 such as structure, functionality, and

constraints, that could form the basis for topic links.

263

6. For K-type schemes based on instructional theories, instructors designing an ITS will

automatically be using instructional or cognitive theories and would indirectly

be learning some of this theory;

7. Tutoring rules and behavior will be less ad-hoc, and more diverse and effective.

The Cost of Increased Complexity

Incorporating the above described aspects of K-type schemes into the representational

framework of an ITS involves serious tradeoffs. The main factors mitigating against the

benefits listed above are increased complexity and the subsequent decreased usability and

leamability of the more powerful framework. Adding the extra power may move systems

out of alignment with the design principles for Class Z tutors and may affect their accessi¬

bility by the educational community, as demonstrated by our description of problems with

introducing the domain expert in our study to K-types (Section 5.1.2). However, most of

the aspects of K-types are inspired by instructional design theory, so, while such systems

may be out of reach for classroom teachers, they should be usable by instructional designers.

In addition, if the rules for K-type categorization and strategy selection were automated

in an expert system (as in Merrill’s [1983] theory), and if the expert system explains its

reasoning to the teacher, this may offset the increased complexity. However, such systems

must allow the user to override the imposed rules so that their knowledge acquisition ses¬

sions can be structured opportunistically (bottom up or top down). We do not w’ant to tie

the instructional designer’s hands behind his back with obligatory rules since there are sure

to be important exceptions to most rules.

Summary of the K-types Model

We have proposed the beginnings of a model of knowledge types (K-types) for ITS,

which we claim will provide ITS researchers with a technical vocabulary for articulating

important characteristics of domain contents, help domain experts articulate and organize

instructional content, and improve the quality of computer tutoring by sensitizing tutoring

264

rules to K-types. We have not suggested a specific K-type classification scheme but suggest

structures and properties that K-type schemes should have. Our discussion included a

suggested canonical internal structure for K-types, advice about refining K-types into sub-

K-types, and a discussion of how K-types can generalize into “domain types.” We also

discuss usability/power tradeoffs in implementing K-type schemes.

6.3.4 Collaborative, Inspectible, Persuadable Computer Tutors

Ideally, learning involves a significant amount of collaboration between the student and

the teacher. Thus far a high degree of collaboration has not been realized in computer

tutors. Most ITSs give the student little control over the goals, content, or style of the

tutorial session. ITSs that offer unobtrusive advice or “coach” a student are a step in

the right direction but typical do not let the student feel as if she is in control of her

learning. ITSs that allow free exploration in simulated environments without any guidance

give the student control of her activities, but not of her learning, since she is usually not

sure what she is learning or how well she is learning it. We believe that part of what has

been missing is an acknowledgment of where different areas of expertise lie. There are three

areas of expertise to consider, corresponding to the three prototypical functions of an ITS:

the student model, the domain model, and the teaching model. Cleaxly the computer tutor

is the expert at teaching, i.e. an expert in specific pedagogical knowledge about the domain

and general knowledge about communication skills. The tutor has knowledge such as what

topics are prerequisites of others, which topics are more difficult, and the best strategies

for conveying different types of knowledge. Less recognized is the fact that it is the student

herself who is the expert on the student model. She knows much more than the tutor

about what she knows and doesn’t know, what her plans are, her personal history, and

how she likes to learn—the computer tutor’s student model represents only a guess at what

is in the student’s head. Some researchers are starting to realize this and are designing

ITS architectures that let students convey more directly what they think, asking students

explicitly about their knowledge and beliefs, or allowing their actions to give evidence of

their knowledge or plans [Self 1988]. Even less recognized is the fact that the student and

265

the computer tutor share expertise about the domain. There are two reasons for this. First,

the student, unlike the “intelligent” tutor, is an intelligent being, having common-sense

knowledge about the world and the ability to put information together in flexible new ways.

In this respect the student actually “knows” much more about the subject matter domain

than the computer tutor even before the first lesson begins. Second, the student’s knowledge

state evolves from novice to expert as she learns, and if she learns well she will, by virtue

of her flexible intelligence, surpass the computer tutor and be able to solve problems that

the tutor could not solve.22

Our view that the student and tutor have complementary areas of expertise argues

for the need for more collaborative tutors. The KAFITS student initiative feature (Section

3.2.4) embodies the primitive beginnings of student/tutor collaboration, and our design goal

of having a clearly defined representational framework and conceptual vocabulary facilitates

building collaborative tutors. Having a consistent unified format for curriculum material

allows the tutoring rules and student interface to be re-used in many tutors and domains.

For instance, a framework with a standard mechanism for representing hints allows a student

interface which lets the student ask for hints in any situation, for tutors in any domain.

Ridgeway [1988] calls for “transparent” ITSs that give the student access to the fol¬

lowing information that most systems possess implicitly or explicitly: a specification of

the knowledge to be acquired, the teaching techniques, and beliefs about the current state

of the user. Along these lines, we propose that ITSs be designed to be “collaborative,

inspectible, persuadable tutors.” Their domain knowledge, student model, and teaching

knowledge should be open to inspection, and both the content and the inferences of these

components should be explainable. Since students share expertise of the student model

and domain knowledge with the tutor, ITSs should allow a student to take control of her

learning, set the instructional agenda, and even manipulate the student model and tutoring

style. And since it is the tutor who has the expertise about teaching the domain knowledge,

22 Humans are good at what in AI is called “explanation based learning,” in which a small number of

understood examples, in combination with general common-sense knowledge, yield deep and broad knowledge

that goes far beyond what could be induced based solely on the characteristics of the examples.

266

ITSs should provide firm guidance when needed and be able to prevent the student from

doing things that there is sufficient reason to believe are counterproductive or damaging

(such as choosing a teaching strategy that does not make sense in the current context,

or irresponsibly altering the data in the student model)—thus the term “persuadable” is

used rather than “controllable.” Again, the KAFITS student initiative feature illustrates a

primitive start toward this goal, which needs much further study. Following is a preliminary

compendium of features we recommend for future ITSs that are collaborative, inspectible,

and persuadable, along with hypothetical natural language statements by the tutor (T) or

student that illustrate the features.23

1. Transparent student model

• What misconceptions do you think I have?

• Do you think I have mastered vectors?

2. Transparent tutor

• What strategy are you using?

• Why did you give me that example?

3. Inspectible, navigable knowledge base

• What does “vectored interrupt” mean?

• Give me another example of a convex polyedron.

• Had electricity been invented when Kant was born?

• How did you conclude it was a carburetor malfunction?

4. Persuadable tutoring strategies

• Slow down, explain each step, I’m getting confused.

• Don’t give so many hints, I want to think it through myself.

23Some of these may be beyond the current state of the art, or at least outside the scope of Class Z tutors,

but we present them to point the direction for future work.

267

• I think I learn better with quick feedback for wrong answers.

5. Persuadable agenda

• First teach me about vectors.

• Skip this topic.

• Lets stop here, I’ll be back tomorrow.

• I want to experiment on my own now.

6. Collaborative advice

• What do I need to know to be able to learn about entropy?

• Is this topic difficult to learn?

• T: My analysis suggests that you may have one of these misconceptions.do

you want to choose one to try to remediate?24

• T: It seems like you are confused, should I start giving more detailed explana¬

tions?

7. Manipulatable learning environment

• What if the universal law of gravity were an inverse cube law?

• I’m approaching Jupiter’s third moon, fire the left thruster for three seconds.

Making all of this power available to the learner does not mean it will be utilized.

Students are not accustomed to having this level of information about, or control over,

a learning situation. They are not accustomed to monitoring their learning or problem

solving progress [Confrey 1985] and/or altering their learning environment according to

reflective metacognitive analysis. When we evaluate the success of such systems we are

sure to find that students initially under-utilize the potential. Students must be assisted

(by a human or automated teacher) in assimilating the new possibilities available to them.

Collaborative, inspectible, persuadable intelligent tutors not only serve to teach subject

matter, but provide exciting new arenas for learning and practicing metacognitive skills.

24Brown’s [1985] physics ITS is a good example of this sort of collaborative tutoring.

268

Summary of Collaborative, Inspectible, Persuadable Tutors

We began our discussion of student/tutor interfaces by noting that, although we can

assume that the computer tutor has significantly more expertise in pedagogy than the

student, it is the student who has more expertise in issues of the “student model,” and that

the tutor and student share (or have complementary types of) expertise of subject matter.

These considerations lead us to propose that future ITS student interfaces be collaborative,

inspectible, and persuadable. To elaborate on these three terms we gave a compendium

of student interface features with example student interactions for each. Finally we noted

that utilizing the flexibility provided by such student interfaces would not come naturally

to students and that such interfaces provide unique environments for improving students’

metacognitive skills.

6.4 Recommendations for Future Research

This study has unearthed more questions than it has answered and has identified more

new issues than addressed previously identified ones. In this section we suggest several

fruitful areas for continued research which directly extend this work, describing relevant

issues and offering questions that could guide research design.25

Representing Additional Domains

The conclusions reached in this study are tentative, partly because the case study in¬

volved only one domain and one domain expert. Working with other domain experts and/or

building tutors in other domains would provide important new data. Working on domains

“near” to the one used in this study (such as adding torque or quantitative problem solving

25We also maintain a long list of potential KAFITS modifications and new features, such as a context

sensitive help system and a domain knowledge base consistency checker, but we will not present these here.

Several suggestions for inferring (rather than storing) slot contents, and possibilities for improvements using

AI technology were mentioned in Section 6.3.2.

269

to the statics domain, or working on kinematics or dynamics) has the benefit of extending

our current work and corroborating our findings but has the drawback of not addressing

important issues of generality. Representing “farther” domains could answer some of these

questions: How much does the KAFITS framework need to be modified in order to repre¬

sent domains that axe primarily procedural or factual? Can KAFITS be used to provide

“coaching” style tutorial guidance for micro-world learning environments? Can KAFITS

be used to implement a “model tracing” [Anderson et. al 1985a] style tutor in a domain

where domain knowledge is represented in an expert system?

Tools for Acquiring Strategic Knowledge

In this study we focused on the teacher’s construction of the domain knowledge base,

using the associated tools. Unlike the domain knowledge base, which was designed and

built entirely by users, the strategic knowledge base (containing the tutoring strategies)

was designed by the knowledge engineer with some input from the domain expert.26 The

strategies incorporate recommendations from several instructional design sources but are

fairly ad-hoc, few in number, and designed to be adequate, not optimal. An important

next step for this work is studying knowledge acquisition processes and tools for strategic

knowledge. Motivating questions include: What kind of interface features are most use¬

ful for inspecting, modifying, and monitoring strategies? What aspects of designing and

managing strategic knowledge are most difficult for educators (especially those who are not

programmers)? Are there important properties of teacher-designed strategies and teachers’

mental models of their teaching strategies?

Experiments with Instructional Strategies

Another future direction for this work is the incorporation of several strategies from

cognitive science and/or instructional science. Here the questions would be: What are

the difficulties in formalizing these strategies or principles so they can be represented in a

26We have designed a preliminary Strategy Editor (Section 3.2.2), but not through user-participation.

270

computer system? How do these strategies compare in test runs with students? Can the

strategies be represented so that they are underst and able and “tweakable” by teachers?

Does KAFITS facilitate the evaluation and improvement of these theory-based tutoring

strategies?

In Section 6.3.2 we discussed knowledge type classification schemes. KAFITS has the

capability to represent K-type schemes and tutoring strategies that are sensitive to K-types,

but this capability has not been significantly used. Therefore, another research direction

involves implementing a more elaborate K-type classification scheme and the associated

tutoring strategies.

Student Modeling and Diagnosis

The KAFITS overlay student model and diagnostic mechanism axe its least general and

least developed components. Although it has more expressiveness and functionality than

most ITS overlay student models, its implementation is ad-hoc and not easily extendible.

This is in part because student modeling in non-procedural domains (for which KAFITS

is best suited) is quite difficult [Anderson 1983, VanLehn 1983], and little has been done

in the field to formalize general characteristics of overlay models (although several working

examples of overlay models can be found, for example Goldstein [1982]). The representa¬

tional scheme and tools for student modeling in KAFITS should be made as general and

flexible as its domain and strategic knowledge base representations and tools. Motivating

questions include: How should diagnostic rules be represented? Can a single student mod¬

eling/diagnostic framework be used for both procedural and non-procedural domains? Can

the structure of the student model be made to automatically reflect the structure of the

domain and strategic knowledge bases?

In addition, there axe a number of features we would like to see added to KAFITS

student modeling, including: student-selected confidence or “makes sense” measurements

that augment student answers; having students specify “reasons” for their answers; more

271

recent student answers being given more weight; and storing information about student

learning styles and preferences.

Interfaces and Tools

Ideally an intelligent tutor should have powerful and usable interfaces or tools for inspect¬

ing, modifying, monitoring, and evaluating its knowledge bases. KAFITS has such tools

for the domain knowledge base and the beginnings of such tools for the strategic knowledge

base. We also need such tools for the student model (containing declarative information)

and the diagnostic mechanism (containing rules). Solving student model representational

issues mentioned above is prerequisite to developing these tools.

In Section 6.3.4 we discussed the desirability for collaborative, inspectible, persuadable

computer tutors. The KAFITS framework allows for a significant range of student control,

but the KAFITS student interface was, like the student model, not extensively developed

or studied. This study focused the interaction between the domain expert, the computer

system, and the knowledge engineer. More work is needed in designing and testing the

student interface. This work is limited because the student interface, more that any other

ITS component, is intimately linked with the instructional domain, especially if simulations

or micro-worlds are employed. Still, many general student interface features, such as those in

the KAFITS student initiative menu (Section 3.2.4), can be studied. Motivating questions

include: To what extent can students comprehend and use such a wide variety of options?

How can we encourage students to take control? What kinds of questions do students

want answered while they are learning? What is the student’s cognitive model of her own

knowledge and learning process while using a computer tutor? What types of tools will give

students a conceptual picture of what the tutor is doing so that they can make informed

decisions to control tutoring sessions.

272

Moving Into the Classroom

Finally, further development and evaluation is needed to push application of the KAFITS

tool from the lab to the classroom or training context. Doing this would involve extending

KAFITS to address some of the issues mentioned above related to the student model and

student interface. It has been said that a piece of software that runs in the lab is only ten

percent of the way to being a product. Similarly, there are many unforeseen yet impor¬

tant issues related to routine use of KAFITS by teachers and students in natural settings.

Questions motivating research include: What is the best role for the teacher—how much

and what type of student guidance is optimal? What is the best mix of classroom teaching

and computer tutoring? Are students more motivated when they work in pairs? Do stu¬

dents use the student control capabilities more when they work in pairs? How can KAFITS

integrate into existing classroom structures, such as grading, labs, and classes of limited

length? Does KAFITS facilitate multiple experts (teachers) designing and modifying the

knowledge base?

6.5 Recommendations for the Instructional and Educa¬

tional Communities

Although we have argued for the importance of including educators in building ITSs, we

have not offered much evidence of benefits of incorporating ITSs in education (except that

the domain expert indicated that he learned things from the experience of building a tutor

that could be used in his classroom teaching—see Appendix C). In Section 1.1 we discussed

the great “potential” of ITSs, and Shute [1990] offers some recent evidence that using ITSs

can result in significant enhancement to learning in both classroom and workplace training

situations. We will therefore take it for granted that ITSs do enhance learning when designed

appropriately, used in domains where they have shown to be effective, and when properly

integrated into educational infrastructures where students and administrators fully support

ITS learning.

273

But this still leaves many questions. Most relevant to this study is the question of

whether an ITS shell is useful and effective for widespread use in realistic educational

settings. First we will present an idealist (best-case) vision of how a KAFITS-like (or Class

Z) system could be integrated into the school setting. Then we will discuss issues hindering

the realization of this vision. Finally we predict that ITSs will, in the near future, have

more impact in industry training than public schools.

A Best-Case Future Scenario

Class Z tutors are now standard tools for designing intelligent tutoring, training, and

assistance programs. The price of the necessary hardware and software has fallen to a

reasonable level, and ample funding has been provided to integrate ITSs into schools. Some

teachers integrating ITSs into their courses can be found at all grade levels for most academic

subjects (though ITS use is by no means universal). Peer groups of teachers exist in most

schools so that teachers can support and learn from each other in their efforts to make the

best use of this new technology. Most of these teachers have participated in one-week teacher

training seminars on how to incorporate ITSs and their associated curriculum materials

into the classroom. These seminars include discussions of grading, progress monitoring,

classroom management27 and an overview of basic ITS concepts.28 Some teachers have

gone on to further workshops that instruct them in how to use ITS shells such as KAFITS

to alter an ITS, so that they can, for example, change the text of an explanation, add new

examples, change the prerequisites of a topic, or change the teaching strategy to give more

hints. A small number of teachers have become “domain experts” who participate in ITS

development teams.

The number of domain experts building intelligent tutors is of the same order of mag¬

nitude as the number of educators writing textbooks and designing professional quality

27Including discussions of classroom “topologies” (eg. a single computer used for demonstrations in front

of the class; one computer per pair; per group; per student).

28Including a discussion of what the “intelligent” in ITS means and does not mean, so that teachers do

not project too much “smarts” into computer tutors.

274

curriculum materials for widespread use. ITSs are accompanied by curriculum materials

such as workbooks, descriptions of lab experiments, teacher guidelines, etc. The rapid-

prototyping nature of ITS shells (tools) allows designers to: easily test and modify the

tutors, build new tutors on top of existing tutors, and evaluate the effectiveness of alterna¬

tive instructional theories and strategies. As with textbooks and current-day CAI, teachers

have several published tutors to choose from for any given subject. The number of teachers

trained to modify the content or strategies of a tutor is on the order of the number of “mas¬

ter” teachers in a school system. Typical teachers may make a few minor modifications

if they are ambitious and very comfortable with computers in general, but most do not.

Also, some ITSs are published with a small number of categories of changes pre-defined, so

that teachers can tailor the software for their needs easily, if their needs are captured by

the pre-defined list of options. The incorporation of practicing teachers as co-researchers in

academic studies of ITSs is becoming widespread, as is including teachers on design teams

that produce ITSs for distribution.

Most teachers using these systems, especially those who study the topic network and

strategy networks of a tutor (tools are provided to view these) report that they have a

more sophisticated and organized understanding of the relationships between topics in their

subject, have come to appreciate the importance of anticipating misconceptions, and are

thinking of their own teaching more in terms of “strategies.” Those teachers who go the extra

step to modify the tutor to fit the needs of their classroom, curriculum, or teaching style,

experience an increased sense of “ownership” and understanding of the intelligent tutor.

They are excited by the possibility of trying new strategies and curriculum structures. They

report that modifying ITSs causes substantial reflection on their teaching and considerable

reconceptualization of their understanding of the domain and the instructional process.

Problems with Realizing the Vision

Clearly, the vision described above is not a probable extrapolation of current trends

in education. We suggest several current trends or factors which act as barriers to the

275

realization of our vision of incorporating ITSs into the educational system (assuming that

eventually adequate technology will be readily available). These trends and factors are given

to enumerate obstacles to using ITSs in schools, and point to areas of potential problems

should ITSs be used routinely in schools.

• Funding and other rescources. Substantial funding would be required to realize our

vision in public schools. Some of the cost would involve hardware and software,

but even assuming these were donated or priced reasonably, resources axe needed to

restructure how classes are taught to take best advantage of this new technology.

Additional classroom and/or lab space would be needed in most schools. Also, in

introducing computers into the classroom there has been a fairly consistent trend to

spend more money (proportionally) on hardware, less on software, and very little on

teacher training or support (as expanded on below). This disproportionate allocation

of funds [Johnson 1988] leaves schools burdened with computers no one is trained

or willing to use, or worse yet, with outdated hardware that has no useful software

written for it.

• Teacher training and creative planning time. Using ITSs in the classroom could

eventually lighten the teacher’s load, but there is a startup time required for learning

how to incorporate ITSs into classrooms. Unfortunately, teachers do not get sufficient

paid time for teacher training or job enhancement, and when they are given the

opportunity to attend a workshop, there is usually no support system at their job

site that encourages them to integrate what they have learned into their classroom,

and there is no follow-up evaluation and feedback on their attempt to integrate the

new technology. In addition, our vision assumes that teachers have the time to think

creatively about their curriculum and try out new content or strategies—but “extra

time for creative planning of classes is not available to many teachers.

• Teacher acceptance. “Intelligent” tutors may be threatening to some teachers for

many reasons. First, as has been found with incorporating existing computer software

into classrooms, students tend to quickly learn more about the software than the

276

teacher and axe more familiar with computers in general than the teacher. This

requires that teachers take on new roles in the classroom and challenges some teachers’

sense of competence, autonomy, control, and authority. “Intelligent” tutors pose the

additional threat of a machine that knows more about the subject matter than the

teacher. Though this may rarely be true in reality, the perceived threat will be very

real. In an ethnographic study of the attitudes and beliefs of students, teachers,

and administrators in a school where the GEOMETRY tutor (an ITS developed by

Anderson & Boyle [1985]) was being used in five geometry classes, Schoefild & Verban

[1988, pg. 20] note “evidence of many teachers’ indifference to or even resistance

to the idea of using computers in their teaching.” Allowing teachers to inspect and

modify computer tutors will tend to demystify the systems and give teachers a sense

of control, but the teachers most likely to feel threatened are the ones least likely to

“open up” and play with this new technology.

• Organizational support. The support (on many levels) of educational administra¬

tors is crucial for new technology to have an impact, but the educational institu¬

tion/infrastructure is often slow to change, or changes only in reaction to crisis or

public opinion.

• Computer naivete. Unfamiliarity with the nature of computers can have two mani¬

festations. At one extreme is fear and recalcitrance to change, at the other is passive

acceptance of ITSs, over reliance on them, and over-estimation of their capabilities

(or “intelligence”).

• Embedding ITS concepts into the educational culture. When a new technology is

introduced into a sub-culture, there is a (usually awkward) startup time in which the

creators and users of the technology assimilate some of each other’s models and con¬

cepts. It will take a while for educators to understand the key concepts, capabilities,

and limitations of ITSs, and it will take a while for the builders of ITSs to establish

design criteria that meet the needs of users (both teachers and students). Consider

the first word processing programs. Though they are commonplace now, when word

277

processors were introduced, there was no shared corpus of models or vocabulary about

integrating them into the home or work environment. The key concepts of malleable

text, separating text from formatting, permanent vs. temporary computer memory,

etc., took a while to sink in. It also took some time for industry to stabilize good

standards for manuals, help features, and tutorials (if they yet have). ITSs are more

complex than word processors, perhaps more comparable to CAD/CAM programs.

The learning curve for embedding ITSs into the educational culture will probably be

even longer than that for word processing systems.

Individually, each of the above factors could conceivably be mitigated by a concerted

effort involving parents, educators, and administrators. But when these factors are con¬

sidered as a whole, the author must admit to a fair amount of pessimism regarding the

probability of such dramatic change in the educational system.29 Therefore, we must look

to the work place and home for a more optimistic prediction of near-term ITS use.

ITSs in Industry

Although all of the above trends and warnings are applicable to industry as well as

public education, they are less severe in industry settings. Businesses are freer to allocate

resources, prioritize human efforts, and instigate follow-up and support systems, and can

implement these changes at any level of an organizational structure (for example they can

try it out on a small scale). Also, adults in training programs tend to be more motivated

learners than children and young adults in public schools. For these reasons, we predict

that in the near future ITSs and ITS shells will have more impact in industry than public

education.30 Once ITSs are accepted and understood in the context of industry training

(and perhaps in home education) they will integrate more easily into schools.

29It is conceivable that the hardware and software would be available, but the other problems are more

difficult to tackle. Schofield &: Verban [1988, pg. l] note that the “rapid proliferation of microcomputers

in schools [over the last ten years has been] truly startling [but that] the effect of this change...is not ^as

obvious].”

30See Johnson [1988] for pragmatic considerations in implementation of ITSs in industry and military

training.

Appendix A

TERMS AND DEFINITIONS

Below we give word senses, meanings, and synonyms for some of the important concepts

and terms used in this document.

• AI. Artificial Intelligence. Discussed in Sections ?? and 6.3.2.

• Browser. The interface for viewing and editing information in the domain knowledge

base.

• CAI. Computer aided (or assisted) instruction. In ITS research CAI usually refers to

“non-intelligent” or traditional educational software.

• Design process. In most of this document “the design process” refers to the process

we used to build the statics tutor; it is synonymous with “the knowledge acquisition

process” since our study focused on knowledge acquisition.

• Domain. We use the word “domain” to mean the content area or subject matter area.

Domain expertise is expertise in solving problems in the domain.

• Domain expert. Traditionally in AI, the domain expert is the person serving as the

source of expertise in building an expert system. The terms “teacher,” “tutor,” “do¬

main expert,” “subject matter expert,” and “instructional designer” are used inter¬

changeably to refer to the hypothetical user of the KAFITS tool, or, in some contexts,

the teacher who participated in this study.

• Educator. Term used to cover teachers, tutors, instructional designers, and educa¬

tional researchers.

• Instance. (See Object.)

• ISD. Instructional systems design. Also called instructional theory, instructional de¬

sign theory.

• ITS. Intelligent tutoring system. Intelligent tutoring systems, intelligent learning envi¬

ronments, knowledge based tutoring systems, and intelligent computer aided instruc¬

tion (ICAI) systems are different terms with similar meaning, i.e computer assisted

learning programs which incorporate artificial intelligence technology and paradigms.

These terms can imply a focus on different issues for different authors, but for the

purposes of this document we treat them as equivalent.

278

279

• Knowledge acquisition (KA). Knowledge acquisition is the process of acquiring an

expert’s knowledge for representation in an AI system.

• KAFITS. Knowledge Acquisition Framework for ITSs. KAFITS is a representational

framework and an interface allowing an instructor to represent his/her knowledge in

terms of that framework. Usually “KAFITS” refers to both the framework and the

interface, unless the distinction is relevant and otherwise noted.

• Knowledge base (KB). The information stored in an expert system. KAFITS has two

main knowledge bases: the domain knowledge base and the strategic knowledge base.

• Knowledge base manager. The knowledge base manager is a member of the ITS design

team whose task is to input the knowledge as specified by the domain expert (usually

on paper worksheets) into the knowledge base and test the curriculum for obvious

errors (i.e. errors not related to the domain content).

• Knowledge engineer, knowledge engineering (KE). The knowledge engineer is a scien¬

tist or engineer who works with a domain expert to represent domain expertise in an

AI system. “Knowledge engineering” is the process of eliciting the domain expert’s

knowledge and encoding it in an AI system.

• LE. Linear equilibrium. A topic in the statics curriculum dealing with the balancing

of forces acting on a stationary abject.

• LE-curriculum. The portion of the statics curriculum surrounding the linear equi¬

librium topic. This subset of topics was the focus of the first several phases of this

study.

• Lesson, topic, presentation. These terms refer to KAFITS object types unless other¬

wise stated.

• Micro/macro levels. The macro level of instruction involves “what to teach” and the

micro level involves “how to teach it.”

• Object, instance, slot. An object (or frame) is the fundamental unit of representing

things in many AI systems. AI objects (and frames) refer to an entity and specify the

important attributes of that entity, and usually also specify values or default values for

these attributes. Objects are different from “frames” in that objects have procedures

called methods associated with them. There are typically two types of objects in

object-oriented systemsD: classes and instances. Classes refer to categories of things

(such as Dogs) and instances refer to specific entities (such as Fido, an instance of the

class Dog). The attributes (or parameters, or properties) of objects are called slots

(eg. Color, Size, and Owner for Dogs).

• PC Matrix. Performance-Content Matrix. A knowledge type classification scheme

originally designed by Merrill [1983]. KAFITS uses a modification of Merrill’s PC

Matrix.

• Pedagogical knowledge (or pedagogical expertise, sometimes called propeadutics). In¬

formation about how to teach, including tutoring strategies and specifics about the

280

topics such as prerequisite, examples, etc. used specifically for teaching (as opposed

to being used in problem solving or performance in the domain).

• Slot. (See object.)

• Statics tutor. The KAFITS system combined with the knowledge base for the statics

domain.

• Strategy, strategic knowledge. Tutoring strategies are explicit representations of tu¬

toring rules or principles.

• Strategy Editor. The interface for viewing and editing the information in the strategic

knowledge base.

• Teacher, tutor, instructor. Used interchangeably unless use indicates a more specific

meaning. (See domain expert.) In this document when we refer to a computer “tutor”

we usually mean a tutor built using KAFITS, i.e. the KAFITS system combined with

the knowledge base of a particular domain. Similarly “the tutor” will usually refer to

the statics tutor built during this study.

• Tutoring strategy, tutoring rule. These are used interchangeably unless use clearly

implies a more specific meaning.

• User. The term “user” refers to persons using the KAFITS system for knowledge

engineering (primarily domain experts and knowledge base managers), not students

using the tutor.

The following abbreviations are used in the Bibliography:

• AAAI. American Association of Artificial Intelligence.

• ACM. Association of Computing Machinery.

• IJCAI. International Joint Conference on Artificial Intelligence.

• ITS. Intelligent Tutoring Systems conference.

• LRDC. Learning Research and Development Center, University of Pittsburgh, Pitts¬

burgh, PA.

Appendix B

KNOWLEDGE TYPE DESCRIPTIONS

The following document was given to KAFITS users to familiarize them with the knowledge

types used in KAFITS. (This classification scheme is more elaborate that the one used in

KAFITS for this study, shown in Figure 2.2.)

281

282

A Classification Scheme for Types of Knowledge and Instruc¬

tional Objectives

In this document we explain a system for classifying types of knowledge, instructional

objectives, learned behavior (all three of there terms have essentially equal meaning for our

present purpose). (The system is an extension of a system designed by Dr. David Merrill

called a Performance-Content Matrix.)

CLASSIFY ACCORDING TO COMPLEX VS. BASIC KNOWLEDGE

We define two broad categories of knowledge (information, instructional objectives, skills,

or learned abilities), Basic and Complex.

Basic knowledge

Definition: An instructional objective is Basic Knowledge if it can be categorized as a fact,

concept, skill, or principle. These four terms are defined later.

Complex knowledge

Definition: Complex knowledge includes any instructional objective that is not Basic knowl¬

edge. Complex knowledge is a catch-all category for the types of knowledge that are too com¬

plicated to be defined clearly and concretely (by educational and psychological researchers).

Examples: Complex knowledge includes the following types of abilities and skills:

• General problem solving skills (such as breaking the problem into parts, checking the

answer, etc.)

• Metacognitive skills (self-diagnosis or self-analysis of one’s thinking or problem solving

process).

• Scientific inquiry, discovery, and hypothesizing skills (includes data collection and

analysis skills).

• Formal logical skills, such as deduction.

• Mental models. Complex “gestalts” of densely connected information allowing a sys¬

tem to be modeled and mentally “run.”

• Creativity. (According to any number of definitions.)

Complex skills are ubiquitous, needed for the mastery of many subjects. From the list

of examples given above, you can see that some of these overlap and most of them are

283

hard to define precisely. Thus, we axe mainly interested in determining whether an instruc¬

tional item is Complex or not, and not concerned with categorizing sub-types of Complex

knowledge.

THE PERFORMANCE-CONTENT MATRIX

The diagram [Figure 2.2 in this dissertation] shows the Performance-Content Matrix, with

the classification scheme for Basic Knowledge There are four content types: Facts, Concepts,

Principles, and Procedures. We classify knowledge in this way to help organize instructional

objectives and to aid in determining teaching methods (since different knowledge types

usually require different methods).

There axe six levels of performance possible with each content type (not including the parts

of the matrix blocked out). These levels allow further useful distinctions in instructional

objectives, for example, memorizing of the steps of a procedure (Remember); vs. actually

being able to use the procedure (Apply); vs. being able to invent a new and better procedure

which accomplishes the same goal (Create); vs. knowing in what situations the procedure

is useful (Meta-knowledge).

The terms we are using may have other meanings in other contexts. We have tried to use

cleax terminology, but some confusion is inevitable, therefore we include examples of the

knowledge types and discuss possible confusions in this document.

CONTENT TYPES

Fact

Description. Facts are arbitrary associated pieces of information.

Examples. A proper name, a date, an event, the name of a particular object.

Possible confusions. Fact vs. Remember. The Remember performance level is sometimes

confused with the Fact content type. The definition of a concept, the statement of a prin¬

ciple, and the list of the steps in a procedure can all be memorized and recalled. These are

all instructional objectives at the Remember level. We use the category Fact for memorized

bits of associated information that are not part of the definition of Concepts, Procedures,

or Principles.

Fact vs. Meta-knowledge. Facts are also sometimes confused with the Meta-knowledge

performance level. The Met a-knowledge level is for information about knowledge, such as

why it is good to know about it, when it is used, where you learned it, etc.

Classification hints. Due to the possible confusions with the Fact content type vs. the

Remember and Meta-knowledge performance levels, make sure the thing you are classifying

is not a Remember or Met a-knowledge level item (for a Concept, Procedure, or Principle)

before you decide to classify it as a Fact.

284

Elaboration. The learner’s knowledge of a fact is evidenced by recalling something from
memory. The student is given some stimulus, such as a name, symbol, picture, etc., and is
asked to recall some associated information.

Concept

Description. Concepts are groups of objects, events, situations, attributes, or symbols that
share some common characteristics and are identified by the same name or phrase. Using
concepts involves recognizing or analyzing the characteristics (or properties) of things.

Examples. Most of the words in a spoken language are concepts. Some concepts are con¬
crete, such as ’’toaster oven”, and some are more abstract, such as “equity”. Some concepts
have very exact criterion (definitions), such as ’’mammal”, “president”, and “Monday”, and
some have more fuzzy criterion, such as “chair” and “symmetry”.

Possible confusions. The word “concept” is used for many things, such as in “having a
conceptual understanding of.” Our meaning here is limited to the classification sense of
the word “concept”. That is: identifying instances of a Concept, being able to invent new
instances of a concept, etc. If you want to know whether a knowledge type for some piece
of content is a Concept, ask yourself whether you are talking about classification of things,
or distinguishing between different types of things, as in “is this a.”, or “what kind of
thing is this?” or ”is this a situation where you need...?”

Concept vs. Principle. Concepts are sometimes confused with Principles (which are rela¬
tionships between concepts). For example, the equation “F = m a” (Newton’s second law')
is a Principle. Each of the components, force, mass, and acceleration, are Concepts. We can
ask the student to determine whether a situation involves the Concept of force (as opposed
to, say, momentum). This involves a Concept because it is a classification of situations (into
those which do and do not involve force). However, to “understand Newton’s second law’”
is to understand a Principle.

Concept vs. Meta-knowledge. Concepts are sometimes confused with Meta-knowledge (a
Performance Level) and Complex Knowledge (such as problem solving skills). The wrord
’’conceptual understanding”, used to mean deep understanding of some topic, is not the
meaning of Concept we use here (though having a deep understanding usually includes

having an understanding of the Concept).

Concept vs. Procedures. Procedure sometimes followed to label or classify things. If
the instructional goal is to memorize or use this specific procedure, the content type is
Procedure. For example, “Igneous rock” is a Concept, and understanding the concept
involves begin able to identify things that are and are not instances of igneous rock, but a
specific step-by-step process for identifying igneous rock is a Procedure.

Elaboration. The purpose of this document is to assist in learning the meaning (or our

meaning) of Concepts such as Fact, Performance-level, Concept, Basic-Knowledge-type,
etc. and being able to classify instructional topics using these Concepts.

285

Procedure

Description. An ordered sequence of steps and decisions necessary to accomplish some goal.

Examples. Divide 455 by 15 (the long division algorithm). The procedure given for filing

tax returns. Solve the following linear equations.

Possible confusions. (See the Concept vs. Procedure possible confusion above.)

Elaboration. Being able to perform a step in a procedure or make a decision within in a

procedure requires sufficient understanding of the Concepts used in the step or decision.

Principle

Description. Principles are explanations or predictions of why things happen in the world.

They are cause-and-effect, correlational, or constraint relationships.

Examples. Physical laws in the form of equations, such as ”PV=NRT” (the Ideal Gas Law),

are principles. Other principles, Hot air rises; He who laughs last laughs best.

Possible confusions. Principles are often stated in terms of equations. The general ability

to solve word problems and equations is a Complex Knowledge Type, not a Principle.

Mental Models often consist of a closely related set of Principles, such as how the weather

system or how car engines work. Each individual relationship is a Principle (such as “heating

air causes it to rise” or “the starter causes the engine to turn over”), an understanding of

the entire set (such as “what causes rain fall?” or “how does a car engine work?”) is (very

roughly) a Mental Model.

Elaboration. Principles consist of a relationship between Concepts. The Concepts must be

sufficiently understood to be able to use the Principle.

PERFORMANCE LEVELS

Remember

Performance at the Remember level requires the learner to search memory in order to

reproduce or recognize information.

Sub-levels of the Remember level. There are four sub-levels of the Remember performance

level, i.e. there are four types of performance behavior possible. They depend on two things:

whether the information is recalled verbatim or paraphrase, and whether the information re¬

called is a generality or instance. Thus, the four levels are: Remember-generality-verbatim,

Remember-generality-paraphrase, Remember-instance-verbatim, and Remember-instance-

paraphrase.

Verbatim vs. Paraphrase. Verbatim is used in its usual sense, meaning that a fact, defini¬

tion, steps, diagram, etc. must be recalled exactly as originally learned. A paraphrase is an

286

alternate representation which has the same meaning. The recall of the alternate represen¬

tation could be via an alternate wording, or via an alternate mode of representation such

as a diagram, by pointing, graphs, etc.

Instance vs. Generality. Generalities are abstract definitions, rules, procedures, etc., which

are true or applicable for many situations. An instance is a specific example of a concept

or a specific application of a procedure of principle. All facts are Instances. Instances

of Principles are explanations of how or why the Principle applied to a specific situation.

Instances of Procedures show the steps taken to use the procedure in a specific situation.

Instance of Concepts are exemplars of the concept.

Possible confusions. Recalling alternate representations can be a Complex Knowledge Type

if it involves a lot of inferencing, such as converting between written descriptions of a

situation, formulas centered representations, graphical representation, and diagrammatic

representations. We do not include such conceptually difficult or complex tasks in the

Remember level.

Use (or Apply-Use)

Description. Successful performance at the Use level requires that the student be able

to apply the knowledge within a context where it is clear that the piece of knowledge is

applicable.

Problem-Solve (or Apply-Problem-Solve)

Description. Successful performance at the Problem-Solve level requires that the student

recognize that the piece of knowledge is applicable, and then apply it. Given a physics

problem which requires using “F=MA,” a Use performance task would be: “Use Newton’s

second law to solve the following problem...”. A Problem-Solve performance task for the

same problem situation would be “Solve this problem...”. In the later case, the student

needs to recognize the need for Newton’s second law and then apply it.

Create-Instance

Description. The Create-instance performance level requires that the student find or create

a new instance of a generality.

Create-Generality

Description. The Create-generality performance level requires that the student derive, in¬

vent, or find a new abstraction, given two or more instances of it.

287

Meta-Knowledge

Description. Meta-knowledge is knowledge about knowledge, such as: why it is important

to know, where it is used, where you learned it, whether it is hard to apply, etc. It is explicit

knowledge, i.e. the student demonstrates the knowledge verbally (or in written form).

Appendix C

POST-STUDY INTERVIEW WITH THE DOMAIN

EXPERT

What follows are excerpts from an interveiw with the domain expert done on March 26, 1991,

several months following the end of this study. The domain expert had continued to work

improving the statics tutor in the period between the end of this study and the interview.

We prepared a series of interview questions, most of which were answered, but the ordering

of topics in the interview was partly determined by the flow of the conversation. We do not

include a complete transcription of this interview, nor an analysis of the interview, as part

of this study (though these could be done at some future date). In the excerpt below “KE”

refers to the knowledge engineer (the interviewer), and “DE” refers to the domain expert

(Camp). All knowledge engineer questions are paraphrases rather than quotes.

288

289

[First the knowledge engineer (KE, interviewer) overveiwed the project steps (see Figure

5.1) with domain expert (DE).]

KE: What was good about the entire process?

DE: What’s exciting about designing and working on something like this is that there’s just

an incredible amount of room for creativity...the environment is rich enough so that...if a

teacher is interested in getting ideas across to people...[he/she has the flexibility and power

to do so]. It’s a really great challenge; it’s a really fun environment for somebody like me

to work in.

KE: WTiat wasn’t good, what was hard, or what could have been improved about the entire

process?

DE: The thing that jumps to mind first is [that there were times] we were having sort

of difficulty between hardware and software or something [and] doing the same thing over

again about three weeks in a row, at least it seemed like that...Kim and I were spinning

our wheels quite a bit, where we kept loosing stuff or blowing our stuff up or something...ya

know—[the software was] in development there for a while and things seemed to get in

trouble. ...For me that was one of the more frustrating parts.

KE: What was good about the interface, the tools and software?

DE: What really jumps to mind is the ability to go plowing into it and saying...I’m going to

act like a student and test this thing out and...going along and saying ‘that’s not right...I

want to fix that,’ and not having to write some long complicated note and come back two

hours later and get into the right module and the right section, but be able to stop the

damn thing to go in, fix it [chuckles], get back out, pick up where you left off and keep

going. To my mind this is really amazing, and...makes it so much more possible to [improve

the tutor] during development and testing. That feature makes a tremendous difference in

how far you get when you work on a big project like this.

It was really nice the way the system continued to evolve and got so much easier to use. [For

instance, with the topic level displays] showing where you are [in the curriculum]...I can just

see things cranking along over there on the right hand screen...[it is] nice to visually keep

in touch with where I am at [as the information] evolves. [Before that tool was developed] I

can remember [Kim and I] suffering from...‘I want to fix something, but where the heck [in

the knowledge base] is it?’—so the [displays are] such a powerful feature. There is so much

information available to help figure out where you are and what’s wrong and where to fix

it in reasonably short order.

KE: What was the most difficult or hardest to use about the tools and software?

DE: I certainly remember for while in the beginning thinking, ‘gee, how long is it going to

take me to get comfortable with this?’ As I look back I can’t think of anything in particular

that was] silly or needlessly complicated for what we are trying to do here...it seems like a

really fine structure.

...Being clean- about [the difference between] topics and presentations took a while.

290

[Interviewer asked again about problems with the interface, but Charlie did not have any

more specific comments, except to say there were some features he didn’t use.]

KE: What was good about the statics tutor itself?

DE: In spite of my sort of initial reservations I would have to say [the flexibility of the

curriculum]. At first I thought ’That’s crazy, he wants [the student] to be able to start

anywhere in here!’ [i.e. in the curriculum topic network]. However, I do feel as I look at

this now that there are really about four major logical starting places where a person could

dip in here and start to learn a good deal, with a little background.

To me its amazing the different kinds of [curriculum] relationships that this has made

possible...[for instance] the idea that the misconception strategy is really different than

other strategies, [and] the free-body diagram solution strategy, [and] that you can say ‘let’s

let them play with [the crane boom] for a while’ in the linear equilibrium intuition stuff—the

ability to allow for that much variety is really amazing.

KE: What could have been better about the statics tutor?

DE: The thing that troubles me is that I wish I might have been able to use a bit more

variety in terms of the style in which I designed questions and [answers]. I don’t know

if that was so much a limitation of the system or a limitation of my imagination. I have

thought ‘aw, another multiple choice question here with a sort of not wholly exciting picture

to go with it,’ it would be nice to think of a wilder way to go at it. At times I wish there

were not such a percentage of multiple choice. Good multiple choice really requires a lot

of attention to build. But good multiple choice has some advantages [over other response

methods]. It would be nice [for the student] to be able to type in equations, or type in an

explanation to an answer.

KE: If you were going to do it all over again what would you do differently?

DE: In the best of worlds I would have more people power resources...three teachers, a

couple more helpers...

KE: What about the help features and assistance features?

DE: I didn’t tend to look at the system a lot in terms of the system helping me, which

may be partly due to the way I learned about computers and programming on some pretty

unfriendly systems. [My attitude was] ‘if you’ve got a problem, you’ve got to figure it out

yourself, and if [one attempt] doesn’t work, try something else.’ That may say something

about my mind set. I do notice my [high school] programming students using help utili¬

ties..with great ease..but it is not my immediate reaction to say ‘Oh, let me look it up.’ I

was to a large degree focused on content.

KE: What was good and bad about working with the knowledge base managers?

DE: When I was trying to get a lot of content out [on worksheets] it was really good not

to be distracted with hardware and trying to push it all into the machine. Kim i Gonzalez]

was a physics person [has a degree in physics] so I interacted more with her than Frank

[Linton]...she asked some valuable questions. I felt comfortable around both of these folks.

291

[There was probably more frustration on their side that mine..since I was only here once a

week.

KE: Do you have any suggestion for training future domain experts, or any suggestions for

future domain experts?

DE: I thought all of [the information I was introduced to was] really important stuff. It was

tricky enough to get started from scratch...it does take a bit of a feel to get on board...and

we reviewed [some material and terms] quite a few times. I would say that they would

definitely want to be patient with themselves. You really don’t want to do this on an island,

but work with someone else. I have a hard time seeing someone just sitting down to tackle

this alone [without a knowledge engineer.] They will be happier if they interact and share

this with somebody.

KE: How important was the ITS Summer Teacher’s institute?

DE: ...[some of the material was not directly relevant but] having those concepts rattling

around my mind for a yean1 had some effect.

KE: What’s your gut feeling about how this kind of tutor can be used in a classroom (given

that the students we tested were above average in ability)?

DE: That is a very interesting issue. I’d love to be able to fool with it more [and] see how

we could do with more average kind of students. I’d like to see how much the advanced

students could do with [only] a little background [in the prerequisite concepts]...but I don’t

have any solid answers on that.

KE: Are there any big pieces missing before moving this into the classroom?

DE: [Not really, but] the student model [i.e. incorporating confidence measurements and

more elaborate abstractions of student mental states] is an interesting challenge down the

line...sounds pretty tough to me...a whole other can of worms.

Following are questions asked the domain expert that are not summarized here:

• How do you think things would have been different if you came in every day instead

of once a week?

• About how many changes were made to the knowledge base as a result of the student

trails? On the average, what kind of changes were they?

• What do you think about the way the curriculum was designed in a linear classroom

style, then later on worksheets? Did the worksheets work out OK; can you picture

doing it without them?

• What do you think about the quantitative results [Camp was shown total time spent

on training and implementation for the four participants, see Figure 5.7] and the

assumptions made in the calculations (as listed in Section 5.3.1)? [He found no obvious

problems with the figures or assumptions.]

Appendix D

KAFITS MENU OPERATIONS

Below is a hierarchical list the KAFITS menu operations, showing the features available to

the user (instructional designer or domain expert) and the student (in the “student menu”).

• Student Menu

- Run the Statics LESSON

- Make a student COMMENT

- TEACH a topic

- DESCRIBE a topic

— TEST my knowledge of a topic

— Give me a HINT

- TeH me the ANSWER

- REPEAT the last presentation

- Change the TEACHING STYLE

- Display session STATUS

- Play with the SIMULATION

— QUIT the tutor

• Knowledge Engineering Menu

- Student Model Utilities

* IGNORE the student model

* RESET the student model

* SAVE the student model

* LOAD a student model

* Full SM SUMMARY

* BRIEF SM summary

* LIST all SM objects

- KB Utilities

292

* CLEAR all windows

* Change the screen CONFIGURATION

* Test a PICTURE object

* Test a CRANE BOOM object

* Alter crane boom COLORS

* List SLOTS in knowledge base

* Load changes for DEMO

* Toggle show TOPIC NET

* Install NET-EDITOR menu

* Install NET-PROGRAMMER menu

Strategy Utilities

* Show CURRENT strategies

* NEW current RESPONSE strategy

* ALTER response strategy

* CREATE response strategy

* ERASE response strategy

* NEW current TOPIC strategy

* ALTER topic strategy

* CREATE topic strategy

* ERASE topic strategy

PAN Utilities

* CREATE a new PAN

* HIDE current PAN

* Hide ALL PANs

* SHOW ah PANs

* Show SELECTED PANs

* SAVE PANs

* Toggle TRACE PANS

* Toggle use DEFAULT NAMES

* Toggle DUMMY nodes& arcs

* SELECT a PAN

Preferences

* Trace window on?

* User type

* Trace dialog?

* Use student model?

* Trace file name

* Demo lesson name

* SAVE preferences

* SHOW preferences

* DESCRIBE preferences

- REMOVE tutor menus

- Tutor HELP/INFO

- Start BROWSER

- Install LISP menus

- QUIT tutor and Lisp

Browser Menu

- Record and File Operations

* Make a COMMENT

* SAVE all instances

* View an EDIT RECORD

* View SESSION TRACE

* View KNOWLEDGE BASE

* Choose any FILE to open

- Misc. Operations

* Reset RESENT INSTANCES

* CROSS-REFERENCE the K-base

* Raise Browser WINDOWS

- Preferences

* Operator name

* Record-file name

* Set Type double-click action

* Set Instance double-click action

* Set Slot double-click action

* SAVE preferences

* SHOW preferences

* DESCRIBE preferences

- QUIT Browser

Browser Pop-up Menus

- Type Operations

* New INSTANCE

* New instance with MIXINS

* DESCRIBE types

- Instance Operations

* VIEW instance

* EDIT instance

* COPY instance

* DELETE instance

* BROWSE instance

* TEST instance

* Add instance NOTE

* DOCUMENTATION on slots

* View CROSS-REFERENCES

* STUDENT MODEL status

— Slot Operations

* VIEW slot

* EDIT slot

* DOCUMENTATION slot

* BROWSE slot

* LISP inspect

Browser Editor Menu

- DONE editing

- ABORT editing

- REVERT buffer

- Editor HELP

— CLEAR buffer

- Slot DOCUMENTATION

- PASTE previous edit

Appendix E

STRATEGIES USED IN THE STATICS TUTOR

In this Appendix we show the PANs for the default strategies used in this study. KAFITS

allows strategies at four levels: Lesson, Topic, Presentation, and Response.

The default lesson level strategy is trivial (and not shown below): all the topics listed as

goal topics in the lesson sequence are taught (at the typical performance level) in the order

listed.

The default presentation level strategy is also trivial (and not shown below): all of the

presentation for a given topic level are run in the order listed. An alternate presentation

level strategy was used for the FBD-identify-forces topic. This strategy involves giving a

series of tasks related to a sequence of crane boom configurations, and is shown at the end

of this Appendix.

The default PANs for the topic and response levels are more elaborate, and their PANs are

shown below. Several switch sets (not shown) were defined for these PANs.

The first two pages show the five PANs for the default topic strategy. The next two pages

show the eight PANs for the default response strategy. The last page shows the presentation

level PAN for the FBD-identify-forces topic.

“(Rand)” under the name of a node indicates that the node action produces a random text

item from a list of similar items. “(Rand2)” indicates that random text is given if there is

no text specified in the knowledge base.

296

OIBCH

REREQUISITIS)

298

RLlIJflVS

PRESENTHTION-KNOWN?

PRES-IS-TIHT-ONLY?

INTRODUCE

PRESENTHTION

\
RUUflVS

\

DISPLRV

PRESENTHTION

TDTT

SETUP
PRESENTHTION

EHRMPLE

ALWAYS

TAKE-DOWN

EHRMPLE

ALWAYS

POST-PRES-LOCAL

REMEDIATION

ALWAYS

ALWAYS

301

Appendix F

CRANE BOOM SIMULATION DETAILS

We will not describe the functionality of the crane boom simulation in detail, but below are

diagrams that illustrate some of its features and parameters.

302

303

304

FWx

▼

▼ WMn

Appendix G

SAMPLE TUTORIAL DIALOG

Below is an annotated sample of a typical tutorial dialog to give the reader a sense of what

it is like to rim the statics tutor. Note that the inclusion of the various elements of the

knowledge base (elaborations, hints, etc.) depends on the current strategy.

305

306

SAMPLE TUTORIAL DIALOG

[TOPIC: {LINEAR-EQUILIBRIUM-INTUITION}]

[MOTIVATE-TOPIC] You are going to be given some crane boom situations and

then asked what will happen when one variable in the

simulation is modified.

[DEFINE-TOPIC] Given an object in equilibrium, changing one of the

forces must result in a change in one or more of the

other forces, if the total system is to remain in

equilibrium (i.e. not move).

[START-QUESTION: {LE-INTUITI0N-EASY1}]

[A CRANE BOOM DIAGRAM IS GIVEN]

How would you expect the tension force in the cable to

change if the weight were moved to the left?

:::Choose:

Tension force increases.

Tension force decreases.

Tension force remains the same.

:::Chosen:Tension force decreases.

[Response-ok? CORRECT]

[CHALLENGE] Please use the simulation now to move the weight left

and right to see that it confirms your prediction.

[SIMULATION COMES UP. STUDENT PLAYS WITH IT, AND EXITS IT.]

[GIVE-AWAY] When you moved the weight to the left you may have

noticed that the force of the wall holding up the boom

is greater and the cable tension is reduced.

[REASON] If you think of the weight moved far to the left, it

should seem that the wall is providing most of the

support. When the weight is on the right side, the

cable must provide most of the support.

[ELABORATION] Think about the extreme case when the weight is moved

almost all the way to the wall. At this location the

weight should put very little load on the cable.

307

[.]

[START-QUESTION: {LE-INTUITI0N-TYPICAL1}]

[A CRANE BOOM DIAGRAM IS GIVEN]

If the cable were shortened, raising the end of the

boom, how would the tension force in the cable change?

:::Choose:

Tension force increases.

Tension force decreases.

Tension force stays the same.

:::Chosen:Tension force decreases.

Response-ok? CORRECT

[CONGRATULATION] Good job!

[REASON] Notice, as the end of the boom swings up, how the wall

must support more and more of the weight.

[ELABORATION] Think about the extreme case when the boom is almost

vertical. Then you can probably see that the wall is

holding up the whole boom.

[.]

[SUMMARIZE-TOPIC] Since one may always think of the crane boom as being in

equilibrium, one should try to see that an increased

force in one location should always be compensated by

increased balancing force(s) elsewhere. The opposite

for decreasing forces should be true.

[WRAP-UP-TOPIC] When working on this type of problem you are urged to

draw a picture showing all the forces on the beam.

Then you will hopefully be able to reason how a change in

one force will effect the other force(s) acting on the beam.

[.X

[START-QUESTION: {LE-PRINCIP-EASY1}]

[A PICTURE IS GIVEN]

A person is pushing a refrigerator straight across a

warehouse floor at a steady speed of two miles/hour.

308

How could one possibly think of the refrigerator being

in equilibrium?

:::Answer Choices:

:::A. The refrigerator is not in equilibrium because the

worker is much stronger than any other force in the problem.

:::B. The refrigerator is in equilibrium because the

refrigerator is pushing back on the worker exactly as

hard at the worker is pushing on the refrigerator.

:::C. The refrigerator is in equilibrium because the

friction force from the floor is opposite and equal to

the force of the worker.

:::D. The refrigerator is in equilibrium because the force

of the worker is balanced by both the force of inertia

and the force of friction combined.

:::E. The force of inertia is balanced by the force of

gravity that pulls the object down.

:::Chosen: B.

Response-ok? NO

[ENCOURAGEMENT] I think I understand your answer.

[REACTION] Be careful. The two forces named are equal but only

one of these forces acts on the refrigerator.

[GIVE-HINT] You need to find an explanation as to how all the forces

acting on the refrigerator could be balanced.

Please try again...

[.]

[...Response-ok? YES]

[CONGRATULATION] That’s good!

[REASON] Since friction is caused by tiny bumps on the floor it

is hard to imagine that the friction force could

balance the force of a strong worker. It may help to

think of many of these little bumps working together.

[]

Appendix H

SAMPLE OBJECT INSTANCES

Example instance of one of each type of object in the system are shown below to document

the slots associated with the object types.1

1Not all objects of a given type have the same slots, because the mixin feature allows other slots to be

added. The instances shown below are for the default mixins for each object type, as used in ninety five

percent of all objects in the knowledge base.

309

310

SAMPLE INSTANCES

;; Sample LESSON

(NEW-LESSON :NAME {LINEAR-EQUILIBRIUM-LESSON}
:NOTES ("This lesson was used in the June student tests.")
:REFERENCED-BY ()
:INTRODUCTION "This lesson will focus on a qualitative understanding

of Linear Equilibrium for static objects. "
:LESSON-SEQUENCE ((SET-TOPIC-STRATEGY ’GENERAL-TEACH)

(SET-RESPONSE-STRATEGY ’VERBOSE)
{LINEAR-EQUILIBRIUM})

:CONCLUSION "This concludes the LINEAR-EQUILIBRIUM lesson—Have a nice day

)

;; SAMPLE TOPIC

(NEW-TOPIC :NAME {LINEAR-EQUILIBRIUM-INTUITION}
:NOTES ("should have familiarity with newtons laws?-tm" "i need

to re-check the motivation later.-cc")
:REFERENCED-BY ({FBD-S0LUTI0N-ANALYSIS} {LINEAR-EQUILIBRIUM})
:TOPIC-TYPE COMPLEX
:DEFINITION "Given an object in equilibrium, changing one

of the forces must result in a change in one or more of
the other forces, if the total system is to remain in equilibrium
(i.e. not move)."

:PREREQUISITES (:FAMILIAR ({LINEAR-EQUILIBRIUM-PRINCIPLE})
:DEEP-FAMILIAR ({?}) :EASY ({?}) :TYPICAL ({?}) :DIFFICULT ({?}))

:PARTS (:CONCEPTS ({?}) :OTHER ({?}))
:MOTIVATION "You are going to be given some crane boom

situations and then asked what will happen
when one variable in the simulation is modified."

:SUMMARY "Since one may always think of the crane boom as being in
equilibrium, one should try to see that an increased force in one
location should always be compensated by increased balancing force(s)
elsewhere. The opposite for decreasing forces should be true."

:WRAP-UP "When working on this type of problem you are urged to draw
a picture showing all the forces on the beam. Then you will
hopefully be able to reason how a change in one force will effect
the other force(s) acting on the beam."

:META-KNOWLEDGE ()
:REMEMBER ()
:USE-EASY ({LE-INTUITI0N-EASY1} {LE-INTUITI0N-EASY2})
:USE-TYPICAL ({LE-INTUITI0N-TYPICAL1} {LE-INTUITI0N-TYPICAL2})

•.USE-DIFFICULT ()

311

: DIAGNOSTIC-QUESTIONS ()

:CRITICAL-MISCONCEPTIONS ()

:LOCAL-TOPIC-STRATEGY ()

)

;; Sample PRESENTATION

(NEW-PRESENTATION :NAME {CENTER-OF-MASS-EASY1}

:MIXINS ({EXAMPLE-MIXIN} {QUESTION-MIXIN})

:NOTES ()

:REFERENCED-BY ({CENTER-OF-MASS})

:SET-UP (SHOW-PICTURE {TWO-BLOCKS-ON-BEAM})

.-TAKE-DOWN ()

:ANSWER-TYPE :MULTIPLE-CHOICE

:INTRO-TEXT "The 2 kg block and the 5 kg block are on a massless beam."

:QUESTION-TEXT "Where would the center of mass of the system be located?"

:ANSWER-DESCRIPTIONS ("Nearest to point A."

"Nearest to point B."

"Nearest to point C."

"Nearest to point D."

"Nearest to point E.")

:REACTIONS (5 "You have the right idea but consider the fact that

the boom is massless.")

:REMEDIATION-INFO ()

:CORRECT-ANSWERS (3)

:CONGRATULATE ()

:CHALLENGE ()

:HINTS ("Think of where you could put a support under the beam and

have it balance.")

:GIVE-AWAY ("The center of mass must be nearer the 5 kg than the

2 kg mass.")

:REAS0N ("If you placed a 7 kg mass at the center of mass it would

balance the same as the two separate masses.")

:ELABORATE ("Actually the distance from the 2 kg mass to the center

of mass is 2.5 times as far as the distance from the 5 kg to the

center of mass. This is the inverse of the mass ratio.")

:LOCAL-RESPONSE-CONTROL ()

:RESPONSE-STRATEGY NORMAL-RUN-PRESENTATION

:CB-INTERVENTION-FUNCTION NUL-INTERVENTION-FUNCTION

)

[Note: The presentation above includes mixins for example and question

object slots. Example objects and question objects (rarely used in the

statics domain) have a subset of the slots shown for the presentation

above.]

312

;; Sample PICTURE

(NEW-PICTURE :NAME {TWO-BLOCKS-ON-BEAM}

:MIXINS ()

:NOTES ()

:REFERENCED-BY ({CENTER-OF-MASS-EASY1})

:RESOURCE-ID 7

:DESCRIPTION "A massless beam with a 2 kg block on one

end and a 5 kg block on the other."

:RESOURCE-FILE "statics-7.pic"

:DRAWING-FILE "statics-pictures"

)

;; Sample CRANE BOOM

(NEW-CRANE-BOOM :NAME {SUM-Y-FORCES-2}

:NOTES ("add in the wall force and display in free body

mode in right screen with answer reason?")

:REFERENCED-BY ({PR0CED-SUM-Y-F0RCES-TYPICAL2-EX})

:TYPE LEFT-DIAGRAM

:M0DE PHYSICAL

:CABLE-HEIGHT-H INFINITE

:ALPHA 90

:BEAM-LENGTH-B 10.0

:BEAM-CTR-MASS-C 5.0

:WEIGHT-POS-D 10.0

:CABLE-POS-K 6

:MASS-WEIGHT-WM 10.0

:BEAM-WEIGHT-WB 4

:ANGLES-SHOWN ()

:VECTORS-SHOWN (TC WB W)

:LENGTHS-SHOWN ()

:METERS-SHOWN (TC WB WM)

:VECTOR-SCALE :AUTO

:PICTURE-SCALE :AUTO

: SHOW-WHEN-CREATED? T

:LEAVE-SHOWN-WHEN-DONE? ()

)

;; Sample MIS-KU

(NEW-MIS-KU :NAME {COMPRESSION-ON-VS-BY-CONFUSION}

:MIXINS ()

:NOTES ()
:REFERENCED-BY ({COMPRESSIBLE-BODY-FORCES} {FORCE-ON-VS-BY-CONFUSION})

:DIAGNOSTIC-SCRIPT ({C0MPRESSI0N-0N-VS-BY-DIAG1} {C0MPRESSI0N-0N-VS-BY-DIAG2})

313

:REMEDIATION-SCRIPT ({COMPRESSION-MIS-KU-REMEDl} {C0MPRESSI0N-MIS-KU-REMED2})

)

;; Sample SOUND

(NEW-SOUND :NAME {CATS-MEOW}

:MIXINS ()

:NOTES ()

:REFERENCED-BY ()

:RESOURCE-ID 25903

:DESCRIPTION "cat meowing"

:RESOURCE-FILE "tev-sounds"

:ORIGINAL-SOUND-FILE ""

)

;; Sample STORAGE object

(NEW-STORAGE :NAME {RANDOM-TEXT}

:MIXINS ()

:NOTES ("This instance is not meant to be run.

It only stores values and text to be used elsewhere.")

:REFERENCED-BY ()

:TRY-AGAIN ("Please try again..." "Try it one more time..."

"Try it again...")

:GIVE-AWAY-INTRO ("The correct answer is: " "The answer is: "

"This is the right answer: ")

:TELL-WRONG ("That’s not quite right." "Your answer is incorrect."

"Sorry, but that is wrong.")

:TELL-0K ("That’s right." "That’s exactly right!"

"Your answer is correct.")

:ENCOURAGE-WRONG ("I think I understand your answer." "Well...")

:ENC0URAGE-0K ("OK," "fine,")

:CONGRATULATE ("Very good!" "That’s good!" "Good job!")

:HELLO ("hi" "hello" "hi there" "welcome")

)

Appendix I

SAMPLE SAVED-INSTANCES FILE

Portions of a saved-instances-file are shown below, including a table of contents, instances,

and cross references.

314

315

SAVED INSTANCE FILE

M M M) M) f >) M M))»))))))) M) M)))))))))))) M M) M) M M)))))))))))) M))

Tutor Instance SAVE file for tutor edit session.

Time: 13:49:31. Date: 12/12/1989.

File: "Tutor-data:Tupits-saved-instances:tutor-inst-7.lisp"

Operator: tom

; TABLE OF CONTENTS

#1

TOPICS:

{ALL-FORCES-ARE-ELASTIC}

{CENTER-OF-MASS}.

{COMPRESSIBLE-BODY}.

{CONTACT-FORCES}.

{DUM-TOPIC}.

{FBD-CONCEPT}.

{FBD-IDENTIFY-FORCES}...

{FBD-IDENTIFY-MAIN-BODY}

{FBD-SOLUTION-ANALYSIS}.

{FBD-SOLVE-EQUATIONS}...

[.]

{Y-AXIS-FORCES}.

MISC. PRESENTATIONS:..

MISC. OTHER INSTANCES:

CROSS REFERENCES:.

»

> END TABLE OF CONTENTS

316

I#

99>9999999999>>>)

LESSON: {LINEAR-EQUILIBRIUM-LESSON}

99

(NEW-LESSON :NAME {LINEAR-EQUILIBRIUM-LESSON}

:NOTES ()

:REFERENCED-BY ()

:INTRODUCTION "This lesson will focus on a qualitative understanding

of Linear Equilibrium for static objects. "

:LESSON-SEQUENCE ((SET-TOPIC-STRATEGY 5GENERAL-TEACH)

(SET-RESPONSE-STRATEGY ’VERBOSE)

{LINEAR-EQUILIBRIUM})

:CONCLUSION "This concludes the LINEAR-EQUILIBRIUM lesson—Have a nice day!"

)

999

TOPIC: {FORCES-AT-A-DISTANCE}

99

(NEW-TOPIC :NAME {FORCES-AT-A-DISTANCE}

rMIXINS ()

:NOTES ("This topic tries to make clear the difference between

forces that act at a distance as compared to contact forces."

"For Use Easy and Use Typical, see the notes on the original sheet.

Synthesizer link to 3rd-law-existance.")

:REFERENCED-BY ({TYPES-OF-FORCES})

:TOPIC-TYPE CONCEPT

:PREREQUISITES (:FAMILIAR ({?}) :DEEP-FAMILIAR ({?}) :EASY ({?})

•.TYPICAL ({?}) -.DIFFICULT ({?}))

:PARTS (:CONCEPTS ({GRAVITY} {OTHER-FORCES}) :OTHER ({?}))

:SUMMARY "In order for you to be sure that a particular force can act

at a distance, you should be able to remember an example where you

have seen this kind of force reach out and attract or repel an object

through empty space."
:MOTIVATION "A most amazing type of force is the kind that can reach out

through empty space and influence (push or pull) another body."

:DEFINITION "When a body can reach out through space with an apparently

317

invisible influence and push or pull another object, we say this type

of force is a force that acts through a distance and does not require
contact of the two bodies."

:USE-EASY ({FORCE-AT-A-DISTANCE-EASY1})

:USE-TYPICAL ({FORCE-AT-A-DISTANCE-TYPICALl})

:USE-DIFFICULT ()

:WRAP-UP "In our every day lives gravity would seem to be the strongest

force that can act at a distance."

:TEACH-STRATEGY NORMAL-TEACH-TOPIC

:LOCAL-TEACH-CONTROL ()

:CRITICAL-MISCONCEPTIONS ()

)

999

(NEW-PRESENTATION :NAME {FORCE-AT-A-DISTANCE-EASYl}

:MIXINS ({EXAMPLE-MIXIN} {QUESTION-MIXIN})

:NOTES ("This is a counter example. Tries to deal with the impetus misconception.")

:REFEREN CED-BY ({FORCES-AT-A-DISTANCE})

:INTRO-TEXT ""

:LOCAL-RESPONSE-CONTROL ()

:RESPONSE-STRATEGY NORMAL-RUN-PRESENTATION

:SET-UP (SHOW-PICTURE {BAT-HITS-BALL})

:TAKE-DOWN ()

:ANSWER-TYPE :ABC-CHOICE

:QUESTION-TEXT "When the ball hits the bat and flies away, what

type(s) of forces are involved?"

:ANSWER-DESCRIPTIONS ("Only contact force (when the ball is touching

the bat)."

"Both contact forces (when the ball touches the bat) and the force at

a distance (that keeps it going when it has left the bat)."

"Only forces that act at a distance really matter in this problem.")

:REACTIONS ()

:REMEDIATION-INFO ()

:CORRECT-ANSWERS (1)

:CONGRATULATE ()

:CHALLENGE ()

:HINTS ()

:GIVE-AWAY "It is tempting to think of the bat as still pushing on

the ball after it has left contact with the bat.

However, you may find it helpful to think of the ball as

coasting after it stops touching the bat."

:REASON "The contact force between the bat and the ball only

influences the ball while they are touching. There are

no forces that act at a distance between the bat and the ball."

318

:ELABORATE ()

:CB-INTERVENTION-FUNCTION NUL-INTERVENTION-FUNCTION

)

(NEW-PICTURE :NAME {BAT-HITS-BALL}

rMIXINS ()

:NOTES ()

:REFERENCED-BY ({FORCE-AT-A-DISTANCE-EASY1})

:RESOURCE-ID 18406

:DESCRIPTION "[no picture description available]"

:RESOURCE-FILE "statics-2.pic"

:DRAWING-FILE "CRANE-BOOM-DWGS.1"

)

C.]

999

Misc. Presentations:

999999999999999999999999I99

[.]

999

Misc. other instances::

[.]

I I I I 1 I M I I I t I I I) I I » I I I I I I » I > > I t I I) I > I > I I I > » I I I) 1 I I) 1 I » I I » I) I I I I I > I I 1 I I I 1 »

Cross references for PRESENTATIONS:

999

{F0RCE-AT-A-DISTANCE-EASY1} cross references:

Appears in slot USE-EASY of instance {FORCES-AT-A-DISTANCE}.

{FORCE-AT-A-DISTANCE-TYPICAL1} cross references:

Appears in slot USE-TYPICAL of instance {FORCES-AT-A-DISTANCE}.

{GRAVITY-F0RCE-EASY1} cross references:

319

Appears in slot USE-EASY of instance {GRAVITY}

M) M M) f M) M M M) M)>)))>))) M M) M M) M) M)) f) M) M » M)))) M M)))))>))

Non-existing instances found in Cross References:

M I t M I M M M) M M M M) M »)))) M))) M) M I I I » I I M)))) M I M M)) M)) M M M))

Instance

Instance

Instance

{DUM-MIS-KU} refers

{GRAVITY} refers to

{GRAVITY} refers to

to nonexisting: {DUM-KU}.

nonexisting: {EARTH-ROTATION},

nonexisting: {AIR-PRESSURE}.

I#

999

End of Cross References

;;************************************** **********************************

;;41 Topics.

;;3 Mis-KUs

;;68 Presentations.

;;250 Total instances.

Appendix J

SAMPLE LESSON LISTING

The lesson listing file has one entry for each tutorial session started. A sample of this file

is given below.

320

321

File: Session-listings.txt

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}.

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-235.out.

Student: Steve Brown. Date: 2/23/1990 Time: 16:35:8

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}.

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-237.out.

Student: Gint Flarb. Date: 2/27/1990 Time: 15:5:26

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}.

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-244.out.

Student: Trent Todlis. Date: 3/15/1990 Time: 14:14:22

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}.

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-245.out.

Student: Barb. Date: 3/15/1990 Time: 16:5:59

[.]

Appendix K

SAMPLE EDIT RECORD

A portion of an edit record containing changes made by the domain expert is shown. Note

the comments entered by the domain expert for the knowledge engineer.

322

SAMPLE EDIT RECORD

99)9999999

New Record file for tutor edit session.

Time: 12:7:33. Date: 8/7/1990.

File: :Tutor-data:Tupits-edit-records:DB7/24/90

9999999999999999999999999999999199

99

Starting tutor edit session.

Time: 12:9:36. Date: 8/7/1990.

Operator: cc

Session record file: :tutor-data:tup-traces:trace-290.out

99

;;Recording:

(RL:ASSERT-VAL {LE-CONCEPT-EASYl}

’QUESTION-TEXT

’"The person shown weighs 450 Newtons. If the earth is

pulling down on this person with a 450 N force, what

other force is acting to keep this body in equilibrium?")

#I COMMENT:

Tom — Notice the question scrolls off the screen when all 4 ans

choices are displayed, cc

I#

(RL:ASSERT-VAL {LE-C0NCEPT-TYPICAL2}

’ANSWER-DESCRIPTIONS

*("2 Newtons Southwest" "1 Newton South and 1 Newton West"

"1 Newton Southwest"

"1.41 Newtons Southwest"))

;;Recording:

(RL:ASSERT-VAL {X-AXIS-FORCES}

’MOTIVATION

’"Most crane boom problems involve both X and Y forces.

While this section involves practicing with only

horizontal forces, you are reminded that you can ignore

any Y-forces present.")

#I COMMENT:

Tom, Why isn’t this starting with Y-Forces ?? CC

I#

; ;Recording:

(NEW-CRANE-BOOM :NAME {CB-TWO-FORCES}

:MIXINS NIL

:N0TES ("Massless boom with mass hanging from center

and vertical cable in center.")

:REFERENCED-BY NIL

:TYPE LEFT-DIAGRAM

:M0DE PHYSICAL

:CABLE-HEIGHT-H 9.0

:ALPHA 45.0

:BEAM-LENGHT-B 10.0

:BEAM-CTR-MASS-C 5.0

:WEIGHT-POS-D 5.0

:CABLE-POS-K 5.0

:BEAM-HEIGHT 7.5

:MASS-WEIGHT-WM 10.0

:BEAM-WEIGHT-WB 0

:ANGLES-SHOWN NIL

:VECTORS-SHOWN NIL

:LENGTHS-SHOWN NIL

:METERS-SHOWN NIL

:VECTOR-SCALE :AUT0

:PICTURE-SCALE :AUT0

:SHOW-METERS? T

:SHOW-WHEN-CREATED? T

:LEAVE-SHOWN-WHEN-DONE? NIL)

[.1

ENDING tutor edit session.

Time: 13:8:22. Date: 8/7/1990.

Appendix L

SAMPLE TRACE FILE

Trace files, like the one shown below, record the transactions of tutorial sessions. Note the

comment entered by the student near the end.

325

SAMPLE TRACE FILE

New trace file name: :tutor-data:tup-traces:trace-159.out

Starting Crane Boom tutoring session.

Student Model Reset.

******Time stamp: 13:13:10.

START-LESSON: {LINEAR-EQUILIBRIUM-LESSON}

LESSON-INTRO:

:::This lesson will focus on a qualitative understanding of

Linear Equilibrium for static objects.

NEW-TOPIC-STRATEGY: GENERAL-TEACH

NEW-RESPONSE-STRATEGY: VERBOSE

START-TOPIC: {LINEAR-EQUILIBRIUM}

START-PREREQUISITES-OF: {LINEAR-EQUILIBRIUM}

FINISH-PREREQ-OF: {LINEAR-EQUILIBRIUM}

TEACHING-PARTS-OF: {LINEAR-EQUILIBRIUM}

CONCEPT-PART-OF: {LINEAR-EQUILIBRIUM}

******Time stamp: 14:33:13.

START-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT}

[.]

MOTIVATE-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT}

:::Many problem situations in physics are much simpler if

the forces acting on an object are balanced. It is

important to learn to recognize these balanced force situations.

DEFINE-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT}

:::An object is in equilibrium if the forces acting on the

object balance each other. We sometimes say there is

no unbalanced force or the sum of the force vectors is zero.

327

:::Choose:

Click here to CONTINUE

INTERRUPT the session

:::Chosen:Click here to CONTINUE

CHOOSING-NEXT-EASY-PRESENTATION: {LINEAR-EQUILIBRIUM-CONCEPT}

START-PRESENTATION: {LE-C0NCEPT-EASY1}

START-EXAMPLE: {LE-C0NCEPT-EASY1}

START-QUESTION: {LE-C0NCEPT-EASY1}

:::The person shown weighs 450 Newtons. If the earth is

pulling down on this person with a 450 N force, what

other force is acting to keep this body in equilibrium?

:::Choose:

No other force is needed because the person is standing still.

Balanced forces are not needed for objects in contact with the earth.

The person’s legs push up to keep him from falling down.

The ground pushes up with a force of 450N.

INTERRUPT the session

:::Chosen:The ground pushes up with a force of 450N.

Response-ok? CORRECT

FINISH-QUESTION: {LE-C0NCEPT-EASY1}

:::Good j ob!

:::Although it is often hard to believe, the solid ground

does push up with a force of 450N. This force just

balances the gravity force which acts downward on the person.

:::Choose:

Click here to CONTINUE

INTERRUPT the session

SESSION-SUSPENDED:

[Student comment entered here.]
**************** STUDENT COMMENT: *******************

could put a picture with the three forces here
**

[]

Appendix M

SAMPLE PAPER WORKSHEETS

Below are examples of the worksheets used by the domain expert to specify the curriculum

for data entry by the knowledge base manager. Paper forms were designed for topics,

presentations, Mis-KUs, and crane-booms.

328

329

H.

TOPIC

(T)

Motivation

S/>\

Topic name TEM S(QM

tS

a. v-»pc = C-N o»u^

I (J) Fo*<*. S•—L :v-v fa«7t' C—~i_ a.

'<D Fj«j. s*~c »*\ c-i: a. ^YP®
Ca \a Cr p~t

4

, / , JLl -Hi«i P'Wv.

'Cr ' ^ >'AC ^ NQteS& PICt3’

We. +& Ee, clevis- a-lOtodc
v^e.1 «.4-WsUlp beftoewv. -Ha_ -£i/-<u..s p«c(i/«*j #4.

■fcwo *-wJ£ a. r*p-e «—-f4t_ JJJm. £?-f
t*t -Hjl. mldLUe O'A a, /ope.

Definition , r „_C ^
-eyodS- +1'*-. acff*3 o**- e/*dL of a~'-

-tle-vw*^- w»HU 4fu /ope, X-P ^9U* +Kf»*k «A a.
.. *'»[’-«- «-* Wautv^ **'*^*»j slw/t y»«- vv1*^

-H-l. is -H%o 3awvo +*4- /ope.
use-easy

i e«ai/v»-Use - <?aL£j4 —-

Tfc^iiovv - Use. - easy --

Use-typical
TVwsJir* - Use - 7“yP<cJi

T**»4la^- Use -Typ<«-aJ 2.

Summary A plcaL 4: ropt */ sP^ *el e^<l lm~L
oopo$lU- ~£»r<k£ *•> -fwo a*A^S. Si»ac«. C(W'

, #1 lJ r ac Cr^ptsej. ~*~1 c^t.cU4 Pttct*j
be fW5Ut of- °5 C~£S ^ as ^ e?ua(~
we Co-v -Hvtufr of ^ ^

piece wlfUU +**- vV‘t*

Wrap-up jiao,
Ar.o. - ^ ^ sp*+ wiffk ,

fkfl_ /Ope .
Notes: .

L* (se<_ +»p +**- f*5c)

Entered: CU ¥e/#r
Who: When

•
M

330

Presentation Name Co™passion - MiS-/cU- Re^uAl

Diagram-descripton (set-up) , v <
o£ «- ^JuusUiS^ a. CaW- *3<x.W~

a_ bu^v^oev- octhu^jJL A- uxlII Cfio J/

^ Intro-text ru. ii pusLt^ on &■ e**f wfcf«li
pavJ-lj Cs**ji\r€SS2£ Qw -S^VOv'j £p(r|v^ a.~ifojcLuL "fd

. 4Ui_ u/all .
^Question-text

Title: tf a* pusUs cxr4- t* St**-

n-text » / n i, i. i o
f^ou; wki^vj horl-SmTia -ftircci <*>€- act/w^

A) 1 8.) 2 c.) 3 a)
Correct-answers

v/Hintl 4ve, i*cL*Ahy s<nw^A^e. or £>rce_s

pu^Utv^ on o’f^i.v- 0^>j ^cJ'S ?

Hint 2

OvvjL
3 ^1/

^ Answer give-away 73\e*^c- art, +-u/<? ,
n/-v p^LN^ on f<u„ catr-f 4^<-

Spr(\^ pastil^

v-/Answer reason
Tk«- cr^/y j

cn -fL<_ C-a^-f“ a^€_ abjecJZ fiy+-7 avZ-

Elaboration:

Ca*~£Cc/
:-coL

by

*4.

OVV <U^h

Covv SoUr f tv/ r-/ ft /J
‘f'J O^/t / /f/

List of possible answers
(for each you can specify:

Reaction, Misconception/Branch) .
"^O /4nr <v-eu J^,*j Ca^l 1 ^

so 4Ure. wi«f be. +"‘> £”'“s
-P^i Car- •f- -H-^f C<j-v\CeJ.

Mo/ Mv/o/

a.c'/'IWj
J

°*\

Notes

Entered: KD£ te-jo-io

Who: When

331

mis-ku Name_

Notes & pictures

Diagnositc-script

Remidiation-script

For Topics...

Notes

Entered:

Who: When

332

Crane Boom Name So^ y

Copy of crane boom f/o/fg - C61

[Interactive Simulation]
or [left Diagram] or [right Diagram]

cable height (h) JufUf A)

beam length (b)

weight postition on beam (d) IQ

9

cable postion on beam (k)

beam-cntr-mass (cm)

beam angle (alpha)

beam weight (WB)

mass’s weight (WM) 25"

Lengths shown [d b k cm h]

Angles shown [alpha beta]

Vectors shown [@Fwffii)(WM)]

Vectors components shown
[Actual X Y Normal Radial]

Meters shown (for simul. only)
[@ fw <m<&]
[<f bk cm ri alpha beta]

Mode [abstract] [physical] [free body]

Show when created? [yes] [no]

Leave shown when done? [yes] [no]

Notes

clisp

1
QvtU'fi Ji- ■-'Typical^.

0 S\ ZTaJl Co\nSL ±.
U-4- vhhr

wi
i ^ -TWfl- ^ \A*4<jjL C*a-

Who: When

BIBLIOGRAPHY

[1] Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard

Univ. Press.

[2] Anderson, J. R. (1988). “The Expert Module.” In Poison & Richardson (Eds.), Foun¬

dations of Intelligent Tutoring Systems, pg. 23-55. Hillsdale, NJ: Lawrence Erlbaum.

[3] Anderson, J. R. (1990). “Analysis of Student Performance with the LISP Tutor.”

Diagnostic Monitoring of Skill and Knowledge Acquisition. Hillsdale, NJ: Lawrence

Erlbaum.

[4] Anderson, J. R. & Reiser, B. (1985). “The Lisp Tutor.” BYTE, April 1985, pg. 159-

175.

[5] Anderson, J. R. & Skwarecki, E. (1986). “The Automated Tutoring of Introductory

Computer Programming.” Communications of the ACM, Vol. 29 No. 9, pg. 842-849.

[6] Anderson, J. R., Boyle, C., and Reiser, B. (1985a). “Intelligent Tutoring Systems.”

Science, Vol. 228, pg. 456-462.

[7] Anderson, J. R., Boyle, F. & Yost, G. (1985b). “The Geometry Tutor.” Proceedings

of IJCAI-85. Los Angeles, CA.

[8] Anderson, J.R., Farrell, R. & Sauers, R. (1984). “Learning to Program in Lisp.”

Cognitive Science, Vol. 8, pg. 87-129.

[9] Aronson, D. & Briggs, L. (1983). “Contributions of Gagne and Briggs to a Prescriptive

Model of Instruction.” In Reigeluth (Ed.), Instructional Design Theories and Models.

Hillsdale, NJ: Lawrence Erlbaum.

[10] Ausubel, D.P. (1963). The Psychology of Meaningful Verbal Learning. NY: Grune &

Stratton.

[11] Baker, E. (1991). “Technology Assesment: Policy and Methodological Issues.” In

Bums, H., Parlett, J.W., & Redfield, C.L (Eds.), Intelligent Tutoring Systems. Hills¬

dale, NJ: Lawrence Erlbaum.

[12] Barker, V.E. & O’Connor, D.E. (1989). “Expert Systems for Configuration at Digital:

XCON and Beyond.” Communications of the ACM, Vol. 32 No. 3, pg. 297-318.

[13] Barr, A., Beard, M., & Atkinson, R. C. (1975). “Information Networks for CAI Cur-

riculums.” In 0. Lecareme & R. Lewis (Eds.), Computers in Education. Amsterdam,

The Netherlands: North-Holland.

333

334

[14] Begg, I.M. & Hogg, I. (1987). “Authoring Systems for ICAI.” In Kearsley, G. (Ed.),
Artificial Intelligence and Instruction: Applications and Methods. Reading, MA:
Addison-Wesley.

[15] Blomberg, J. L. & Henderson, A. (1990). “Reflections on Participatory Design:
Lessons from the Trillium Experience.” CHI ’90 Proceedings, April, 1990, pg. 353-
359.

[16] Bloom, B. S. (1984). “The 2-Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-One Tutoring.” Educational Researcher, Vol 13, pg.
4-16.

[17] Bloom, B. S. (Ed.) (1956). Taxonomy of Educational Objectives, Handbook I: Cognitive
Domain. New York: David McKay.

[18] Bloom, B., Madaus, G. & Hastings, J. (1981). Evaluation To Improve Learning. New
York: McGraw Hill, Inc.

[19] Bogdan, R. & Biklen, S. K. (1982). Qualitative Research for Education: An Introduc¬
tion to Theory and Methods. Boston: Allyn and Bacon, Inc.

[20] Bonar, J. & Soloway, E. (1985). “Pre-Programming Knowledge: A Major Source of
Misconceptions in Novice Programmers.” Human-Computer Interaction, Fall 1985,
pg. 1-45.

[21] Bonar, J., Cunningham, R., Beatty, P., Sz Weil, W. (1988). “Bridge: An Intelligent
Tutoring System with Intermediate Representations.” LRDC Technical Report. Univ.
of Pittsburgh, Pittsburgh, PA.

[22] Bonar, J., Cunningham, R., & Schultz, J. (1986). “An Object-Oriented Architecture
for Intelligent Tutoring Systems.” Proceedings of OOPSLA-86.

[23] Bonar, J.G. (1991). “Interface Architectures for Intelligent Tutoring Systems.” In
Burns. H., Parlett, J.W., & Redfield, C.L. (Eds.), Intelligent Tutoring Systems: Evo¬
lutions in Design. Hillsdale, NJ: Lawrence Erlbaum.

[24] Bonarini, A., Filippi, V., & Muti, S. (1988). “DOCET: An Environment to Build
Intelligent Tutors.” Milano Poyltechnic, Dept, of Electronics, Technical Report 88-
033.

[25] Boose, J. H. (1988). “A Survey of Knowledge Acquisition Techniques and Tools.” 3rd
AAAI-Sponsored Knowledge Acquisition for Knowledge-Based Systems Workshop,
November 1988, pg. 3.1-3.23. Banff, Canada.

[26] Brachman, R. & Levesque, H. (Eds.) (1985). Readings in Knowledge Representation.

Los Altos, CA: Morgan Kaufman Publ. Inc.

[27] Brachman, R. & Schmoltze, J. (1985). “An Overview of the KL-ONE Knowledge

Representation System.” Cognitive Science, Vol. 9.

335

[28] Breuker, J., Winkels, R., & Sandberg, J. (1987). “A Shell for Intelligent Help Sys¬

tems.” Proceedings of IJCAI-87, pg. 167-173.

[29] Brooks, F. P. Jr. (1975). The Mythical Man-Month. Reading, MA: Addison-Wesley.

[30] Brown, D. (1989). “A Knowledge Acquisition Tool for Decision Support Systems.”

SIGART Newsletter, No. 108, pg. 93-97.

[31] Brown, S. F. (1985). “The Use of Learning Theory in the Application of Artificial

Intelligence to Computer Assisted Instruction in Physics.” Ph.D. Dissertation, North

Texas State University.

[32] Bruner, J. (1966). Toward a Theory of Instruction. Cambridge, MA: Harvard Univer¬

sity Press.

[33] Buchanan, B. (1987). “Artificial Intelligence as an Experimental Science.” Stanford

Univ. Knowledge Systems Lab Technical Report KSL 87-03.

[34] Bumbaca, F. (1988). “Intelligent Computer-Assisted Instruction: A Theoretical

Framework.” International Journal of Man-Machine Studies, Vol. 29, pg. 227-255.

[35] Burke, R. & Funaro, G. M. (1990). “Case-based Environments for Learning.” Work¬

ing Notes of the AAAI Spring Symposium on Knowledge-Based Environments for

Learning and Teaching, pg. 63-67: March, 1990, Stanford, CA.

[36] Burns, H., & Parlett, J. (1989). Proceedings of the Second Intelligent Tutoring Systems

Research Forum. San Antonio, TX: Air Force Systems Command.

[37] Burton, R. R. (1982). “Diagnosing Bugs in a Simple Procedural Skill.” In Sleeman &

Brown (Eds.), Intelligent Tutoring Systems. New York, NY: Academic Press.

[38] Burton, R. R., & Brown, J. S. (1982). “An Investigation of Computer Coaching

for Informal Learning Activities.” In Sleeman &: Brown (Eds.), Intelligent Tutoring

Systems. New York, NY: Academic Press.

[39] Carroll, J. M. & Rosson, M. B. (1987). “Paradox of the Active User.” In Carroll (Ed.),

Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. Cambridge,

MA: The MIT Press.

[40] Cerri, S. A. (1988). “The Requirements of Conceptual Modelling Systems.” In Self,

J. (Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided In¬

struction,, pg. 88-108. New York, NY: Chapman & Hall Computing.

[41] Clancey, W. J. (1982). “Tutoring Rules for Guiding a Case Method Dialogue.” In

Sleeman & Brown (Eds.), Intelligent Tutoring Systems. New York, NY: Academic

Press.

[42] Clancey, W. J. (1985). “Representing Control Knowledge as Abstract Tasks and

Metarules.” In Coombs & Bole (Ed.), Computer Expert Systems. New York: Springer

Verlag.

336

[43] Clancey, W. J. (1986a). “Qualitative Student Models.” In Annual Reviews, Inc. (Eds.),

Annual Review of Computer Science, pg. 381-450: Palo Alto, CA.

[44] Clancey, W. J. (1986b). “From GUIDON to NEOMYCIN and HERACLES in Twenty

Short Lessons: ONR Final Report 1979-1985.” The AI Magazine, August, 1986, pg.

40-187.

[45] Clancey, W., & Joerger, K. (1988). “A Practical Authoring Shell for Apprenticeship

Learning.” Proceedings of ITS-88, pg. 67-74. June 1988, Montreal.

[46] Clark, C. & Peterson, P. (1986). “Teacher’s Thought Processes.” In M. C. Wittrock

(Ed.), Handbook of Research on Teaching, Third Edition. New York: Macmillan Publ.

[47] Clement, J. (1982). “Student’s Preconceptions in Introductory Mechanics.” American

Journal of Physics, Vol. 50 No. 1, pg. 66-77.

[48] Cohen, P. (1991). “Research Methodologies: Finding a Common Ground.” AI Maga¬

zine, Spring 1991, pg. 15-41.

[49] Cohen, P. & Howe, A. (1988a). “How Evaluation Guides AI Research.” AI Magazine,

Winter 1988.

[50] Cohen, P. & Howe, A. (1988b). “Toward AI Research Methodology: Three Case

Studies in Evaluation.” Univ. of Massachusetts Dept, of Computer and Information

Science Technical Report 88-31.

[51] Cohen, P., & Gruber, T. (1985). “Reasoning About Uncertainty: A Knowledge Rep¬

resentation Perspective.” Univ. of Massachusetts Dept, of Computer and Information

Science Tech. Report 85-24.

[52] Collins, A. (1977). “Processes in Acquiring Knowledge.” In Anderson, R., Spiro, R.,

& Montagne, W. (Eds.), Schooling and the Acquisition of Knowledge. Hillsdale, NJ:

Lawrence Erlbaum.

[53] Collins, A. & Stevens, A. (1983). “A Cognitive Theory of Inquiry Teaching.” In Reige-

luth, C. (Ed.), Instructional-Design Theories and Models, pg. 247-278. Hillsdale, NJ:

Lawrence Erlbaum.

[54] Collins, A., Brown, J. S., & Newman, S. E. (1986). “Cognitive Apprenticeship: Teach¬

ing the Craft of Reading, Writing, and Mathematics.” BBN Laboratories Incorpo¬

rated, Technical Report No. 6459.

[55] Confrey, J. (1985). “A Constructivist View of Mathematics Instruction: A Theoretical

Perspective.” Proceedings of the American Educational Research Association.

[56] Corbett, A. T. & Anderson, J. R. (1990). “The Effect of Feedback Control on Learning

to Program with the LISP Tutor.” Proceedings of the Twelfth Annual Conference of

the Cognitve Science Society, pg. 796-806. July 1990, Cambridge, MA.

[57] Crandall, B. W. (1989). “A Comparative Study of Think-Aloud and Critical Decision

Knowledge Elicitation Methods.” SIGART Newsletter, No. 108, pg. 144-146.

337

[58] Davis, R., Buchanan, B., & Shortlife, E. (1977). “Production Rules as a Representa¬

tion for a Knowledge-Based Consultant Program.” Artificial Intelligence, Vol. 8 No.

1.

[59] Derry, S. J., Hawkes, L. W., Ziegler, U. (1988). “A Plan-Based Opportunistic Ar¬

chitecture for Intelligent Tutoring.” Proceedings of ITS-88, pg. 116-123. June 1988,

Montreal, Canada.

[60] Dillenbourg, P. (1988). “A Model of Knowledge Acquisition by Intelligent Tutoring

Systems.” Proceedings of ITS-88, pg. 145-153. June 1988, Montreal, Canada.

[61] Dreyfus, H. (1985). “From Micro-Worlds to Knowledge Representation: AI at an

Impasse.” In Brachman & Levesque (Eds.), Readings in Knowledge Representation.

Los Altos, CA: Morgan Kaufmann.

[62] Duckworth, E., Kelley, J., & Wilson, S. (1987). “AI Goes to School.” Academic Com¬

puting, November, 1987, pg. 6-63.

[63] Ericcson, K. A. & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as Data.

Cambridge, MA: The MIT Press.

[64] Flavell, J. H. (1981). “Metacognition and Cognitive Monitoring: A New Area of

Cognitive Development Inquiry.” American Psychologist, Vol. 34, pg. 906-911.

[65] Ford, L. (1988). “The Appraisal of an ICAI System.” In Self (Ed.), Artificial Intelli¬

gence and Human Learning. New York: Chapman and Hall.

[66] Frye, D., Littman, D. C., Soloway, E. (1988). “The Next Wave of Problems in ITS:

Confronting the ‘User Issues’ of Interface Design and System Evaluation.” In Psotka,

J., Massey, L. D., Muttter, S. A. (Eds.), Intelligent Tutoring Systems: Lessons

Learned, pg. 451-478. Hillsdale, NJ: Lawrence Erlbaum.

[67] Gagne, R. M. (1974). “Task Analysis—Its Relation To Content Analysis.” Educational

Psychologist, Vol. 11, No. 1, pg. 11-18.

[68] Gagne, R. M. (1985). The Conditions of Learning. New York: Holt, Rinehart, and

Winston.

[69] Gaines, B. R. & Boose, J. H. (1988). “Knowledge Aquisition for Knowledge-Based

Systems.” In Gaines & Boose (Ed.), Knowledge Acquisition for Knowledge-Based Sys¬

tems: Knowledge-Based Systems Volume 1, pg. xiii-xix. New York: Academic Press.

[70] Gane, R. & Briggs, L. (1979). Principles of Instructional Design. Holt, Rinehart and

Winston.

[71] Garg-Janardan, C. & Salvendy, G. (1988). “A Conceptual Framework for Knowledge

Elicitation.” In Boose & Gaines (Ed.), Knowledge Acquision Tools for Expert Systems:

Knowledge-Based Systems Volume 2, pg. 119 - 129. New York: Academic Press.

[72] Gentner, D. & Stevens, A. (Eds.) (1983). Mental Models. Hillsdale, NJ: Lawrence

Erlbaum.

338

[73] Gery, G. (1987). Making CBT Happen. Boston, MA: Weingarten Publ.

[74] Gilbert, G. N (1987). “Question and Answer Types.” In D. S. Moralee (Ed.), Research

adn Development in Expert Systems IV, pg. 162-172. Cambridge, MA: Cambridge

Univ. Press.

[75] Gilmore, D. & Self, J. (1988). “The Application of Machine Learning to Intelligent

Tutoring Systems.” In Self, J. (Ed.), Artificial Intelligence and Human Learning:

Intelligent Computer-Aided Instruction, pg. 179-196. New York: Chapman & Hall

Computing.

[76] Glaser, B. G. & Strauss, A. I. (1967). The Discovery of Grounded Theory: Strategies

for Qualitative Research. Hawthorne, NY: Aldine de Gruyter.

[77] Goldstein, I. P. (1982). “The Genetic Graph: A Representation of the Evolution of

Procedural Knowledge.” In Sleeman &: Brown (Eds.), Intelligent Tutoring Systems.

New York, NY: Academic Press.

[78] Gould, J. D. (1988). “How to Design Usable Systems.” In Helander, M. (Ed.), Hand¬

book of Human-Computer Interaction, pg. 272-298. Amsterdam: Elsevier Science

North Holland.

[79] Gruber, T. (1987). “A Method for Acquiring Strategic Knowledge from Experts.”

Univ. of Massachusetts Dept, of Computer and Information Science Tech. Report.

[80] Gruber, T. (1988). “The Acquisition of Strategic Knowledge.” Univ. of Massachusetts

Dept, of Computer and Information Science Tech. Report 88-101.

[81] Halasz, F. G., Moran, T. P., & Trigg, R. H. (1986). Notecards in a Nutshell. Palo

Alto, CA: Intelligent Systems Lab.

[82] Halff, H. (1988). “Curriculum and Instruction in Automated Tutors.” In Poison

& Richardson (Eds.), Foundations of Intelligent Tutoring Systems. Hillsdale, NJ:

Lawrence Erlbaum.

[83] Hart, A. (1986). Knowledge Acquisition for Expert Systems. New York: McGraw-Hill.

[84] Hoffman, R. (1987). “The Problem of Extracting the Knowledge of Experts From the

Perspective of Experimental Psychology.” AI Magazine, Summer 1987.

[85] Hoffman, R. (1989). “A Brief Survey of Methods for Extracting the Knowledge of

Experts.” SIGART Newsletter, No. 108, pg. 19-27.

[86] Hunt, B (1962). Concept Learning: An Information Processing Problem. New York:

John Wiley and Sons.

[87] Issac, S. & Michael, W. (1977). Handbook in Research and Evaluation. San Diego,

CA: EDITS Publishers.

339

[88] Johnson, W. B. (1988). “Pragmatic Considerations in Research, Development, and

Implementation of Intelligent Tutoring Systems.” In Poison & Richardson (Eds.),

Foundations of Intelligent Tutoring Systems, pg. 191-208. Hillsdale, NJ: Lawrence

Erlbaum.

[89] Johnson, W. L. (1988). “Modelling Programmers’ Intentions.” In Self, J. (Ed.), Arti¬

ficial Intelligence and Human Learning: Intelligent Computer-Aided Instruction, pg.

374-390. New York, NY: Chapman & Hall Computing.

[90] Johnson, W.L. & Soloway, E. (1987). “PROUST: An Automatic Debugger for Pascal

Programs.” In Kearsley, G. (Ed.), Artificial Intelligence and Instruction: Applications

and Methods. Reading, MA: Addison-Wesley.

[91] Jones, M. & Wipond, K. (1989). “Intelligent Environments for Curriculum and Course

Development.” In Goodyear (Ed.), Teaching Knowledge and Intelligent Tutoring. Nor¬

wood, NJ: Ablex.

[92] Joyce, B. & Weil, M. (1972). Models of Teaching. Englewood Cliffs, NJ: Prentice-Hall.

[93] Kearsley, G. (Ed.) (1987). Artificial Intelligence and Instruction, Applications and

Methods. Reading, MA: Addison-Wesley.

[94] Kimbal, R. (1982). “A Self-improving Tutor for Symbolic Integration.” In Sleeman &

Brown (Eds.), Intelligent Tutoring Systems. New York, NY: Academic Press.

[95] Koedinger, K. R. & Anderson, J. R. (1990). “Theoretical and Empirical Motivations

for the Design of ANGLE: A New Geometry Learning Environment.” Working Notes

of the AAAI Spring Symposium on Knowledge-based Environments for Learning and

Teaching, pg. 6-10: March, 1990, Stanford, CA.

[96] Kopec, D. & Latour, L. (1989). “Towards an Expert /Novice Learning System With

Application to Infectious Disease.” SIGART Newletter, No. 108, pg. 140-143.

[97] LaFrance, M. (1989). “The Quality of Expertise: Understanding the Differences Be¬

tween Experts and Novices.” SIGART Newsletter, No. 108, pg. 6-14.

[98] Lajoie, S. (1986). “Cognitive Task Analysis: Implications for Intelligent Tutor Devel¬

opment.” Presented at the AERA Annual Meeting, San Francisco, April 1986.

[99] Lawler, R. & Yazdani, M. (Eds.) (1987). Artificial Intelligence and Education, Volume

One, Learning Environments and Tutoring Systems. Norwood, NJ: Ablex Publishing.

[100] LeClair, S. R. (1989). “Interactive Learning: A Multiexpert Paradigm for Acquiring

New Knowledge.” SIGART Newsletter, No. 108, pg. 34-44.

[101] Leinhardt, G. & Greeno, J. G. (1986). “The Cognitive Skill of Teaching.” Journal of

Educational Psychology, Vol. 78, No. 2, pg. 75-95.

[102] Lenat, D, Prakash, M., & Shepherd, M. (1986). “CYC: Using Common Sense Knowl¬

edge to Overcome Brittleness and Knowledge Acquisition Bottlenecks.” AI Magazine,

Winter 1986, pg. 65-85.

340

[103] Lepper, M.R. & Chabay, R.W. (1988). “Socializing the Intelligent Tutor: Bringing

Empathy to Computer Tutors.” In Mandl, H. & Lesgold, A. (Eds.), Learning Issues

for Intelligent Tutoring Systems. NY: Springer-Verlag.

[104] Lesgold, A. (1988). “Toward a Theory of Curriculum Development for Use in Design¬

ing Insrtuctional Systems.” In Mandl & Lesgold (Eds.), Learning Issues for Intelligent

Tutoring Systems. New York: Springer-Verlag.

[105] Lesser, V. (1984). “Control in Complex Knowledge-based Systems.” Tutorial at the

IEEE Computer Society AI Conference.

[106] Lewis, M. W., McArthur, D., Stasz, C., Zmuidzinas, M. (1990). “Discovery-Based

Tutoring in Mathematics.” Working Notes of the AAAI Spring Symposium on

Knowledge-Based Environments for Learning and Teaching, pg. 21-28: March, 1990,

Stanford, CA.

[107] Lewis, M.W., Milson, R., & Anderson, J.R. (1987). “The Teacher’s Apprentice: De¬

signing an Intelligent Authoring System for High School Mathematics.” In Kearsley,

G. (Ed.), Artificial Intelligence and Instruction: Applications and Methods. Reading,

MA: Addison-Wesley.

[108] Littman, D. & Soloway, E. (1988). “Evaluating ITSs: The Cognitive Science Perspec¬

tive.” In Poison & Richardson (Eds.), Foundations of Intelligent Tutoring Systems,

pg. 209-242. Hillsdale, NJ: Lawrence Erlbaum.

[109] Lockhead, J. & Clement, J (Eds.) (1979). Cognitive Process Instruction. New York:

The Franklin Institute Press.

[110] Macmillan, S., Emme, D., & Berkowitz, M. (1988). “Instructional Planners, Lessons

Learned.” In Psotka, Massey, & Mutter (Eds.), Intelligent Tutoring Systems, Lessons

Learned. Hillsdale, NJ: Lawrence Erlbaum.

[111] Mandl, H. & Lesgold, A. (Eds.) (1988). Learning Issues for Intelligent Tutoring Sys¬

tems. New York: Springer-Verlag.

[112] McCalla, G. & Greer, J. (1988). “Intelligent Advising in Problem Solving Domains:

The SCENT-3 Architecture.” Proceedings of ITS-88, pg. 124-131. June, 1988, Mon¬

treal, Canada.

[113] McCaslin, H. H. Jr. & Boord, P. M. (1990). “Project Development: Taking a Closer

Look at the Subject Matter Expert.” Instruction Delivery Systems, July/August 1990,

pg. 21-24.

[114] McDonald, D., Brooks, J., Woolf, B., & Werner, P. (1986). “Transition Networks for

Discourse Management.” Univ. of Massachusetts Dept, of Computer and Information

Science working paper.

[115] McGraw, K. L. (1989). “Knowledge Acquisition for Intelligent Instructional Systems.

Journal of Artificial Intelligence in Education, Vol. 1 No. 1, pg. 11-26.

341

[116] Means, B. & Gott, S. P. (1988). “Cognitive Task Analysis as a Basis for Tutor Devel¬

opment: Articulating Abstract Knowledge Representations.” In Psotka, J., Massey,

L. D., Mutter, S. A. (Eds.), Intelligent Tutoring Systems: Lessons Learned, pg. 35-58.
Hillsdale, NJ: Lawrence Erlbaum.

[117] Merriam, S. (1989). Case Study Research in Education, A Qualitative Approach. San
Francisco: Jossey-Bass Publ.

[118] Merrill, D. & Tennyson, R. (1987). Teaching Concepts: An Instructional Design

Guide. Englewood Cliffs, NJ: Educational Technology Publications.

[119] Merrill, M. D. (1983). “Component Display Theory.” In Reigeluth (Ed.), Instructional

Design Theories and Models Hillsdale, NJ: Lawrence Erlbaum.

[120] Merrill, M. D. (1987). “An Expert System for Instructional Design.” IEEE Expert,

Summer 1987, pg. 25-37.

[121] Merrill, M. D. & Li, Z. (1989). “An Instructional Design Expert System.” Journal of

Computer-Based Instruction, Vol. 16, No. 3, pg. 95-101.

[122] Merrill, M. D., Li, Z., & Jones, M. (1990). “Second Generation Instructional Design.”

Educational Technology, February 1990, pg. 7-14.

[123] Mervis, B. & Rosh, E. (1981). “Categories of Natural Objects.” Annual Review of

Psychology, Vol. 32.

[124] Miller, J. R. (1988). “The Role of Human-Computer Interaction in Intelligent Tu¬

toring Systems.” In Poison & Richardson (Eds.), Foundations of Intelligent Tutoring

Systems, pg. 143-190. Hillsdale, NJ: Lawrence Erlbaum.

[125] Murray, K. S. (1988). “KI: An Experiment in Automating Knowledge Integration.”

Univ. of Texas at Austin AI Lab, Technical Report AI88-90.

[126] Murray, T. (1987). “Toward a General Architecture for Intelligent Tutoring Systems.”

Univ. of Massachusetts Dept, of Computer and Information Science Tech. Report 87-

89. Amherst, MA.

[127] Murray, T. (1988). “Teaching Concepts with Examples: A Literature Exploration and

Synthesis with Implimentation for ITS Design.” , (Working paper).

[128] Murray, T. & Woolf, B. P. (1990). “A Knowledge Acquisition Framework Facilitating

Multiple Tutoring Strategies.” Working Notes for AAAI Symposium on Knowledge-

Based Environments for Learning and Teaching. May 1990, Stanford, CA.

[129] Murray, T., Schultz, K., Brown, D., Clement, J. (1990). “An Analogy-Based Com¬

puter Tutor for Remediating Physics Misconceptions.” Interactive Learning Environ¬

ments, Vol. 1, No. 2, pg. 79-101.

[130] National Science Foundation (1983). Educating America for the 21st Century. Wash¬

ington, DC.

342

[131] Nickerson, R. S. & Pew, R. W. (1990). “Toward More Compatible Human-Computer

Interfaces.” IEEE Spectrum, July 1990, pg. 40-43.

[132] Nicolson, R. (1988). “SCALD-Towrards an Intelligent Authoring System.” In J. Self

(Ed.), Artificial Intelligence and Human Learning. New York: Chapman and Hall.

[133] Nielsen, J. (1990). “The Art of Navigating Through Hypertext.” Communications of

the ACM, Vol. 33, pg. 296-310.

[134] Norman, D. A. (1983). “Some Observations on Mental Models.” In Gentner & Stevens

(Eds.), Mental Models. Hillsdale, NJ: Lawrence Erlbaum.

[135] O’Shea, T. (1982). “A Self-improving Quadratic Tutor.” In Sleeman Sz Brown (Eds.),

Intelligent Tutoring Systems. New York, NY: Academic Press.

[136] Ohlsson, S. (1986). “Some Principles of Intelligent Tutoring.” Instructional Science,

Vol. 14.

[137] Park, 0. P., Perez, R. S., & Seidel, R. J. (1987). “Intelligent CAI: Old Wine in

New Bottles, or a New Vintage?.” In G. Kearsley (Ed.), Artificial Intelligence and

Instruction: Applications and Methods, pg. 11-46. Reading, MA: Addison-Wesley.

[138] Patterson, A. C. & Bloch, B. (1987). “Formative Evalution: A Process Required in

Computer-Assisted Instruction.” Educational Technology, November, 1987, pg. 26-30.

[139] Patton, M. Q. (1980). Qualitative Evaluation Methods. Beverly Hills, CA: Sage Pub¬

lications.

[140] Payne, S. J. (1988). “Methods and Mental Models in Theories of Cognitive Skill.” In

J. Self (Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided

Instruction, pg. 69-87. New York: Chapman &: Hall Computing.

[141] Perau, D. (1987). “Knowledge Acquisition in the Development of a Large Expert

System.” AI Magazine, Summer 1987, pg. 43-51.

[142] Poison, M, & Richardson, J. (Eds.) (1988). Foundations of Intelligent Tutoring Sys¬

tems. Hillsdale, NJ: Lawrence Erlbaum Associates.

[143] Psotka, J. Massey, L. & Mutter, S. (Eds.) (1988). Intelligent Tutoring Systems,

Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum.

[144] Reigeluth, C. (1983a). “Instructional Design: What is it and Why is it?.” In Reigeluth

(Ed.), Instructional Design Theories and Models. Hillsdale, NJ: Lawrence Erlbaum.

[145] Reigeluth, C. (1983b). “The Elaboration Theory of Instruction.” In Reigeluth (Ed.),

Instructional Design Theories and Models Hillsdale, NJ: Lawrence Erlbaum.

[146] Reigeluth, C. (Ed.) (1983c). Instructional-Design Theories and Models. Hillsdale, NJ:

Lawrence Erlbaum.

[147] Reiser, B., Anderson, J., & Farrell, R. (1985). “Dynamic Student Modeling in an

Intelligent Tutor for Lisp Programming.” IJCAI-85 Proceedings.

343

[148] Ridgeway, J. (1988). “Of Course ICAI is Impossible... Worse though, It Might Be

Seditious.” In J.A. Self (Ed.), Artificial Intelligence and Human Learning: Intelligent

Computer-Aided Instruction. New York: Chapman &: Hall.

[149] Rissland, E, Valcarce, E. & Ashley, K. (1984). “Explaining and Arguing With Exam¬

ples.” Proceedings of AAAI-84, August 1984. Austin, TX.

[150] Rissland, E. (1985). “The Structure of Knowledge in Complex Domains.” In Chipman,

Segal, & Glaser (Eds.), Thinking and Learning Skills, Vol. 2: Research and Open

Questions. Hillsdale, NJ: Lawrence Erlbaum.

[151] Rosenberg, R. (1987). “A Critical Analysis of Research on Intelligent Tutoring Sys¬

tems.” Educational Technology, November, 1987, pg. 7-13.

[152] Russel, D. M., Moran, T. P., & Jordan, D. S. (1988). “The Instructional Design

Environment.” In Psotka, Massey, & Mutter (Eds.), Intelligent Tutoring Systems:

Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum.

[153] Russell, D. (1988). “IDE: The Interpreter.” In Psotka, Massey, & Mutter (Eds.),

Intelligent Tutoring Systems, Lessons Learned Hillsdale, NJ: Lawrence Erlbaum.

[154] Sacerdoti, E. (1974). “Planning in a Hierarchy of Abstraction Spaces.” Artificial In¬

telligence, Vol. 5 No. 2.

[155] Sandberg, J., Breuker, J., Winkels, R. (1988). “Research on HELP-Systems: Empiri¬

cal Study and Model Construction.” Submitted for ECAI-88, Munchen.

[156] Schoenfeld. A. H. (1985). “Metacognitive and Epistemological Issues in Mathemat¬

ical Understanding.” In Silver (Ed.), Teaching and Learning Mathematical Problem

Solving, pg. 361-380. Hillsdale, NJ: Lawrence Erlbaum.

[157] Schofield, J. & Verban, D. (1988). “Barriers and Incentives To Computer Usage in

Teaching.” LRDC Technical Report No. 1.

[158] Schooler, L. J. & Anderson, J. R. (1990). “The Disruptive Potential of Immediate

Feedback.” Proceedings of the Twelfth Annual Conference of the Cognitive Science

Society, pg. 702-708. July, 1990, Cambridge, MA.

[159] Schultz, K., Murray, T., Clement, J., & Brown, D. (1987). “Overcoming Misconcep¬

tions with a Computer-based Tutor.” Presented at the Second International Seminar

on Misconceptions and Educational Strategies for Science and Mathematics, Vol. 3.

July, 1987, Ithica, NY.

[160] Self, J. (1985). “Intelligent Computer Assisted Instruction.” Unpublished paper pre¬

sented at the ICAI Spring Seminar. Cambridge.

[161] Self, J. A. (1988b). “Bypassing the Intractable Problem of Student Modelling.” Pro¬

ceedings of ITS-88, pg. 18-24. June 1988, Montreal, Canada.

[162] Self, J. A. (Ed.) (1988a). Artificial Intelligence and Human Learning. New York:

Chapman and Hall.

344

[163] Servi, D. & Woolf, B. (1986). “E.T.: An Architecture for Error-Triggered Remediation

in Intelligent Tutoring Systems.” Presented to the 1986 AI in Education Conference.

Pittsburgh, NJ.

[164] Shadbolt, N. & Burton, M. (1989). “The Empirical Study of Knowledge Elicitation

Techniques.” SIGART Newsletter, No. 108, pg. 15-18.

[165] Shaw, M. L. G. (1989). “A Grid-Based Tool for Knowledge Acquisition: Validation

with Multiple Experts.” SIGART Newsletter, No. 108, pg. 168-169.

[166] Shaw, M. L. G. (Ed.) (1981). Recent Advances in Personal Construct Technology.

New York: Academic Press.

[167] Shaw, M. L. G. & Gaines, B. R. (1986). “Advances in Interactive Knowledge Engineer¬

ing.” Submitted to Expert Systems ’86. University of Calgary, Alberta, CANADA:

Dept, of Computer Science.

[168] Shute, V. J. (1990). “Rose Garden Promises of Intelligent Tutoring Systems: Blossom

or Thorn?.” Presented at Space Operations, Applications and Research Symposium,

June 1990, Albuquerque, NM.

[169] Simon, H. A. (1981). The Science of the Artificial. Cambridge, MA: MIT Press.

[170] Skinner, B.F. (1957). Verbal Behavior. New York: Appleton-Century-Crofts.

[171] Slagle, J. & Wick, M. (1988). “A Method for Evaluating Candidate Expert System

Applications.” AI Magazine, Winter 1988, pg. 45-63.

[172] Sleeman, D. (1982). “Assessing Aspects of Competence in Basic Algebra.” In Sleeman

& Brown (Eds.), Intelligent Tutoring Systems. New York: Academic Press.

[173] Sleeman, D. (1987a). “PIXIE: A Shell for Developing Intelligent Tutoring Systems.”

In Lawler & Yazdani (Eds.), Artificial Intelligence and Education: Volume One. Nor¬

wood, NJ: Ablex.

[174] Sleeman, D. (1987b). “Micro-Search: A Shell for Building Systems to Help Students

Solve Nondeterministic Tasks.” In G. Kearsley (Ed.), Artificial Intelligence and In¬

struction: Applications and Methods. Reading, MA: Addison-Wesley.

[175] Sleeman, D., Brown, J. S. (Eds.) (1985). Intelligent Tutoring Systems. New York:

Academic Press.

[176] Stevens, A. & Collins, A. (1977). “The Goal Structure of a Socratic Tutor.” Bolt

Beranek and Newman Inc. Technical Report 3518. Cambridge, MA.

[177] Stevens, A. &: Steinberg, C. (1981). “A Typology of Explanations and its Application

to Intelligent Computer Aided Instruction.” Technical Report No. 4626. Cambridge,

MA: Bolt Beranek and Newman, Inc.

[178] Tennyson, R. (1986). “MAIS: An Educational Alternative of ICAI.” Educational Tech¬

nology, May 1987, pg. 22-28.

345

[179] Tennyson, R. D. & Rasch, M. (1988). “Linking Cognitive Learning Theory to Instruc¬

tional Prescriptions.” Instructional Science, Vol. 17, pg. 369-385.

[180] Tennyson, R. & Christensen, D. (1988). “MAIS: An Intelligent Learning System.” In

Jonassen (Ed.), Instructional Designs for Microcomputer Courseware. Hillsdale, NJ:

Lawrence Erlbaum.

[181] Tennyson, R. Sz Park, 0. (1980). “The Teaching of Concepts: A Review of Instruc¬

tional Design Research Literature.” Review of Educational Research, Vol. 50 No. 1,

pg. 55-70.

[182] U.S. Department of Education (1983). Proceedings of the Office of Education Research

and Improvement. Washington, DC.

[183] U.S. Department of Education (1983). Computers in Education: Realizing the Poten¬

tial. Washington, DC.

[184] Van Heuvelen, A. (1987). “A Hierarchical Spiral Method of Teaching Physics.” Pre¬

sented at the Summer Meeting of the American Association of Physics Teachers,

Bozeman, MT.

[185] VanLehn, K. (1988). “Toward a Theory of Impasse-Driven Learning.” In Mandl, H.

& Lesgold, A. (Eds.), Learning Issues for Intelligent Tutoring Systems. NY: Springer-

Verlag.

[186] VanLehn, K. (1988b). “Student Modeling.” In Poison & Richardson (Eds.), Founda¬

tions of Intelligent Tutoring Systems. Hillsdale, NJ: Lawrence Erlbaum.

[187] Varma, V. Sz Williams, P. (Eds.) (1976). Piaget, Psychology and Education. Itasca,

IL: F. E. Peacock Publ.

[188] Von Glasersfeld, E. (1989). “Knowing without Metaphysics: Aspects of the Radi¬

cal Constructivist Position.” In F. Steier (Ed.), Research and Reflexivity: Toward a

Cybernetic/Social Constructionist Way of Knowing. London: Sage Publications.

[189] Wenger, E. (1987). Aritificial Intelligence and Tutoring Systems. Los Altos, CA: Mor¬

gan Kauffmann.

[190] White, B. Sz Frederiksen, J. (1986). “Progressions of Qualitative Models as a Founda¬

tion for Intelligent Learning Environments.” Technical Report No. 6277. Cambridge,

MA: Boldt Beranek and Newman.

[191] Whiteside, J., Bennett, J., & Holtzblatt, K. (1988). “Usability Engineering: Our

Experience and Evolution.” In M. Helander (Ed.), Handbook of Human-Computer

Interaction Amsterdam: Elsevier Science North-Holland Press.

[192] Winkels, R., Breuker, J., & Sandberg, J. (1988). “Didactic Discourse in Intelligent

Help Systems.” Proceedings of ITS-88, pg. 279. Montreal, Canada.

[193] Winkels, R., Sandberg, J. & Breuker, J. (1986). “Coaching Strategies and Tactics of

Intelligent Help Systems.” Memo 78 of the VF-Project. University of Amsterdam.

346

[194] W'inne, P. (1989). “Theories of Instruction and of Intelligence for Designing Artificially

Intelligent Tutoring Systems.” Educational Psychologist, Vol. 24 No. 3, pg. 229-259.

[195] "Winne, P. & Kramer, L. (1988). “Representing and Inferencing with Knowledge about

Teaching: DOCENT.” Proceedings of ITS-88. June 1988, Montreal, Canada.

[196] Winograd, T. & Flores, F. (1986). Understanding Computers and Cognition: A New

Foundation for Design. Norwood, NJ: Ablex.

[197] Woods, W. (1970). “Transition Network Grammars for Natural Language Analysis.”

Communications of the ACM, Vol. 13, No. 10.

[198] Woolf B. P. & Cunningham, P. (1987). “Multiple Knowledge Sources in Intelligent

Tutoring Systems.” IEEE Expert, Summer 1987, pg. 41-54.

[199] Woolf, B. P. (1990). “Knowledge-Based Tutors: An Artificial Intelligence Approach

to Education.” Ed.D. Dissertation, Univ. of Massachusetts School of Education.

Amherst, MA.

[200] Woolf, B. P. (in press). “AI in Education.” In Shapiro (Ed.), Encyclopedia of AI,

Second Edition John Wiley & Sons.

[201] Woolf, B. & Blegen, D., Jansen, D., Verloop, A. (1986). “Teaching a Complex Indus-

tried Process.” Proceedings of AAAI-86, pg. 722-727.

[202] Woolf, B. & McDonald, D. (1984). “Building a Computer Tutor: Design Issues.”

IEEE Computer, September 1984, pg. 61-73.

[203] Woolf, B. & Murray, T. (1987). “A Framework for Representing Tutorial Discourse.”

Proceedings of IJCAI-87, pg. 189-192.

[204] Woolf, B. & Murray, T. (1987). “Discourse Transition Networks for Intelligent Tutor¬

ing Systems.” Unpublished paper presented at the Third International Conference on

Artificial Intelligence and Education. May 1987, Pittsburgh, PA.

[205] Woolf, B., Murray, T., Suthers, D. & Schultz, K. (1988). “Knowledge Primitives for

Tutoring Systems.” Proceedings of ITS-88, pg. 491-498. June 1988, Montreal, Canada.

[206] Young, R. M. (1983). “Surrogates and Mappings: Two Kinds of Conceptual Models

for Interactive Devices.” In Gentner & Stevens (Eds.), Mental Models. Hillsdale, NJ:

Lawrence Erlbaum.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1-1-1992

	Facilitating teacher participation in intelligent computer tutor design : tools and design methods.
	Thomas J. Murray
	Recommended Citation

	Facilitating teacher participation in intelligent computer tutor design : tools and design methods

