
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1992

Facilitating teacher participation in intelligent
computer tutor design : tools and design methods.
Thomas J. Murray
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Murray, Thomas J., "Facilitating teacher participation in intelligent computer tutor design : tools and design methods." (1992).
Doctoral Dissertations 1896 - February 2014. 4903.
https://scholarworks.umass.edu/dissertations_1/4903

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/4903?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




Facilitating Teacher Participation in 
Intelligent Computer Tutor Design: 

Tools and Design Methods 

A Dissertation Presented 

by 

Thomas J. Murray 

Submitted to the Graduate School of the 

University of Massachusetts in partial fulfillment 

of the requirements for the degree of 

Doctor of Education 

February 1992 

School of Education 



© Copyright by Thomas J. Murray 1992 

All Rights Reserved 

This research was supported in part by: 

Apple Computer Inc., Cupertino, CA. 

The National Science Foundation under grant number MDR 875162. 

The Office of Naval Research under a University Research 

Initiative Grant, no. N00014-86-K-0764. 



Facilitating Teacher Participation in 

Intelligent Computer Tutor Design: 

Tools and Design Methods 

A Dissertation Presented 

by 

Thomas J. Murray 

Approved as to style and content by: 

Beverly Park Woolf, Member 



ACKNOWLEDGMENTS 

It has been a long, productive, and satisfying journey, marked by the guidance and 

support of many. Foremost, I would like to thank my committee members who each, in his 

or her own way, inspired me by modeling how to be successful academicians without being 

plagued by the imposing furrowed brow and pale ivory-tower glow; by the graceful manage¬ 

ment of their priorities they blend work, family, friendships, and exercise into balanced full 

lives. 

Klaus Schultz has been a good friend and strong ally, and a careful reader of the moun¬ 

tains of material I’ve asked his advice on over the years, pointing out many connections 

in my work that I had missed. Beverly Woolf’s Strunk-&;-White-style editing, sometimes 

ruthless but always from the heart, have been essential in transforming this and many other 

documents from rhetorical gobbledygook to a state of greater elegance; her support has been 

multi-faceted, generous, and consistent. Howard (Hap) Peelle, whose insightful and diver¬ 

gent thinking has lead me to broaden my perspective on many occasions, pointed the way 

in my early tenure as a graduate student, and he has shown confidence in my intelligence 

and judgment throughout. I would also like to acknowledge the important mentorship of 

John Clement in several projects during my tenure as a graduate student. 

For the execution of this research there were many helping hands. One could not hope 

for a better working partner than Charlie Camp, who, with determination, patience, and 

good cheer underwent a host of trials and tribulations wearing the triple-hats of subject 

matter expert, experimental subject, and co-researcher. Thanks to Frank Linton and Kim 

Gonzalez for their hard work as knowledge base managers and for important feedback about 

software usability. 

This journey would have been even longer and much less pleasant had it not been for 

the programming assistance and advice of: Miguel Cardos (porting code from HP to Mac); 

IV 



Craig Fournier, Raul Bose, and the SFSU crew (crane boom simulation); Marcus Weinhardt 

(graphical network editor); Jim Salehi (help system interface); and finally, Dan Suthers (Lisp 

wisdom and magic!). Additional gratitude is owed to Dan Suthers and Miguel Cardos for 

loyal friendship and key discussions on early versions of the software and to Frank Linton 

for useful feedback on this document. 

Generous financial and moral support for myself and the UMass KCSG lab was received 

through Barbara Bowen of Apple Computers External Research Group, Mark Miller of 

Apple Computer’s Business Learning Research group, and Andrew Molnar of the National 

Science Foundation. 

When I began this project in earnest I set a challenging goal for myself to maintain peace 

of mind, physical health, and enjoyment as top priorities. Thus, “the real dissertation,” as I 

called it, was the “struggle” to live my life as a university researcher and doctoral candidate 

without struggling. I have succeeded (to my amazement) in large part due to having the 

people mentioned below in my life. 

Thanks to my parents Joe Murray and Dot Murray for steadfast belief in my abilities 

and graceful tolerance of my decisions in my transition from engineer-making-big-bucks into 

realms in which they had little experience (academia, meditation, dance, martial arts, etc.). 

Their consistent faith in me since childhood was internalized and has been at the core of 

all I have ever accomplished. 

I would like to thank Jeanne Edelen, Caroline Ayres, and Charlie Morrison for emotional 

support, and Felix Bizaoui for being my pal and helping me remember the real dissertation. 

Special thanks and hugs to Victoria Yoshen for making the final eight months of this project 

one of the most wonderful periods of my life. 

Finally I would like to express my special gratitude to Keith Otis in writing (if I did 

so in spoken words he would pretend not to understand and ask me to race him around 

the back yard or build a dinosaur with LEGOs). He grew from infancy to boyhood as this 

project grew from inception to completion, and has been my greatest teacher and dearest 

companion. 

v 



ABSTRACT 

Facilitating Teacher Participation in 

Intelligent Computer Tutor Design: 

Tools and Design Methods 

FEBRUARY 1992 

THOMAS J. MURRAY, B.S. PHYSICS, WORCESTER POLYTECHNIC INSTITUTE 

M.ED., EDUCATION, UNIVERSITY OF MASSACHUSETTS 

M.S., COMPUTER SCIENCE, UNIVERSITY OF MASSACHUSETTS 

ED.D., EDUCATION, UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Klaus Schultz 

This work addresses the widening gap between research in intelligent tutoring systems 

(ITSs) and practical use of this technology by the educational community. In order to ensure 

that ITSs are effective, teachers must be involved in their design and evaluation. We have 

followed a user participatory design process to build a set of ITS knowledge acquisition tools 

that facilitate rapid prototyping and testing of curriculum, and are tailored for usability 

by teachers. The system (called KAFITS) also serves as a test-bed for experimentation 

with multiple tutoring strategies. The design includes novel methodologies for tutoring 

strategy representation (Parameterized Action Networks) and overlay student modeling (a 

“layered” student model), and incorporates considerations from instructional design theory. 

It also allows for considerable student control over the content and style of the information 

presented. Highly interactive graphics-based tools were built to facilitate design, inspection, 

and modification of curriculum and tutoring strategies, and to monitor the progress of the 

tutoring session. Evaluation of the system includes a sixteen-month case study of three 

educators (one being the domain expert) using the system to build a tutor for statics 
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(forty topics representing about four hours of on-line instruction), testing the tutor on a 

dozen students, and using test results to iteratively improve the tutor. Detailed throughput 

analysis indicates that the amount of effort to build the statics tutor was, surprisingly, 

comparable to similar figures for building (non-intelligent) conventional computer aided 

instructional systems. Few ITS projects focus on educator participation and this work is 

the first to empirically study knowledge acquisition for ITSs. Results of the study also 

include: a recommended “design process” for building ITSs with educator participation; 

guidelines for training educators; recommendations for conducting knowledge acquisition 

sessions; and design tradeoffs for knowledge representation architectures and knowledge 

acquisition interfaces. 
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Chapter 1 

INTRODUCTION 

This document describes the design and formative evaluation of a computer system, 

or set of “tools,” that allow educators (teachers, curriculum designers, and instructional 

theorists) with no experience in computer programming to participate fully in the design, 

building, evaluation, and modification of intelligent computer tutors. The system facilitates 

the process of encoding an instructor’s knowledge about what to teach and how to teach 

in his area of expertise. A computer tutor built using these tools engages the student in a 

highly interactive tutorial session based on multiple strategies defined by an instructor, and 

the tutoring is flexible in responding to students’ needs and to the curriculum context. In 

this document we describe (1) the computer system, (2) our methods for using the system 

to acquire instructional knowledge, and (3) a case study of three educators using the system 

to build a tutor for part of a high school physics curriculum. 

1.1 Background and Motivation 

1.1.1 Intelligent Tutoring Systems 

Computer scientists and educators have had great hope that artificial intelligence tech¬ 

nology could be used to design flexible, effective, and powerful learning environments. In¬ 

telligent tutoring systems1 (ITSs) are computer programs that incorporate artificial in¬ 

telligence (AI) knowledge representation and control paradigms. These paradigms include 

1 Intelligent tutoring systems, intelligent learning environments, knowledge based tutoring systems, and 

intelligent computer aided instruction (ICAI) systems are different terms with similar meaning, i.e computer 

1 
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frame-based and rule-based representations of knowledge (as in expert systems) and explicit 

models of domain expertise,* 2 the student’s knowledge and preferences, and the instructional 

process. One way to describe ITSs is to compare them with traditional computer aided in¬ 

struction (CAI) (see Wenger [1987] for a more detailed introduction to ITSs). In CAI each 

tutorial decision is explicitly encoded, for example, “if the student answers ‘YES’ to ques¬ 

tion #32 give explanation #45.” CAI systems do have limited ability to personalize the 

tutorial, since the material presented depends on the student’s behavior (i.e. the student’s 

answers to questions). However CAI has many problems, including limited flexibility be¬ 

cause the designer must enumerate every possible situation and combination of situations 

the program will respond to, and building and modifying the programs is difficult because 

all important decisions are implicit. Specifically, CAI systems contain knowledge about the 

following implicitly: 

1. structure of the knowledge being taught, 

2. reasons or strategies used to make instructional decisions, and 

3. assumptions about the student’s knowledge or mental state. 

ITS systems add increased sophistication and flexibility by explicitly encoding models 

of the processes relevant to instruction (see Figure 1.1.1), including: 

1. a model of expertise in the domain, 

2. a model of tutoring expertise, and 

3. a model of the student. 

assisted learning programs that incorporate artificial intelligence technology and paradigms. These terms 

can imply a focus on different issues for different authors, but for the purposes of this paper we treat them 

as equivalent, unless otherwise noted. 

2 We use the word “domain” to mean the content area or subject matter area. Domain expertise is 

expertise in solving problems in the domain. Though the meanings are not synonymous, we use the words 

teacher, tutor, domain expert, and instructional designer interchangeably to refer to the hypothetical user 

of the KAFITS tool, or, in some contexts, the teacher who participated in this study. 
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These three models are constructed and/or updated by the ITS as it creates a tutorial 

session on the fly. Modeling domain expertise enables flexibility in generating problems and 

explanations; modeling tutoring expertise enables multiple tutoring styles to be represented 

explicitly, as in the tutoring rule “if student-is-confused then give-more-hints,” and modeling 

the student’s knowledge enables instruction to be tailored to the needs of each student. 

1.1.2 ITS is “AI Complete” 

Intelligent tutoring systems are among the most complex and challenging areas where 

artificial intelligence is being applied. Ultimately, ITS designers strive to endow their sys¬ 

tems with sophisticated “intelligent” capabilities, some of which involve: modeling expert 

level problem solving skills and information organization; constructing a dynamic model 

of the learner’s knowledge, mental state, and beliefs; engaging in meaningful and individ¬ 

ualized dialog with the learner; responding to the learner’s requests for information and 

explanation; incorporating principles and strategies of good tutoring based on learning the¬ 

ories and pragmatic constraints; providing a rich and exciting, yet accessible, environment 

for learning and applying skills; and even incrementally improving their performance in all 

of the above areas as the tutor encounters novel student behavior. The problems of ITS 

construction are said to be “AI complete,” i.e., contained within their solution are the so¬ 

lutions to many of the difficult problems facing the entire field of artificial intelligence (for 

example: natural language generation and understanding, intelligent interfaces, planning, 

knowledge representation, and expert systems). 

1.1.3 Tutoring Systems are Needed 

If ITSs present such difficult challenges why attempt to build them? Research in ITS 

continues because the potential gains are as great as the known difficulties. Education is 

not just an “applications area” in which to test expert systems technology,3 but is an end 

3An expert system is an AI system that simulates expert-level skills using a set of rules that capture the 

nature of the expertise. 
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in itself. Documented deficiencies of our current educational system for both children and 

adults [US Department of Education 1983, National Science Foundation 1983] underscore 

the need for new learning paradigms in schools, home education, and industrial training. 

Personalized tutoring (by human tutors) has been shown to be highly effective [Bloom 1984] 

compared to classroom teaching and individualized (or mastery) learning. But society 

does not have the resources to provide each learner with a skilled tutor in every area. 

Computer programs will not (in the foreseeable future) be as “intelligent” as good human 

tutors in understanding domains or in being sensitive to the learner’s needs, but they can 

improve education by assisting overburdened teachers and instructing in areas where human 

experts are not available. Shute [1990] summarizes several studies that demonstrate that 

in some situations students using ITSs learn more efficiently and effectively than students 

covering the same subject matter in classrooms. Computer tutors can also include learning 

environments, such as simulations of physical systems and interactive databases, which 

would be categorically impossible without the use of computers. 

The success of ITSs does not require all of the sophisticated capabilities and “intelli¬ 

gence” mentioned in Section 1.1.2. Rather, they only have to be sufficiently better than the 

(static) text book or the (impersonal) lecture to make a positive impact on education. 

1.1.4 Problem Areas 

Significant progress has been made in ITS research [Kearsley 1987, Psotka et al. 1988] 

but there are still many unexplored areas and most of the key issues identified have not 

been resolved. Below we describe the issues needing attention that this study addresses: 

ITS research vs. application gap. ITSs are often designed by scientists with little 

experience teaching in the domain of the ITS (except perhaps for computer programming 

domains). It is important for educators (and students as well) to participate in the ITS 

design process. However, as research in ITS continues to produce more sophisticated systems 

and theories, the gap between the research community and the educational community 

continues to widen, because educators’ understanding, acceptance, and use of this research 
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has been much slower than research progress. As this theory-application gap -widens it 

becomes more difficult for educators to participate in ITS research and application, and as a 

result research is becoming increasingly academic and unconnected to the pragmatic aspects 

of teaching and learning. Clancey & Joerger [1988] state that “...the reality today is that the 

endeavor is one that only experienced programmers (or experts trained to be programmers) 

can accomplish. Indeed, research of the past decade has only further increased our standards 

of knowledge representation desirable to teaching, while the tools for constructing such 

programs lag far behind or are not generally available.” 

General frameworks. It is often difficult to apply the ideas generated by one ITS 

research project to another, or to compare two ITS systems [Ohlsson 1986]. This lack of 

generality is due to many factors, including insufficient evaluation, the limited number of 

ITSs designed to answer general theoretical questions, and the lack of a shared conceptual 

vocabulary. Domain independent frameworks, of which few exist, facilitate more and clearer 

collaboration and critique. 

Explicit representation of tutoring strategies. One might think that the major 

focus of ITS research, a field that deals with automating tutoring, would be to simulate 

tutoring and/or teaching expertise. Yet surprisingly little research deals directly with repre¬ 

senting pedagogical knowledge (i.e. knowledge related to teaching and learning in a specific 

domain) or with modeling general pedagogical expertise. ITSs have been designed to tutor 

in many domains, and each designer has his/her own ideas for promoting learning. A few 

systems are based on specific theories of cognition and/or instruction (such as in Anderson 

et al. [1985a]), but in general there is little agreement, and often controversy, about the best 

methods for encouraging learning (in general, and in specific domains). The instructional 

principles or rules underlying ITS design are often ad-hoc and/or not represented explicitly. 

Without explicit representations of the rules or strategies used it is difficult to evaluate or 

build upon ITS designs. 

Multiple tutoring strategies. In addition, very little ITS research incorporates mul¬ 

tiple tutoring strategies. As educators become more involved in the ITS design process, and 
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as ITSs become more educationally realistic, the breadth of content and teaching styles in 

these systems will need to expand. Most intelligent tutoring systems focus on a limited 

instructional domain and embody a single theory of instruction or learning. However, a 

system designed to teach various types of knowledge in multiple domains will need to be 

sensitive to the pedagogical properties of the information being taught and be able to switch 

between multiple tutoring strategies. Systems are needed which facilitate experimentation 

with various tutoring styles, rather than committing to a particular learning theory or 

tutoring style.4 

Experimental ITS workbenches It is not enough to explicitly represent and se¬ 

lect among multiple tutoring strategies—cognitive and educational research is needed to 

determine the most effective strategies for various instructional contexts. Few theory-based 

general paradigms for instruction via intelligent tutoring systems have been put forth, and 

few specific strategies have been tested (Anderson et al. [1984] being a notable excep¬ 

tion). Most relevant (non-computer based) instructional and cognitive theories are not 

operationalized to a level easily implemented in a computer, nor do they anticipate many 

practical factors and domain related idiosyncrasies. More research is needed on computer- 

based instructional strategies, and practicing educators should be involved in this research. 

But since the experience of learning via an intelligent tutoring system is so novel that nei¬ 

ther teachers nor theorists can foresee many crucial issues, much of this research needs to 

be done on-line. The insights, principles, and rules used in ITSs should originate from a 

rich synthesis of learning and instructional theories, insights from practicing teachers, and 

on-line experimentation, and this synthesis can be greatly enhanced by appropriate com¬ 

puter tools. Halff [1988, pg. 99] emphasizes: “...laboratories for systematic manipulation 

of alternative tutoring methods are needed.” 

Instructional design theory. The volumes of work, both experimental and prescrip¬ 

tive, generated by the instructional design research community have been largely ignored 

4Ohlsson [1986, pg. 220] says: “In order to provide adaptive instruction, a tutor must have a wide range 

of instructional actions to choose from.” 
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by the ITS research community5 [Halff 1988]. Yet for decades instructional systems design 

(ISD) has been formulating answers and hypotheses to questions of vital importance to 

ITS. Instructional design theories, although not as well-founded on cognitive theory as 

many in the ITS field would like, address the breadth of situations and practical realities of 

instruction and training. Rather than ignore ISD, ITS researchers should become familiar 

with it and use those ISD principles that are cognitively feasible. 

ITS evaluation. ITS research suffers from a lack of principled evaluation of its ar¬ 

tifacts (as does AI research in general [Buchanan 1987, Rosenberg 1987]). This is partly 

due to a lack of agreement about which experimental and evaluation methods are appropri¬ 

ate, and partly because the field is in a formative stage. Consequently, papers containing 

descriptions of non-substantiated ideas, un-implemented systems, and implemented but 

untested systems are often published. It seems clear [Cohen & Howe, 1988] that traditional 

quantitative scientific analysis is inappropriate in most situations, yet some form of rigor 

must be adhered to if progress in the field is to continue. 

Next we describe the research goals motivated by the above concerns. 

1.2 Description of the Study 

1.2.1 Research Questions and Goals 

The overriding question we address in this study is: 

What are the key issues in the design and use of a tool that allows educators 

to participate intimately in building and evaluating ITS s'! 

This terse summary of our goal is elaborated below where we expand upon each of the 

emphasized terms in the overriding question. 

5Both historical and other reasons are responsible for this lack of collaboration. We do not speculate to 

any length about the reasons. 
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• This is an exploratory study in an area where there has been little previous investi¬ 

gation. Therefore the goal is to identify “key issues” rather than test clearly stated 

hypotheses. 

• “Educators” includes teachers, instructional designers, learning theorists, etc. (espe¬ 

cially those without programming, computer science, or ITS backgrounds). Since the 

effort and expertise required to build an ITS is at least as much as that required to 

write a test book, we do not expect all teachers to participate in ITS construction; 

on the contrary, we assume that practicing classroom teachers and industry trainers 

who help design ITSs will be few in number and “above average” in their teaching 

abilities and knowledge of the domain. However any instructor should be able to use 

the resulting computer tutor in his/her classroom. 

• “Participating intimately” means that the educator is able to design the knowledge 

base, enter information within the knowledge base, rim the tutor to test various as¬ 

pects of it, and modify the knowledge base for debugging or customization. It is 

understood that a knowledge engineer6 (KE) is needed to assist in this process. The 

KE needs to train the user in the practical and conceptual aspects of the tools and be 

available for consultation, but the goal is to have the educator use the tools relatively 

independently. 

• “ITSs” are, for our purposes, computer tutors which behave differently for different 

curriculum characteristics and student characteristics, and in which this flexibility is 

represented explicitly, i.e. not hard-wired. Some characterize “intelligence” in ITSs 

in terms of how well they approximate human tutoring. However, our vision is more 

modest: to build artifacts that are better learning aides than textbooks, classroom 

lectures, or traditional CAI. In addition, the state of the art is far from being able 

to simulate human intelligence, and more importantly, ITSs, in our view, should not 

(and could not) replace human teachers. 

6 A knowledge engineer is a scientist or engineer who works with a domain expert to encode domain 

expertise in an AI system. 



10 

Another framing of this study’s overriding question is: What are the factors involved in 

enabling an instructor to create and evaluate a computer tutor with a high level of complexity 

and flexibility (as described in the description of ITSs above)? 

This research directly addresses the “problem areas” described earlier in this chapter by 

including the following broad goals: 

1. Design an architecture supporting opportunistic invocation of multiple tutoring 

strategies. 

2. Define a conceptual vocabulary for representing the objects, events, and relation¬ 

ships involved in tutoring. 

3. Make the architecture and vocabulary non-technical, i.e., usable by teachers. 

4. Design a knowledge acquisition interface7 which facilitates rapid prototyping and 

easy creation, modification, and testing of both instructional content and tutoring 

strategies. 

5. Incorporate selected findings from instructional design theory and cognitive psy¬ 

chology. 

Our method of addressing these goals was to build the KAFITS (Knowledge Acquisition 

Framework for ITS) system8 and test it on typical users. We refined the broad goals and 

the overarching question discussed above by positing a series of more specific research 

questions, listed below. We did not intend to produce definitive answers to these questions, 

but used them as context to guide the design of the research study. 

1. What are important features for ITS knowledge acquisition systems? 

7Knowledge acquisition is the process of acquiring an expert’s knowledge for representation in an AI 

system. 

“Usually “KAFITS” refers to both the framework and the interface, unless the distinction is relevant and 

so noted. 
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2. What aspects of knowledge acquisition systems (in general, and KAFITS in particular) 

are difficult for educators to grasp or use, and how long does it take to learn how to 

use it? 

3. How does KAFITS facilitate content analysis of the subject matter? 

4. How much independence can an instructor have in using KAFITS? Where in the 

design process is the knowledge engineer most needed (and why)? 

5. How difficult it is for instructors to articulate what and how they teach? 

6. How does an instructor’s pre-existing knowledge help or hinder his use of KAFITS to 

design a tutor? 

7. How domain independent is KAFITS? 

8. How much time and effort does it take to build an ITS using KAFITS? 

9. What kind of assistance/reference help is useful, both on-line and off-line? 

10. What is the difference in training needed for different levels of users? 

11. Does the teacher learn anything from the ITS design process that can be used in 

classroom instruction? 

1.2.2 Description of the KAFITS System 

In pursuing the above goals we have designed, implemented, and tested an ITS knowl¬ 

edge acquisition (KA) framework (a representational system) and a knowledge acquisition 

interface (a computer program) which reifies this conceptual framework for instructors. 

The framework and implemented system, called KAFITS, incorporates instructional design 

paradigms and facilitates rapid creation and manipulation of multiple tutoring strategies. 

The representational framework comprises a general system or language for describing what 

to teach and how to teach it. The knowledge acquisition interface is a tool (actually a set 
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of tools) which allows a teacher, sometimes with the assistance of a knowledge engineer, to 

design, test, and modify intelligent computer-based instruction.9 

Figure 1.2 shows a high level diagram of the system components. Domain knowledge 

(examples, questions, topics, etc.) and strategic knowledge (tutoring strategies for how 

to use the domain knowledge) are stored in separate knowledge bases. The Browser is the 

user’s interface to the domain knowledge base, and the Strategy Editor is the user’s interface 

to the strategic knowledge base. The strategies can be thought of as rules which specify 

how to use the domain knowledge. An interpreter (or Tutoring Engine) uses the domain 

knowledge and strategic knowledge (along with information from the student model) to 

create tutoring sessions. The educator/user can test the tutor10 (run it as if he/she were a 

student) and easily modify the domain and strategic knowledge to debug and improve it. In 

this study the Browser was built and tested with educators, and a prototype of the Strategy 

Editor was built, but not tested with educators. The system also has a student model (a 

model of the student’s correct and buggy knowledge) and a student interface (which allows 

the student to take initiative during the tutoring session). 

1.2.3 Overview of the Methodology 

Exploratory nature of the study. Although research in the areas of multiple tu¬ 

toring strategies for ITSs and knowledge acquisition interfaces for ITSs is quite limited, 

several research teams are building systems motivated by goals which overlap those ex¬ 

pressed here, i.e. generic architectures and ITS authoring tools usable by educators,11 and 

9Note that the “knowledge acquisition” discussed here is acquisition of pedagogical and curriculum knowl¬ 

edge from the instructor. It is not acquisition of domain expertise, i.e., the system does not facilitate the 

acquisition of physics problem solving expertise from a physics teacher. Also note that KAFITS is a rep¬ 

resentational framework and an interface allowing an instructor to represent his/her knowledge in terms of 

that framework. Is is not a tool for automatic acquisition of knowledge from instructors or for learning from 

its own experience. 

10In this document when we refer to a computer “tutor” we usually mean a tutor built using KAFITS, i.e. 

the KAFITS system combined with the knowledge base of a particular domain (unless the context clearly 

implies a different sense). Similarly “the tutor” will usually refer to the physics tutor built during this study. 

uWe describe several of these systems, and how this project relates to them in Section 2.1. 
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we have borrowed design ideas from these projects. Unfortunately there are no accepted 

or experimentally established guidelines for designing such systems, and little rationale for 

design decisions is given in the literature. Also, no current ITS project studies empirically 

how easy, powerful, or flexible the systems are for teachers or instructional designers to use. 

For all of the above reasons this research is “exploratory” and constitutes a plausibility 

study. The evaluation is formative and qualitative, as described below. We investigate the 

feasibility and practicality of a knowledge acquisition tool being used by educators to build 

an ITS, and report on the issues identified. 

User participatory design. Development of the KAFITS system was based on a 

user participatory process [Bromberg & Henderson 1990], i.e. design and implementation 

are iterative and concurrent with use by a domain expert12 (and two “knowledge base 

managers”13), allowing maximum design input from the user’s perspective. 

Formative evaluation. A user participatory design becomes a formative evaluation 

when the researcher keeps records of the difficulties and successes encountered, and the 

effects of modifications made to the system. Starting with a basic prototype system, we 

recorded observations of the instructor using the system and incrementally improved the 

system. In this document we report on aspects of the system that worked as well as those 

that did not, and give suggestions for future modifications. 

Case study method. Since we are studying the construction of a single tutor as 

designed by a single instructor, the study is primarily a case study. The generalization 

possible from studying several domains or instructors is traded for a deeper analysis of a 

single case. 

Outline of the study. The sixteen month study went through several phases, in¬ 

cluding: familiarizing the domain expert with the KAFITS framework, curriculum design, 

12We use the term “domain experts” to refer to teachers or instructional experts using the KAFITS 

system. The term “user” refers to anyone using the KAFITS system for knowledge engineering (primarily 

domain experts and knowledge base managers), not students using the tutor. 

13The knowledge base manager is a member of the ITS design team whose task it is to enter the knowledge 

as specified by the domain expert into the knowledge base, and test the curriculum for obvious errors (i.e. 

errors not related to the domain content). 
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implementation and debugging of the statics knowledge base, testing the statics tutor on 

19 subjects, and refining and expanding the knowledge base. These phases are described in 

detail in Chapter 4. 

Data collection Several types of data were collected, including: notes from structured 

and unstructured interviews, “edit records” recording the details of usage of the knowledge 

acquisition interface, “trace files” recording the details of student runs of the tutor, and 

taped debriefing sessions with students. These are described in Section 3.4. 

The instructional domain. This study includes a case study of a high school physics 

teacher14 using the KAFITS system to build a tutor for statics.15 The topic network de¬ 

signed by the domain expert, see Figure 1.3, shows the scope of the curriculum. The domain 

expert’s main goal was to give students a qualitative, intuitive understanding of the rela¬ 

tionships between forces in static (non-motion) situations, and he intended the curriculum 

to be used after students had some initial exposure to the important concepts from a class¬ 

room or textbook. The curriculum focuses on developing a qualitative understanding of the 

following topics: Newton’s Third Law, linear equilibrium, the properties of different types 

of forces (tension, gravity, and contact forces), and how to evaluate free body diagrams. 

Topics are classified according to knowledge type, such as fact, procedure, Mis-KU (mis¬ 

conception), etc. (see the key in the lower left of the figure). Links between nodes indicate 

relationships between the topics, such as part-of, critical-misconception, and various types 

of prerequisite links (familiarity, easy, typical, and difficult, etc.).16 Tutoring strategies use 

the node and link types to determine the order to present topics. The most general topics 

in the network are: static forces, FBD (free-body diagram) solution analysis, and linear 

equilibrium. 

Figures 1.4 and 1.5 are screen dumps from a tutoring session that illustrate typical 

qualitative questions asked of the student, and Appendix G shows a tutorial dialog from a 

14Dr. Charles Camp is a physics teacher at the Amherst Regional High School, Amherst, Massachusetts. 

We refer to him as the “domain expert.” 

15The framework has been applied in two other domains in limited ways, but these are not discussed. 

16The node types and link types are described in Section 3.1.5. 
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Figure 1.3 Topic Network 
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typical statics tutor session. Part of the curriculum centers around a learning environment 

called the “crane boom” in which the student can manipulate a simulated physical system 

and observe the resulting forces and force components [Duckworth et al. 1987, Woolf et al. 

1988]. Figure 1.4 shows a typical question about the crane boom. In this case, the crane 

boom is brought up as a static picture. In other cases it is brought up as an interactive 

simulation for the student to manipulate and/or measure. 

1.3 Scope of the Study 

Though research in ITS has been ongoing for over two decades, due to the complexity of 

the problems needing to be addressed, it is still in a formative stage. Researchers in the field 
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are still defining the major research questions, while making modest gains in understanding 

and solving isolated issues. Much of the work done to date involves building systems to 

teach a particular subject, a post-hoc credit-blame analysis of the system’s performance, 

and then generalizing the results. The generality of such results is limited. In contrast, this 

research does not aim to improve instruction in a particular subject, nor does it involve 

building a “performance system,” i.e. one intended to be robust and complete enough to 

teach students in a stand-alone fashion. We address a small handful of the issues facing 

ITS designers, as listed in Section 1.1. Since it is just as important to delineate what a 

research project is not as it is to describe what it is, we list limitations to the scope of the 

study below. 

Instructional principles and cognitive models. The study does not involve a 

descriptive explanation or inquiry into how teachers teach. It incorporates some results 

of instructional and cognitive theory, and tests whether these are acceptable and useful to 

instructors, but no cognitive model is proposed for the organization of knowledge in students 

or instructors. 

Domain expert systems. The study is not an attempt to completely represent an 

expert’s knowledge about the domain to be taught. Rather, it is concerned with representing 

pedagogical knowledge about the domain knowledge. There is no domain expert system 

component that can solve the types of problems given to the student. 

Simplicity and modularity of domain knowledge. Our goal is to develop a frame¬ 

work that is general and easily used and modified. Sophisticated student modeling (such 

as model-tracing, as used with expert domain models [Anderson et a. 1985a]) and highly 

interactive simulations [Woolf et al. 1986] will not be included.17 The tutor built for this 

17Research focusing on the representation of complex problem solving behavior (i.e. computational mod¬ 

eling of performance in the domain being taught) requires detailed cognitive task analysis. It is also limited 

to procedural skills. Research that focuses on tutoring with sophisticated learning environments requires 

knowledge representation schemes and control methods tailored specifically to the learning environment. 

Learning environments tend to be focused on teaching domain-specific problem solving using non-directive 

or coaching strategies. 
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study does incorporate a (“black box”) simulation environment, and there is only limited 

assessment of the student’s behavior while using the simulation. 

Representational adequacy vs. inferencing power. The system is “knowledge 

intensive,” deriving its flexibility from the variety and large amount of information available 

to the tutoring strategies. Our near term goal is for representational adequacy—i.e. we are 

interested in determining what types of objects, attributes, and relationships are sufficient 

for a domain independent tutoring system with multiple strategies. The sophisticated AI 

inferencing needed to generate and recognize natural language, or compute questions and 

explanations from first principles, can be added at some future date. 

Basic knowledge types. Because the tutoring is driven by topic network traversal, 

rather than by a computational model of problem solving, the tutoring styles supported 

tend to be more directive than in “coaching” tutors. The KAFITS framework supports the 

teaching of “basic” types of knowledge more readily than “complex knowledge and skills.” 

Basic knowledge types include concepts, facts, simple procedures, and principles. These are 

usually prerequisite to more complex skills such as heuristic problem solving and metacog- 

nitive skills [Gagne, 1985]. The teaching of complex skills seems best accomplished with 

predominantly student-controlled, problem-driven, and remediation-driven tutorial environ¬ 

ments, while teaching basic types of knowledge is best accomplished by more directive, tutor 

controlled environments. Nevertheless, the designer can create strategies that simulate a 

wide range of styles: from more directive to more student controlled, from minimum to 

maximum feedback, from error driven to curriculum driven, etc. 

Student learning. This research is focused on knowledge acquisition, i.e. the pro¬ 

cess by which the teacher’s information is transferred to the tutoring system. We have 

not measured whether students learn better (vs. any other method) with this system, or 

how various aspects of the system affect the learning process. Student learning is more a 

function of what the domain expert enters in the knowledge base than it is of the KAFITS 

representational framework. We are, however, interested in how the teacher uses the system 
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in the overall design process, i.e. how he/she uses feedback from test runs with students to 

modify the knowledge base. 

Student initiative. Regardless of the teaching strategy, some degree of student con¬ 

trol is crucial in all tutoring systems. The system allows students to interrupt the tutoring 

session to ask for information, ask to be taught a new topic, change the teaching style, skip 

forward or back up in the lesson, etc. We are primarily interested in how the design of the 

framework facilitates or inhibits students’ ability to determine the amount, content, and 

sequencing of the course material. We did not investigate students using this capability or 

how this capability relates to learning. 

1.4 Contributions 

This study makes several original contributions to research in the field of Intelligent 

Tutoring Systems as described below.18 

Tools for Rapid prototyping and tailoring of ITSs. KAFITS allows an instructor 

to easily and rapidly design, test, and modify an intelligent tutoring system, and it allows an 

to instructor customize an existing ITS for his/her content preferences and teaching style. 

User participatory design of a general ITS framework. Though other general 

ITS frameworks have been designed (see Section 2.1) none (that we are familiar with) 

have been designed in a user participatory way. Therefore we believe that the KAFITS 

representational framework and user interface are more comprehensible and relevant to 

practicing teachers. We also identify general design issues and tradeoffs for building ITS 

knowledge acquisition interfaces. 

Case study of the use of knowledge acquisition tools. This study is unique 

in that we report on the problems, issues, and tradeoffs encountered when educators are 

18Determining which aspects of the research are original contributions is based on our survey of the 

literature, as summarized in Chapter 2. 
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involved in hands-on ITS design and construction, and we base our analysis on empirical ev¬ 

idence. Reports of other general ITS frameworks or shells do not discuss issues encountered 

when the systems are used by educators. 

Multiple strategies. Other generic ITSs do not include a general control mechanism 

that allows multiple tutoring strategies, or a knowledge acquisition interface for creating 

and modifying multiple tutoring strategies. 

1.5 Limitations to Conclusions 

There are several factors which limit the generality of our contributions and analysis 

(also see Section 1.3 above for areas in which we do not plan to draw conclusions or make 

substantive contributions). 

Domain independence. Since this is a case study involving the design of a single 

computer tutor, possible claims about the domain independence of the KAFITS framework 

and interface are limited. 

Low number of subjects. Our conclusions about the usefulness of the KAFITS 

tools and our knowledge acquisition method are limited because we observed only three 

educators using the system (the domain expert and two knowledge base managers).19 How¬ 

ever, as explained in Section 5.4.1, the original prototype KAFITS system, and many of 

our conclusions, are based on experiences working writh educators outside the scope of this 

study. 

Role of the experimenter. Since the author designed and implemented the KAFITS 

framework and also acted as the knowledge engineer in this study, our ability to make 

objective observations is limited. Possible claims about the usefulness of KAFITS with an 

arbitrary teacher and knowledge engineer are similarly limited. 

19But see Section 2.5.2 for a discussion of the benefits of case study research. 
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Moving targets. Since we have followed a formative evaluation process and modified 

the system incrementally, there is no base-line system which has been constant over the 

entire experiment. This may make it difficult to draw conclusions from observations made 

at different stages of the design process. 

1.6 Guide to the Reader 

This document is primarily addressed at those involved in ITS research or construction. 

However, we have made every attempt to make it readable by anyone having a modicum 

of familiarity with basic ITS concepts. A glossary of terms and important concepts can be 

found in Appendix A. 

Chapter 2 is a review and synthesis of various sub-fields of the literature, including 

sections on generic intelligent tutoring systems, instructional design theory, knowledge ac¬ 

quisition, AI systems design and research methodology, and qualitative evaluation methods. 

The section on generic ITSs will familiarize the reader with the important issues in ITS de¬ 

sign. At the end of each section is a summary, followed by a discussion of how this study 

and the KAFITS system relate to issues identified for that literature sub-field. 

Chapter 3 is a detailed description of the KAFITS system, including the representational 

framework, the knowledge acquisition interface, the student interface, and implementation 

and extendibility issues. Only a cursory reading of Chapter 3 is needed before reading the 

analysis and summary chapters (Chapters 5 and 6). Readers not familiar with the terms 

“instance,” “object,” “method,” and “slot” may want to read the descriptions of these terms 

in Appendix A before reading Chapter 3. 

Chapter 4 describes our research method. We describe the subjects and domain chosen 

for the case study, and argue that the participants are typical users of the software. We 

also give a time line of the study and discuss data collection techniques. 
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Chapter 5 gives results and analysis of the data collected. We discuss results, issues, and 

tradeoffs for knowledge engineering, knowledge representation, and interface design. The 

reader who wants to skip details of how conclusions were reached can read the summaries 

that follow each section (and some sub-sections). 

Chapter 6 summarizes the results and contributions of the study and proposes several 

generalizations to our results, including: a high level design specification for generic ITS 

shells, an ITS knowledge type classification scheme, and ITS student interfaces. We also 

suggest a number of research projects that build upon this study, and make recommenda¬ 

tions to the educational community regarding the use of ITS shells in public education and 

industry. 



Chapter 2 

LITERATURE REVIEW AND THEORETICAL 

BACKGROUND 

This review and synthesis of various sub-fields of the literature serves two purposes: it 

gives the reader a general understanding of relevant concepts, issues, and trends in the lit¬ 

erature, and establishes a theoretical foundation upon which to base this study. The main 

areas investigated are: intelligent tutoring systems, instructional design theory, AI knowl¬ 

edge acquisition, AI systems design, AI research methodology, and qualitative evaluation 

methodologies for AI tutoring systems. Also included are references from learning the¬ 

ory (including cognitive science), and human computer interactions (usability and interface 

design). 

The first section is an overview of generic knowledge-based tutoring systems and shells, 

including a brief general introduction to intelligent tutoring systems.1 This section discusses 

implemented systems that are designed for generality and domain independence and provide 

ITS construction tools usable by non-programmers. We reference authors that fall within 

the ITS literature and authors that are more closely associated with instructional science. 

The second section is a survey of aspects of the instructional design literature related 

to ITS. Instructional design (or instructional theory, or instructional science) aims at pre¬ 

scribing optimal methods of instruction. Some references from learning theory (including 

educational psychology and cognitive psychology) are included, but learning theory is not 

the main focus (as it is in many other ITS investigations). This is because learning theory 

*It is suggested that readers not familiar with the ITS field look elsewhere [Wenger 1987, Ohlsson 1986] 

for a more complete overview of the field. 
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is involved in describing how the mind works, giving general suggestions or paradigms for 

instruction, but for a theory to be most useful to ITS designers it must go a step further and 

prescribe specific instructional methods—and this is the domain of instructional theory. We 

look to the instructional literature for basic components or structures necessary or desirable 

for a generic computer tutoring framework. We do not focus on specific instructional theo¬ 

ries except for Component Display Theory (CDT). We describe CDT because it is a good 

example of an instructional theory that is at the same time general, concrete, and simple, 

and because we borrowed from CDT in designing the KAFITS framework. 

The third section is a discussion of ITS research and design methodologies. We discuss 

how engineering and research goals axe intertwined, and how software design and evaluation 

methods axe intextwined. We include discussions of iterative design, user participatory 

design, and interface design. The fourth section is an overview of AI knowledge acquisition 

methods and issues. We describe and compare a number of methods applicable to ITSs. The 

fifth section is a discussion of ITS evaluation methodologies. We describe how evaluation 

methods taken from the fields of AI, education, and psychology, can, and should, be used 

to evaluate intelligent tutors. The section focuses on qualitative and formative evaluation 

methods. 

2.1 Generic Intelligent Tutoring Systems and Shells 

In this section we review AI instructional or tutoring systems designed to be domain 

independent and discuss design issues for generic ITSs. Many of the systems mentioned 

lean toward what might be called “authoring systems” or “shells” for ITSs. 
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2.1.1 A Definition of Intelligent Tutoring Systems 

There are divergent opinions in the field about what an intelligent tutoring system is, 

or what constitutes research in the field of ITS;2 therefore we describe some definitions of 

ITS found in the literature and then give our own definition. Also, the reader will also be 

afforded a brief overview of intelligent tutoring systems. 

A prime motivation for using computers to teach is their potential to dynamically tai¬ 

lor instruction to the needs of individual learners. “The computer can, in principle, be 

programmed to adapt both the content and the form of instruction to the student’s under¬ 

standing of the subject matter” and to other parameters of the instructional setting [Ohlsson 

1987]. Computer aided instruction (CAI) was one of the first applications of computers, 

but CAI (in its traditional form) has fallen far short of the above vision. More recently, 

education was one of the first application areas of artificial intelligence (AI), and AI was 

seen as the path that could restore and realize the vision of the individualized computer 

tutor. 

Carbonell, working on SCHOLAR, one of the earliest intelligent tutoring projects [Car- 

bonell 1970], proposed a paradigm shift in computer aided instruction. In traditional CAI, 

which Carbonell called a “frame oriented” approach, segments of curriculum were repre¬ 

sented in pre-stored units (often called frames) which were presented to the student in 

a fixed, pre-defined sequence. Carbonell proposed an “information-structure-oriented” ap¬ 

proach in which the domain knowledge was represented explicitly. Such a system, he argued, 

would have greatly increased flexibility in responding to the student by, for example, an¬ 

swering student questions and generating tutorial dialogues. CarbonelTs paradigm shift 

emphasizes that intelligent tutors are “generative,” and is, to this day, still a fair descrip¬ 

tion of the difference between CAI and ITS. Similarly, Wenger [1987, pg. 7] (in a fairly 

recent overview of the field) says that the main feature of ITS which distinguishes it from 

2 One approach to this controversy is not to use the term “ITS” at all, i.e. to avoid preconceptions by 

using such terms as “knowledge-based tutoring system,” or “interactive learning environment.” This results 

in the area of fuzziness being shifted a bit to one side or the other, but questions about what systems or 

research fit into that category remain. 
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CAI is “the shift from the programming of decisions to the programming of knowledge.” 

He uses the term “knowledge communication systems” for ITSs. 

One of the first general paradigms for an ITS framework, and perhaps the only one that 

has ever been generally accepted, is the three-module division of expertise, proposed in the 

early 1970s, and often cited today [Woolf & McDonald 1984]. The three components are:3 

• a student model component that stores information and makes inferences concerning 

the student’s knowledge, knowledge “bugs”, and learning preferences, 

• an expert system component that models expertise in the domain being taught, and 

• a tutoring component, embodying knowledge about how to teach. 

Clancey [1986a] views AI as a science dealing with the construction of computational 

qualitative process models.4 Al-based instructional programs can represent three kinds of 

processes qualitatively: human reasoning (from the perspective of either the expert or the 

student), real world processes, and the communication process (which includes teaching 

and diagnosing the student’s knowledge). He notes that depending on the domain, the 

instruction may focus on conveying a reasoning process (as in mathematics or computer 

programming) or a physical process (as in geology or mechanics). The domain content model 

(or “subject material” model) of an ITS contains “correct” models of the real world and/or 

reasoning process. The student model contains dynamically updated “novice models” of 

the real world and/or a reasoning process. Clancey’s definition of an ITS is: “[an] Al-based 

instructional program [that] represents at least one component in the form of a qualitative 

model.” 

In contrast, Ford [1988] suggests appraising the level of “intelligence” of an ITS system 

according to how it stands up to fifteen criteria phrased as questions (developed by Self 

[1985b]), for example: “can the system answer arbitrary questions from the user about the 

3Variations on this taxonomy exist, such as including a communication component that contains natural 

language and discourse expertise, or a component that deals with the tutor’s interface to the student. 

4I.E. models that describe objects and processes in terms of spatial, temporal, and causal relationships. 
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subject?” and “can the system give alternative explanations?” This constitutes defining or 

appraising ITSs according to how closely they measure up to the capabilities of a (good) 

human tutor. This approach has its uses, but it also has significant limitations. It may 

be appropriate to use this ITS definition if one’s goal is to improve education for a specific 

topic. However, in ITS research, where we try to gain a deeper understanding of ITS design 

issues, it is better to focus deeply on specific research areas than spread the effort over all 

desirable ITS features. Also, though Ford’s approach is useful in helping us visualize the 

long term goals for the field, performing a “check-mark” evaluation of an ITS system offers 

little substantive information to other researchers to guide their endeavors.5 

In summary, we gave given several common criteria for determining whether a com¬ 

puter tutor is an ITS: a generative knowledge view, a three-component view, a qualitative 

processes view, and a performance criterion view. Our definition harks back to Carbonell’s 

emphasis on the generativity of ITSs. We characterize the “intelligence” of the system in 

terms of the flexibility of its response, or of the space of possible responses. For the purposes 

of our discussion, an intelligent computer tutor is a computer tutor which can behave 

differently for different students, discourse situations, and/or subject matter characteristics, 

and (most importantly) where this flexibility is represented explicitly (i.e. all potential cur¬ 

riculum paths and discourse paths are generated, not stored). In accordance with Wenger 

(above), rather than storing each decision, the knowledge enabling those decisions is stored. 

2.1.2 Early Systems 

Though the designers of many tutoring systems have laid claim to the generality of 

their methods or design philosophy, until recently very few ITSs were general in more 

than principle or extrapolation. Before discussing current generic ITS shells, we review how 

several early systems or proposals contributed to our current understanding of generic ITSs. 

5Unless one’s research goal was to evaluate the interaction of ITS sub-systems, in which case focusing on 

many desirable ITS features is more appropriate. 



30 

The three-component paradigm for ITS systems. The three-component model 

mentioned above (composed of the domain module, student model, and the tutoring module) 

is a workable paradigm for expressing the capabilities that a “truly intelligent” tutor must 

have, i.e. capabilities that good human teachers have that require sophisticated reasoning 

(and therefore, supposedly, AI technology). However, it has not been a useful way to 

model the subsystems of ITS software. Few systems (and no generic systems) following this 

architecture completely and cleanly. One reason is that an ITS with robust functioning in 

all three areas is beyond the state of the art in AI, and research projects have focused on 

specific issues within the paradigm. A more important reason that the three-component 

paradigm is a “paradigm,” and not a design framework, is that in practical (and perhaps also 

theoretical) terms it is extremely difficult to cleanly break a tutoring system’s functionality 

into the three independent modules. There is much overlap between the domain (inputs) 

and range (effects) of the inference rules for the three sub-systems. The interdependence of 

the three main functions of an ITS has led designers to use more cohesive architectures, such 

as object-oriented programming (discussed below). Though the three-component paradigm 

has not worked well to model the subsystems of an ITS, it is often and successfully used as 

a model of the knowledge bases needed for tutoring. 

Other issues in early systems. In order to evaluate generic ITS frameworks on 

theoretical or empirical bases they must have explicit knowledge representation schemes.6 

Ideally all software modules will have explicit representational languages or frameworks. 

Several early ITS systems approached this goal. For example, Clancey’s [1982] pioneer¬ 

ing work on the GUIDON system emphasized the separation of knowledge structures (the 

knowledge base) from the procedures that interpret knowledge (the inference engine), and 

emphasized the importance of separating the domain knowledge from the tutoring knowl¬ 

edge. The GUIDON system represented both domain and teaching expertise in production 

rules; O’Shea’s tutor for quadratic equations [O’Shea 1982] was another early system that 

6Being explicit about the structure and allowed relationships between entities in the knowledge base is 

important. It is not as crucial to be explicit about how these schemes are implemented in the computer. 
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used a production rule representation of tutoring expertise.7 Production rule formalisms 

have some disadvantages [Clancey 1985, Lesser 1984], leading Woolf [1984] to use a three- 

layered transition network and meta-rules to represent tutoring and discourse knowledge in 

her MENO Tutor. The tutor was able to simulate segments of flexible tutorial discourse. 

It is also noteworthy that the system was tested for two domains (unfortunately, it is rare 

that generic ITS frameworks are applied to more than one domain). 

Much was learned from the early attempts at general ITS architectures. None of these 

systems, however, have been taken on by other research teams as truly general mechanisms 

or “shells” from which to build tutors (indeed, most were intended to be only research 

vehicles). The last few years have seen a resurgence in efforts to design generic shells, 

authoring systems, and theoretical frameworks for intelligent tutors. 

2.1.3 An Overview of Current Generic Systems 

We will look at seven tutoring system research projects which have generality as a main 

design goal: Training Express, PTA, Bite-Sized Tutor, MAIS, IDE, ID Expert, and Expert 

CML. The first three systems were designed as generic shells based on extensions to the 

traditional ITS paradigms. The other four were created as tools for instructional theory and 

curriculum development, but all incorporate aspects of traditional ITS (including a student 

model and AI knowledge representation techniques). Though other generic ITS projects 

are described in the literature, we chose to look at only functioning systems. All seven 

systems are at least partially implemented and most have had initial trial runs. However, 

research on ITS shells is in its infancy—none of the systems are being used routinely and 

none have undergone evaluation. We describe the seven projects and discuss their unique 

aspects in light of these desirable characteristics for generic ITSs or ITS shells (each 

characteristic is described in detail later): 

7 A unique feature of the quadratic tutor was that it was “self improving.” Based on statistical information 

from past tutoring sessions, the program deduced rule changes likely to cause improvement for certain high 

level goals, such as decreasing student time on task, decreasing computation time, and increasing student 

scores. 
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1. domain independence and sufficient scope, 

2. usability by educators, 

3. theoretical basis for instructional decisions, 

4. explicit representation of domain knowledge, 

5. explicit representation of strategic knowledge, 

6. implementation and evaluation for practicality and usability. 

Training Express. Training Express [Clancey & Joerger 1988] rims in conjunction 

with a traditional expert systems, and, using some pedagogical information from an in¬ 

structional designer, produces a tutor that teaches the expert knowledge. Clancey’s main 

goal was to create a practical, low overhead, conceptually simple tutoring mechanism. An 

interface is provided which allows the instructor to adapt the rules in a traditional expert 

system shell (the Ml shell) by inserting “break points” and elaborations into the rule base. 

The instructional designer defines problems (cases) and key concepts, and associates the 

concepts with specific expert rules. The resulting tutoring system is an apprenticeship style 

tutor. The tutor can ask the student to solve problem cases and can interrupt the student 

to ask probing questions about important concepts. The student can ask the tutor for 

help solving problems and ask how the tutor reached its conclusions. The system has no 

explicit representation of the student model or tutoring strategies. Its main feature is its 

practicality—Clancey has demonstrated (subject to further testing with students) that a 

workable generic intelligent tutor based on an expert system domain model can be real¬ 

ized within a simple framework. The system’s greatest source of power is also its biggest 

limitation: it can only teach domains that can be represented using production rules, i.e. 

domains with simple procedural skills. 

PTA. The PUPS Tutoring Architecture [Anderson Sz Skwarecki 1986] is a generic 

shell for tutors that incorporate the model tracing paradigm used in Anderson’s previous 

tutoring systems (including the Geometry Tutor [Anderson & Reiser 1985] and the LISP 
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Tutor [Anderson et al. 1985]). Like Clancey’s GUIDON system, both domain expertise 

and tutoring expertise are represented in production rules (“goal-driven” production rules 

in this case). Unlike any of the other systems we discussed, the domain model has cognitive 

fidelity, and the student model is runable. The student model is a rule-based system itself, 

containing a subset of the expert rules, plus some “buggy” rules, which can be used to 

predict or explain student behavior. The knowledge representation and design philosophy 

of Anderson’s tutors are based on his ACT* theory of human cognition [Anderson 1983]. 

The tutoring strategy, also inspired by ACT* is, as in Training Express, fairly simple and 

straight-forward. Since representing expertise in terms of production rules and cataloging 

potential buggy rules is a difficult task, it is unlikely that PTA can be used by teachers or 

domain experts without significant training. 

Bite-Sized Tutor. The Bite-Sized Tutoring Architecture [Bonar, Cunningham, & 

Schultz 1986] is an ITS authoring language that uses an object-oriented representational 

paradigm. The goal of the system is to allow rapid prototyping, testing, and modification 

of tutoring systems, with the involvement of domain experts who are not programmers. 

Traditional tutoring systems are organized around functional components such as “diag- 

noser,” “explainer,” “tutor,” etc. In designing instructional systems one finds that the 

information relevant to a given curriculum item (such as “Kirchoff’s Second Law” or “How 

to use a graph”) is distributed over several of the functional components. Therefore, in 

practice, it is hard to design these subsystems to be independent of each other. Also, the 

domain specific information is hard to modify and not very modular. In the object-oriented 

paradigm the information needed to explain, diagnose, and teach each bit of domain knowl¬ 

edge is organized around that piece of domain knowledge, making the knowledge base very 

modular. Also, objects can inherit properties from similar or more general objects, de¬ 

creasing representational redundancy and potential inconsistencies in the knowledge base. 

One distinguishing characteristic of this research is that tutors in several domains are being 

implemented using this system. This research group (University of Pittsburgh’s Learn¬ 

ing Research and Development Center) has developed tutors for programming, economics, 

electricity, and hydrostatics that use (or have inspired the development of) the Bite-Sized 
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paradigm. The Bite-sized paradigm facilitates ITS construction by AI programmers and but 

there it does not address the issues of tools or methods which allow educators to understand 

and participate in building ITSs. 

MAIS. The Minnesota Adaptive Instructional System [Tennyson 1986, Tennyson & 

Christenson 1988] is based on a specific instructional theory. It is unique among the sys¬ 

tems described here in two ways. First, it is self improving (“adaptive”)—its instructional 

strategy is based on nine instructional variables8 that are adjusted continuously based on 

a statistical analysis of the system’s performance (i.e. the success and efficiency of the 

student’s learning). Its second unique feature is that it incorporates affective variables 

(motivation, perseverance, personality) in its student model. Its instructional strategy is 

a Bayesian conditional probability model embedded in computer code which adapts and 

personalizes instruction. Though unique in these ways, MAIS is limited in that it does 

not have an explicit representation of its strategies or a user interface for inspecting and 

changing its knowledge. 

ID Expert. The Instructional Design Expert [Merrill 1987, Merrill 1989] is an expert 

system that assists instructional designers in course specification. Like MAIS, Merrill’s 

system is founded on a specific instructional theory, his Component Display Theory. Com¬ 

ponent Display Theory (described in more detail in a later section) prescribes a mapping 

from the characteristics of what is taught (e.g., whether it is a skill or a concept) to methods 

for teaching (for example how many and what kind of examples to give). Unlike most other 

systems described here, in which the user creates and modifies objects in a knowledge base 

in an un-constrained manner, knowledge acquisition in ID Expert takes the form of a long 

series of specific questions to the instructional designer. The system’s input comes from 

an interactive session in which the user is prompted to specify and refine taxonomies of 

concepts, common errors, and behavioral objectives. The major drawback of this system 

is that the output is a written course specification (detailing the ordering and manner of 

8The variable are: number of examples, amount of information, sequencing of information, format of 

information, learning time, corrective error analysis, mixed initiative level, amount of advisement, and 

amount of refreshment and remediation. 
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presentations and tasks to be given to the student), and the capability to produce on-line 

instruction from the instructional specification has not been built yet (see [Merrill et al. 

1990] for a description). 

IDE. The Instructional Design Environment [Russel, Moran, & Jordan 1988] was 

developed at Xerox Park and built using the Notecard system [Halasz et al. 1986]. It 

is a tool which assists in the design and development of curriculum, content, and delivery 

of instructional material. Unlike the above systems, IDE is designed to be used by multiple 

experts designing large curricula, and (since is is based on the Notecard system) it has a 

user friendly interface for inspecting and modifying knowledge. The output of IDE includes: 

a Knowledge Structure (or concept network) representing the knowledge to be taught; a set 

of Instructional Units (text, pictures, simulations, etc., that the student can interact with); 

and a set of Course Control Rules which guide the sequencing of Instructional Units. This 

information is passed to the “IDE Interpreter” [Russel 1988] which generates an on-line 

tutorial using the output of IDE. Alternatively, IDE’s output can be used by an instructor 

as a specification for a non-computer-based course. Instructional goals are represented in 

an AND/OR tree, constructed by interpreting rules in a forward chaining manner, with 

backtracking and replanning as needed. 

Another distinguishing characteristic of the system is that the instructional designer can 

record justifications for design decisions using “rationalization” links between objects in the 

knowledge base. Justifications are a form of documentation which makes it possible to build 

large tutorial data bases with multiple designers.9 However, the justification arguments 

consist of canned text typed in by the user, so there is no automatic inferencing from 

evidence to yield instructional decisions. 

Though the IDE framework is potentially powerful (though this has not been demon¬ 

strated empirically) its complexity may be prohibitive for practicing educators to use, and 

it is limited in its ability to allow teachers to define tutoring strategies. 

9Thus justifications (arguments based on evidence) can be recorded for all rules, objects, and information 

in the system. For instance, general Tutoring Principles are justified by Literature References. Cognitive 

Principles for teaching a particular domain are justified by Tutoring Principles and Course Objectives. 
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Expert CML. The Expert Computer-Managed Learning system [Jones & Wipond 

1989] was developed with the help of a team of instructional experts. Like ID Expert, 

it contains an expert system in the domain of instructional systems design. Unlike ID 

Expert, it synthesizes rules from several instructional experts and instructional theories. Its 

interaction with the user is open ended, compared to the interactive dialogue of ID Expert. 

Like IDE, the structure of the objects in the system encourages top-down design, and it 

supports multiple authors working on large courses. It also has a fairly sophisticated user 

interface. The user is guided through the design process by templates, instantiating courses, 

topics, lessons, objectives, learning activities, etc. Unlike IDE, it uses its instructional design 

expertise to check consistency and completeness within the knowledge base. Examples of 

the types of warnings or advice generated by the expert rules are: “topic XX is of type 

‘concept’, but none of its sub-topics are concepts,” and “the sub-topics of topic XX will 

probably take longer than the learning time allocated for topic XX. You may want to split 

topic XX into parts.” The output of Expert CML is a runable (on-line) course with student 

monitoring capability. Since little information is given about Expert CML in use in realistic 

situations, its practicality, usability, flexibility, and expressiveness are unknown. Though 

its curriculum representation is powerful, its tutoring strategy representation is limited. 

Other Systems. Following is a list of other instructional systems that have design 

goals that overlap with the systems described above (such as generality and usability by 

non-programmers), and have been at least partially implemented. These systems were not 

included above because only brief descriptions were found, because there was no indication 

that they were used by anyone other than the designers, or because they focus on a limited 

instructional area. 

• BB-IP. A blackboard-based dynamic instructional planner [W. Murray 1990]. 

• COACH. A shell for intelligent help systems [Winkels et al. 1988, and Breuker et al. 

1987] . 

• DOCET. Didactics On Computer: an Environment Tutor [Bonarini, Filippi, & Muti 

1988] . 
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• DOCENT. An intelligent system for assisting teachers in the planning and analysis of 

instruction [Winne & Kramer 1988]. 

• Micro-search. A “shell” for building systems to help students solve non-deterministic 

tasks [Sleeman 1987b]. 

• PIXIE/LMS. A shell for developing intelligent tutoring systems [Sleeman 1987a]. 

• SCALD. Scriptal Computer Aided Learning Designer [Nicolson 1988]. 

• SCENT. A Student Computing Environment for LISP programming that incorporates 

a black-board based instructional planner. [McCalla & Greer 1988]. 

• SnP. Self Improving Instructional Planner [Macmillan et al.1988]. 

• TOTS. Task-Oriented Tutoring System [Rickel 1988]. 

• The Teacher’s Apprentice. An intelligent authoring system for ITS mathematics 

[Lewis et.a 1 1987]. 

Proposed functional or theoretical ITS frameworks which have not been implemented 

can be found in: Bumbaca [1988], Begg &: Hogg [1987], Derry et al.[1988], and Cerri [1988]. 

2.1.4 Design Issues for ITS Shells 

Here we discuss the desirable characteristics of ITS shells in terms of design issues, 

comparing and contrasting the seven systems described above. 

Domain independence and sufficient scope. ITS shells should be able to encode 

domain and tutoring knowledge from a variety of domains and should be able to cover a 

realistic segment of curriculum (between a dozen concepts and an entire course). 

All of the systems have described domain independence as a major design goal (as com¬ 

pared with most ITS systems, which were designed for a specific domain, and for which 

domain independence is argued for post-hoc). When we consider the variety of domains 
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dealt with by ITSs (including programming, geometry, industrial training, economics, struc¬ 

tural analysis of airplanes, grammar, etc.) and the tutoring styles used (gaming, scientific 

inquiry, apprenticeship learning, example-based concept learning, constrained-path prob¬ 

lem solving, etc.) it is hard to imagine any system being general enough to cover all of 

these possibilities. In fact, though each system is domain independent, their frameworks 

for representing teaching knowledge limit their scope, in practical terms, to certain kinds 

of knowledge or interaction styles (some of the authors acknowledge this limitation explic¬ 

itly). This is only to be expected, given the magnitude of the ITS problem; however, it is 

desirable for designers and authors to be explicit about these limitations (which, if made 

explicit would be design constraints rather that limitations). Unfortunately, stating these 

limitations clearly will be difficult until the field has a descriptive taxonomy for the many 

types of domains and interactions. 

Usability. ITS shells should be usable by educators who are not programmers or AI 

scientists. 

All of the systems claim to be usable by instructional personnel who are not familiar with 

AI concepts or programming. For many of the systems this has yet to be demonstrated, and 

IDE is best suited for domain experts who are also experts in instructional design theory. 

PTA and Training Express both require that domain expertise be modeled computationally 

using a rule-based formalism. This is prohibitive for most teachers, though Training Express 

is designed for users with “minimal training or knowledge engineering experience.” Whether 

or not these systems can be used by teachers “off the street,” there is still a need for tools 

that instructional research and development teams can use to build tutors without starting 

from scratch each time. 

There are also differences among the systems described in terms of the complexity of 

the representational frameworks, and in the amount of training needed to use them. ID 

Expert and Expert CML are designed for instructors with minimal training in instructional 

theory or the system’s framework. The amount of on-line assistance provided to the user 

(discussed below) significantly influences the training needed. Expert CML and IDE are 
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designed to allow several curriculum developers to work together designing a course over 

a long time period. For all of the systems (except ID Expert) a fair amount of training 

in the conceptual framework of the system seems necessary to design a course or tutor 

from scratch. However, much less training should be needed for an instructor to modify an 

existing knowledge base to correct bugs or tailor it to her needs. The difference between 

these two levels of use is not elaborated on in the literature, so one can’t say how easy it is 

to make small knowledge base modifications using these systems. 

Overall, there is a tradeoff between power/flexibility and ease of use. Frameworks with 

simple knowledge structures or tutoring strategies can be used with less training, but the 

tutorial behavior is comensurally limited. 

Assistance provided. On-line assistance is an important component of usability.10 

As mentioned, IDS Expert guides the user through the knowledge acquisition process with 

a detailed interactive dialog. If the dialog is specific enough, the resulting knowledge base 

can be guaranteed to be well-formed. However the user is constrained to wade through 

dozens (or hundreds) of questions, and cannot design and modify the knowledge base in 

an opportunistic manner. This may be appropriate for a novice instructional designer, but 

an expert or seasoned user may feel overly constrained. Expert CML allows for a flexible 

design process, and carries out consistency and completeness checking on the curriculum 

knowledge. It is designed to be used by both experienced instructional designers and novices, 

including even student teachers (though this has yet to be demonstrated). Training Express 

helps the user analyze the rule base to determine where it is best to set “break points.” 

Theoretical basis for instructional decisions. The teaching methods used (im¬ 

plicitly or explicitly) by tutoring systems should be founded upon learning and/or instruc¬ 

tional theories suitable to the subject matter area. However, tutoring shells should allow 

l0Usability should be designed into many aspects of an ITS shell, including the conceptual vocabulary, 

the representational framework, and the knowledge base tools. Unfortunately the only clear evidence of 

usability features in the descriptions of most of the systems is related to help, assistance, and knowledge 

base consistency checking. 
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for a variety of strategies, and should be somewhat strategy-independent as well as domain 

independent. 

The systems we are comparing differ greatly with respect to their theoretical basis: PTA 

is based on a tested theory of human cognition; instructional decisions in MAIS are based 

on empirical testing of instructional design variables; ID Expert is based on Component 

Display Theory, a well established instructional theory which is supported by cognitive 

principles; IDE is based on the experience and knowledge of a team of instructional design 

experts; Bite-Sized Tutor and Expert CML allow different strategies to be represented, but 

are not committed to any instructional style. 

Explicit representation of domain knowledge. What separates these systems 

from CAI authoring shells is the flexibility and power gained from representing knowledge 

explicitly using AI knowledge representation paradigms. 

Most of the systems incorporate network representations of topics (domain knowledge). 

Most use frame-based representations of the objects in the system. Many of the systems use 

rule-based representations of the domain knowledge and/or teaching strategies. All of the 

systems use at least one of these three representational methods, and many use networks, 

frames, and rules. 

Training Express and PTA use rule-based (expert system) representations of domain 

expertise. All of the other systems (except MAIS) use frame-based representations of cur¬ 

riculum information, usually in the form of topic units (or “modules”) arranged in a curricu¬ 

lum network or taxonomy with instructional units that specify specific tutorial interactions. 

ID Expert, Expert CML, and IDE have explicit representations of instructional goals. ID 

Expert, Expert CML, and MAIS incorporate expert systems in instructional design to aid 

in the development of the knowledge base. 

Explicit representation of strategic knowledge. Tutoring strategies should be 

represented explicitly, and in a form that can be manipulated. In addition, domain knowledge 

and tutoring strategies should be represented separately. 
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There is a wide variation in how the systems implement instructional expertise.11 PTA 

uses rule-based tutoring strategies. Tutoring rules are represented explicitly in IDE and 

Expert CML. Both of these systems, as well the the Byte-sized tutor, allow encoding of 

arbitrary strategies. It is not clear what instructional expertise looks like in the Byte-sized 

Tutor, or in ID Expert. In MAIS the teaching strategy is represented in computer code, 

incorporating many numerical/statistical values. Though the strategy is opaque, MAIS is 

unique in that instructional variables are clearly indicated. Training express, like PTA, has 

fairly simplistic and fixed (though perhaps effective) instructional strategies, so there is less 

need for explicit representation of strategic knowledge. 

Implementation and evaluation for practicality and usability. It is no longer 

very useful, as it was when ITS was in its infancy, to report on ITS systems or shells that 

have not left the drawing board. In addition, when systems are implemented there is a 

danger that they will not be practical or usable if they are developed in the isolation of 

the lab. Evaluation should occur in concert with development, and arguments for generality 

and usefulness should be supported with data. Ideally, this data should come from: 

• incorporating realistically large knowledge bases, 

• encoding multiple non-similar domains and teaching styles, 

• use by many instructional designers with varying experience, and 

• demonstrating that students learn from the resulting curriculum, and are comfortable 

with the resulting learning environment. 

Unfortunately, given the practical constraints and priorities under which research and 

development groups operate, such complete evaluations have been infrequent. However, 

systems will be judged by the diversity, depth, and instructional success of their use in 

realistic situations. 

“Unfortunately many of the references are not specific about the control structures used, and do not give 

examples of typical instructional rules, so only a limited comparison could be made. 
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All of the systems described (except for Training Express) are very large projects that 

have been designed over years by a number of people, and have been used to represent at 

least one small instructional domain. So in a sense all authors are speaking from some 

experience in having their systems used. However, none are being used “out in the field” 

by instructional designers not closely associated with the original design teams. We can 

assume, due to the omission of evaluative data in written descriptions of the projects, that 

there are many unresolved issues, as will as untested features and capabilities of the systems. 

It is hard to tell from the reports which of the many features described have been used in 

a non-trivial way. Later (in Section 2.5) we give a detailed discussion of ITS evaluation 

methods and advocate the inclusion of discussions of limits, unsuccessful features, and 

design tradeoffs in the descriptions ITSs. 

Student modeling and diagnosis. One ITS component that is weak in most of 

the systems described is student modeling, and especially diagnosis. PTA and Training 

express have runable student models with some diagnostic capabilities. However, they 

are useful only in domains were the model tracing paradigm is applicable, i.e. domains 

where the knowledge is procedural in nature, and can be realistically captured in an expert 

system. Bite-Sized Tutor, IDE, and Expert CML have overlay student models. The MAIS 

student model is numerical (which is usually seen as a detractor), and incorporates affective 

variables. Though many of the systems incorporate some type of student model, little or 

nothing is said about strategies for constructing or updating these models. This is probably 

because diagnosis and the construction of student models is one of the least understood ITS 

research areas—little can be said about it “in general,” which limits the incorporation of 

“generic” student models into generic ITSs for the time being. 

2.1.5 Summary of Generic Intelligent Tutoring Systems and Shells 

In this section we gave several alternative definition of ITSs and gave the definitions of an 

ITS emphasizing flexibility and generativity that we use in our work; tracked the history of 

generic tutoring systems in the ITS literature, discussing key issues; presented an overview 



43 

of seven current generic tutoring systems; highlighted seven important characteristics of 

such systems; and discussed design issues (including domain independence, scope, usability, 

knowledge representation, student modeling, and evaluation) in light of the seven systems 

described. 

It is a major undertaking to build a general ITS framework or shell, because many of 

the capabilities of an “ideal” ITS are needed, at least in primitive form, in order to create 

a running system (for example, a student model and a student interface), and although 

it is often desirable to focus research on a specific capability or issue, one has to have a 

“critical mass” of functionality to test it with students or teachers. All of the systems 

we reviewed are prototypes, in the midst of many-year development and evaluation cycles. 

At least for restricted types of domains and tutoring styles, these systems do produce 

reasonable curriculum specifications or computer tutors. But the jury on ITS shells is still 

out. The systems use a diversity of frameworks and theoretical bases, with little design-level 

commonality among them, and there is little evidence to allow us to evaluate their relative 

successfulness or usability. Next we will describe how our research on the KAFITS system 

relates to the issues and systems discussed in this section on ITS shells. 

2.1.6 KAFITS and Generic Tutoring Systems 

Here we relate the above discussion of generic tutoring systems to the KAFITS system. 

KAFITS is designed to be powerful yet easily used and learned, and this is achieved by: 

1. an interface which visually portrays the conceptual structure of the framework; 2. a 

framework and conceptual vocabulary designed with users in mind (and with feedback 

from users), 3. many powerful features which the beginning user can easily ignore; and 

4. on-line help and assistance features. KAFITS adheres to the design guidelines given in 

Section 2.1.3 for generic ITS shells: 

1. it is domain independent, and facilitates the creation of curricula covering a large 

number of diverse topics; 
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2. a user participatory design process was employed to develop a system that can be 

used by instructors with no particular background;12 

3. its design incorporates some aspects of Instructional Design Theory, and it facilitates 

the implementation and testing of arbitrary tutoring strategies based on instructional 

theories; 

4. domain knowledge is represented explicitly in a domain knowledge base; 

5. strategic knowledge is represented explicitly, and separately from the domain knowl¬ 

edge, in a strategic knowledge base; 

6. issues of evaluation and design are addressed directly, and KAFITS use by typical 

users is studied. 

Like the other ITS shells described in this section we have used AI representational 

methods to design a “generative” tutor. Like IDE we have a sophisticated knowledge 

acquisition interface. Like the Bite-Sized Tutor we use an object-oriented representational 

paradigm that allows for a flexible and modular representation of domain knowledge. 

KAFITS is unique among the systems described in several ways: 

• KAFITS explicitly represents strategic knowledge in a form that can be easily 

modified, monitored and tested (see the description of parameterized action networks 

in Section 3.1.7); 

• KAFITS supports multiple tutoring strategies invoked opportunistically in re¬ 

sponse to the tutorial situation; 

• the KAFITS overlay student model has several unique features, including 

multi-layered inferencing, reasoning with uncertainty, and nonmonotonic reasoning, 

as described in Section 3.3. 

12They must be familiarized with the conceptual framework and the operation of the system, which takes 

about one day for users testing and modifying the knowledge base, and about a week for users creating a 

knowledge base from scratch (see Section 5.3.2). 
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• KAFITS emphasizes usability by domain experts or instructional experts who are 

not programmers. Other systems are intended to be usable, but their designs seem 

more focus on generality than usability. Other studies do not clearly address the issues 

encountered when teachers try to use the systems. 

• Similarly, there is little evidence of evaluation of these other generic tutoring systems. 

We axe conducting a formative evaluation in the form of a case study of three 

users. Our primary goal is to study the issues that arise in the endeavor of doing ITS 

knowledge engineering with teachers; it is not our goal to develop the most powerful 

or general ITS shell from first principles. 

This work is also more limited than some of the projects described in two respects: we 

do not incorporate expert system models of domain expertise or rule-based representations 

of student knowledge; we do not model expertise in instructional design to guide the design 

of the knowledge base; KAFITS has not yet been used in multiple domains or with multiple 

experts; and it does not incorporate a runable student model for procedural skills. 

2.2 Instructional Theories and Intelligent Tutoring 

Though we do not focus on evaluating or implementing specific instructional theories, 

consideration of existing learning and teaching theories is essential for several reasons. First, 

we borrow from several instructional theories in designing the KAFITS framework. Second, 

in designing a representational framework that is general enough to encode diverse strategies 

or rules, the ITS designer needs to be aware of the range of forms and content of existing 

theories. In this section we will review aspects of instructional design theory relevant to 

ITS design, including those used in the KAFITS system. 
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2.2.1 Instructional Design Theory 

Instructional Design Theory (IDT, sometimes called Instructional Science, or Instruc¬ 

tional Design) is “a discipline that is concerned with improving one aspect of education: the 

process of instruction... [It is] concerned primarily with prescribing optimal methods of in¬ 

struction to bring about desired changes in student knowledge and skills” [Reigeluth 1983a, 

pg. 4]. In describing what IDT, is it is useful to relate it to other areas of inquiry. Reigeluth 

[1983a, pg. 6] writes: “the field of education can be viewed as being comprised of knowledge 

about curriculum, counseling, administration, evaluation, [and] instruction...Instruction can 

be viewed as being comprised of five major activities: design, development, implementation, 

management, and evaluation.” So instructional design is a sub-field of instruction, which 

is in turn a sub-field of education.13 It is “concerned with understanding, improving, and 

applying methods of instruction” [pg. 7]. 

The major difference between instructional science and learning science (which includes 

instructional psychology and aspects of cognitive psychology) is that the former is primarily 

a prescriptive science, while the later is primarily descriptive. The primary purpose of IDT is 

to prescribe optimal methods of instruction, while the primary purpose of learning theory is 

to describe human learning. IDT can (and should) base its prescriptions on learning theory. 

Though learning theory is primarily descriptive, it is often stated in prescriptive terms, 

such as “to increase long-term retention, ensure that knowledge is organized into stable 

cognitive structures;” but such principles are not concrete enough to be classified as in¬ 

structional design principles. Instructional design principles must include specific instruc¬ 

tional methods, for example: “to increase long-term retention, begin instruction with an 

overview... then gradually elaborate on each aspect” (both of the above quotes are from 

Reigeluth [1983a, pg. 23]). 

13Reigeluth [1983a] also discusses how the various sub-fields interrelate and overlap. 
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2.2.2 In Defense of IDT 

ITS designers have, for the most part, ignored the instructional design field and (in those 

ITS projects that have any theoretical basis at all) focused on principles from cognitive 

psychology.14 There are several likely reasons for this. One is that AI has strong historical 

links to cognitive psychology (and cognitive science). The two fields share much terminology 

and some of the same interests, such as discovering how the mind works. The second reason 

is that ITS and EDT historically have some fundamentally different perspectives on human 

learning. IDT has Skinnerian roots, usually employs stimulus response theories, emphasizes 

the measurement of learning, and often tightly constrains the learner’s experience. Teaching 

systems (both on line and non-computer-based) designed with IDT can seem restrictive and 

regimented. In contrast, cognitive scientists have championed research on problem solving, 

learning by doing, and mental models—all of which usually imply more open-ended teaching 

situations and less emphasis on measuring the student’s learning. Still another reason ITS 

has learned more toward cognitive psychology than IDT is that IDT tends to focus on 

(relatively) well understood types of knowledge, such as facts, procedures, and simple skills. 

ITS researchers often emphasize the learning of more complex (and more interesting) forms 

of knowledge such as metacognitive skills, problem solving heuristics, and mental models, 

and there is a belief that these more complex types of knowledge are more important yet 

are not being taught in schools. ITS researchers also have a tendency to have a somewhat 

anarchistic view of education, viewing the methods of the current educational system as 

dull, mechanical, and ineffective—and IDT is often associated with the existing educational 

system (and also with industrial training). 

Regardless of the reasons most ITS researchers have ignored IDT, IDT has much to 

offer. For one thing, even though complex knowledge is both crucial and taught poorly in 

schools, students still need to learn the more “basic” forms of knowledge—for their own 

sake, and as a foundation for more complex knowledge. Also, more is understood about the 

14This situation is gradually changing, and lately there have been several ITS papers incorporating IDT 

and several IDT papers incorporating cognitive psychology results [e.g. Tennyson & Rusch 1988, Merrill 

1983, Gagne 1985]. 
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basic types of knowledge; for example, hundreds of papers have been written on concept 

learning, many involving empirical research. In contrast, teaching “mental models” is not 

as thoroughly studied—in fact there is not even an agreed upon definition of it. IDT has 

more concrete strategies and rules to offer than cognitive science. For example, IDT findings 

suggest the number and type of examples to give when teaching a concept. Compare this 

with the idea (found in the cognitive science literature) of “apprenticeship learning” [Collins 

et al.1986], which, though significant, is much less concrete or refined. Therefore, a tradeoff 

exists between focusing on types of knowledge for which we have more complete and detailed 

theories, yet may be less important or less interesting to researchers (such as concepts and 

procedural skills), vs. focusing on the (perhaps) more important and interesting types of 

knowledge for which we have a less complete understanding (such as mental models and 

metacognitive skills). 

Actually, the important distinctions are not between IDT and cognitive science, but: 

1. whether basic or complex knowledge should be focused on, and 2. whether the learning 

situation should be structured or more open ended. IDT has, for historical reasons (which 

become less valid as time goes on), been associated with basic types of knowledge and 

structured learning situations, and, until recently, has not based its principles on deep 

causal theories of how the mind/brain work, as cognitive science tries to do. However, 

IDT is in fact concerned with all forms of knowledge, including complex knowledge, and all 

methods of instruction, including unstructured ones, and instructional theorists have, for the 

past five or so years, been incorporating cognitive science into their theories. The the main 

issue is, as mentioned above, that in order for a principle to be useful as an instructional 

design principle, it must be fairly concrete and specific, incorporating specific instructional 

methods. We simply do not know enough yet about more complex forms of knowledge to 

be able to prescribe many instructional principles for them, at least as successfully as has 

been done for basic types of knowledge. 
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2.2.3 What Can Be Gleaned From IDT 

Instructional theory prescribes instructional methods for instructional situations. Reige- 

luth [1988a] calls these prescriptions instructional design principles. They are written in 

terms of instructional design concepts. The principles describe relationships (causal or other¬ 

wise) between the concepts. According to Reigeluth, there are three kinds of instructional 

design concepts which make up the language within which the principles are expressed: 

conditions, methods, and outcomes. Most instructional design principles can be expressed 

in descriptive or prescriptive ways. The descriptive way looks like this: IF <condition 

X exists > AND <you perform the actions of method Y> THEN <the result is outcomes 

Z>. However, the prescriptive formulation of principles are more useful: IF <your goal is 

outcomes Z> AND <condition X exists> THEN <perform the actions of method Y>.15 

One of the design goals of the KAFITS system is to provide a semantics (vocabulary) 

and syntax (structure) for representing instructional strategies. These strategies can come 

from educators, domain experts, or from the literature. In exploring the literature we axe 

looking for representational components that are: 1. general enough to be used for many 

strategies, 2. specific and concrete enough to be implemented on a computer, and yet 3. 

simple or intuitive enough to be understood and used by educators without a great deal 

of training. Unfortunately, since the instructional design field is (like all “soft” sciences) 

quite diverse and without a common underlying framework, there is no clear indication 

of any generally accepted representational components in the literature. However we have 

found three areas where generalizations can be made that axe useful for ITS designers. The 

first is in classifying instructional strategies as macro-strategies vs. micro-strategies. The 

second common element is the use of knowledge-type classification schemes. The third is 

a description of severed general areas of instruction that must be included in any complete 

instructional theory. We will discuss each of these below. 

15This reformulation works only if the outcomes are desirable, otherwise one would not want to use them 

as goals. 
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Micro vs. Macro Levels 

Instructional design theories or strategies usually describe components of instruction 

at either of two levels: the micro level or the macro level. The micro level deals with 

how to teach single ideas (concepts, facts, principles, etc.). Merrill’s [1983] Component 

Display theory and Gagne’s [1985] theory of instruction are micro-level theories. The macro 

level deals with sequencing, summarizing, and synthesizing a number of ideas, and involves 

curriculum design. Examples are Reigeluth’s Elaboration Theory [1983b], and Ausubel’s 

Advanced Organizer theory [1963]. 

Knowledge Classification Schemes 

A common thread for many writers in both instructional theory and learning theory 

is the classification of different types of knowledge. Bloom’s Taxonomy of Educational 

Objectives [1956], listing over 30 categories of educational objectives (things one might 

want to teach) is one of the earliest and best known of these.16 This early attempt was 

a synthesis of the thinking of a panel of educational theorists. Unfortunately, it did not 

clearly distinguish (subjective) knowledge from (observable) behavioral objectives. Gagne 

[1985] gives a more modern classification in terms of the changes in behavior that are used 

to infer that learning has occurred. His theory is based on five types of learned capabilities: 

intellectual skills, cognitive skills, verbal information, motor skills, and attitudes (and his 

theory has many sub-classifications of these five). Gagne is one of the field’s main proponents 

of the idea that different types of learning require different types of instruction. Merrill’s 

Component Display Theory [1983] also relies heavily on a knowledge classification scheme, as 

does Reigeluth’s Elaboration Theory of Instruction [1983b]. There is an extensive literature 

dealing just with concepts, distinguishing many types of concepts and concept learning 

[Tennyson & Park 1980, Hunt 1962]. 

16The knowledge is arranged in six main categories: knowledge, comprehension, application, analysis, 

synthesis, and evaluation. 
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Cognitive scientists tend to use classifications that are less elaborate, yet derived from 

tested theories of how the mind works. Anderson’s ACT* theory [1983] distinguishes declar¬ 

ative from procedural knowledge. Many Al-based theories of learning and instruction, and 

many Al-base tutoring systems also use a procedural-declarative distinction, though they 

do not all define these categories in the same way. Half [1988] classifies existing AI tutors as 

being either expository (teaching declarative knowledge, and using primarily dialogue as the 

instructional method), or procedural (teaching skills, and using primarily a coaching-like 

environment as the instructional method.). 

Basic Areas of Instruction 

Here we fist several areas of instruction that cover most of the range of instructional 

methods found in the literature. In the literature one finds different instructional and 

psychological justifications, and different approaches to implementing, each of these “areas.” 

We will not discuss these justifications and approaches. 

1. Pre-instruction. Before introducing an idea do one or more of the following: relate 

it to other things that have been learned, motivate the student to want to learn the 

thing, or give an overview of what is to be learned. 

2. Post-instruction. After something has been taught, do one or more of the following: 

summarize it, or relate or synthesize it with other ideas that have been presented. 

3. Exposition. Giving examples, explanations, definitions, etc. Issues include how, 

when, and what kind of exposition to give. 

4. Practice. Allow the student to use the new information. Issues include: How much 

should the student practice, and with what tasks? Should she get more examples, or 

be asked more questions? What style of practice should be sued: rote, learn by doing? 

5. Feedback. Give appropriate feedback after student actions. Issues include: When 

and how to respond to the student’s behavior. Should students be told whether they 

were correct, given hints, or told the correct answer? 
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6. Remediation. Give additional material if the student has a misconception, does not 

learn with the standard instructional method, or shows improper understanding of 

something previously taught and presumed to have been learned. 

7. Assessment. Determine when a student has learned something, or when any of the 

tutor's objectives have been met. 

These areas of instructuion are not all needed for every instrucitonal sitiation, but an 

ITS shell be able to represent and use them all. In sum, we suggest that generic ITS 

frameworks have mechanisms for: 1. distinguishing macro and micro levels of instruction, 

2. distinguishing knowledge types, and 3. incorporating all of the basic areas of instruction 

listed above, and 4. allowing for substantial student control (see Section 6.3.4). 

2.2.4 Component Display Theory 

Component Display Theory (CDT) 'Merrill 1983] is an instructional theory dealing 

with the micro level of instruction. We describe it because we borrow from CDT in the 

design on the KAFITS conceptual vocabulary, and because it provides a good example 

of an instructional design theory that is conceptually dear, powerful, and operationally 

concrete. Unlike most other instructional design theories, the concepts and prescriptions in 

CDT are described at a detailed operational level, making parts of it amenable to computer 

implementation. 

CDT defines a descriptive language for the concepts, conditions, methods, and outcomes 

of instruction. The language consists of three taxonomies: one for describing student per¬ 

formance/behavior (learning or behavioral objectives), one for describing subject matter (a 

knowledge type classification), and one for describing instructional behavior or actions. We 

have borrowed primarily from the vocabulary of subject matter, called the performance- 

content matrix (PC-matrix). CDT also describes a prescriptive model for teaching. This 

model includes a mapping from behavioral objectives to expository and inquisitory presen¬ 

tations (with the PC-matrix serving as an intermediary in this mapping). In the original 
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Figure 2.1 Merrill’s Performance-Content Matrix 

design for this study we had planned to incorporate aspects of this mapping, but did not, 

for reasons described in Section 2.4. 

The Performance-Content Matrix 

CDT assumes Gagne’s [1985] hypothesis that different types of learning require differ¬ 

ent types of instruction (and different ways to evaluate the learning).17 The Performance- 

Content (PC) matrix (see Figure 2.1) is a key contribution of CDT. Previous theories have 

given classifications of types of knowledge or instructional objectives which are hierarchical 

in nature [eg. Bloom 1956]. There are many attributes of instructional content which are 

relevant to the instructional strategy used, and the space of types of knowledge is mul¬ 

tidimensional. A hierarchical classification fails to capture some important structure of 

knowledge, making knowledge classifying ambiguous. Merrill’s two dimensional classifica¬ 

tion is more expressive, usable, and intuitively clear them hierarchical schemes. 

Since one of the goals of CDT is to have a prescriptive system that is understandable by 

teachers and instructional designers (as distinct from researchers and theorists), the matrix 

lTGagne and Merrill do not seem to make a clear distinction between types of learning and types of 

knowledge, and I think they mean the same thing in this context. 
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is relatively small (three by four), even though finer distinctions are possible. For the 

same reason (ease of use or felicity) Merrill does not attempt to devise a many-dimensional 

model of knowledge types, which might be more theoretically appealing or complete. The 

insight that led to the PC-matrix was seeing the need to classify knowledge (or learning) 

according to both performance level and content type. CDT includes three performance 

levels: remember, use, and find (create); and four content types: facts, concepts, procedures, 

and principles. The matrix cells for “use fact” and “find fact” are blanked out in the matrix, 

since, by (Merrill’s) definition, facts can only be remembered and recalled (i.e. to use a fact 

is to remember it). Therefore there are ten fundamental knowledge types in CDT.18 

Mapping from Objective to Knowledge Type to Instruction 

CDT describes a method for mapping behavioral objectives to knowledge types, and 

prescribes a method for mapping knowledge types to instructional methods. To map 

from behavioral objectives to [content types] CDT uses a template representation of objec¬ 

tives similar to: GIVEN <stimulus representation> OF <stimulus constraint EXPECT 

Cbehavioral constraint> BY <behavioral appearance> WITH <criterion>. For exam¬ 

ple: (1) GIVEN pictures OF new-examples EXPECT [the student to be able to] classify 

BY sorting; and (2) GIVEN a-description OF an-event EXPECT [the-student-to] discover- 

relationship BY experimentation. To determine the [content type] a lookup table is provided 

that maps from descriptions like the one above to one of the [content types] shown in the 

P C-matrix. 

Merrill’s mapping from knowledge types to instructional presentations uses interrogatory 

and inquisitory “presentation forms” such as: asking for definitions, asking for classifications 

of items, giving generalities (definitions), giving instances (examples), giving hints, and 

giving contextual information. CDT provides a mapping from knowledge types to sequences 

‘‘Merrill makes finer distinctions to the performance levels, such as distinguishing between recalling ver¬ 

batim vs. paraphrased, in some situations, and Reigeluth [1983b] suggests some refinements to the content 

types. 
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of presentation forms.19 Merrill’s theory states that some of the presentation forms are 

necessary and sufficient to learning the subject matter (called “primary” presentation forms) 

and others are not necessary but are used to enhance the efficiency or effectiveness of the 

learning (called “secondary” presentation forms). The reader is referred to Merrill [1983] 

for a detailed description of the rules for determining the presentation forms. 

2.2.5 The Merging Paths of ITS and IDT 

As we alluded to earlier, ITS researchers have ignored IDT because of a mismatch in the 

goals, methods, and historical roots of the two fields. However, these fields are becoming 

decreasingly dissimilar. Increasingly, instructional theories are addressing higher order skills 

and basing their theories on cognitive principles. As ITSs move into more varied and 

realistic instructional settings some issues that IDT has been studying for decades become 

more salient. Even though most instructional theories or models are too general or vague 

to be immediately incorporated in computer systems, IDT has a wealth of empirical and 

theoretical information ripe for use by the ITS community. 

Our overview of IDT has been quite narrow. To give the reader a flavor for the range 

of relevant issues covered by IDT, and how IDT could guide some aspect of ITS design in 

the future, we list several ITS issues, and note one IDT theory that is relevant for each.20 

• Representation of pedagogical information, motivation. Ausubel’s Advance 

Organizer model [Ausubel 1963] structures learning around a hierarchical organization 

of the concepts. To insure that instruction is both meaningful and relevant, he suggests 

first presenting an overview (at an appropriate level of abstraction) of the subject 

matter, relating it to other concepts near it in the hierarchical structure, and then 

using successive differentiation, presenting more general or inclusive ideas first. 

19One drawback of CDT is that the prescribed presentation forms are given in a fixed linear ordering. 

20We do not necessarlity agree with the the content of any of these theories, we only wish to demonstrate 

the range of relevant issues covered in IDT. 
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• Student modeling, longitudinal effects. Though not an instructional theory, 

Piaget’s developmental model [Varma & Williams 1976], which proposes that a stu¬ 

dent’s position within a sequence of stages of cognitive growth determines the types 

of knowledge that can be learned, can be used to design instruction according to a 

model of the student. 

• Tutoring strategies, primitive tutorial actions. Skinner’s Operant Conditioning 

theory [1957] focuses on the use of (and types of) reinforcement given to the student. 

• Tutorial session management, assessment. Bloom’s Mastery Learning model 

[Bloom 1984] proposes frequent assessment of student performance and provides in¬ 

structional structures that try to insure that all (or most) learners demonstrate a 

predetermined mastery performance level before moving forward in the curriculum. 

• Learner control, types of knowledge. Flavell [1981] and Schoenfeld [1985] em¬ 

phasize metacognitive skills—mental processes that monitor and manage one’s current 

cognitive processes. 

• Affective factors, group learning. Thelen’s Group Investigation Model of teaching 

[Joyce &: Weil 1986, Chapter 2] focuses on how to integrate independent and group 

investigation within a democratic process that respects the input of all of the students. 

2.2.6 Summary of Instructional Theories and Intelligent Tutoring 

In this section we defined instructional design (or instructional theory) and explained 

why we focused more on instructional design than learning theory. The need for instruc¬ 

tional strategies that mention specific instructional methods was emphasized. We argued 

that ITS designers should incorporate more instructional design theory into their systems, 

and hypothesized reasons why they have not in the past. From the instructional design 

literature, three recommendations for generic ITS’s were given: distinguishing micro from 

macro instructional levels, incorporating knowledge classification schemes, and incorporat¬ 

ing seven basic areas of instruction (pre-instruction, post-instruction, exposition, practice, 
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feedback, remediation, and assessment). We then described Merrill’s Component Display 

Theory, because we have borrowed from it in designing our conceptual framework, and 

because it illustrates an expressive, usable, and implementable instructional design theory. 

Finally, we alluded to the breadth of issues covered by IDT that are relevant to ITS design 

by giving examples of IDT theories and pointing to ITS issues they address. 

2.2.7 KAFITS and Instructional Theory 

The KAFITS framework incorporates the following principles and features inspired by 

instructional design theory: 

• KAFITS’s primitive tutorial actions and default tutoring strategies incorporate the 

seven “basic areas of instruction” identified in Section 2.2.3. 

• KAFITS’s overall control structure, the Four-level Decision Model, is based on micro 

and macro levels of instruction (see Section 3.1.3). 

• KAFITS incorporates a knowledge-type classification scheme based on Merrill’s PC- 

Matrix (described below), which helps the expert articulate and distinguish instruc¬ 

tional objectives, and facilitates the creation of tutoring strategies that distinguish 

between different types of knowledge. 

• the KAFITS topic Part relationship allows subsumption networks of concepts as in 

Ausubel’s theory of menaingful learning. [Ausubel 1963]. 

• the KAFITS performance/mastery topic levels allows stragegies to duplicate mastery 

learning, as discussed in [Bloom 1984]. 

A modified PC-Matrix. Gagne’s [1985] hypothesis that different categories of 

knowledge (learned capability) require different methods for promoting the learning of that 

capability,21 though not proved in a strict sense, it is generally accepted in instructional 

21 Gagne actually refers to “outcomes” (i.e. behaviors) rather than “knowledge.” 
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theory. In ITSs, the Gagne hypothesis calls for multiple tutoring strategies that are sensi¬ 

tive to knowledge categories. We have chosen to base our knowledge type classification on 

Merrill’s Performance-Content (PC) Matrix [1983] and its conceptual simplicity compared 

with other classification schemes. 

Our representational framework (described in Section 3.1.6) includes several modifica¬ 

tions to Merrill’s PC matrix. First, we make the distinction between Basic knowledge types 

(the ones in the PC Matrix) and Complex types of knowledge types (including metacogni- 

tive skills, scientific inquiry skills, mental models, and creativity). We found this necessary 

in order to include many higher level abilities that are not in Merrill’s PC Matrix.22 Also, 

we have added a meta-knowledge23 level to Merrill’s matrix and divided the use level into 

apply-use and apply-problem-solve (see figure 2.2). Apply-use refers to the ability to employ 

knowledge in a context where it is clear that the knowledge is needed. Apply-problem-solve 

refers to using a piece of knowledge with the additional ability to recognize the need to use 

it in an open problem solving context. 

KAFITS incorporates content types as node types in the topic network and incorpo¬ 

rates performance levels as levels within each topic. For example the topic “gravity” is of 

type concept and the designer can specify presentations for the remember, apply-use, and 

problem-solve levels within this topic. 

The KAFITS system could be used to represent and experiment with multiple alterna¬ 

tive instructional theories. We originally intended to encode several instruction theories, 

including Merrill’s, using the KAFITS tools, but this was not done because we realized that 

it was enough for the domain expert to encode his own ideas about how to teach his domain 

without adding the additional, and obfuscating, task of learning and/or being constrained 

to specific instructional models. 

22 Merrill’s Component Display Theory prescribes very concrete and specific instructional actions based 

on the characteristics of the target behavior. Complex knowledge types are not included in Merrill’s theory 

because they are quite difficult to define or prescribe how to teach at the necessary level of precision, [true 

acc. to new stuff?] 

23Meta-knowledge is knowledge about knowledge, such els when to use it, why it is usefull, whether it is 

hard to learn, etc. 
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2.3 Empirical Research and Iterative Design 

In ITS research, and in most sub-fields of AI, there is an intimate melding of the theoret¬ 

ical and the practical—those of us doing research and building systems are both scientists 

and engineers. We must balance the desire to build systems that works with the desire to 

discover new (or challenge existing) theories and models. In this section we discuss how 

research methodology and systems design methodology can be combined in the context 

of ITS research. (In later sections we the related topics of discuss knowledge acquisition 

methods (Section 2.4) and evaluation methods (Section 2.5).) 

2.3.1 AI Research 

Research methods and systems design methods used in main stream AI are applicable to 

the ITS sub-field. Buchanan [1987] describes AI research as a cyclic process with theoretical, 

engineering, and analytical phases. He suggests that research includes all of these steps at 

least once: 

- Theoretical Steps: 

1. Identify the problem. 

2. Design a method for solving it. 

- Engineering steps: 

3. Implement the method in a computer program. 

4. Demonstrate the power of the program (and thus the method). 

- Analytical steps: 

5. Analyze data collected in the demonstration. 

6. Generalize the results of the analysis. 
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These research steps are typically repeated in a cycle from theorizing to engineering 

to analysis and back to theorizing. Though the steps may seem too obvious or general to 

use as a basis on which to design a study, Buchanan enumerates them to point out that 

much of the research reported in the field is lacking in one or more key areas, including: 

clearly identifying the goals of a study; stating the theoretical underpinnings; describing the 

scientific and/or engineering methodology; building a system which implements the theory; 

and evaluating/generalizing data. 24 

Cohen & Howe [1988a] distinguish three types of AI research: theoretical AI, empirical 

AI, and applied AI. Their discussion focuses on empirical AI, which they describe in com¬ 

parison to theoretical and applied AI. Theoretical AI is purely analytical—its hypotheses 

can be proved without implementation. Empirical AI, on the other hand “tells us things 

about the behavior of AI systems—the interactions of knowledge representations, inference 

methods, algorithms...that we could not anticipate from purely theoretical AI” (page 3). 

Applied AI deals with the practical issues of implementing existing theories, models, or 

systems in realistic situations. Empirical AI, on the other hand, aims at developing and 

experimenting with new methods. 

Empirical AI science has important distinctions from other sciences. Cohen &: Howe 

[1988a] point out that empirical AI research focuses on investigating human artifacts, in 

contrast to behavioral (or physical) science research which is about investigating naturally 

occurring phenomena. Behavioral science research is about “teasing apart the components 

of behavior and their causal relationships,” asking “why does [some natural system] behave 

this way,” and typically uses methods such as searching for factors and statistical hypothesis 

testing. In contrast, empirical AI is about “putting all the components together in one box 

to produce behavior,” asking “what knowledge representation and algorithms do we need to 

make a system that performs [in some desired way],” and the most commonly used method 

is a cyclic design process [Cohen & Howe 1988a, pg. 18]. 

24For example, Buchanan [1988, pg. 16] says that “with AI programs, designers often advance many 

interdependent claims at once [and] do not state explicitly what those claims are ... this is reprehensible 

scientific behavior.” 
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ITS Design Methods vs. Research Methods 

ITS research involves empirical AI,25 and Buchanan addresses empirical AI (in Cohen 

& Howe:s classification) in his six research steps. Empirical AI has elements of theory and 

application. Buchanan’s steps emphasize the need for ITS designers/researchers to clearly 

state research goals, evaluate their systems, and generalize findings. There are also many 

applied, pragmatic aspects to ITS research, as ITS researchers are increasingly aware of the 

importance of human factors and interface issues [Bonar 1991, Frye et al. 1980], and, by 

its very nature, ITS must be tested in the field before researchers can be confident of their 

theories. Pragmatic concerns for moving ITSs out of the lab and into the classroom, home, 

or workplace are discussed in Section 6.5 and in [Baker 1991, Johnson 1988, and Woolf 

1990]. 

In this study we combine an ITS design methodology with an ITS evaluation method¬ 

ology. We re-interpret Buchanan’s research steps as follows for ITS design/research: 

1. Identify research questions, posit hypotheses, describe the underlying pedagogi¬ 

cal/psychological theory; 

2. Choose an instructional domain, a domain expert, a system architecture, a software 

design method, and an evaluation method that address the questions and hypotheses 

of step 1; 

3. Build an intelligent tutor (this step includes software design, knowledge acquisition 

and human factors considerations); 

4. Test the tutor (in dry runs and/or student trials); 

5. Analyze the test data; 

6. Generalize the results, make conclusions related to the questions and hypotheses, and 

(usually) start over again with step 1 to refine the program and/or the theory. 

25It could be argued that some ITS research, including our present study, is empirical research but not 

empirical AI research, since it does not contribute significantly to the general body of AI knowledge and 

theory. 
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In this study we: 

• discuss ITS evaluation methods (part of steps 2 and 5 above) in general (Section 2.5.3), 

and describe our evaluation which incorporates formative evaluation and case study 

methodologies; 

• discuss ITS usability design issues (Section 2.3.2), and give our own results on usability 

(Section 5.5.4); 

• discuss knowledge acquisition (part of step 3) issues (Section 2.4); and give results 

from our study of ITS knowledge acquisition tools and methods (Section 5.4); 

• expand on steps 3 and 4 in our description of a user participatory ITS design process 

(below). 

2.3.2 Iterative and Participatory Design 

Both Buchanan and Cohen & Howe emphasize the cyclic nature of AI research.26 Iter¬ 

ative design is also strongly recommended throughout the literature in computer usability 

and human-computer interaction (HCI).27 In studies of software intended to be used by 

people there is a high degree of uncertainty as to the outcomes. Baker [1991, pg. 152], 

in discussing computer based training, notes that “what technology is almost guaranteed 

to do is to generate, by its very existence, outcomes and applications that were not previ¬ 

ously considered...nor imagined by the...designer.” Similarly Gould [1988, pg. 7] offers these 

general observations on designing systems based on studies of users: 

• Nobody can get it right the first time, 

• Development is full of surprises, 

26Whiteside et al.[l987, pg. 12] refers to cyclic design as “incremental, evolutionary, and conscious 

iteration.” 

27HCI studies are often from the perspective of software development and application, rather than the 

perspective of pure research, but the principles given in the HCI literature hold for any user-focused research 

even if the computer system is not intended for the marketplace or workplace. 
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• Developing user-oriented systems requires living in a sea of changes. 

Therefore continuous testing and refinement, i.e. iterative design, is needed to ensure 

usability. In the context of research (as opposed to software design) this suggests a formative 

evaluation methodology (which we discuss in more detail in Section 2.5.2).28 However, the 

use of iterative design along with formative evaluation still does not address some important 

issues—users must be in the design/evaluation loop. Gould [1988, pg. 4], in addition to 

recommending iterative design, gives these principles for system design: 

• Early and continual focus on users—i.e. direct contact with users to understand 

cognitive, behavioral, and social characteristics of their task and task environment. 

• Integrated design. Design, build, and test all components of the system in parallel. 

• Early and continued user testing. Users, under observation or some other form of 

measurement, do real work with prototype systems. 

Participatory Design 

A recent trend in HCI and usability research, called “user participatory design” (or 

“participative design” [Blomberg & Henderson 1990]), involves a shift from user-as-subject 

to user-as-co-researcher. Ascertaining how users conceptualize their domains and how they 

conceptualize the computer system is an essential part of studying usability. Researchers 

must account for the conceptual models the user brings to the task, and determine how 

these models might help or hinder the model of the system that the designer wants to 

portray. For example, people have experience with desktops, file cabinets, and street maps, 

and these conceptions may help or interfere with their understanding of a computer tool. 

Whiteside et al.[1987] discusse the importance of “contextual research” (studying users 

during real work) in usability studies, saying: “human action as observed derives its mean- 

alterative design becomes a formative evaluation if one keeps data on the issues encountered, the changes 

made to the system, and the results of these changes. Systems building becomes research when the goal is 

to explore the important issues and report to others, rather than to build a system that works. 
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ing from the context in which it occurs” (pg. 19). Designing for usability means not only 

satisfying external functionality and performance criterion, but ensuring that the user is mo¬ 

tivated and informed. Therefore, determining the user’s experience as well as her observable 

behavior is important. 

In HCI research (and in knowledge acquisition research as well) the researcher is often 

inextricably entangled with what is observed. He influences the data by the choice of 

questions asked, by instructional remarks and other informative interventions, and simply by 

being present as the user uses the system (Whiteside et. al 1987). Therefore, as mentioned 

previously, traditional experimental methods are often inappropriate; and when the goal is 

to uncover the users experience of a system, which is un-observable, traditional experimental 

methods have no bearing. 

The above mentioned goals of (1) determining users’ conceptual models, and (2) deter¬ 

mining users’ experience of the system, are facilitated by having the user be a co-researcher 

(i.e. participatory design). Just as the researcher is inextricably involved with the sub¬ 

ject, the subject shares responsibility in discovering the experience of working with the 

system. The researcher “explains what is of interest; there is no thought of concealing the 

conditions for fear of contaminating the data...[and the user, as co-researcher, helps] direct 

the discussion, indicates relevant areas for exploration, and responds to the [researcher’s] 

interpretations” [Whiteside et. al, pg. 26]. 

We have discussed Al research and how research methodology and system design 

methodology can be combined. This study is an investigation of 1. an ITS knowledge 

acquisition process and 2. ITS knowledge acquisition tools. Below we discuss usability 

design principles we needed to be aware of in designing the knowledge acquisition tools (we 

discuss knowledge acquisition methodology in Section 2.4). 
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2.3.3 Usability and Interface Design 

ITS knowledge acquisition tools should adhere to established human factors design prin¬ 

ciples, especially if they are designed to be used by instructors. Nickerson & Pew [1990, pg. 

42] give several: 

1. Make it hard for the user to inadvertently cause a disaster. 

2. Make the user feel that s/he are doing the task rather than instructing the computer 

to do it (for example, by using direct manipulation of icons). 

3. Modularize applications in terms the user’s tasks, rather than programming conve¬ 

nience. 

4. Use simple metaphors to explain task organization (for example, the “desktop”). 

5. Limit interactive access to when it is needed. 

6. Help the user “navigate” within the information available. 

Nelson [1990] gives a further discussion of navigation issues in the context of using 

Hypertext. His studies have indicated that a majority of users experience confusion and 

disorientation in trying to use a large Hypertext document. This problem applies to any 

large knowledge base where there are many links between the objects. Designers of interfaces 

should make moving between linked items intuitive, and provide methods for the user to 

know his context (“you are here”) within the knowledge base. 

Miller [1988] notes that in designing an ITS interface one must consider users’ cognitive 

capabilities and limitations, and the knowledge and cognitive structures they are likely to 

bring to the task.29 “People combine [existing] knowledge with their observations of the 

structure and behavior of the interface to construct a conceptual model of the system” 

(pg. 145). He gives three characteristics of a good conceptual model: clarity, coverage, 

29Miller’s article discusses ITS interface issues in the context of the student, but the principles he gives 

are general human factors principles, equally applicable to an interface for knowledge acquisition. 
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and sound level of abstraction in suggesting that interfaces be designed to offer a good 

conceptual model to the user. Other discussions of ITS interface design can be found in 

[Bonar 1991, Frye et al. 1988]. 

2.3.4 Summary of Empirical Research and Iterative Design 

In this section we pointed out that ITS research (like most AI research) blends aspects 

of both research (discovering knowledge) and engineering (building artifacts) and must 

combine scientific methodology with design methodology. We discussed “empirical AI” 

(which covers almost all ITS studies) as compared with “theoretical” and “applied” AI 

[Cohen & Howe 1988] and as compared with research in other fields, and we re-interpreted 

Buchanan’s [1987] six steps for AI research in terms of ITS design/research. We discussed 

how an iterative design method fits the needs of both human factors (usability) concerns and 

the cyclic evolutionary nature of AI research. We then discussed how a user participatory 

design process also supports usability goals. Finally we presented interface and human 

factors design principles which should guide the design of ITS interfaces (student interfaces 

as well as knowledge acquisition interfaces). 

2.3.5 KAFITS Research and Design Issues 

Since in this study we are both evaluating the artifacts we build and improving their 

performance, an iterative design process, incorporating evaluation at many stages, has been 

used. Since usability of our system is important, we have followed a user participatory 

design process as well (in Section 2.3.1 we summarize results of our study that argue the 

need for user participation). 

Each of Nickerson & Pew’s six human factors design principles (see above), as well as 

the issues raised by Miller about the need for ITS interfaces to support cognitive models, are 

addressed in the KAFITS system and/or discussed in our analysis of the study (in Section 

2.3.2). Our “empirical AI research” combines several evaluation methodologies, including 
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qualitative evaluation methods, formative evaluation, and a case study, as discussed in 

Section 2.5.5. 

2.4 Knowledge Acquisition and Intelligent Tutoring 

Here we discuss the most important and difficult aspect of building ITS knowledge 

bases—acquiring the domain expert’s knowledge. A wide range of expertise is needed 

to build an intelligent tutor. ITS designers, in the tradition of AI, have long recognized 

the need for domain experts and cognitive scientists, and recently there is an increased 

recognition of the importance of expertise in instructional science and human factors. In 

addition to these forms of expertise, wre advocate for the participation of practicing educators 

to insure that intelligent tutors are realistic and anticipate pragmatic issues. Two kinds of 

knowledge must be acquired, domain knowledge and pedagogical knowledge,30 and there 

are two issues in getting this knowledge into a computer tutor: knowledge acquisition and 

knowledge representation. We are interested in methods for eliciting (acquiring) knowledge 

from experts and methods for representing what experts communicate. Acquisition and 

representation are closely related, since the framework used to represent knowledge will 

constrain and/or support the elicitation process. 

ITS researchers have addressed knowledge representation, but, for the most part, have 

not dealt explicitly with knowledge acquisition issues (except for task analysis studies).31 

However, knowledge acquisition has been studied in AI, and we can relate this research to 

ITSs. Therefore, in this section we present a fairly complete (though in some cases shallow) 

review of AI knowledge acquisition methods and tradeoffs, both for the edification of the 

interested reader, and to describe and justify the methods we used for this study. 

30“Pedagogical knowledge” includes tutoring strategies and domain-specific information about how to 

teach the curriculum. 

31 Much has been written about the process of acquiring knowledge for CAI (a process called authoring or 

courseware development). These inquiries have some useful advice to offer the ITS designer in areas such as 

organizing working sessions with educators, choice of media, and screen and graphics design. However, for 

the most part, design guidelines given for courseware development have little to offer ITS designers since they 

produce fixed instructional scripts with no explicit models of teaching, domain knowledge, or the student. 
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2.4.1 Knowledge Acquisition Issues 

Knowledge acquisition is the transfer and transformation of expertise from people into 

a form that can be used by machines (Buchanan et. al 1983).32 It is one of the first 

steps in the design of expert systems (including ITSs) and is the biggest bottleneck in the 

knowledge engineering process. (Hoffman [1987, pg. 53] states that “the identification and 

encoding of knowledge is one of the most complex and arduous tasks encountered in the 

construction of [an expert system].”) Though expert systems have existed for some time, 

there is as yet no consensus on the best way to go about the knowledge acquisition process.33 

However, a corpus of knowledge acquisition methods, all of them appropriate to building 

ITSs, have been identified and partially standardized, and advantages and disadvantages 

of some of these methods have been documented. Before describing specific knowledge 

acquisition methods we summarize several of the most important issues facing AI and ITS 

knowledge engineers: mappings from domain tasks (and skills) to knowledge acquisition 

methods for eliciting descriptions of those tasks; automation of the knowledge acquisition 

process; important characteristics of domain experts, knowledge engineers, and domains; 

and secondary goals of knowledge engineers. 

Mapping tasks to methods. Gaines & Bose [1988, pg. xviii] refer to the “piecemeal 

nature of techniques and tools” in calling for a more systematic approach to determining 

the best knowledge acquisition methods for each application. The issues receiving the most 

attention in mainstream knowledge acquisition research are: 1. the delineation and analysis 

of methods, and 2. the analysis of domain (or task) characteristics for determining the best 

32Related terms: “knowledge engineering” is the process or methodology for acquiring, representing, and 

using qualitative models of systems (i.e. building and expert system) [Gaines Bose 1988]. “Knowledge 

elicitation,” “the process by which facts, rules, patterns, heuristics, and operations used by humans to solve 

problems, in a particular domain, are elicited” [Garg-Janardan & Salvendy 1988] (also called “knowledge 

extraction”), is a part of knowledge engineering. For the purpose of this paper knowledge acquisition, 

knowledge engineering, and knowledge elicitation are synonymous, unless otherwise stated. Note also that 

expert systems are often called “knowledge-based systems.” 

33Hoffman [1987, pg. 54]: “No systematic research has been conducted on the question of how to elicit an 

expert’s knowledge and inference strategies;” Gruber [1988 pg. 3]: “there is little consensus on a methodology 

for knowledge acquisition.” 
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methods to use. AI researchers are slowly converging on a mapping from domain or task 

characteristics to knowledge acquisition methods [Bose 1988].34 

Automating knowledge acquisition. Though most knowledge acquisition is cur¬ 

rently done by hand,35 there is a movement away from protocol analysis and interviews 

toward computer-based interactive methods using elicitation tools. Many of the knowl¬ 

edge acquisition methods we list later can be automated. Also, computer-based methods 

are used to check the consistency and completeness of knowledge bases. In addition, ma¬ 

chine learning can be considered a form of knowledge acquisition—analogy-based learning, 

explanation-based learning, concept learning, and other automatic inductive and deductive 

learning methods are sometimes included in a broad definition of knowledge acquisition.36 

Gilmore & Self [1988] give an overview of applications of machine learning to ITS. Studies 

have been conducted using machine learning to infer student models and to incrementally 

improve teaching strategies in ITS systems [Dillenbourg 1988, Kimball 1982]. 

Characteristics of domain experts and knowledge engineers. There is wide 

agreement about desirable characteristics in selecting domain experts (DEs, or “subject 

matter experts”) (see Prereau [1987], McCaslin & Boord [1990], McGraw [1989], Slagle & 

Wick [1988]). These characteristics include: 

• knowledgeability, self-assuredness, and credibility (the DE’s expertise should have 

been acquired by successful task performance over a long period of time); 

• communication and cooperation skills (the DE must be a “team player” and be capable 

of communicating personal knowledge, judgment, and experience); 

• commitment, availability, and managerial support (the domain expert and his/her 

organizational superiors must support a substantial time commitment). 

34Some of their concerns are related to our discussions about knowledge types (Section 6.3.3). 

35Hoffman [1987, pg. 62] says that “in general, it takes two years to develop a prototype and about five 

years to develop a full-scale system.” 

36See Gruber [1988] for a discussion of machine learning techniques applied to knowledge acquisition. 
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Less is said in the literature about important characteristics of knowledge engineers, but 

McGraw [1989] mentions that the ITS knowledge engineer wears many hats, including that 

of knowledge analyst, communications facilitator, and instructional designer. 37 

Secondary goals of knowledge engineers. Knowledge engineers usually have sec¬ 

ondary goals, other than eliciting knowledge, including: 

• learning about the domain from the expert, 

• establishing rapport with the expert, 

• ascertaining the needs and preferences of users, 

• and instructing the domain expert in the concepts of AI. 

These goals must be considered when planning the knowledge acquisition process and 

choosing the participants. 

Other issues. There are important knowledge acquisition issues discussed in the lit¬ 

erature which we have not mentioned, but which we will provide references for: acquiring 

knowledge from multiple experts [Shaw & Gaines 1986, and LeClair 1988], meeting the 

needs of both novice and experienced users of knowledge acquisition tools [LeFrance 1989, 

Kopec &: Latour 1989], and how to maintain an evolving knowledge base over time [Barker 

& O’Conner 1989, and K. Murray 1988]. 

ITS vs. Other Expert System Domains 

The vast majority of knowledge acquisition research is done in the context of traditional 

expert systems, and intelligent tutoring systems differ from traditional expert systems in 

severed significant ways. In some respects intelligent tutoring is such a difficult area that 

new and challenging issues are encountered that do not exist for prototypical expert system 

37In addition, Slagle & Wick [1988] discuss how to select a good applications domain for expert systems, 

and in Section 6.3.2 we discuss how tutoring systems measure up in their scheme). 



72 

applications. In other respects the ITS state of the art is far behind the state of the art for 

prototypical expert system domains, so that some important knowledge acquisition issues 

have barely been addressed in ITS research. 

As mentioned in a previous chapter, ITS is more than just an applications area for expert 

systems. In fact, if we use Slagle & Wick’s [1988] “method for evaluating candidate expert 

system applications,” ITS would seem a rather poor expert system application. Slagle & 

Wick list 24 “essential features” and 16 “desirable features” for expert system domains. ITS 

rates high on some features, including “task is knowledge intensive,” “task not essential to 

deadline,” “hard to transfer expertise,” and “task identified as a problem area,” but ITS 

faxes poorly with many more features, such as “task is not language intensive,” “task requires 

no common sense,” “expert is articulate,” “experts agree on good solutions,” “solutions 

are explainable,” and “task does not require read-time response.” However, as mentioned 

previously, ITS research is justified for many reasons even if it is a non-optimal applications 

area for AI technology. 

One of the maun differences between traditional expert system applications and intelli¬ 

gent tutoring is that ITS research does not (except in rare cases) try to simulate human 

tutoring expertise. It uses human tutoring expertise to guide the design of tutoring rules, 

but the end goal is not to simulate human behavior. There are two reasons for this. First, 

we can only hope to approximate the simplest aspects of humam tutoring, being constrained 

by the limitations of the computer. The types of information that are essential to a human 

teacher aire much more subtle, unconscious, and immeasurable (facial expressions, students’ 

personalities, etc.) than the information used by ITSs. And, perhaps more importantly, 

even if we could simulate human expertise, it may not be appropriate to do so. Learning 

via a computer and learning via human discourse are very different, and the most powerful 

and efficient strategies for teaching in these environments are likely to be equally different. 

Another difference between tutoring systems and traditional expert system domains is 

that cognitive fidelity is much more important in tutoring system knowledge bases. This 
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makes the knowledge more difficult to acquire and much more difficult to evaluate (since 

we can never know with certainty what happens in an expert’s head). 

In summary, tutoring is not an easy domain in which to build AI programs, compared 

to most other expert systems domains. The acquisition of domain knowledge is made more 

difficult by the need for cognitive fidelity, and by the need to represent (even if shallowly) 

complex types of knowledge (such as intuitions and mental models) as well as procedures 

and rules. The acquisition of strategic knowledge is difficult because we do not have clear 

models of pedagogy for computer tutors (nor do we have operational models of human 

tutoring), making tutoring knowledge difficult to acquire and represent. Therefore, although 

knowledge acquisition methods used in mainstream AI are applicable to ITS, the methods 

or when they are best used may differ for ITS. 

Current ITS Knowledge Acquisition Research 

Perhaps for reasons mentioned above, almost all ITS studies that deal with knowledge 

acquisition have dealt with only a small number of the important knowledge acquisition 

issues, falling into one of three categories: 

• Generality. The systems mentioned in Section 2.1.3 on generic ITS frameworks ad¬ 

dress knowledge acquisition in that they constitute frameworks and languages for 

representing knowledge. These projects, however, do not address the methods or is¬ 

sues involved in acquiring the knowledge, except (in several cases) to specify that it 

be done in a top-down or bottom-up fashion. 

• Machine learning. One way to acquire knowledge is to let the computer program learn 

by itself (leaving the human out of the loop). ITS efforts in machine learning were 

mentioned earlier in this Section.. 

• Cognitive and procedural task analysis. The knowledge acquisition area that has 

received the most attention to date in ITS is task analysis [Means & Gott 1988, 

Lajoie 1986, Cerri 1988]. Procedural task analysis involves creating a procedural 
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representation of expert problem solving behavior. Cognitive task analysis infers 

underlying cognitive structures and processes, and is used to study both expert and 

novice behavior. (A further discussion of task analysis is found in Section 2.4.2). 

Though the three areas above are important, we believe that ITS researchers should, 

on the whole, pay more attention to other traditional AI knowledge acquisition issues such 

as: What are good methods for acquiring a teacher’s knowledge and building a knowledge 

base (perhaps as a function of the domain or task)? What signposts, issues, tradeoffs, and 

pitfalls does one encounter in trying to represent that knowledge? This study addresses 

these questions in the context of building a physics tutor with the KAFITS system. We 

also summarize a wide range of knowledge acquisition methods (below), noting how they 

apply to ITSs construction. 

2.4.2 Knowledge Acquisition Methods 

In order to provide ITS designers with an overview of commonly used knowledge ac¬ 

quisition methods, we mention the entire range of knowledge acquisition methods used in 

AI, describing how they apply to eliciting knowledge from domain experts and educators. 

Knowledge acquisition methods and tools can be categorized along many dimensions, for 

example: whether they are manual or computer-based [Boose 1988]; whether they involve 

natural or contrived situations for the expert [Shadbolt & Burton 1989]; the amount of 

domain understanding required of the knowledge engineer; and the knowledge engineer’s 

level of involvement in knowledge engineering sessions (passive vs. active). Our organiza¬ 

tion of knowledge acquisition methods is synthesized from Hoffman [1987 and 1989], Bose 

[1988], Garg-Janardan &; Salvendy [1988], and Shadbolt & Burton [1989], and includes the 

following methods (each described later in detail): “analysis of formal documents” and 

“tutorial sessions” are often used to bootstrap the process, giving the knowledge engineer 

enough information to propose an initial system architecture and to plan how he will work 

with the domain expert; “judgment tasks” can be used to develop an initial conceptual 

framework for a knowledge base; “analysis of off-line tasks” and “interviews'’ are typically 
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the work horses of knowledge acquisition, and are the main methods used for task analysis; 

and “on-line test-and-refine tasks” are used to test, modify, and extend a knowledge base. 

These methods are not mutually exclusive and are often combined. 

Analysis of formal documents. Formal documents (a term borrowed from McGraw 

[1989]) such as texts, manuals, data bases, and other references, can provide a starting place 

for acquiring domain knowledge, and tutoring knowledge can be gleaned from instructional 

literature on theory and practice. But this is only a beginning, and it is essential to work 

closely with domain experts and educators to check and modify the information gained from 

other sources. Sub-categories include: 

• Manual acquisition. Text can be an initial source of the knowledge engineers famil¬ 

iarity with the domain. A prototype knowledge base can even be generated from text 

sources before consulting with the domain expert. 

• Automated acquisition. Text can be automatically analyzed (the frequency and jux¬ 

taposition of words, for example) to yield the concepts and associations that might 

form the baseline for a domain [Shaw & Gains 1986]. Such methods tend to result 

in a large number of of spurious concepts, so they are not good for consistency or 

relevance, but they may be good for completeness, reminding the expert of areas of 

the domain they have not thought to mentioned. 

Tutorial sessions. The expert can explain the concepts, procedures, tutoring strate¬ 

gies, etc., of the domain to the knowledge engineer (who might be taking the role of an 

apprentice), perhaps walking him through tasks or problem solving. This yields a useful 

first pass at the domain knowledge, and gives the knowledge engineer enough information 

to plan future knowledge acquisition sessions. Again caution is warranted: an expert’s ver¬ 

bal knowledge of his problem solving or teaching skills will probably be incomplete and in 

places erroneous. 

Judgment tasks. Originally taken from psychological and social-science experimental 

methods, these tasks involve rating, ranking, creating taxonomies, or sorting pre-defined 
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stimuli [Hoffman 1989]. They are a type of (very) “structured interview” (see below). 

Several systems have been built to automate these tasks and perform a variety of types 

of analysis on the data [Shaw &: Gaines 1986].38 Judgment tasks are especially useful in 

domains where the rules or strategies are fuzzy or not well articulated, yet performance is 

repeatable. Sub-categories include: 

• Grid generation, hierarchy classification, and concept maps. The expert is guided 

though the generation of tables or graphs which diagramitically show relationships 

between ideas. 

• Card sorts. Objects represented on cards are sorted in various ways, according to 

whatever characteristics the expert deems important. Card sorts are useful for dis¬ 

covering structure in knowledge. For example, having a teacher sort descriptions 

of word problems could yield a useful classification scheme, such as the categories: 

qualitative/intuitive, equation generation, and quantitative. 

• Repertory grids. Repertory grids [Shaw 1981] organize numerical ratings of instances 

along a variety of bipolar dimensions. The grid is analyzed statistically to determine 

correlations or causal rules relating the dimensions. 

Analysis of (off line) tasks. The expert is observed in action, solving a domain 

problem or tutoring (and see Section 2.5.3 for a discussion of cognitive task analysis vs. 

procedural task analysis). Parameters of this method include: whether to ask the expert 

for explanations as he works; whether to tape the session and/or perform a protocol analysis; 

whether to observe the expert at a real task during part of his normal work day, recreate a 

historically archived task situation, or invent a hypothetical task situation. Sub-categories 

include: 

• Familiar tasks. The expert is observed performing a familiar everyday task. 

38Rules (relationships between features) which best account for the data can be generated automati¬ 

cally, and automatic analysis can reveal structure in knowledge by constructing useful classifications and 

taxonomies. 
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• Tough or unusual cases. The expert is given a difficult or extreme case problem. This 

can reveal more refined reasoning. 

• Constrained tasks. The expert performs a familiar task with contrived constraints on 

time or some other resources, or is not given some of the information he is normally 

given. He is forced to make approximations or extrapolations, use heuristics, etc. that 

might not occur in a normal situation. For example, a student works at a computer 

and the expert monitors and assists the student from another computer. Here the 

communication band-width is quite limited compared to face-to-face tutoring. 

• Generating analogies. The expert analyzes or solves problems (cases) by comparing 

them with other cases (historical or standard cases). Similarities and differences in 

the cases and in the actions the expert would take are noted. 

Interviews. The knowledge engineer questions the expert. This can be done in con¬ 

junction with a task (see above).39 Sub-categories include: 

• Unstructured interview. Opportunistic questioning is an acceptable way to acquire 

the initial scope and goals of a domain. It is also useful to repeat unstructured 

interviews at various stages in the knowledge acquisition process to generalize, refine, 

and reorganize the knowledge as it is being acquired. 

• Structured interview (also called “focused” interview). The knowledge engineer plans 

what questions or tasks will be given to the expert prior to the knowledge acquisition 

session. To do this the knowledge engineer needs some understanding of the domain. 

The knowledge engineer also pre-determines whether there are constraints on what he 

can say. Specific guidelines for conducting interviews with the intention of protocol 

analysis can be found in Erickson & Simon [1984]. 

• Brainstorming. Creative problem solving, or idea generation (done without criticism 

or refinement of solutions) can be useful to get a feel for the scope of the domain, and 

39Very loosely, we can see the discussion of analysis of tasks as relating to what to observe, and the 

discussion of interviews as relating to how to observe it. 
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can be useful when the problem solving strategies of the domain have not previousl 

been well articulated (in texts, manuals, etc.). Brainstorming is also useful when 

interviewing a group of domain experts. 

• Decision analysis. Decision analysis techniques [Brown 1989, Hart 1986] can be used 

to pinpoint and analyze critical decision points in problem solving or teaching. 

On-line testing and refining of the knowledge base. Using any one or a combi¬ 

nation of the above methods a first-pass knowledge base can be created. Then the expert 

can directly inspect the contents of the knowledge base (using an interface), or run the 

expert system or tutor and observe its behavior. She can add, delete, modify, qualify, re¬ 

organize, or generalize the facts, concepts, rules, strategies, etc. for verity, completeness, 

efficiency, and coherence. 

Comparisons of Knowledge Acquisition Methods 

In the discussion of knowledge acquisition methods above we have indicated how each 

could be used in ITS design. Below we summarize comparisons of the methods that were 

found in the literature. 

Interviews vs. other methods. Hoffman [1988] says that, although unstructured 

interviews are by far the most often used knowledge acquisition method, they have been 

shown to be one of the most inefficient. Also, experiments by Shadbolt & Burton [1989] in¬ 

dicate that protocol analysis of interviews performed significantly worse than other methods 

they analyzed, both in the resulting domain coverage and the effort it required. Hoffman 

warns that transcription and analysis of interviews takes at least 10 times as long as the 

interview (and often much longer). He points out that much information is lost in a taped 

interview, so protocol analysis is not only difficult but often not as useful as one expects. 

Yet it is difficult and disrupting to interrupt an expert very often while problem solving, 

so it is still useful to tape problem solving sessions and go over them later with the expert. 
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“The moral here is that the interviewer should take copious notes and not rely passively on 

audio tapes” [Hoffman 1987, pg. 56]. 

Structured vs. unstructured interviews. From his experiments, Hoffman con¬ 

cludes that structured interviews are more efficient than unstructured ones. He found that 

special tasks (i.e. contrived tasks) were more useful than natural tasks and familiar cases 

for getting tacit or non-conscious knowledge, and for focusing on specific areas of the knowl¬ 

edge. However, constrained or contrived tasks can make the expert uncomfortable, so they 

should not be over-done. 

Similarly, Shadbolt concludes that contrived techniques did at least as well as a struc¬ 

tured interviews of a familiar task in effort expanded and domain coverage. He found that 

contrived tasks (such as card sorts and grid constructions) tend to yield declarative knowl¬ 

edge, while natural tasks (such as familiar tasks and structured interviews) tend to yield 

more procedural knowledge. 

Multiple experts. Lastly, Shadbolt concludes that using several experts with any 

single knowledge acquisition method yields more coverage than using several methods with 

the same expert. 

2.4.3 Summary of Knowledge Acquisition and Intelligent Tutoring 

In this section we first discussed the following knowledge acquisition issues identified 

in the AI literature: mapping tasks and domains to knowledge acquisition methods; au¬ 

tomating knowledge acquisition; important characteristics of domain experts, knowledge 

engineers, and domains; and secondary goals of knowledge engineers (such as establishing 

rapport with the expert). We then compared ITS with other expert system domains, and 

discussed current ITS studies that deal with knowledge acquisition. Finally, we catalogued 

a number of knowledge acquisition methods applicable to various stages of building an 

ITS knowledge base, as summarized in Figure 2.3, and summarized some studies that have 

compared knowledge acquisition methods. 



• Analysis of formal documents 

- Manual acquisition 

— Automated acquisition 

• Tutorial sessions 

• Judgment tasks 

— Grid generation, hierarchy classification, concept maps 

— Card sorts 

- Repertory grids 

• Analysis of (off line) tasks 

— Familiar tasks 

— Tough or unusual cases 

- Constrained tasks 

— Generating analogies 

• Interviews 

— Unstructured interviews 

— Structured interviews 

- Brainstorming 

- Decision analysis 

• On-line testing and refining of the knowledge base 

Figure 2.3 Knowledge Acquisition Methods 



81 

2.4.4 KAFITS and Knowledge Acquisition 

Most ITS studies that deal with knowledge acquisition fall into one of three categories: 

architectures for generic shells, applications of machine learning, and task analysis of domain 

expertise. In contrast this study deals more directly with the issues of mainstream AI 

knowledge acquisition (though we also designed a generic shell architecture), and we discuss 

methods, tradeoffs, and tools for working with instructors/domain experts to acquire their 

pedagogical knowledge. 

Knowledge Acquisition Methods Used 

We used several knowledge acquisition methods to elicit pedagogical knowledge from the 

domain expert, the main methods being the structured interview and on-line test-and-refine 

tasks. We used several types of structured interview methods, including brainstorming, con¬ 

cept mapping, and script generation (see Section 5.1) to define the curriculum and tutoring 

strategies. In addition, we allowed the KAFITS representational framework to provide 

a structure for many of the sessions (for example, conceptualizing the domain content in 

terms of topics, misconceptions, hints, etc., guided our planning of knowledge elicitation ses¬ 

sions). In the knowledge acquisition literature structured interviews are recommended over 

unstructured interviews, and protocol analysis of taped interviews is discouraged. There¬ 

fore we used structured interviews when possible (especially during the design phases of 

the project), did not tape interview sessions, and followed Hoffman’s [1988] advice to take 

copious notes during interviews. 

After the domain content was encoded in the knowledge base, on-line test-and-refine 

tasks were used to debug, modify, and restructure the knowledge base. By using different 

teaching strategies (such as “skim” and “detailed”), and testing multiple alternative paths 

through the curriculum, the expert was able to test the knowledge base for correctness, 

completeness, and coherence. Unlike most knowledge acquisition interviews, in which the 

domain expert is interviewed so that the knowledge engineer can represent and enter the 

expert’s knowledge, many interviews in this study served to help the domain expert repre- 
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sent his own knowledge in terms of a specific framework (KAFITS). Another fairly unique 

aspect of our process was the inclusion of design team members called “knowledge base 

managers” who did the data entry and syntactic debugging of the knowledge base, allowing 

the domain expert and knowledge engineer’s time to be used efficiently. 

In addition to structured interviews and on-line test-and-refine tasks, several other 

knowledge acquisition methods were used, including analysis of formal documents and un¬ 

structured interviews. Domain tutorial sessions were not needed because the knowledge 

engineer was familiar with the domain being taught (mechanics). Task analysis was not 

done during this study because: (1) we did not observe the domain expert solving physics 

problems (since we were not building an expert system in the domai)n, (2) we did not study 

students solving problems because we relied on the domain expert’s knowledge of previous 

studies of misconceptions in the domain, and in addition we were not building a runable 

(cognitively valid) student model, and (3) we did not observe the expert tutoring because 

we did not focus on the acquisition of tutoring strategies (though taped tutoring studies 

that we administered prior to this project influenced the KAFITS design, as described in 

Section 5.4.1). 

Knowledge Acquisition Issues Addressed 

Knowledge acquisition issues we discussed in this section are addressed in our study as 

follows: 

• Mapping tasks to knowledge acquisition methods. In Section 5.1.1 we describe 

the ten-step process we followed to design the knowledge base for the statics tutor. 

One unique aspect of our method is that the domain expert’s representation and 

conception of curriculum knowledge evolved through classroom-like, CAI-like, and 

finally ITS-like representations. 
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• Automating knowledge acquisition. KAFITS does not incorporate automated 

knowledge acquisition techniques or machine learning methods, but does automati¬ 

cally check the consistency of some aspects of the knowledge base. 

• Important characteristics of domain experts, knowledge engineers, and 

domains. In Section 5.1.2 we discuss important characteristics of domain experts 

and knowledge engineers which we abstracted from our observations. In Section 4.1.2 

we discuss how our choice of domain limits our conclusions. 

• Secondary goals of knowledge engineers. We found all four of the secondary 

goals mentioned mentioned—learning about the domain, establishing rapport, ascer¬ 

taining the expert’s needs, and instructing the expert in AI concepts—to be important 

in building the statics tutor, and we discuss these goals in Section 5.1. 

• Other issues. KAFITS was designed to meet the needs of both experienced and 

novice users, as discussed in Section 3.5.1. Though we did not elicit expertise from 

multiple experts, we had two people testing and modifying the knowledge base si¬ 

multaneously (and one of the knowledge base managers, Kim, was knowledgeable in 

physics), so some issues related to having multiple experts building a knowledge base 

are relevant . 

2.5 ITS Evaluation Methods 

AI, and therefore ITS, axe relatively new fields having unique characteristics: their 

research and engineering goals are closely coupled, as are evaluation and design methodolo¬ 

gies. As mentioned in Section 2.3, these fields have not matured to a point were principled 

scientific methodology is commonplace. Therefore in this section we offer a fairly complete 

compendium and discussion of evaluation issues, paradigms, and methods applicable to 

ITS research. For completeness we mention a wide range of methods, but focus mostly on 

methods applicable to formative qualitative studies, because the results of this study rely 

primary on formative qualitative evaluation. Since few general discussions of ITS research 
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methodology exist, one purpose of this section is to inform the reader of the range of meth¬ 

ods available and the tradeoffs involved in selecting them. Another purpose is to justify our 

choice of evaluation methods, because some of the methods we employ are fairly uncommon 

(or not commonly understood) within the AI and ITS fields. 

We begin our exposition by describing the current state of evaluation in ITS research. 

Then we describe three complementary overarching research paradigms. Then we describe a 

number of more specific common and uncommon evaluation methods. Finally we note how 

the evaluation methods used in our study of the KAFITS system relate to the evaluation 

methods listed. 

2.5.1 The State of ITS Evaluation 

It is generally accepted that a good evaluation methodology is lacking in most AI re¬ 

search ; the situation may be even worse in the ITS sub-field. Here are two harsh but 

typical critiques: “[Claims of ITSs] are based on testing that typically is poorly reported, 

inconclusive, and in some cases totally lacking” [Rosenberg 1987, pg. 7], “existing ITS liter¬ 

ature is a barren source for good examples of outcome measurement” [Baker 1991, pg. 252]. 

40 What factors contribute to the lack of sound evaluation—why is it so difficult or rare? 

Of the many possible reasons we will cite only a few. As a research field ITS is relatively 

new and “evaluation is not standard practice in part because we don’t have formal research 

methods, standard experimental designs, and analytic tools” (Cohen & Howe [1988, pg. 1]; 

said of AI research, but applicable to ITS research). Also, research in ITS (in contrast to 

most AI expert systems research) is lacking an objective model of the expected behavior, 

i.e. the ITS field does not have concrete models of tutoring expertise (see discussion of ITS 

vs. traditional expert systems in Section 2.3.1). In addition, evaluating ITSs in realistic 

situations has been difficult because of the logistics of interfacing with classrooms and (until 

recently) the complexity and cost of the hardware on which ITSs are typically built [Woolf 

40For other discussions of ITS evaluation, see Park et al.[l987], Koedinger & Anderson [1990], Shute [1990], 

Baker [1991], Littman & Soloway [1988]. 
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(in press)]. In sum, implementation is just beginning to be common, evaluation is typically 

ad-hoc and shallow, and testing in realistic instructional settings is rare.41 This is not sur¬ 

prising considering the reasons given above, and the fact that intelligent tutoring combines 

difficult issues from many disciplines: cognitive psychology, human factors, instructional 

theory, knowledge representation, etc. 

Difficulties like those mentioned above do not prohibit ITS evaluation—it is essential— 

but we have to be creative about how we do it. It is not the case that in order to make 

a substantial contribution to the field ITS researchers have to evaluate the instructional 

effectiveness of their systems in controlled experiments.42 “...As a field, we are not obliged 

to adopt ‘scientific’ evaluation criteria, but should design our own” [Cohen & Howe 1988a, 

pg. 3] (said of AI, but applicable to ITS). There is a wide range of evaluation methodologies 

applicable to ITS research, suited to many types of research goals and constraints, and we 

catalogue a number of them below as grist for the mill for ITS designers. First we describe 

general categories of evaluation methods or evaluation “paradigms,” and then we describe 

specific evaluation methods. 

2.5.2 Research and Evaluation Paradigms 

In choosing an evaluation method one must determine: 1. the research goals, questions, 

or hypotheses addressed, 2. the phenomena to be observed or parameters to be measured, 3. 

the experimental procedure and data collection method, and 4. the data analysis method. In 

order to justify the methods we employ in this study, and also to suggest a partial mapping 

from goals/hypothesis/phenomena/parameters to data collection and analysis methods, we 

describe three categories of research/evaluation methods which emobdy different (but not 

41 The situation with regard to ITS evaluation is slowly improving as the field matures. Five years ago 

reports of un-implemented systems were common; today implementation is almost expected, yet evaluation 

is uncommon and usually ad-hock. If this trend continues, within five years some form of evaluation might 

be normal, and within ten years the field may boast of principled evaluation based on accepted methods and 

metrics. 

4JCohen & Howe [1988b, pg. 19] note that “because we are not trying to reduce complex phenomena 

to their causal antecedents, we do not need to run large groups of subjects in experimental and control 

conditions...analytic techniques...are fundamentally reductionistic, and so are not much use unless one’s goal 

is to identify the components of complex [naturally occurring] behavior.” 
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mutually exclusive) research paradigms: formative evaluation, qualitative evaluation, and 

case study evaluation. These paradigms are not exclusive, in fact we combine all three in 

this study. 

Qualitative Research 

Though the distinction between qualitative and quantitative seems fairly obvious, it can 

be non-trivial to determine whether a study constitutes qualitative research or not. Bogdan 

& Biklen [1982, pg. 27] give five features of qualitative research:43 44 

• The researcher is the key instrument—subjective judgement is involved in collecting 

the data, be it note taking, photographs, videotapes, etc.; 

• It is descriptive—the data collected is primarily in the form of words or pictures rather 

than numbers, and anecdotal evidence is common; 

• It is concerned with process rather than only outcomes or products; 

• Data tend to be analyzed inductively—abstractions and theory are built “bottom up”; 

and 

• “Meaning” is of essential concern—the researcher is interested in the beliefs, attitudes, 

and perceptions of the participants/subjects. 

Quantitative research, on the other hand, is usually characterized by the traditional 

“scientific” research paradigm, including data collection, control of variables, and statistical 

or numerical analysis, and is often deductive, intending to prove or disprove a hypothesis. 

The traditional scientific research paradigm is a positivist approach, with an emphasis on 

facts and the causes of behavior, assuming that one reality or one correct answer exists, 

and research is only a matter of measuring it. In contrast, qualitative research assumes 

43Not all qualitative research satisfies all of these criteria—it is a matter of degree. 

44See [Patton 1980, pg. 88] for a “check-list of evaluation situations for which qualitative methods are 

appropriate.” 



87 

a phenomenological approach, “that the world is not an objective thing out there, but a 

function of personal interaction and perception” [Merriam 1989, pg. 17].45 46 

Formative Evaluation 

Formative evaluation is a process in which empirical data is collected during the devel¬ 

opment process, and incremental improvements are made to a system based on this data 

[Patterson & Block 1987, pg. 26]. Formative methods are often used to “define and re¬ 

fine...goals and methods during the design process”.[Littman & Solowav, 1988, pg. 210], or 

to get more clarity on what the salient issues are in a field of inquiry. Summative evalu¬ 

ations, on the other hand, test the effectiveness or correctness of a final product, and the 

researcher must be fairly clear about the research goals and the range of possible outcomes 

at start of the study. 

Focus on Qualitative Formative Methods 

The discussions above (and in Section 2.3.1) suggest that the traditional scientific re¬ 

search paradigm is not appropriate for many ITS studies. If it is most important to 

document or prove that an ITS system or method “works,” (which is often particularly 

important when when the indended audience is a funding agent or the world outside one's 

field of research) then summative and quantitative methods may be best. But for ones 

research colleagues, who are less concerned with whether “it works” than they are with 

which aspects work, which don’t work, and (most importantly) how or why, qualitative and 

formative evaluation methods are often most appropriate. Rosenberg [1987, pg. 7] says: 

“ITS implementors use primarily quantitative methods. In an area such as tutoring, this is 

probably a mistake.” Buchanan [1988, pg. 1] agrees: “...at present time, AI has to be more 

concerned with qualitative statements of regularities than statistical statements because the 

“Bogden & Biklen [1982 pg. 31] point out, however, that “the irony of it is that scientists in the hard 

sciences...do not define science as narrowly as some of those who emulate them.” 

46See Glaser & Strauss [1967, especially Chapter 5] for a method for analyzing large corpora of qualitative 

data. 
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framework for being more precise does not yet exist.” In addition, Littman Sz Soloway 

[1988, pg. 210] suggest that “[since] building ITSs5 is still somewhat of an art...for the 

time begin formative evaluation seems more appropriate for designers of ITSs.’ Since we 

are mainly concerned with exploring key issues in ITS knowledge acquisition rather than 

demonstrating that a particular piece of software or computer curriculum is more effedctive 

than brand or method “X,” we use several evalution methods, most of which are qualitative 

and formative. 

Exploratory Research and Case Studies 

Designing a research study requires familiarity with previous related work, accounting 

for the results of past studies, and usually using or extending previously applied methods or 

metrics. However, in some areas there has been little groundwork and it is difficult to design 

research studies. We call such areas “exploratory” areas of inquiry, and call research in these 

areas exploratory research. Exploratory areas of inquiry have the following characteristics:47 

• there are no generally acknowledged experimental or evaluation methods, standards, 

or metrics; 

• important issues, tradeoffs, and problem areas are not well documented; and 

• little evaluative data is available from previous studies. 

Based on these criteria, our study of ITS knowledge acquisition with educators is ex¬ 

ploratory research. The goal of exploratory research is to better understand the problem, to 

discover what the important issues are, and begin to form theory where little or none exists. 

The case study method is well suited to exploratory research since it “aims to uncover the 

interaction of significant factors characteristic of the phenomena [being studied],” and is 

“particularly suited to situations where is impossible to separate the phenomenon’s vari- 

47Before committing to do research in such an area the scientist must first determine that the area has 

not been ignored because it is trivial, intractable, or unimportant. 
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ables from their context” [Merriam 1988, pg. 10].48 The case study is a research paradigm, 

not a specific method, and “what makes [an] inquiry a case study is the decision to fo¬ 

cus the inquiry around one instance” [Merriam 1988, pg. 44]. In so doing one can collect 

data of a more detailed and subtle nature than is possible if one spends the same resources 

on many instances. The case study researcher typically immerses himself or herself in a 

complex situation and tries to make sense of it—to highlight phenomena and distill cate¬ 

gories and principles from complex experience, and assumes that “nothing is trivial, that 

everything has the potential of being a clue which might unlock a more comprehensive un¬ 

derstanding of what is being studied” [Bogdan Sz Biklen 1982, pg. 28]. This contrasts with 

traditional science in which variables are controlled to minimize uncertainty and obfuscating 

complexity. 

2.5.3 Evaluation Methods 

Below we outline an array of evaluation methods, descriptions of which were found 

scattered throughout the AI, psychology, and education literature. We give examples of 

each method from the ITS field, describing commonly used methods first, then uncommon 

ones. The methods are not mutually exclusive, and are often used in combination. Most of 

the methods axe applicable to qualitative research and formative research, but many could 

be performed in either qualitative or quantitative contexts, and many could be used as 

preliminary tests (which lead to the design of a system), as formative studies (done during 

the design of a system), or summative studies (done with a completed system). 

An Overview of Common ITS Evaluation Methods 

First we describe the four most common evaluation methods used in ITS research: 

existence proofs, quantitative studies, semi-quantitative studies, and cognitive studies.49 

4®Case studies can be quantitative, but are usually qualitative studies, and Merriam [1988, pg 57] notes 

that “a case study design can be used to test theory, but a qualitative case study usually builds theory. 

49Some of the methods are described as being less than adequate when used alone. Note that this is not 

necessarily a reflection on the ITS study associated with that method because: 1. some studies employ 
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Existence proofs. “Existence proof’ is the term used for a study which bases its 

conclusions on the successful performance of a system, and is the most common evaluation 

method used by ITS (and AI) researchers. Usually generalizations from existence proofs are 

limited because they are not based on an underlying theory (they don’t prove or disprove 

anything), don’t mention design tradeoffs or ideas that did not work, and don’t provide 

reasons why various aspects of the system did work. Existence proofs usually propose new 

architectures or design methods, and if combined with other evaluation methods (such as 

cognitive studies, comparison studies, or inductive evaluation, each described below) can 

be informative. Sub-categories include: 

• Description of a prototype system. Showing that a program achieves its goal behavior 

is usually the weakest form of existence proof, and is stronger if the goal behavior is 

stated clearly and precisely before the program is built and/or tested. For example, 

Burke &: Ohmaye [1990] show that using a case-based approach to tutoring is possible. 

• Turing test. By showing that a program simulates human behavior researchers can 

argue for the cognitive validity of their systems or show that a program has ade¬ 

quate knowledge to simulate expertise. Documented human behavior can be used as 

a standard, or the system’s output can be judged by outside evaluators to be indis¬ 

tinguishable (within some parameters) from expert performance. For example, Woolf 

[1984] showed that her architecture for planning tutorial discourse could simulate 

documented instances of tutoring from three domains. 

• Toy domains. A theory or computational model is shown to work in a very constrained 

situation. The prototypical example in AI is the “blocks world.” An example from 

ITS is Burton & Brown’s WEST tutor [1982] which aimed to teach discovery skills 

in the context of a simple computer game. Toy domains are used to eliminate the 

large number of variables (some of them uncontrollable) inherent in realistic domains, 

so that a general theory can be demonstrated. But generalizations from toy domains 

more that one method, and 2. earlier studies were more exploratory in nature and are not expected to be 

as methodologically rigorous as more recent ones. 
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should be made with caution because experience has shown that “scaling up” AI 

systems is fraught with difficulties [Buchanan 1987]. 

• Inductive proof. A system is used with multiple (usually a few) domains or users 

and an argument is made for its generality. For example, the Byte-sized architecture 

[Bonar et al.1986] has been used to build tutors in electricity, PASCAL programming, 

economics, and hydrostatics. The strength of an inductive argument rests on the 

size and diversity of the successful instances. 

Quantitative studies. Though we focus mainly on qualitative (and semi- 

quantitative) methods, for completeness we mention some exemplary quantitative sum- 

mative evaluations in the traditional scientific paradigm.50 Quantitative studies, thus far 

rare in the ITS field, are characterized by statistically significant student populations, ex¬ 

perimental and control groups, and/or pre- and post-testing. 

Excellent examples of quantitative evaluation can be found in many papers by Anderson 

and colleagues, and Shute and colleagues. Both of these researchers have shown that learn¬ 

ing with intelligent tutors can result in significant improvements over classroom learning, 

and, equally important from a methodological standpoint, have documented surprises and 

“negative” results, as described below. 

Typical evaluation metrics include: mastery levels (amount learned), learning rates 

(efficiency), retention, transfer and generalization of skills, and the range of learned abilities 

across a population. For example Anderson et al. [1985] compared students using the LISP 

tutor with students completing similar exercises on their own (both groups received the 

same lecture and reading material) and found the the LISP group learned in 33% less time, 

and scored 43% higher on final exams. Research does not have to be completely rigorous 

to be worthwhile: Bonar et al.’s [1988] study of the PASCAL ITS did not include a control 

group, but they compared students using the tutor with records of standard classroom 

50The reader is referred to standard text books on statistical and quantitative analysis for descriptions of 

quantitative methods. 
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courses and found that it took about three times as long to learn the same material in the 

classroom vs. using the computer tutor. 

Quantitative studies can also be used to explain individual differences in student behav¬ 

ior and demonstrate predictive correlations between learning variables. For example, Shute 

&: Glaser 11990], in a study conducted with the Smithtown economics tutor, showed that sci¬ 

entific inquiry behaviors (such as hypothesis generation and testing) were significantly more 

predictive of successful learning than standard measures of general intelligence. In another 

study of the LISP tutor, Anderson [1990] found that students’ acquisition and retention 

abilities explained variance in computer tutoring situations and predicted performance on 

paper-and-pencil exams. 

Extremely few ITS papers report surprising results or results that contradict the original 

hypothesis.51 But sharing such information is crucial if researchers are to learn from each 

others’ mistakes. One example a report of unexpected results is Shute’s 19901 study of 

two computer learning environments for electricity, one environment supporting inductive 

learning and the other supporting deductive learning. Her hypothesis that learning efficiency 

would be enhanced in the deductive mode was disproved—she found that there were no 

main effects of the learning environment on either learning outcome or learning efficiency. 

But she did discover that students with high working-memory capacity performed better 

in the deductive environment. In a study of the LISP tutor Schooler & Anderson [1990] 

discovered that there was an advantage to delayed feedback in terms of errors, time on task, 

and the percentaige of errors that subjects corrected. In another study of the LISP tutor 

Corbett & Anderson compared four types of feedback and discovered that feedback did not 

affect the mean learning rate or post-test performance. The findings of these two studies 

were unexpected and in apparent disagreement with Anderson’s ACT* theory of cognition 

51Cohen [1991, pg. 26] found only 12 out of the 150 papers in the 1990 AAAI Proceedings discussed 

unexpected or negative results. He lists a number of methodological problems and indicates that they can 

be traced to the fact that systems are rarely based on models. “Lacking models of how systems are expected 

to behave, we will see no predictions, no hypothesis, no unexpected results or negative results, only assertions 

that a system works.” 
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[Anderson 1983], leading the authors to re-interpret how the theory applied to the learning 

situations in the experiments. 

Semi-quantitative studies of system components (sometimes called “quasi- 

experimental” studies). As alluded to previously, ITS researchers do not need to complete 

summative tests of the educational impact of full-functioning tutoring systems in order to 

contribute to research in the field. Here we list studies that use quantitative metrics to 

explore individual factors or features, but do not involve controlled studies, and use data 

pools too small to allow statistically significant conclusions. 

ITS systems are complex and people are (clearly) more complex, therefore determining 

how ITSs will behave in realistic situations can only be accomplished through empirical 

methods. For example Murray et al. [1990], in a study of an analogy-based tutor for 

remediating physics misconceptions, mapped out locations in an analogy network where 

subjects experienced cognitive dissonance and changes in understanding. They found that 

most subjects experienced a significant change in understanding when presented with care¬ 

fully sequenced analogies, and that many did not change until they were given a causal 

(molecular) model of the underlying physics of situations. 

In some cases the success of ITS components can be evaluated without student pre- 

and post-testing. For instance, when the goal of a component is to diagnose student errors 

or generate new problems, the “hit and miss rates” can be tested. For example, in an 

evaluation of the PROUST system, Johnson [1988] reports that of 206 solutions to the 

rainfall programming problem, PROUST analyzed 81% completely (i.e. was able to come up 

with a consistent model of the student’s underlying intentions in constructing the problem 

solution). He goes on to specify which aspects of student programs the system has difficulty 

diagnosing, and to suggest future improvements to the system. Similarly Sleeman [1982] 

reports that, in one test, his LMS system’s “mal-rules” were able to account for 12 out of 

27 incorrect student solutions to algebra problems. 

Also, researchers can analyze how users utilize various features of a tutor. Winkels et 

al. [1986] report on a detailed analysis of the frequency with which students use various 
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Unix-mail commands from one coached session to the next. Similarly, Kimball [1982], in an 

evaluation of a tutor for symbolic integration, reports on student use of help and assistance 

features, and on the program’s ability to recognize points in the tutorial where the student 

learned something new. 

Cognitive studies and task analysis. Perhaps the most commonly used research 

method in ITS is observing the behavior of domain teachers (or experts) and students (or 

novices). Usually such studies are used to inform the design of the tutor rather than to 

test a theory of expertise, instruction, or learning, so they are not evaluation methods per 

se. (See our discussion of cognitive and task analysis methods for knowledge acquisition 

in Section 2.4.2.) Evaluation of a computer tutor occurs when the tutor is tested and on¬ 

line results are compared with studies of human behavior. Two types of task analysis are 

discussed in the literature: procedural task analysis and cognitive task analysis. 

Procedural task analysis (usually called “task analysis” or “rational task analysis”) 

involves studying the behavior of an expert to generate a formal procedural representation 

of some skill, and has long been used to identify and classify elements of expertise for the 

purpose of instruction [Gagne 1974], More recently, cognitive task analysis is being used 

to infer the goals, attitudes, rules, and underlying cognitive structures or models of experts 

[Bonax & Soloway 1985, Means & Gott 1988, Lajoie 1986, Payne 1988]. 

Cognitive analysis has also been widely used to describe the mental structures and 

misconceptions that students or novices bring to the learning task [Clement 1982, Koedinger 

& Anderson 1990, Cerri 1988, VanLehn 1988, Littman & Soloway 1988]. Procedural and 

cognitive task analysis have been used to study instructional expertise as well as domain 

expertise [Winkels et al. 1986, Lewis et. al 1990, Collins & Stevens 1990, Lepper & Chabay 

1988, Leinhardt &: Greeno 1986]. 

The most common methods for task analysis are audio or video taped problem solving 

sessions, clinical interviews, and protocol analysis. 
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A Compendium of Less Common ITS Evaluation Methods 

Below we describe less common evaluation methods that are applicable to ITS research. 

Outside Assessment. Though outside assessment is not usually a proof of anything, 

the opinions of experts, or of a large number of users or potential users of a system, does 

carry some weight, and it can be significant if there is agreement. Sub-categories include: 

• On-site expert evaluation. Experts observe and assess the behavior of the system, 

for example, several teachers observe students using an ITS and rate its teaching 

effectiveness. Both structured and informal means of gathering data are possible. 

• Panel of experts (sometimes called a “blue ribbon panel”). A select group of experts 

is questioned by convening them or though correspondence. This method can be used 

in the proposal stage of a research project to substantiate the importance of a prob¬ 

lem statement or the feasibility of an experimental approach, or can be used after a 

study to document the acceptance or feasibility of one’s conclusions. A hyperbolic 

example is the following: documenting that 80 % of the editorial boards of the Arti¬ 

ficial Intelligence and Cognitive Science journals believe that your research problem 

is “highly significant” and your approach is “feasible,” which would argue heavily for 

the importance of a study, and thus the importance of the conclusions. 

Comparison studies. “Comparison study” refers to a broad class of methods which 

compare (note similarities and differences between) the behavior or design of a system vs. 

some standard or other system. It is important to compare one’s work with previous work, 

and comparisons with other systems are often invoked in ITS papers. However comparisons 

usually only serve to put one’s study in context with previous work and do not add new 

knowledge to the field. Comparisons are strengthened if they include qualitative or quan¬ 

titative data and detailed comparisons of program function adit y, behavior, or educational 

effects. Sub-categories include: 
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• Gold standard.52 Judge system performance against a well known successful case or 

standard. For example, Ford [1988] evaluates his tutor in the Highway Code domain 

by determining how well it lives up to a fifteen-criterion definition of “intelligence” in 

ITSs suggested by Self [1985b]. 

• Theoretical corroboration. Arguing or proving at a theoretical level that other systems 

can be simulated using a new (usually more general) system argues for the generality 

and extendibility of an approach. For example, Dillenbourg [1988] proposes a three 

dimensional system for classifying ITSs, and describes how his PRO-TEG system and 

six other ITS’s compare using this scheme. 

• Empirical Corroboration. In a field as complex as ITS empirical evidence of one’s 

claims is usually needed. Empirically demonstrating that the features or tutoring 

behavior of an ITS accounts for that of another system establishes a provable base 

line. 

• Duplication. Simulating the behavior of another system (for example, showing that 

an ITS can be configured to simulate Anderson’s LISP tutor) cam establish a base line 

from which to extend the findings of previous work. 

Internal Evaluation. Internal evaluations [Littman & Soloway 1988] study the re¬ 

lationships between a program’s architecture and its behavior, and often involve in-depth 

analysis of program traces and data structures. Sub-categories include: 

• Knowledge level analysis. Addresses the question: what could a program infer from 

its knowledge structures assuming unlimited inferencing capability (i.e. arbitrary algo¬ 

rithms)? For example, in his GUIDON project Clancey [1982] analyzed the structure 

of the domain and control knowledge in the MYCIN expert medical diagnosis system. 

He determined how limitations in the knowledge representation would limit its effec¬ 

tiveness in computer tutoring. As a result of his analysis he re-designed the system 

(to make NEOMYCIN) so that it would support tutorial reasoning. 

52Term borrowed from Cohen & Howe [1988a]. 
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• Process analysis. Addresses the question: how do a program’s algorithms determine 

and limit its behavior? For example, Littman & Soloway [1988] analyze the limitations 

of what the PROUST system can infer about the student, based on how it represents 

and diagnoses the programming task (and the student’s model of programming). They 

analyze cases were PROUST could not completely diagnose students’ programs and 

give recommendations for how the system could be improved to accommodate these 

failures. 

• Ablation and substitution experiments [Cohen & Howe 1988a]. A part of a system 

(a component, feature, rule, etc.) is removed (or replaced with a more primitive 

version) and one observes how the system’s performance is affected. It is usually 

clear that performance will suffer, but exactly how and how much it suffers can be 

surprising, and yield information about the knowledge or inferencing capabilities of 

the components. For example, Corbett & Anderson [1990] conducted a study in which 

the feedback mechanism of the LISP Tutor is altered or removed. They report on the 

effects to student mastery, learning time, and attitudes (self-perception, confidence, 

and enjoyment). 

Miscellaneous off-line testing. “Miscellaneous off-line testing” refers to methods 

(not mentioned in other categories) that do not directly use the computer or the program 

under study. 

• Debriefing interviews, user questionnaires, and surveys. Questionnaires and surveys 

can be used in interview form or via a written questionnaire (useful when collecting 

data from many people). They are often used to collect data about the reactions and 

beliefs of users before and/or after a study; for example, Schofield and Verban [1988] 

interviewed students and teachers involved in a study of Anderson’s LISP tutor to 

discover barriers and incentives to using computers in schools. 
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• Wizard of Oz experiments. Using a person to simulate the behavior of a proposed 

system53 can test aspects of a program design before the effort is expended to imple¬ 

ment it. For example, Sandberg et. al. [1988] collected data to inform the design of 

an intelligent help system for a text editor by having an expert assist a user (novice) 

by communicating via a low bandwidth terminal setup that attempted to constrain 

the expert to act as the proposed computer tutor would. 

• Matching, ranking and sorting tasks. Subjects are presented with stimulus (often on 

cards, unless the task is automated) and asked to match, rank, or sort them. Such 

tests are useful to ascertain categories or relationships that a person uses implicitly, 

but does not have explicit knowledge of. 

2.5.4 Summary of ITS Evaluation Methods 

ITS research takes place in the midst of great excitement and promise, yet also in the 

midst of great complexity and uncertainty. Principled evaluation of ITS systems, though 

important, is unfortunately uncommon. Discussions of evaluation methodologies and de¬ 

scriptions of tradeoffs among evaluation methods are also rare in the ITS field—which 

motivated us to compile descriptions of a number of paradigms and methods applicable to 

ITS evaluation. In this Section we first described several research/evaluation paradigms: 

qualitative (vs. quantitative), formative (vs. summative), and case study. We suggested 

that formative and qualitative methods are most appropriate for most ITS research and 

we described how case study methods fit the needs of “exploratory research.” Then we 

described a compendium of evaluation methods, summarized in Figure 2.4, giving examples 

from ITS research. It is hoped that our presentation will 1. stimulate additional discussion 

about ITS evaluation, and 2. inform interested readers of the wide variety of methods they 

can use. 

Though we have recommended that formative and qualitative studies be used when the 

audience is one’s research colleagues, since evaluation is so uncommon it is more important 

53Interestingly, computers are usually used to simulate human performance, but here one does the opposite. 
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to pick any evaluation method suted to the research questions that one is comfortable with 

and use it. 

The key to turning ITS systems building into research can be summarized as follows: 

1. be clear about why you are building a system and relate your work to previous work; 

2. record design decisions and what works and doesn’t work as you build a system; 

3. use a system in ways that challenge its performance;54 

4. report unexpected and “negative” results (“air the dirty laundry”) as well as successes, 

and describe why a system works (if it does at all) and why it doesn’t work in some 

situations; and 

5. generalize results beyond the specific application. 

2.5.5 KAFITS Evaluation 

As mentioned above, our study combines several evaluation paradigms: it is a case study 

and a formative evaluation, and it incorporates primarily qualitative evaluation methods, 

though some quantitative analysis is done. Our major source of data was (field) notes 

(as in most case studies). We also collected data from computer traces of student runs, 

traces of domain expert editing sessions, and paper worksheets used by the domain expert. 

Though most of the analysis is of the field notes and program traces, we employ a number 

of other evaluation techniques to get a bearing on important issues from several directions, 

as described below. 

The study also constitutes an existence proof that a knowledge acquisition interface 

can be used by a teacher to build an intelligent tutor, and it constitutes a weak inductive 

proof of the usability of the interface, since three users were involved. We performed some 

54Cohen & Howe [1988b, pg. 9]: “by testing a program at its known limits we can better understand 

its behavior...we can push its limits by providing imperfect data...restricted rescources...and perverse test 

cases.” 
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quantitative analysis involving a number of variables, such as the size and complexity of 

the knowledge base, the time it took to complete various design steps, and the total devel¬ 

opment time per hour of on-line instruction (see Section 5.3.2). In addition, we included 

a comparative analysis of KAFITS vs. other generic tutorig systems in Section 2.1. Also, 

we conducted an audio tapped debriefing interview at the end of the study (described in 

Appendix C) and tested the statics tutor on about 20 subjects as part of the evaluation, as 

described in Section 5.2. 



Chapter 3 

DESCRIPTION OF THE KAFITS SYSTEM 

In this chapter the KAFITS system, including the domain and strategic knowledge bases, 

the underlying knowledge representation and control mechanisms, the user interfaces, and 

the student model, are described. Though the system evolved over the duration of the case 

study, we describe it here in its final state, and in Chapter 5 we discuss how the system 

changed in response to feedback from users. We describe the KAFITS system first, then 

the research method (in the next chapter) because some familiarity of the system is needed 

to understand the description with the research methodology. Note that included in this 

chapter is a description of the interface for creating and modifying tutoring strategies, a 

prototype of which was built, but not tested with the domain expert. All other components 

described were used by the domain expert. 

3.1 Description of the Representational Framework 

3.1.1 Domain and Strategic Knowledge Bases 

The KAFITS system is designed to represent pedagogical knowledge—i.e. knowledge 

related to teaching and learning in domain. Pedagogical knowledge includes how to teach 

the content, examples of concepts, questions that determine subject mastery, hints for 

questions, knowledge about prerequisites, common errors, etc. KAFITS is designed to 

represent expertise in teaching a domain—not expertise in solving problems in a domain 

102 
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(i.e. pedagogical knowledge is distinct from performance knowledge).1 As in many tutoring 

systems we impose a clear separation between the domain-dependent knowledge (the domain 

knowledge base) and the engine that interprets this knowledge [Clancey 1982]. Unlike 

most tutoring systems we represent strategic knowledge (i.e. tutoring strategies and rules) 

explicitly and declaratively (i.e. in data structures rather than Lisp code) in a strategic 

knowledge base (see Figure 1.2). 

Strategies specify how to use the domain knowledge base content. For example, the 

domain knowledge base contains information about topics and about relationships between 

them (the topic network) and strategies in the strategic knowledge base define how to tra¬ 

verse this network when tutoring (see Figure 1.2); the domain knowledge base contains links 

between topics and numerous “presentations” having different functions (such as giving ex¬ 

amples, introducing a topic, etc.) and the strategies determine which of these presentations 

will be used, and in what order; the domain knowledge base contains information for giving 

hints, revealing the correct answer, and strategies determine how and when to use this in¬ 

formation. The strategic knowledge base is quasi-domain independent, i.e. some strategies 

axe intended for any instructional domain (i.e. any domain knowledge base content) while 

others are designed to work for specific curricula. 

3.1.2 Object-Oriented Representation 

The representation of the domain knowledge is object-oriented. The object-oriented 

paradigm allows knowledge to be used for multiple purposes, facilitating modularity and a 

reduction in information redundancy [Bonar et al. 1986]. For example, the knowledge in 

KAFITS needed to define, summarize, test, remediate, give an example of, and/or teach 

a KAFITS topic is stored in close association with the topic. As in the Byte-sized Tutor 

[Bonar et al. 1986], teaching strategies and student modeling methods can be inherited and 

associated locally with the topic and presentation objects. We describe the objects in the 

KAFITS system below, in order of importance. 

'However, it is possible to combine a domain expert system with a KAFITS-based tutor. 



104 

Topic: Gravity 

Type: Concept 
Prerequisites: .... 
Parts:.... 
Summary:.... 
Motivation:.... 
Definition:.... 
Remember-level:. 
Use-easy level: 
Use-typical level:.... 
Diagnostic-questions:... 
Critical-misconceptions:.. 
Wrap-up:... 
Local-strategy-restrictions 

Presentation: Gravity-easy-1 

Type: Multiple-choice 
Intro-text: .... 
Diagram-set-up: ... 
Question-text:.... 
Answer-descriptions:... 
Correct-answers:.... 
Answer-reason:... 
Hints: ... 
Congratulate: ... 
Challenge:... 
Elaboration:... 
Give-away:.... 

Figure 3.1 Topic and Presentation Attributes 

Topic. Topics represent units of knowledge that can be taught, remediated, summa¬ 

rized, etc. (see Figure 3.1 for the attributes of topic objects). They are categorized according 

to content type, for example concept, fact, or procedure. Each topic has several performance 

(and mastery) levels associated with it (adapted from Merrill’s [1983] Performance-Content 

matrix, as described in Section 2.2.4). Topics have pointers (including various types of 

prerequisite, part-of, and related-misconception links) to other topics, forming a topic net¬ 

work (as in Figure 1.3). Topics have pedagogical information such as summary, motivation, 

examples, etc., that reference presentation objects (see the arrow in the figure). 

Presentation. Presentations specify expository or inquisitory interactions with the 

student (see Figure 3.1 for the attributes of presentation objects). They are composed of a 

task (such as a multiple choice question or problem solving exercise) and an environment 

for doing the task (such as a picture or a simulation of a physical system). Presentations 

also contain the breadth of possibilities for responding to the student, such as hints, con¬ 

gratulations, elaborations of answers, etc. 

Mis-KU. Buggy student knowledge is represented in Mis-KU objects (mis-knowledge 

units). Mis-KUs represent misinformation (wrong facts), misconceptions, and buggy rules 
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or procedures. Mis-KUs contain information pertaining to diagnosing themselves, and re¬ 

mediating themselves. 

Lesson. Lesson objects are pedagogically motivated groupings of topics reflecting a 

particular pedagogical view or goal. They are used to define high level goals for a tutorial 

session. Typically, a lesson specifies a small number of goal topics, and a default strategy 

to be used for the session. Lessons provide a level of abstraction or large granularity for 

incorporating the “glue” between topics [Lesgold 1988]. 

Example and Question. Examples and Questions axe objects that allow for more 

flexible Presentations. Examples set up an environment or situation for the student, such 

as a simulation, a picture, a set of tools, etc. Questions give the student a task, such as 

a multiple choice question, a problem to solve, or simulation manipulation to carry out. 

Normally, presentation objects automatically incorporate the slots of an example and a 

question, and example and question objects are not needed. However in some cases the 

situation or task is re-used. For instance, there are many possible tasks that could be given 

to a student for a single situation (such as a specific blocks world set up). Conversely, 

a single task (such as the question “Which force is greater?”) could be presented in a 

variety of situations. To reduce redundancy, each task or situation can be defined once, and 

presentations can consist of a paired example and question. 

Storage-unit. Storage-units axe objects used to store static global information that 

otherwise would reside in computer code and be inaccessible to the user. {Random-text} 

is one object of type storage-unit. A random phrase from a set of similar text items is 

returned by a computer function that that takes a keyword as input (for example, given 

:GREETING it returns a random item from “hello,” “hi there,” “hi,” or “greetings ’). These 

random text strings are incorporated into some strategy actions (such as Tell-correctness, 

which can say “you are right,” “that is correct,” etc.). The user can modify these items or 

create new random text items by using the Browser to edit the {Random-text} instance. 

2There is a slot for each keyword, and the contents of the slot is a list of text items. 
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With storage-units the user can have ready access to a wide variety of system parameters 

that would otherwise be inaccessible parts of computer code. 

Other objects. The KAFITS framework incorporates three other types of objects: 

pictures and sounds, which contain information allowing the tutor to incorporate graphics 

and sound, and crane-booms-setups, which specify configurations of the simulation. 

3.1.3 Layered Decision Model 

Various schemes for organizing tutorial expertise in computer tutors have been proposed. 

Clancey [1982] used networks and a production rule formalism to identify admissible instruc¬ 

tional actions. Woolf [1984] used a three layer “transition network” which defined states 

(“pedagogic states” “strategic states” and “tactical states”) and default state transitions. 

Similarly, Breuker et al. [1987] used a three layer control structure having goals, strategies, 

and tactics. Others have described the decisions as falling into the categories “what to say,” 

“when to say it,” and “how to say it.”3 All of these schemes include some form of layered 

system going from abstract to more specific decisions until a concrete decision is made. Our 

scheme is a decision model related to the above schemes and to instructional design theory. 

It is designed to be understandable to instructors and to be easily assimilated into their 

model of pedagogical decision making. 

Instructional theory typically divides instructional methods into the micro level (how to 

teach a single instructional emit) and the macro level (selection, sequencing, and synthesis 

of instructional units) [Reigeluth 1983a]. We use a refinement of this perspective, consisting 

of four decision levels. The macro level is refined into a lesson level and a topic level (see 

Figure 3.2). The micro level is refined into a presentation level and a response level. In 

the control structure of the program, these decision levels are nested control loops. One or 

more topics contained in each lesson, one or more presentations in each topic, and zero or 

more tutor responses to the student’s response to each presentation. 

3Since we are not concerned here with issues of discourse or natural language generation, text is ‘canned 

or template text, and “how to say it” issues are bypassed. 
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Figure 3.2 Four-Level Decision Model 

Lesson level. At this level decisions are made concerning the high level goals of 

the instructional session. The need for a lesson level is supported by Reigeluth’s [1983b] 

description of “sets” of topics taught together according to a specific type of knowledge type 

relationship, introduced with an “epitome”, and followed up by a “within-set-synthesize,” 

which relates the topics in a lesson. 

Topic level. The topic decision level deals with choosing which topic to teach next. 

For instance, teaching strategies at the topic level determine which path is taken to traverse 

the topic network. Decisions about comparing, contrasting, synthesizing, introducing, and 

summarizing topics are made at the topic level. Decisions about remediating misconceptions 

are also made at this level. 

Presentation level. The presentation decision level deals with the selection and se¬ 

quencing of presentations such as analogies, definitions, examples, graphics, and simulations. 

Response level. The response decision level deals with sequencing low level tutorial 

transactions, and with how to respond to the learner’s actions, including the quantity and 

type of feedback to be provided. 
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The four-layer decision model determines the default behavior of the tutor, but the 

tutor is not constrained to follow this model, there are several ways to override it. First, 

the student can interrupt the session to go back, skip forward, or jump to another part of 

the curriculum. Second, the designer can specify a local branch for remediation (to another 

part of the curriculum) associated with a particular student response. Third, evidence for 

misconceptions can accumulate and the tutor periodically diverts the session to remediate 

the pending or suspected misconceptions. Lastly, meta-strategies determine at a global level 

when to switch from one tutoring strategy to another. 

3.1.4 Object Mixins 

KAFITS uses a “flat” hierarchy and “mixins” to organize its object types. This method 

contrasts with a strict hierarchical organization of objects in an inheritance network, a 

method which was implemented in our early design of KAFITS and is often seen in frame 

and object-based AI systems. Before describing the method we eventually used, we describe 

the more standard hierarchical approach, and why it was rejected. 

In the hierarchical classification paradigm each object type has a parent (or class or 

super-type) and zero or more children (or sub-classes or sub-types), forming a tree structure 

(see Figure 3.3). The leaves of the tree contain instances. Each object is a specialization 

of its parent, inheriting the parent’s properties (slots, slot values, methods) and having 

a few properties specific to itself. For instance, a top level class could be “topic,” with 

sub-types of topics called concepts, skills, facts, etc. (see Figure 3.4). Each sub-type could 

in turn have its own sub-types, such as procedural-skills and problem-solving-skills, and so 

on, making further distinctions, such as the subtraction-procedure and the long-division- 

procedure. Such an organization has the advantages of procedural inheritance. For instance, 

default Summarize and Diagnose procedures could be defined for all topics, and each sub¬ 

class could specialize this procedure to its own needs. However, this way of implementing 

object inheritance was replaced with a flat hierarchical “mixins” scheme because the flat 
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Figure 3.3 Hierarchical Object Organization 

(Not implemented in the final system) 
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Key: 

Figure 3.4 Flat Hierarchy for Minns 

hierarchy is less complex, more easily implemented, and more understandable to teachers 

(and we did not need the additional power afforded by the strict hierarchical scheme). 

In a flat hierarchy there are only two levels. The top level contains the main object types 

and mixins for the types; and the lower level contains the instances. Minn objects are like 

other objects, except their sole purpose is to be combined with other objects (i.e. the slots 

and methods of the mixin axe added to the object). Each instance has one main parent 

(an object type) and specializes the attributes of this parent by adding the attributes of 

mixin objects designed to be combined with the object type. For example, in Figure 3.4 the 

topic object type has mixins that modify the basic topic object with attributes for concepts, 

difficult topics, etc. The Force topic in the figure is a difficult scientific concept having three 

mixins.4 The user specifies a set of mixins when a new instance is created. 

* Note that Figure 3.4 is only an illustration of how mixins work, and does not reflect the mixins in 

KAFITS. In fact the topic types in KAFITS are indicated by a “topic-type” slot. 
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3.1.5 Representing Curriculum Structure 

Our representation of curriculum includes topics categorized according to knowledge 

type, several types of topic relationships, and performance and mastery levels within the 

topics. Borrowing from Merrill [1983] we distinguish content types from performance levels 

(see Section 2.2.4). We implement content types as node types in the topic network and 

implement performance levels as levels within each topic. For example the topic “gravity” 

is of type concept and the designer can specify presentations for the remember, apply-use, 

and problem-solve levels within it. 

Topic Types. Our knowledge type categorization distinguishes “basic” vs. “complex” 

knowledge. Basic knowledge types correspond to the content types in the Modified PC- 

matrix described in Section 2.2.4 (facts, concepts, procedures, and principles). Complex 

knowledge types, such as mental models and physical intuition, (see Figure 2.2) are loosely 

defined as any type of knowledge not accounted for in the Modified PC-Matrix. Nodes in 

the topic network axe classified as: fact, concept, procedure, principle, complex, composite, 

synthesizer (there are no synthesizers in the statics topic net), or Mis-KU5 (misconception) 

(see the key in the lower left of Figure 1.3). Facts, concepts, procedures, and principles are 

defined in Appendix B. Composite nodes represent a collection of topics of different types.6 

For example, Linear Equilibrium is a topic of type composite; it is composed of three 

parts, LE-intuition, LE-concept, and LE-principle. Synthesizer nodes are used to represent 

a relationship between two topics (such as a comparison of two topics—see description in 

Section 5.4.3). 

Topic Relationships. Links between nodes in the topic network indicate relation¬ 

ships between topics. There are three basic types of topic relationships: critical-mis-ku, 

part, and prerequisite. We found it necessary (as explained in Section 2.2.7) to further 

refine the prerequisite relationship into five types of prerequisite relationships, depending 

5Mis-KUs are not a topic per-say, since they are represented using a their own object type. 

6Normally a topic has parts of its own type, for example, a concept has sub-concepts as its parts, and a 

procedure has sub-procedures as its parts. 
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on how shallowly or fully a topic’s understanding is needed: familiar, deep-familiar, easy, 

typical, and difficult. The first prerequisite level, familiarity, indicates that the student 

must only have been introduced to (given a summary, definition, or example of) the pre¬ 

requisite topic. We also found the need for a “deep familiarity” prerequisite, meaning 

familiarity with a topic and all of its parts. There are prerequisite relationships for each 

mastery level (eg. {Linear-equilibrium-intuition} is an easy level prerequisite of {Free-body- 

problem-solution}). Tutoring strategies (at the topic level) use the node and link types in 

determining the order in which to present topics. 

Topic Levels. Our modified PC-matrix distinguishes these “performance levels:” 

meta-knowledge, remember, use-apply, use-problem-solve, and create. In designing the 

topic network for statics we found that the knowledge referred to by some topics was lim¬ 

ited to a single performance level (“use-apply”), and in these cases we needed another way 

to distinguish levels of performance. As a solution we include “mastery levels” for each 

performance level. We allow three mastery levels (easy, typical, and advanced) for each 

performance level. Mastery levels make the student model more precise and have allowed 

us to simulate “spiral teaching,” as described (in Section 5.4.3). The performance and 

mastery levels are implemented as slots within each topic (see Appendix H). Though the 

statics tutor uses only five performance/mastery levels (remember, use-easy, use-typical, 

use-difficult, and meta-knowledge) many more are possible, up to a maximum of three 

mastery levels for each performance level in Figure 2.2. 

3.1.6 Conceptual Vocabulary 

Representing Tutoring Expertise 

We have been involved in an ongoing effort (see Section 5.4.1, and Murray [1987]) 

to define a set of representational primitives (a conceptual vocabulary) for describing the 

objects, attributes, and events of tutoring. Tutoring strategies (regardless of whether they 

are represented as rules, decision networks, strategies, etc.) involve conditional actions 



113 

(IF/THENs).7 We are converging on a limited vocabulary for the antecedents (i.e the “IF” 

parts, sometimes called predicates or situations) and the consequences (i.e. the “THEN” 

parts, sometimes called actions or results) of strategic decisions. Our goal is to develop a 

vocabulary that is complete and expressive enough to adequately represent the majority of 

the domain expert’s strategies, and conceptually simple enough to allow domain experts to 

formalize their knowledge in a language that is intuitive and comfortable (see Section 5.4.2 

for a discussion of the tradeoffs in designing expressive yet simple vocabularies).8 

Antecedents. There are four types of antecedents: curriculum-characteristics (eg. 

factual-topic, difficult-question), discourse-parameters (eg. many-examples-were-given, 

last-question-was-wrong), student-model-parameters (eg. knows-topic, has-misconception, 

prefers-explanations), and internal system parameters (such as the PAN switches described 

later) which are variables that keep track of internal system states for control purposes. 

Therefore the conditional parts of rules are written in terms of characteristics of the content, 

the state of the discourse, the state of the student model, and internal system parameters. 

Consequences. There are two types of consequences: assertions that assert a fact or 

value (IF xx THEN ASSERT yy, or IF xx THEN SET yy to zz), and actions that result in 

observable tutorial behavior (IF xx THEN DO yy). The conceptual vocabulary includes a 

set of primitive tutorial actions, such as Hint, Define, Remediate, etc., some of which are 

shown in Figure 3.5. 

Elements of the Conceptual Vocabulary 

The KAFITS framework was designed through a combination of experience with educa¬ 

tors, taped interview studies (Section 5.4.1), and considerations from instructional design 

7In the KAFITS system tutoring strategies are represented in action networks, as described in the next 

section, but this discussion is intended to apply to any scheme for representing tutorial expertise. 

8 At this time tutorial goals are not explicitly included in our strategies because this additional complexity 

was not needed. However, some studies have indicated that complex tutorial decisions are goal-oriented 

[Stevens & Collins 1977], therefore goals and plans may be included at some future date. 
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Response level actions: 

Topic level actions: 
• Set-up-environment 

• Teach 
• Introduce-task 

• Motivate 
• Ask-question 

• Summarize 
• Give-reaction 

• Define 
• Congratulate 

• Teach-prerequisites 
• Challenge 

• Teach-paxts 
• Give-hint 

• Diagnose-critical- 
• Reveal-answer 

misconceptions 

• Diagnose-topics-knowledge 
• Give-answer-reason 

• Give-examples 
• Elaborate-on-answer 

• Wrap-up 
• Encourage 

• Tell-whether-correct 

Figure 3.5 KAFITS Primitive Discourse Actions 
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Figure 3.6 Elements of the KAFITS Conceptual Vocabulary 

theory (Section 2.2.7).9 The KAFITS conceptual vocabulary consists of the names of the 

entities, properties, and relationships used in the system, and is the language in which 

knowledge about curriculum and teaching is expressed. Technically, the KAFITS “frame¬ 

work” consists of the conceptual vocabulary plus a structure specifying how the things in the 

vocabulary are related or structured. For example “topic level” and “presentation level” 

are part of the vocabulary, and the Four-level Decision Model which defines how these 

levels are related is part of the structural framework; “topic” objects and “presentation” 

objects are part of the vocabulary, and the fact that topics reference presentations to specify 

interactions with the student is part of the structural framework. 

The conceptual vocabulary consists these categories of entities: decision levels, object 

types, object’s attributes (slots), strategy parameters, and strategy actions, as illustrated in 

9See Section 3.6 for a discussion of extending the framework and conceptual vocabulary. 
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Figure 3.1.6.10 11 The names in several of the categories overlap (which can cause confusion 

when first learning about KAFITS), as illustrated by the numbered dots in the figure. For 

example, dot “1” illustrates that “Motivation” is a topic slot which contains canned text, 

“Motivate” is a primitive action which uses this canned text, and “Motivate?”is a PAN 

switch used in strategies to indicate whether motivation should be given. Figure 3.1 shows 

the attributes of topic and presentation objects. 

3.1.7 Strategy Representation 

Strategic information in KAFITS is represented with parameterized action networks 

(PANs). We first describe action networks, then parameterized action networks. 

Our work on action networks is an extension of earlier work on discourse action networks 

[McDonald et al. 1986] and tutoring action networks [Woolf & Murray 1987]. Action 

networks have the look of conventional transition networks with “nodes” (states) and “arcs” 

(predicates) as one would find in ATNs [Woods 1970]. However, “actions” are used in 

the place of states, and “situations” (groupings of predicates) are used in the place of 

predicates. The motivation to modify the ATN architecture (as employed in Woolf [1984]) 

by replacing states with actions was based on the observation that ATNs were designed 

for natural language parsing and are non-deterministic.12 Non-deterministic of uncertainty 

has no counterpart in discourse generation, which requires a planning rather than a parsing 

formalism [McDonald et al. 1986]. In ATNs, arcs represent predicates which can have 

10“Curriculum Representation” elements are also shown, which include node types, topic relationships, 

and topic levels. Topic relationships and topic levels are topic attributes. Most node types correspond to 

the topic-type slot and some correspond to object types (such as Mis-KUs and Synthesizers). 

11A more complete conceptual vocabulary for ITSs could include these additional categories: explanation 

types (eg. behavioral, causal, component, attribute, etc. [Stevens & Steinberg 1987]); types of student 

inquiries (eg. what/how/why, action/event/state [Gilbert 1987]); and types of examples (eg. extreme case, 

near miss, anchors, analogies [Murray 1988]). 

12Nodes in the ATN formalism represent accepted definitions for incoming tokens and arcs represent tests 

made on those incoming tokens. Non-determinism was motivated by uncertainty or the need to wait for 

an accumulated global interpretation before the system could be confident about the local interpretation of 

each token being scanned. 
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side effects and can expand recursively (invoking other ATNs). Both of these features were 

needed for language recognition, but are not necessary for discourse planning. 

In contrast to ATNs, in action networks the arcs (situations) represent Boolean com¬ 

binations of predicates, and are not allowed to have side effects. Also, in action networks 

the nodes can expand recursively (invoking other networks) as in classical and hierarchical 

planners [Sacerdoti 1974].13 

The left side of Figure 3.7 shows the Give-Feedback PAN. Lozenge-shaped nodes repre¬ 

sent actions and arcs represent situations. After an action is completed all arcs emanating 

from that node are evaluated to determine which arc “passes” (using a conflict resolution 

scheme if several arcs pass), and program execution continues at the action pointed to by 

the arc that “passes.” Oval nodes, such as the Congratulate node, represent calls to other 

action networks. Small circular nodes are either Empty nodes or Exit nodes. When control 

is passed to an Exit node (or when no arc emanating from the current action passes) the 

PAN is exited and control is returned to the PAN that called it (if there is one). 

Arcs can be of several types: Always, Else, predicates, or Boolean combinations of 

predicates (using And, Or, and Not). The predicates refer to (1) the student model (for ex¬ 

ample, student-knows-topic or response-ok), (2) characteristics of the domain (for example 

task-is-difficult, or topic-is-conceptual), or (3) “switches.” Switches define the parameteri¬ 

zation of the network and constrain the possible paths through the PAN. A set of switches 

called “Helpful” is shown in the middle of Figure 3.7. Switches are either on or off. A 

set of switches with a particular setting is called a “switch register.” For example, the 

Helpful switch register is defined to congratulate, but not challenge, the student. Notice 

that some of these switches correspond to predicates in the Give-Feedback PAN. When the 

Give-Feedback PAN is combined with the Helpful switch register, the action network shown 

13We have chosen not to implement the classical top-down goal reduction type of planner for two reasons. 

The first is Occam’s Razor. We have not yet encountered the need to incorporate all the power of classical 

planners, such as backtracking, constraints on actions, and reasoning about subgoal interaction. The second 

reason stems from our goal of conceptual simplicity and usability. Action networks, with their intuitive 

flow-chart like appearance, are easier for the domain expert to create, modify, monitor, and conceptualize 

than the plan operators of classical planners. 
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to the right in the Figure results.14 Thus, a “Strategy” is defined as a PAN combined with 

(constrained by) a switch register. 

Parameterized Action Networks 

Parameterizing action networks allows many alternative strategies to be represented 

using a single PAN. Rather than defining new action networks for each tutoring strategy, 

generic action networks are instantiated in multiple ways depending on the context at run 

time. For example, three of the arc tests in the Give-Feedback network correspond to 

switches: encourage, congratulate, and tell-correct. There are six different possible on/off 

combinations of these switches. Rather than defining six separate action networks, one for 

each case, we can define one PAN and six switch registers to cover all of the possibilities. The 

uThe resulting action network to the right in figure 3.7 is an illustration of how the Give-Feedback PAN 

behaves when the Helpful switch register is active. The resulting action network is not actually instantiated 

by the system. The Give-Feedback PAN is traversed by the system according to the values of its predicates, 

some of which depend on the current state of the student model, and some of which (the switches) depend 

on active switch registers. 
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domain expert can more easily create a new switch register than another action network. 

Also, having fewer action networks cuts down on the size of the strategic knowledge base 

and commensurate knowledge management problems. 

The above explanation has included a simplification that we now remove. Actually, a 

switch register is associated with a set of hierarchically connected PANs, called a PAN* 

(“pan star”). The PAN* associated with a PAN includes the PANs it calls, plus all the 

PANs they call, and so on, recursively. For example, there are eight PANs in the PAN* for 

the Default Response Strategy (one of which is the Give-Feedback PAN), and four PANs in 

the PAN* for the Default Topic Strategy.15 A switch register is defined for each PAN*. This 

explains why there are more switches in Figure 3.7 than are needed for the Give-Feedback 

PAN. A Strategy, then, is a PAN* combined with a switch register. 

PANs vs. Production Rules. Action networks borrow features from production 

system formalisms as well as from network formalisms. Situations (multiple predicates) are 

associated with actions (nodes), in the manner of a production system. Discourse context 

is encoded in the structure of the network. Every situation (arc) implicitly includes as 

one of its constituent predicates the actions (nodes) from which it came. As in production 

systems, if multiple situations are true, a conflict resolution scheme is used to determine 

the next action. The single notational framework has the flexibility of a production system 

and the contextual record-keeping ability of a network formalism. 

Though production rules are well suited for making assertions (IF xx THEN ASSERT 

yy), they can be awkward or unwieldy for representing control information (IF xx THEN DO 

yy) [Clancey 1986, Lesser 1984]. They obscure the difference between control and strategic 

information, and hide the structure of the strategic knowledge. Control information elicited 

from human experts often has a clearly defined structure. This structure is lost in the 

extremely modular format of production rules. Also, context is often important in rules 

elicited from humans. Structure and context are incorporated into production rules by 

15The PANs for the default strategies are not shown here. Recall that there are strategies for each of the 

four Decision Levels. Unless otherwise specified, a “default strategy” is used at each level. 
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using ad-hoc antecedents or goals, but such information corresponds to the programming 

or implementation level of design, and is irrelevant to the cognitive level of design. Users 

should have a conceptually sound view of a system’s control information and should not have 

to deal with information or decisions at the implementation level [Gruber 1987]. Structure 

and context axe represented explicitly in PANs, i.e. the possible actions before and after an 

action are clearly indicated. 

As an illustration, the arc that goes from the Positive-Encourage node to the Congrat¬ 

ulate node of the Give-Feedback PAN (left side of Figure 3.7) could have been written in a 

production rule formalism as follows: 

IF: 1. current goal is to Give-Feedback, and 

2. last-action (i.e. the context) was Positive-Encourage, and 

3. student-response-ok, and 

4. Congratulate switch is on 

THEN Congratulate 

One such rule would have to be written for each arc in the network. The graphical PAN 

representation of Give-Feedback is more appropriate for ITS knowledge engineering than 13 

textually represented rules (there are 13 arcs in the network) such as the one above because 

there are less entities to manage in the knowledge base, and because PANs provide a visual 

model which supports a robust cognitive model of the control process. 

Changing strategies 

The domain expert can define many alternative strategies—strategies for general tu¬ 

toring styles and strategies tailored to specific segments of the curriculum. The KAFITS 

system can change the active strategies (there is one active or current strategy for each 

of the four decision levels) in the midst of a tutoring session. A strategy is changed by 

either changing the current PAN* or changing the current switch register (for one of the 

four decision levels). 

Strategies can change dynamically during the tutoring session in three ways: at the local 

level, at the global level, and via student control. At the local level, an individual lesson, 



121 

topic, or presentation can specify that a specific strategy be used. This local decision is 

stored in a slot of the instance and is editable like any other slot. At the global level, “meta¬ 

strategies” select the current strategies (see Figure 3.2). Meta-strategies are represented as 

IF/THEN rules. They probe the conditions of the student model and the domain model, and 

are checked periodically during program execution.16 For example, IF student-is-floundering 

THEN USE Helpful-switch-register. 

Lastly, the student can interrupt the tutoring session to change the strategy. The student 

is given a menu of choices, such as “more feedback,” “less feedback,” “more information,” 

“less information,” etc., which map into a change in the settings of the switches.17 

3.2 Description of the Interfaces 

The Knowledge Acquisition Interface is designed to reify the KAFITS representational 

framework, facilitating the organization and encoding of the domain expert’s knowledge. 

The Knowledge Acquisition Interface has two components: an interface to the domain 

knowledge base (the Browser) and an interface to the strategic knowledge base (the Strategy 

Editor), which we describe in this Section. In this section we also describe the session 

monitors (tools that allow the domain expert to access information about the tutoring 

session) and the interface to the student. See Appendix D for a listing of all the menu 

operations available to the KAFITS user. 

3.2.1 The Browser 

The Browser allows the domain expert to inspect, modify, and test the objects in the 

domain knowledge base. Figure 3.8 shows the Browser about to be used to Browse the 

16Meta-strategies and the meta-strategy interface have not been implemented yet. 

17This feature has been implemented, but we have little data as yet on whether students can or choose to 

make use of it. 
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slot Hints of the presentation LE-Intuition-Easyl (the user had previously Viewed LE- 

Intuition-Easyl, and its description is shown in the Browser output window at the bottom 

of the figure).18 At the top of the Browser a message window informs the user of warnings, 

gives brief instructions, and orients the user by giving information about the operation just 

completed. Below the message window are three tables from which the user can select (from 

left to right) an object type, and instance of that type, and a slot of the instance. Below 

the tables are three pop-up operations menus, one for each table (only the last operation 

performed is shown when the menu is not popped up). Figure 3.8 shows the user clicking 

on the slot operations pop-up menu and selecting “Browse slot”. Figure 3.9 shows the 

operations for all the tables (the user can only see one pop-up menu at a time). 

The Browser Output Window is a scrollable window in which information and listings 

are printed. When the user chooses to edit an instance or a slot an Editor Window appears, 

wherein the user can modify current values. 

The Browser has the standard editing operations, viewing, copying, creating, editing, 

deleting, and also has these operations on instances: testing, browsing (viewing all objects 

that reference or are referenced by an object), adding documentation notes, viewing exam¬ 

ples of and restrictions on slots, and inspecting the student model values associated with 

an instances. See Section 5.5.4 for a discussion of how the design of the Browser evolved in 

response to user input. 

3.2.2 The Strategy Editor 

The interface for creating and modifying PANs is shown in Figure 3.10. PANs are 

represented as editable graphic networks. Creating, deleting, repositioning, and testing 

18The domain expert invents the names of the instances that he creates. LE-Intuition-Easyl is the first 

presentation for the easy level of topic Linear Equilibrium Intuition. The Instances table of Figure 3.8 scrolls 

through an alphabetical listing of instances (presentations in this case, of which there are 81 defined for the 

statics domain). 
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Figure 3.10 PAN Editor 

nodes and arcs is done by clicking (or double-clicking) on a node or arc. The figure shows 

a menu of operations shown when the user clicks on a node. 

Creating or editing a switch register involves clicking buttons to toggle switches on and 

off. The editor for switch registers is shown in Figure 3.11. 

3.2.3 Session Monitoring Tools 

The system runs on two physical monitors (screens): the “student screen” (a color 

monitor) shows either the tutorial session (Figure 1.5) or the Browser (Figure 3.8); the 

“knowledge engineering screen” (a large black and white monitor) is used for development 

and knowledge engineering and shows the monitoring tools. The system has four monitoring 

tools. Three of them are shown in Figure 3.12. The monitoring tools are invaluable in 

helping the teacher understand the progress of a tutorial session in terms of the curriculum, 

the flow of control through tutoring strategies, and the student model. These tools also help 
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Figure 3.11 The Strategy Switch Editor 

teach and reinforce the syntax and semantics of the KAFITS representational framework 

by providing visual models of concepts and structures of the framework. Each is described 

below. 

Topic net display. The first monitoring tool is a graphic display of the topic network 

(see Figures 1.3, and 3.12), in which topics are highlighted to follow the tutor’s traversal of 

the curriculum during a trial tutorial session.19 The user can also click on the topic nodes 

to edit or inspect topics. 

The size, shape, and scale of the topic net window can be adjusted, allowing the user to 

zoom in or back to see specific areas of the curriculum. 

Event Log. The second tool is an Event Log which gives a detailed trace of the deci¬ 

sions and inferences made by the tutor, including the evaluation of each student response. 

This trace is written to a text file to allow analysis of real or dry-run tutorial sessions. 

19We have considered giving the student access to the visual topic network, but have not tried it yet. 
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PAN monitors. The third tool is a graphical representation of the PANs, which 

trace the flow of control through the action networks invoked by highlighting PAN nodes 

(see left side of Figure 3.7).20 The domain expert can see control flow from one PAN 

to another and from action to action within a PAN. This visual tracing facilitates testing 

and modification of the strategic knowledge base, and provides the domain expert with a 

concrete visualization of what can, at times, be a complex control structure. 

Topic Level Display. The fourth monitoring tool is the Topic Level Display, which 

details the current topic and pending topics (see Figure 3.13 ). Pending topics are stacked 

underneath the current one. For example, three Topic Level Displays are shown, with 

Linear-equilibrium-principle being the current topic. That topic is being shown to the stu¬ 

dent to satisfy a “familiarity” level prerequisite of Linear-equilibrium-intuition (the middle 

Display), which was in turn presented as a “part” of Linear-equilibrium (the bottom Dis¬ 

play). The text on the left side of each Topic Level Display shows the levels at which 

the topic cam be taught, with an arrow indicating the current level being presented to the 

student. On the right are the Student Model values of each level (the student model is 

described in Section 3.3). 

An important feature of the knowledge acquisition interface is that it is easy for the 

domain expert to move back and forth between testing the curriculum (running it as a 

student) and modifying it with the Browser. The teacher can interrupt the session at any 

time to display information about objects, display the status of the student model, change 

strategies, or edit objects. He then returns to the tutorial session were he left off. 

3.2.4 Student Interaction 

The interface between the tutor and the student is a critical component of any com¬ 

puter tutor, but it is not being evaluated as part of this study. The character of the student 

interface and the types of computer/student interactions allowed depend critically on the 

20The PAN monitor is not shown in Figure 3.12, and when used it takes the place of the topic net on the 

knowledge engineering monitor. 
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instructional domain (i.e. are not domain-independent). As mentioned previously, presen¬ 

tation objects are used to define interactions with the student. The are composed of an 

environment (or task-situation) and a task (or question) for the student to accomplish (or 

answer) within that environment. The standard media which KAFITS provides are pic¬ 

ture objects, sound objects, and text. In the statics domain, the crane boom simulation 

and static crane boom pictures were added. KAFITS comes with three standard types of 

student interactions, and is designed to make it easy to add others. 

Below we describe the student interaction types and the crane boom simulation (the 

learning environment for the statics domain) in particular. We also describe the “student 

initiative” capability, which adlows the student to control the tutoring session. 

Interaction types. Student behavior is processed according to the type of interac¬ 

tion. Currently there are three types of domain-independent interactions provided: multiple 

choice, type-in, and numeric; and three interaction types defined for the statics domain, 

crane-boom-value, crane-boom-point, and crane-boom-vector. Crane-boom-value interac- 
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tions ask the student to manipulate the simulation so that one or more of the 30 parameters 

is in a specific range. Crane-boom-point interactions ask the student to point to (click on) 

a place on the crane boom, and crane boom vector interactions ask the student to draw 

(click and drag) a vector on the diagram. For each type of interaction two functions are 

defined: one to set up the environment and record the student’s response or behavior, and 

the other to process (evaluate) the student’s response or behavior. 

New interaction types are easily incorporated into the tutor by defining new get-student- 

response and process-student-response functions. Each type of interaction defines its own 

language for specifying the possible student behaviors. The teacher uses this language to fill 

in the Possible-answers slot of presentations. For example: for multiple choice the teacher 

needs only enter the text of the choice interactions, such as “high,” “medium,” and “low.” 

For crane-boom-vector interactions, the size (in Newtons), angle, and location is specified 

(for example: SIZE 8-12 ANGLE 40-50 START left-end-of-bearn). It is straightforward to 

implement new interaction types, such as parse-sentence, or keyword-match, to the KAFITS 

system (see Section 3.6). 

The interactive simulation. The crane boom simulation can be shown non- 

interactively, as in Figure 1.4, or it can be brought up in interactive mode for student 

experimentation. Also, the student can call up the simulation at any time to freely explore 

in it, to manipulate the configuration of the boom, cable, and weight to measure forces, 

angles, and distances. Meters display any combination of 30 variables (Figure 1.4 shows two 

variables displayed) and as many as 18 different force vectors and vector components can be 

made visible (the figure shows one vector). The instructor determines which labels, meters, 

force vectors, etc. will be displayed for a given tutorial presentation. In free exploration 

mode the student can make these choices. 

Student initiative capability. Giving the student control in a computer tutoring 

session is very important. Students should be able to choose the content and style of the 

information and tasks presented to them, and should be able to explore and inquire freely. 

In KAFITS the student can interrupt the tutorial session at any time and choose among 
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many commands. For instance, Figure 3.14 shows the pull-down menu options that are 

provided when the student is asked to answer a multiple choice question, and instead clicks 

the button to interrupt the tutor to execute a command. The student can ask for hints and 

explanations, and interrupt the presentation to visit another part of the curriculum. As 

well as having control over the course of a tutorial session, the student can get information 

about what the tutor is doing, and can inspect some aspects of the student model and the 

teaching strategies.21 

Determining which student options are most important, how to encourage students 

to exercise these options, and the effect that numerous student-initiated options have on 

student learning are important issues outside the scope of this research. The options we 

have implemented are meant to increase the flexibility of the tutor and suggest the range 

of possible student initiatives, but we have not conducted empirical tests on this aspect of 

the tutor. 

3.3 Layered Overlay Student Model 

3.3.1 Purposes for the Student Model 

One of the most important features of intelligent tutors is their ability to tailor instruc¬ 

tion individually for each student. The student model is the dynamically updated knowledge 

base that records the tutor’s inferences about the student’s current state of knowledge.22 

VanLehn [1988] lists four common uses for student modeling: measuring the level of mastery 

to enable advancement, offering unsolicited advice when the student needs it, generating 

problems at the right level of difficulty, and adapting explanations to what the student al¬ 

ready knows. Our design philosophy has been to postpone implementation of features until 

“This is consistent with the concept of “collaborative tutors,” as discussed in Section 6.3.4. 

“Learning styles and preferences, historical data about the student, etc. are also stored in some student 

models. It is also possible to have separate dynamic knowledge bases for the student model and “discourse 

model” which keeps track of the current and past states of student-tutor interactions (a separate discourse 

model was included in early implementations of the KAFITS system). 
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Giue me a hint 
Tell me the answer 
♦ I************************* 

Teach a Topic 
Describe a Topic 
Test my knowledge of a Topic 
*********************iii**** 

Make student comment 
Display session status 
Change the teaching style 
Play with the SIMULATION 
************+************* 

REPEAT the last Presentation 
SKIP the Presentation 
SKIP the Topic 
SUSPEND the Session 

Figure 3.14 The Student Initiative Menu 

a need has been established through working with the domain expert, by student trials, or 

from information needed by some other part of the tutoring system (see Section 5.5.3). Our 

tutor has minimal functionality in many respects, and the focus of the software development 

has been on the knowledge acquisition interface. Therefore VanLehn’s list is useful to us 

in allowing for future extensions to the system, but is not useful in deciding how to design 

our student model or diagnosis mechanism. The KAFITS student model was designed, not 

from first principles about how to model or communicate knowledge, but in response to the 

structure of the representational framework 

In designing our student model and diagnostic mechanism we used a scheme for consid¬ 

ering the purposes for student models that is based more on practiced than theoretical 

concerns. Below we list these purposes in order from most essential to least essential: 
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1. Record keeping. Minimally, the student model keeps records that prevent instruc¬ 

tional material from being given repeatedly (unless the repetition is intentional). It 

should be able to answer the question “Has X been given to the student yet?” 

2. Appropriate information level. Student models usually are able to answer the 

question “Does the student know X?” ITSs use this information to give instruction 

that is neither too boring (easy) nor too complex (difficult). 

3. Remediation. Some student models can also diagnose common bugs or misconcep¬ 

tions in student knowledge. The purpose of diagnosis is to enable remediation of 

the bug or misconception or to postpone teaching something that a misconception 

impedes the learning of. 

4. Parameterizing tutorial behavior. Finally the information in a student model can 

be used to alter the way a tutor presents information. This corresponds to VanLehn’s 

“generating problems at the right level of difficulty” and “adapting explanations to 

what the student already knows.” 

KAFITS address each of the above student model purposes. The record keeping function 

of the student model is particularly important for the KAFITS framework because of the 

curriculum flexibility KAFITS supports. For instance, in a knowledge base editing session 

the domain expert had inadvertently set a system switch to ignore the student model. Due 

to circular paths in the topic network he was given the same topic four times (each time 

fulfilling a different part or prerequisite role). If the student model had been activated he 

wrould have been given the topic only once (assuming he answered its component questions 

correctly). KAFITS models whether the student “knows” each topic (item 2 above), and 

also diagnoses and remedies misconceptions (item 3 above). Finally, KAFITS parameter¬ 

izes tutoring behavior according to the student model (item 4) by incorporating multiple 

strategies which can be selected according to the student model. 
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3.3.2 Representation Issues 

At the implementation level (putting aside issues of cognition and pedagogy for the mo¬ 

ment) there are two main issues in student modeling. The first is representation, i.e. what 

data structures should be used to model the student’s knowledge state, and the second is di¬ 

agnosis, i.e. what procedures should be used to infer the student’s knowledge state. Clearly, 

representation and diagnosis issues are closely linked. First we discuss representation. 

All student models have a data structure representing each chunk of knowledge that the 

student is supposed to learn, or, equivalently, knowledge chunks representing a subset of the 

knowledge of experts in the domain. The KAFITS student model maintains its own separate 

code space (similar to a blackboard), containing data structures corresponding to each 

topic (and presentation, as explained later) given to the student.23 Many student models 

also have representations for incorrect, buggy, or sub-optimal (i.e. usable but inefficient) 

knowledge. The KAFITS student model uses Mls-KUs to represent incorrect facts, 

misconceptions, and buggy skills (there is no mechanism for accounting for sub-optimal 

knowledge). 

There are two classes of student models found in intelligent tutors: overlay student mod¬ 

els and runable student models. Runable student models are rule-based systems (like expert 

systems, but the term “novice system” might be more appropriate) that can be interpreted 

(run) to produce behavior. Runable models can be run to predict a student’s response to 

a task, and they can be run to compare the student model with a model of an expert’s 

knowledge (as encoded in a domain expert system). Runable models are usually used for 

tutors that emphasize procedural skills, since it is procedures that can be represented in 

production rules. In contrast, overlay student models are not runable, they declaratively 

record the student’s level of understanding for each knowledge chunk. Overlay models are 

usually used in tutors that emphasize non-procedural knowledge. The KAFITS framework 

assumes a curricular representation of the domain knowledge rather than an expert system 

23Student model data structures are not created until they are needed. This limits the size of the data 

base and eliminates the need to initialize the student model at the start of a tutorial session by creating 

empty data structures for ail of the relevant instances in the knowledge base. 
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representation of domain knowledge. Though it contains a “procedure” knowledge type it is 

geared more toward teaching non-procedural knowledge such as concepts, principles, facts, 

and (shallowly represented) complex knowledge (see Section 3.1.6)—therefor an overlay- 

student model is employed.24 

As in many ITSs, KAFITS uses an overlay student model with a bug library. However, 

instead of assigning a simple symbolic or numeric value for each topic or bug, as in traditional 

overlay models, the KAFITS student model maintains a separate global code space (similar 

to a blackboard). Though our student model was designed more from pragmatics than 

theoretical concerns, is does have several innovative features not found in traditional overlay 

student models, as described below. 

Multi-layered inferencing. Traditional overlay student models record a value (usu¬ 

ally true or false), indicating whether the student is assumed to “know” or have learned 

each topic or skill. Our student model makes inferences at several levels of granularity 

allowing more precision and expressiveness than found in traditional overlay models (see 

Figure 3.15). There are five layers of data and/or inferencing: lesson, topic, topic level (cor¬ 

responding to the performance/mastery levels of the topic), presentation, and transaction 

(individual student and tutor actions). The values derived at each layer come from a set of 

symbolic values, and these values are unique to that layer (the layer’s range, shown to the 

right of each layer in the figure). Each value is determined as a function of the values at the 

next lower layer (the layer’s domain). For example, the student model value of a presenta¬ 

tion is one of: :shown-only, :correct-with-many-hints, :correct, :wrong-with-answer-given, 

or :wrong-no-answer-given.25 The student model value of a topic level is a function of the 

values of its component Presentations. 

Reasoning with uncertainty. The inference rules and language used to express 

knowledge in the student model explicitly represent and reason with uncertainty [Cohen & 

24We think that KAFITS could also be useful as a tool for creating, testing, and modifying the production 

rules of a procedural-skill oriented tutor, but have not attempted this yet. 

25The set of possible values for each layer were designed to be expressive enough to support the inferencing 

required, yet not too complicated or more numerous than necessary. We are still determining an optimal 

vocabulary for the values of each layer. 
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Gruber 19851. For example, we incorporate the terms “no-info,” “shown,” and “assumed- 

known” into the representational language. “Shown” is used to indicate that a topic or 

presentation (or a part of one) was presented to the student and that there is not enough 

evidence has accumulated to determine whether the student knows or does not know it. The 

topic value “assumed” allows the domain expert to initialize the student model with some 

topics assumed to be known unless the system accumulates evidence to the contrary. The 

“suspected” Mis-KU value also represents student model uncertainty, as compared with the 

“confirmed” Mis-KU value. 

Nonmonotonicity allowed. Nonmonotonic inferencing involves making inferences 

where assumptions are made which may have to be abandoned in the light of new in¬ 

formation. Nonmonotonic inferencing is needed in KAFITS for two reasons. First, the 

teacher can initialize the student model so that the student is assumed to know certain 

topics, but these initial values change if the system accumulates contradictory evidence of 

the student’s knowledge of a topic. The second reason stems from the flexibility of the 

curriculum representation. When the tutor tries to teach a topic it infers the level of the 

student’s understanding of the topic based on how well she did on the topic’s component 

presentations. But these presentations may be given again for other reasons, such as for 

teaching another topic, or as the result of a student initiative. Therefore evidence of the 

student’s understanding of a topic can change even though that topic is not currently being 

explicitly taught. We have a straightforward method for dealing with nonmonotonicity: 

only raw data, not inferences, are stored (i.e. inferences are not cached), so that inferences 

always refer to the most recent student behavior.26 Raw data is stored in the transaction 

layer, and includes only information with no uncertainty, such as the student responses to 

answers, how many hints were given, etc. By allowing inferences to flow from the raw data 

up the data layers every time a value is used, the value of a topic may change over time 

even though that topic may not have been visited. Recalculating values every time they 

axe accessed has not affected the response time of the tutor perceptibly. 

26We do not include a truth maintenance system in KAFITS, therefore while the system deals with 

nonmonotonicity, it does not do “nonmonotonic reasoning” in the traditional sense; we call this type of 

capability “cheap nonmonotonic reasoning,” or “on-demand inferencing.” 
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3.3.3 Diagnosis and Remediation 

“Diagnosis” in KAFITS is data driven (bottom up). Since we are not trying to match 

combinations of student behaviors to expert behaviors, as is done in some intelligent tutors, 

combinatorial search is not needed in our diagnostic mechanism. Lists of suspected-mis- 

kus and confirmed-mis-kus are maintained and checked periodically to activate remediation 

scripts (in accordance with the current tutoring strategies).27 

The functions (or rules) that infer values for each student model data layer from raw 

data are “global” methods for determining student model values. KAFITS also provides 

“local” means for setting student model values. The Remediation-info presentation slot is 

used to add evidence that a topic is known or misunderstood based on a single student 

answer. This slot is used to locally add evidence that a Mis-KU is suspected or confirmed 

based on specific answers. In the statics tutor there is no global method for updating Mis- 

KU values, but in general we assume diagnostic functions exist which look at raw data and 

student behavior to determine whether mis-knowledge exists. 

3.3.4 Other Student Model Features 

Inspecting the Student Model. The domain expert can inspect the information 

in the student model in several ways. A pull-down menu has options for “full” or “brief’ 

summaries of the values of all topic and Mis-KU data structures in the student model. The 

full summary also shows the values for the levels within the topics and Mis-KUs. A Browser 

operation is provided to view the student model data structure for any topic, Mis-KU, or 

presentation instance. Also, the topic level monitors (Section 3.2.3) show the values of the 

levels of the current topic during a tutorial session. 

Student Profiles and Saving the Student Model. The student model can be 

saved and loaded. This allows the student (or teacher testing the system) to quit in the 

27We do not rule out the possibility of top-down model driven forms of diagnosing topic and Mis-KU 

values should KAFITS be used for a domain which includes a sophisticated micro-world environment with 

coach-like tutoring strategies. 
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middle of a session and continue at another time. It also allows the teacher to create a 

library of prototypical student profiles that can be loaded to initialize the student model (for 

example, one for students who have had previous physics experience, one for students with 

previous science experience, and one for students with little science or math experience). 

3.4 Knowledge and Data Management Features 

In this section we describe the methods and tools used to automatically record, organize, 

and manage knowledge and information in the KAFITS system. The information is stored 

in text files, some of which also contain Lisp source code. First we describe the files used to 

manage the domain knowledge base and the files used to store data collected while KAFITS 

is running. 

3.4.1 Managing Domain Knowledge 

Two files are needed to manage the domain knowledge base: the saved-instances file, 

which is a record of the contents of the entire knowledge base, and the edit-record, which 

records changes made to the knowledge base. 

Saved-instances file. The domain knowledge base, containing all of the instances of 

the objects in the system (topics, presentations, lessons, etc.) is written to a text file called 

the saved-instances file, since the domain knowledge is included in the code “image” of 

the tutor (see Section 3.6) the saved-instances file is not needed to ran the tutor, but it is 

useful to have available on disk for reasons described below. The saved-instances file has 

two purposes. First, it is organized to be readable by humans, allowing the domain expert 
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to reference information when it is not desirable to do this using the browser.28 Second, 

the instances saved in the file are in the form of Lisp code (macros), for example: 

(NEW-TOPIC :NAME GRAVITY 

:TOPIC-TYPE CONCEPT 

:PREREQUISITES (FORCE-DEFINITION) 

:PARTS (WEIGHT-VS-MASS CENTER-OF-MASS) 

:SUMMARY ‘‘Gravity is a force which pulls things...’’ 

:MOTIVATION ‘‘Gravity is a very important force that..’’ 

:USE-EASY (GRAVITY-TWO-PEOPLE GRAVITY-PERSON-BLDG) 

The knowledge base is created by loading the saved-instances file after the KAFITS 

system is loaded. A new or modified knowledge base is saved by writing a new saved- 

instances file to permanent memory (the Mac’s hard disk). 

Appendix I shows a portion of a saved-instances file. First each lesson is listed in 

alphabetical order. Then each topic is listed in alphabetical order. After each topic the 

presentations it references are listed in alphabetical order. After each presentation the 

instances it references are listed (crane-booms, pictures, sounds, other presentations, etc.). 

The resulting listing is organized hierarchically, with miscellaneous instances nested inside 

presentations, and presentations nested inside topics.29 Instances that are referenced twice 

are not listed twice—a comment “see listing above” is written in its place. All instances 

that were not referenced by topics or presentations (i.e. not accounted for above) axe listed 

alphabetically in a separate section at the end of the file. 

In addition to the Lisp-readable representations of all the instances in the knowledge 

base, the saved-instances file contains several text sections designed to help the domain 

28For example, the domain expert can take a hard copy of this file home and proofread it, and later use the 

browser to make corrections. As another example of using a saved-instance hard copy, assume the domain 

expert wanted to replace all occurrences of the word “friction” in the knowledge base with “frictional force. 

Using the browser it would be tedious to replace all occurrences of “friction,” and even more tedious to 

first find them all. A much simpler alternative is to bring the saved-instances file into a text editor and 

replace all “friction” with “frictional force” with one editor command. Note that these changes would not 

be incorporated into the system until the next code image was created. 

29Topics are not nested inside lessons—all lessons are listed at the beginning of the file. 
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expert inspect the knowledge base. First is a table of contents which indexes all the topics 

and Mis-KUs. At the end is a cross reference of all presentations, showing the instances 

in the knowledge base that refer to each presentation.30 This feature has been useful 

in checking for inconsistencies and other errors in the knowledge base. For example, a 

presentation that is not referenced by anything is likely to have a typo in its name. Following 

the cross reference is a list of the instances that were referenced but were not created. This 

provides another way to check the consistency of the knowledge base. Unless the domain 

expert is in the middle of entering domain knowledge in the knowledge base, all instances 

that are referenced should exist. At the end of the saved instances file the total numbers of 

topics, Mis-KUs, presentations, and instances (of all types) are given. 

Edit records. As the domain expert uses the Browser to add to or modify the knowl¬ 

edge base, the changes are written to a text file called the edit record. The edit record 

serves two purposes. First, the changes being made exist only in the computer’s temporary 

memory, and are lost when the KAFITS program is exited, so the edit record is a perma¬ 

nent record of these changes. The next time the system (i.e. the code image) is loaded the 

knowledge base reflects the state of the saved-instance file when the code image was created. 

Every time the user starts up KAFITS, he must load his edit record to re-instantiate the 

changes he has recently made.31 The edit record, like the saved-instance file, contains Lisp 

code (in a form that can be loaded by Lisp and also read by humans) and various non-code 

comments. Appendix K has a sample edit record. 

The second purpose for the edit record is to allow the knowledge engineer to trace 

the evolution of the knowledge base and the use of the Browser through time. One can 

analyze edit records to get information about the use profile of the Browser and the types 

of modifications made (time, date, and user’s name are recorded). Also, the user can insert 

a typed-in comment into the edit record. For instance, if the domain expert is making a 

30The hierarchical structure and table of contents makes it easy to locate any topic and to see the pre¬ 

sentations used for that topic. However, one cannot easily locate a presentation in the file unless one knows 

the name of the topic(s) it is associated with. The cross reference facilitates lookup by presentation name. 

31 When the Browser is started up, the user is asked to select his edit record file, which is then loaded 

automatically. 
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modification to the knowledge base and has a question for the knowledge engineer, but the 

knowledge engineer is not there, the domain expert can enter a comment such as “I’m not 

sure if this was right—does it have to be a positive number?” Later, the knowledge engineer 

can inspect the edit record to see what changes the domain expert has made and read the 

comments. 

The edit record contains incremental changes to the knowledge base. Periodically, when 

a new version of the system is compiled, the edit record is loaded on top of the saved- 

instances file, and a new saved-instances file is created. When the code image is loaded it 

reflects the recent changes made by the domain expert. A new (blank) edit record file is 

started for the domain expert. 

Edit records also allow multiple users and/or multiple editing purposes. For instance, 

several domain experts could be working on different parts of the curriculum at the same 

time, each with his/her own edit record. Also, an edit record can be created to record 

changes to the knowledge base that axe for a specific purpose, but not intended to be 

permanent changes, such as modifications to the knowledge base for “AAAI-90 demo.” 

3.4.2 Data Records 

The system maintains several files of data records—i.e. files that are updated while 

KAFITS is running. One, the edit record, was mentioned above. The others are described 

below. 

Session trace file. The session trace file is a record of the tutor’s decisions, the 

tutor’s actions, and the student’s actions in a tutorial session. The system has a feature 

which allows the student to interrupt a tutoring session and type in a comment, which is 

recorded in the session trace file. A sample session trace file is in Appendix L. The session 

trace file can be analyzed by the knowledge engineer or the domain expert to gather data 

about student use of the tutor. 
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Session listing file. There is one session trace file for each tutorial session. The 

session listing file lists of all of the tutorial sessions that have been run (i.e. all the session 

trace files created), along with the time, date, and name of the student. 

Student model file. The student model can be saved at any time during a tutoring 

session (though it is usually saved at the end of one). For each saved student model a 

student model file is created, containing Lisp code which, when loaded, sets the student 

model to the state it was in when the model was saved. This allows a student to quit in 

the middle of a lesson and continue later where she left off. The saved student model can 

also be analyzed for data about the student’s final knowledge state at the end of a tutoring 

session. 

3.5 Help and Assistance Features 

A software system that has many features and operations, as does KAFITS, has the 

potential to be confusing or overwhelming to the user. Such systems need features to assist 

the user in managing these options. Also, the KAFITS knowledge base is large and contains 

many types of things with diverse relationships between them—there is the potential for the 

user to get lost in the knowledge base. The user needs assistance in navigating though and 

gathering information about the knowledge base. The KAFITS system has several on-line 

help and assistance features, outlined below, to help the user use the system and navigate 

the knowledge base. 

3.5.1 Assistance 

On-line help/info system. A hierarchically structured help system has been 

implemented.32 Included in the help/info text are explanations of some important KAFITS 

framework concepts, descriptions of the Browser and KAFITS menu operations, explana- 

32 A “hierarchical” structure is one organized to show various subsumed levels of granularity, for example: 

a book has parts, chapters, sections, subsections, paragraphs, etc. 
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tions of the various types of objects and data files, etc. The help/info text is loaded from a 

text file. This text file has a simple syntax for specifying the hierarchical relationships. It 

is relatively easy to add new information to the help/info system by editing a text file (no 

knowledge of Lisp programming is needed). 

Browser message window. At the top of the Browser (Figure 3.9) is a small window 

called the Browser message window which indicates what the user just did and/or should 

do next while using the Browser. One purpose of these messages is to confirm the successful 

execution of operations that have no visual repercussion, for instance: “The topic {Newtons- 

law} has been deleted.” Another purpose is to direct the user’s attention to the appropriate 

location on the interface, for instance: “The slot Hints of the instance {Crane-boom-small} 

has been printed in the output window below.” 

Disaster avoidance. When the user performs an operation that has serious reper¬ 

cussions, such as deleting an instance, or exiting the tutor, the system asks if s/he is sure 

they want to do that. 

Slot documentation. By selecting Slot-documentation from the slot operations pop¬ 

up menu (see Figure 3.9) the user gets the following information: the purpose/description 

of the slot; restrictions on the value of the slot; and example values of the slot. The domain 

expert can use this feature when he forgets what a slot is for or what kind of information 

is stored in a slot. 

3.5.2 Knowledge Base Navigation and Information Features 

In a large knowledge base the user often has difficulty knowing “where he is” or what 

things are related to the thing he is looking at. KAFITS has several features to assist the 

user in this area.33 

33In Section 3.2.3 we described the Monitoring Tools, which are designed to help the domain expert 

know were s/he is in the dynamic context of running or testing the curriculum and strategies. This section 

describes methods related to viewing the (static) knowledge base itself. 
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Cross references. All instances have a slot called Referenced-by, which lists the in¬ 

stances that point to the object. This slot is updated when a saved-instance file is created, 

when a code image is created, or when the user selects the “calculate cross references” menu 

operation. 

Browser tables. The current type, instance, and slot are highlighted in the three 

tables on the browser panel (see Figure 3.9). This reminds users of the instance that 

contains a slot (if s/he is working on a slot), or the object type of an instance (if s/he is 

working on an instance). 

The Browse operation. By selecting the Browse operation the user can see all of 

the objects connected to (i.e. those pointing to and from) a given object. The connected 

objects are shown in the instance table (i.e. they axe not just listed for viewing—they 

can be selected and operated upon). This feature allows the user to move easily though 

the knowledge base via related instances. Another operation, called View-cross-references, 

shows (in the browser output window) the objects related to an instance, and describes the 

nature of these relationships. 

Topic summaries. As described previously, the topic net gives a visual representation 

of the relations between topics. Nodes in the net can be clicked on to browse or get concise 

“summary information” about each topic. 

Show-all-slots feature. A tool is provided which allows the user to list the contents 

of a single slot for all instances of a given type. For instance, if the user wants to know 

which presentations have more that one hint, he could use this tool to print the Hints slot of 

all presentations. This is much more efficient than viewing each presentation individually. 

3.5.3 Consistency and Error Checking 

ITS knowledge acquisition systems which guide the user, step by step, through the 

creation of a curriculum knowledge base can significantly constrain the content and structure 

of the knowledge base in their attempt to minimize errors. KAFITS is an open-ended 
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knowledge acquisition system that does not constrain the order information is entered, 

which allows for flexibility, but admits more possible errors. To reduce several types of 

errors we have implemented a small number of features to detect user errors, as described 

below. 

Slot data type warnings. All the slots (of all object types) are defined to be of a 

specific data type, and the value of each slot is restricted to the required data type. Example 

data types are: text, a pair of words (symbols), a pointer to a topic, a list of presentations, 

an integer, etc. When the user creates a new instance or edits an instance slot values are 

checked to make sure they are of the correct data type. If an error is found, a warning 

message such as: “slot HINTS of instance {CAR-3} is: 102, but should be a text string; for 

example: ‘hello there’.”34 

Topic net consistency checker. The topic net (Figure 1.3) and the domain knowl¬ 

edge base are not completely integrated. That is, when the user makes a change in the topic 

net (using the topic net editor) the change is not automatically reflected in the Browser, 

and vice versa. The user must run the topic-net-consistency-checker (by a menu selection) 

to make the topic net and the domain knowledge consistent. When this is done, the user is 

prompted to add or delete items from the net or knowledge base to enforce consistency. 

Cross references for consistency. The cross reference and null-reference sections 

at the end of the saved-instance file (mentioned in Section 3.4.1) allow the user to locate 

instances that are never used and instances that are referenced but do not exist. 

3.5.4 Other Interface Features 

Select-screen-configuration. At the beginning of a session the user can specify the 

hardware screen configuration from a menu of pre-defined configurations, such as: color 

34The user is not forced to correct these errors, since there may be rare cases when the user is intentionally 

using a value of the wrong data type. However, if the user types something in the edit window which defies 

Lisp syntax, such as having a missing or extra quotation mark (“like ’’this”) he is given an appropriate 

message and is not allowed to exit the editor until this is fixed or the editing is aborted. 
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monitor, two page monitor, color monitor with two page to the right, etc. The positions of 

all windows, menus, graphics, etc. are adjusted accordingly. 

User types. The KAFITS system incorporates three “user types:” student, teacher, 

and programmer. The user can change the user type via a menu operation (described 

in Preferences below). Teacher mode is the usual mode of operation—meant to be used 

by the domain expert and knowledge base managers. In student mode the user can not 

invoke the Browser or change the knowledge base. In programmer mode, used only by the 

knowledge engineer or Lisp programmer, error messages are more detailed and technical.35 

Proposed additions would extend the number of user types to have different modes for new 

vs. experienced users of the system, and different modes for domain experts vs. knowledge 

base managers. 

Preferences. The user can customize certain aspects of the KAFITS software to 

his/her personal taste. The Preferences feature allows the user to set several options, 

including the user type, whether or not to have the session trace window visible, and the 

name of the default edit record. The setting for these options can be saved (in a “preferences 

file”) and are automatically loaded the next time KAFITS is started. 

Short cuts. There are many features that allow the user to take sort-cuts or combine 

operations, some of which are described below. 

At the top of the object type table is an item called Recent-instances (which can not 

be seen in Figure 3.8 because it is scrolled off the top of the object type table). When this 

item is selected the instances table is loaded with a list of all the instances recently selected 

or operated upon (as opposed to the normal situation in which the instance table has a list 

of the instances of a certain object type). This circumvents selecting the instance from the 

long alphabetized list of items of a given type (the usual way of selecting instances). 

The user can specify (via the Preferences feature) an often used operation to be executed 

when an item in a table is double-clicked. A different double-click operation can be selected 

35There are other differences between the modes, which we do not described here. 
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for each of the three tables (type, instance, and slot). For example, the user can specify 

that when an instance in the instance table is double-clicked, it is browsed, and that when 

a slot in the slot table is double-clicked, it is edited. 

Some of the most important KAFITS interface operations can be executed by a com¬ 

mand keystroke, as well as via menu selection. For example, the command-B key starts the 

Browser. 

3.6 Implementation 

The KAFITS system is programmed in Allegro Common Lisp on a Macintosh computer. 

Standard Common Lisp is used except for interface functions (graphics, windows, menus 

etc. that are particular to the Mac II computer) and a knowledge representation language 

called KR. We designed KR to extend the functionality of the object language that comes 

with Allegro Common Lisp. Below we give an overview of implementation issues related to 

hardware, software, installation, portability, and extendibility. 

The hardware platform. KAFITS runs on a MAC II36 (or a Macintosh II family 

computer with higher functionality) with a hard disk and 8 megabytes of RAM memory. 

Two monitors are needed. A high resolution color monitor is used for the actual tutorial 

presentations and for the Browser. A two page high resolution black and white monitor 

is used to display the monitoring tools and the Strategy Editor. A less powerful hardware 

platform is needed to rim only the tutor without the knowledge acquisition interface (which 

is all that is needed for a student or a teacher who wants to run a tutor designed by another 

person). The exact specifications of this simpler platform have not yet been determined. 

Software needed to run KAFITS. The KAFITS code is released in a Lisp “code 

image” format. With each new version of the KAFITS code or new version of the domain 

knowledge base a code image (compiled version of the source code) is created. The code 

36 Apple Computers Inc. 
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image (which includes the crane boom simulation and the statics knowledge base) takes 

1.4 megabytes of hard disk space. To run the tutor and knowledge acquisition interface 

one needs the code image, and two folders37—one containing startup files, and the other 

containing data files. The startup files are needed to initialize the system at load time. The 

data files are updated as KAFITS is being run. These files are described in more detail in 

Section 3.4. Applications software for creating and editing sounds and pictures, and storing 

these in “resource files,” is needed if one wants to create sounds and pictures to include in 

the curriculum. To run the statics tutor one also needs the resource files for the pictures, 

sounds, and cursors it uses. 

The network editor. A software tool for creating, displaying, and editing graphic 

networks of nodes and arcs was built. This general tool was used to implement both the 

topic net editor and the PAN editor. 

Portability and the KR language. KR acts as an intermediate programming layer 

between the KAFITS system and the knowledge representation language provided by the 

Lisp software platform. The KR language includes features of both object oriented lan¬ 

guages and AI frame-based languages. The basic functionality of objects, methods, and 

frames is incorporated from the Allegro Object-LISP package.38 In designing KR, the Al¬ 

legro Object-Lisp inheritance mechanism was modified, and many additional features -were 

added, including object mixins, slot facets, “unknown” values, and type checking. All op¬ 

erations on the knowrledge base are programmed using the KR language. Therefore the 

KAFITS implementation is independent of the knowledge representation language of the 

underlying Lisp softw’are platform. This makes it easier to port the system to another Com¬ 

mon Lisp based softw-are environment (e.g. one based on CLOS). There is no need to rewrite 

3TuFolder” is Macintosh language for “directories” in other operating systems. 

3*The original implementation of KAFITS was on an HP-9000 series computer using the knowledge repre¬ 

sentation language HPRL. The KR language was written (and the KAFITS system rewritten to be based on 

KR rather than HPRL) when the KAFITS code w'as ported from the HP-9000 to the Mac II. Many features 

of HPRL which do not exist in the Allegro Object-LISP package are included in the KR language. 
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the KAFITS software to accommodate a new software environment or a new underlying 

knowledge representation language—only the KR language needs to be rewritten.39 

Extendibility 

When starting to build a tutor using KAFITS, some extensions or modifications to 

the representational framework are usually necessary. Most of these extensions require pro¬ 

gramming, so Lisp programming experience is assumed for those implementing the changes. 

The KAFITS code has been written so as to make most of these code modifications easy, 

but (until future software versions are written) some modifications are more cumbersome, 

as noted below. “Essential” aspects of the representation 1 system (as described in Section 

6.3.2), such as the four-level decision model, are not meant to be altered. Belowr we sum¬ 

marize aspects of the representational framework (not the interfaces) that can be modified. 

Most domains require the addition of new object types or object mixins and, for the ob¬ 

jects already provided, require slightly different slots and slots default values. All of these 

changes are quite easily made, and are automatically reflected in the domain knowledge 

base Browser.40 Most domains also require a modification of the topic level scheme (see 

Section 3.1.5) which requires adding or changing the relevant topic slots. 

Low-level programming is needed, to make new topic-types or topic levels apparent in 

the topic network monitor and the topic level display monitors. 

Creating new tutoring strategies is fairly straightforward using the Strategy Editor (but 

the editor is still in early prototype form). The names of the strategy parameters (an¬ 

tecedents) and primitive tutorial actions (consequents) can be created “on the fly” while 

designing strategies, but the implementation of parameters and actions must be accom¬ 

plished by straightforward Lisp programming of the required functions. 

39However, in moving to another programming environment all the graphics-related software, including 

the net editor package, would have to be rewritten—no small task! 

40The details of how to make these changes at the code level can be obtained from the author. 
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Each new domain has its own learning environment (or environments) (unless only 

pictures are used for learning “situations” and only multiple choice and numerical answers 

are used for student “tasks”). KAFITS has a flexible mechanism for incorporating new 

learning situations and task types. First the programmer creates a new KAFITS object 

type which contains for specifying the parameters for the environment (eg. the cable length 

and beam angle of the crane boom simulation).41 Then the programmer must define a 

finite set of “task-types” (or answer-types) that describe canonical interactions between 

the student and learning environment (eg. make-point, make-vector, and change-value 

for the crane boom simulation). For each task-type two methods (Lisp functions) are 

defined: get-student-response, and process-student-response. Get-student-response invokes 

the environment (unless is is already active) in a configuration appropriate for the task 

type. When the student is finished with the task process-student-response determines the 

correctness (and other properties) of the student’s behavior by checking the state of the 

environment. 

New information is easily added to the on-line help/assistance system, as mentioned in 

Section 3.5.1. It is also easy to add new functions to the student initiative menu (Section 

3.2.4). 

The most difficult aspect of altering the KAFITS framework is modifying the student 

model and diagnostic rules, which axe represented in Lisp “structures” and procedures. 

High-level functions are provided for asserting (“tell-dynamic-model”) and inquiring (“ask- 

dynamic-model”) student model values from other code modules. However, what the stu¬ 

dent model does with new information, and how it puts information together to respond to 

inquiries, must be programmed at the Lisp level. The student model “layers” described in 

Section 3.2.4 are clearly evident in the source code, but there is no general mechanism for 

modifying the structure. 

■"The learning environment must be built with programmatic “hooks” (Lisp functions) that allow the tutor 

to configure and invoke the environment and access any information about the state of the environment that 

is needed for tutoring or student diagnosis (eg. number-of-vectors-created). 
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Also, KAFITS does not have mechanisms (such as “demons”) which continuously mon¬ 

itor students behavior as they perform tasks (possibly over the course of learning several 

topics)—these must be implemented in the learning environment. 



Chapter 4 

RESEARCH METHODOLOGY 

In this chapter we outline our sixteen month study involving the construction of a tutor 

for statics by three educators, and describe our methods of collecting data. In Section 

2.5.2 we described several research/evaluation paradigms, including formative evaluation, 

qualitative evaluation, and case study, and explain why all three of these paradigms were 

chosen for this study. Below we discuss how the choice of subjects, domain, and methodology 

could effect our ability to generalize the results of this study. Then we discuss our data 

collection methods and research study time line.1 

4.1 Description of the Case 

As discussed in Section 2.5.2, the case study method trades the advantages of large 

sample sizes and statistics-based conclusions for depth and diversity of analysis, which 

contrasts the traditional scientific methodology where experiments are designed to eliminate 

or factor out differences between samples. In case studies it is crucial that the characteristics 

of the “case” be described. In this section we describe in detail four components of the case 

under study: the subjects, the experimenter, the domain and the lack of a stable system, 

and discuss how each of these components affect our ability to generalize the results. 

1 Also, see Section 5.4.1 for a description of the design of the preliminary KAFITS system that existed at 

the beginning of the study. 
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4.1.1 Description of the Subjects 

The primary evaluation method is a case study of a domain expert using the KAFITS 

system over sixteen months to design and test a tutor in statics. Two other subjects, whom 

we call “knowledge base managers,” also participated. Our conclusions about the usability 

of the system and our identification of important issues in this research area are based on 

our experience with these three subjects, therefore it is important to describe these subjects 

and ascertain how closely they correspond to typical potential users of the system. 

The main case study subject. Dr. Charles Camp, a physics teacher at the Amherst 

High School (Amherst, MA) was chosen as the primary subject of the case study. His 

significant experience in teaching physics, his past involvement in research on science mis¬ 

conceptions, and his proximity to the research laboratory where KAFITS was developed, 

made him an excellent candidate for this study. He has taught physics at the high school 

level for over 25 years. He was part of a research team at the University of Massachusetts 

Scientific Reasoning Research Institute which conducted a five year study identifying mis¬ 

conceptions in Newtonian mechanics and studied classroom-based methods for remediating 

these misconceptions. 

Camp had had some experience with computer programming and some exposure to 

artificial intelligence concepts before we embarked on this project. He had taught introduc¬ 

tory computer programming (APL and PASCAL languages) to high school students, and 

had no previous experience with Lisp or Macintosh computers. He attended a three week 

Teacher’s Institute on Intelligent Tutoring Systems in the summer of 1988 held at UMass, 

which introduced basic AI and ITS concepts to classroom teachers organized into small 

groups to design story boards and screen layouts for hypothetical computer tutors. 

First knowledge base manager. Frank Linton worked on the project as a knowl¬ 

edge base manager for approximately one month (totaling 70 hours) in the early phases 

of creating the domain knowledge base. He is a graduate student in education at UMass 

studying instructional applications of computers. He had worked as an industry consultant 

in instructional design for many years prior to becoming a graduate student. Linton had 
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little experience programming and a fair amount of experience using computers for word 

processing at the time he joined the project. He also had some familiarity with intelligent 

tutoring systems concepts. 

Second knowledge base manager. Kim Gonzalez worked on the project as a knowl¬ 

edge base manager for 550 hours over a seven month period toward the end of this study. 

She is a UMass graduate student in education studying science education. Her undergradu¬ 

ate degree is in physics. She had had very little experience using computers before starting 

on this project. She had no experience with data bases, computer programming, AI, or 

ITSs. 

The knowledge engineer. The author was the knowledge engineer during this study. 

Though the KAFITS system is designed to be used extensively by the domain expert, the 

role of the knowledge engineer is crucial in the ITS design process (as it is in the design of 

any AI expert system). The knowledge engineer must initially train the domain expert how 

to use the system2 and must be on call to answer questions the domain expert has while 

using the system.3 That the same person conducted the experiment, designed and built the 

knowledge acquisition system, and acted as the knowledge engineer in this case study limits 

the ability to generalize of the results. We have no reliable information at this time on the 

amount of training it would take, or the key issues that would arise, if KAFITS were used 

by another knowledge engineer. 

The author has a bachelors degree in the instructional domain (physics) and has par¬ 

ticipated (in years past) in cognitive studies of misconceptions in the instructional domain 

[Murray et al. 1990]. The author attempted not to have any direct influence on the design of 

the curriculum content, letting the domain expert make all important decisions—however, 

we did have many conversations about the curriculum, and the author’s experience in the 

domain probably had some effect. But this is not an unusual situation in knowledge engi- 

2Our experience is that some of the concepts involved in using KAFITS are too difficult to be conveyed 

with simple written procedural instructions, such as one gets when buying a commercial word processing 

program. 

3However, the domain expert did use the system successfully on about 30 days without help, including 

daily several weeks without the knowledge engineer being available. 
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neering; it is actually necessary that the knowledge engineer have some experience in the 

domain or learn the basic concepts and structure of the domain if he does not already have 

this knowledge. Therefore the author’s previous experience is beneficial in terms of his 

ability to do knowledge engineering, but may be detrimental generalizing our experience to 

ITS knowledge engineering by an arbitrary knowledge engineer. 

It is also worth mentioning that Camp and the author were acquainted prior to this 

project, which made the initial stages of the research more informal than would be the case 

for an arbitrary knowledge engineer and domain expert. 

4.1.2 Discussion of the Prototypicality of the Subjects 

Here we argue that the three subjects chosen form a reasonable basis for generalizing to 

other users of the system, and other non-programmers involved in ITS design. Designing an 

ITS in an instructional domain is at least as complex as writing a text book in that domain. 

Like designing a textbook, it is a major undertaking, and the product can have great impact 

and can be used by many people. It is not every teacher who produces a text book, but 

rather those who are more experienced and motivated than the average—i.e. exceptional 

teachers. Similarly, we can expect that only above-average or exceptional teachers are 

capable and motivated enough to participate in designing the intelligent computer tutors of 

the future. These tutors are designed and built by exceptional teachers, and used by other 

teachers (as are text books or sophisticated curriculum materials). 

Also, we do not expect instructors to participate in ITS design without at least an intro¬ 

ductory exposure to basic AI and ITS concepts. The undertalcing is too complex to expect 

even exceptional teachers to start participating in ITS design “off the street.” Therefore, 

we claim that Camp, as a highly experienced teacher having had some basic exposure to 

computers, AI, and ITS, though not a prototypical high school physics teacher, is a proto¬ 

typical domain expert on an ITS design team (in Section 5.1 we discuss characteristics of a 

good domain expert, and the expected training time). We had the additional good fortune 
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that Camp was knowledgeable in cognitive studies of misconceptions in his domain—which 

is desirable, but not necessary, for the average ITS domain expert. 

There are different purposes for using a system like KAFITS and different ways to 

participate in the design process other than being a domain expert. The knowledge base 

manager’s function is to input the knowledge as specified by the domain expert,4 and test 

the curriculum for obvious errors (i.e. errors not related to the domain content). Another 

potential user is the teacher who receives a KAFITS-based tutor and wants to make small 

modifications to it to suit the needs of his/her class. Still another potential user is the 

ITS evaluator who runs the ITS with students to ascertain its instructional effectiveness, 

and perhaps modifies the knowledge base to improve it or to test alternative curricula or 

strategies. 

We argue that the two knowledge base managers who participated in this study are 

prototypical “low-end” users, i.e., they represent the minimal amount of training and ex¬ 

perience for using an ITS knowledge acquisition interface. One of the knowledge base 

managers (Gonzalez) had very little experience with computers, yet was experienced in the 

domain (physics), but had no experience teaching the domain. The other knowledge base 

manager (Linton) had some experience in computers and ITS concepts, but was not a com¬ 

puter programmer, and had no experience in the domain. We further argue that between 

the three participants the spectrum of types of potential users is represented—at least well 

enough to make some tentative conclusions in this exploratory study of the ITS knowledge 

acquisition process. 

4.1.3 Choosing the Domain 

Below we discuss the choice of statics (or physics) as a domain and note characteristics 

of this domain that might affect generalizations about building tutors in other domains. 

4in our study the domain expert originally specified the curriculum on paper worksheets. 
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Mechanics (sometimes called Newtonian mechanics) is the part of physics that deals with 

the relationship between the forces on objects and their movement though space. Statics is 

the part of mechanics that deals with systems of objects in a static arrangement—i.e. where 

no motion is involved. The statics tutor focuses on teaching a qualitative5 understanding 

of key introductory statics concepts. Simple equations are included in the curriculum but 

solving equations to obtain numerical answers is not included.6 

We chose this content area for several reasons. First, we wanted the curriculum to 

contain interactive simulation so that the student could be actively engaged in exploring 

concepts and testing hypothesis. We already had available to us a crane boom simulation 

designed to be used in conjunction with teaching statics. It was designed and built in a 

collaborative effort by researchers and programmers from UMass and San Francisco State 

University, as part of a project called Exploring System’s Earth [Duckworth et al. 1987]. 

The second reason for choosing statics was the availability of the domain expert, a master 

physics teacher who has participated in cognitive studies of learning and teaching mechan¬ 

ics, including misconceptions in statics. Third was the author’s previous experience doing 

research on computer-based method for remediating statics misconceptions [Murray et al. 

1990]. 

Several studies of the United States educational system [U.S. Department of Education 

1983, National Science Foundation, 1983] point to the importance of teaching science and 

mathematics subjects, and to the poor quality of students’ understanding of these subjects. 

This also affected our choice of the statics domain (vs. non-technical domains). 

Mechanics (and therefore statics) stands out among most other science and math do¬ 

mains in the amount of research effort aimed at understanding common misconceptions 

5Dealing with causal and spatial relations rather than quantities and calculations. 

6Simple force equations are used in the curriculum, but problems involving several equations or trigonom¬ 

etry are not included. Qualitative understanding would, in the larger curriculum of an entire physics course, 

lead to solving quantitative (equation-based) statics problems. Also, in the early design stages it was decided 

that the statics topics friction and torque would not be included and that a brief introduction to vectors 

would be included in the curriculum. 
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[Clement 1982]. This is only partially a plus for statics, however, since one reason so much 

research has been done is that mechanics is notoriously difficult to learn. 

An important characteristic of instructional domains is the type of knowledge that must 

be mastered. Physics, and especially the area of physics addressed by the statics tutor, 

deals primarily with conceptual knowledge and physical principles (and less well-defined 

types of knowledge such as mental models and physical intuitions). Some other domains 

are primarily procedural, for instance how to answer the telephone, and how to do long 

division and teaching them often involves demonstrating skill application and practice with 

individual procedure steps. Still other domains are primarily factual in nature, such as 

geography and botany, and teaching them often relies on memorization and classification 

learning.7 Of course most domains have a mixture of many types of knowledge, but usually 

they are taught so that certain types of knowledge are emphasized. The most effective 

computer tutor designs for each type of knowledge may differ considerably, so generalizations 

of this study are more relevant for domains involving conceptual or principle knowledge than 

procedure or factual knowledge. 

Anderson [1988] compares intelligent tutors for procedural knowledge with those for 

“declarative” knowledge. Procedural knowledge, in Anderson’s theory, is non-verbal knowl¬ 

edge used to perform skills. Declaxative knowledge, which in Anderson’s scheme includes 

concepts and principles, is consciously available to be analyzed and thought about.8 In 

procedural tutors the knowledge to be learned is represented in production rules that can 

be run. Anderson thinks tutors for declarative knowledge are more difficult to design: 

“the major difficulty posed for [declarative knowledge] tutoring systems is that declarative 

knowledge cannot be rim...so the criterion ‘if the student can use it he knows it' does not 

apply...” In any case, intelligent tutors that focus on procedural knowledge have tradition- 

7We refer here to the way these domains are usually presented in educational settings. It is conceivable, 

and perhaps desirable in some settings, to focus the instruction on other aspects, such as botany concepts 

or physics facts. 

8The process of learning often involves first learning something at at the declarative level, such as tips 

for how to ski, and then assimilating it through practice at the procedural level, such as the unconscious 

(and difficult to articulate) information about skiing that a practiced skier has. 
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ally been designed quite differently than those focusing on declarative knowledge, so any 

generalization of this study to procedural knowledge tutors is limited. 

To summarize, the domain chosen (statics) has been identified as relatively important 

by the educational community, and much research has investigated instructional techniques 

and common misconceptions for this domain. It has also been documented that statics is 

difficult to learn. The statics tutor focuses on conceptual knowledge, physical principles, 

and physical intuition, which are probably more difficult to teach than procedural or factual 

knowledge. Though it is easy to envision a KAFITS-based tutor that teaches facts, or 

relationships between facts, we are not certain how KAFITS would fare in teaching a domain 

consisting of primarily procedural knowledge. 

4.1.4 Unstable Software Platform 

In accordance with the user participatory design process and formative nature of the 

evaluation, the system underwent many revisions during the course of the study. The par¬ 

ticipants in this study were able to suggest changes to the system and saw these suggestions 

manifest; this was a motivating factor for them. However, the unstable nature of the soft¬ 

ware made learning and using the system more complicated. On occasion a new release 

of the software (as often as every two or three weeks during some periods) would contain 

a programming bug. Usually when something went wrong the user’s first reaction was to 

think s/he had done something wrong, and try to figure out how to mend it—leading to 

frustration if the problem was due to a programming bug. Also, it would sometimes seem 

that just as they got used to the way things were, the software would change. The changes 

were improvements, but it still took effort to learn or accommodate. 

In this aspect the study does not represent a typical use of the KAFITS system to build 

a tutor. Future users of the system (assuming for the moment that the software remains 

stable) would be using a final version of the system (incorporating many changes that make 

it easier to use than previous versions) and they would not have to deal with the frustration 

continually changing software. 
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Figure 4.1 Study Time Line 

4.2 Case Study Time Line 

In this section we outline the progression of events in the case study. The study tran¬ 

spired over a period of 16 months from June 1989 through September 1990 (see Figure 4.1). 

We have divided the period in to five phases, which cover instructing the domain expert in 

KAFITS, curriculum design, implementation, and testing with students.9 

Phase 1. Initial curriculum design—months. June to mid August 1989. The 

domain expert worked solidly10 with the knowledge engineer (and at times by himself) for 

6^ weeks at the beginning. This was the most intensive work period of the study. The 

knowledge engineer familiarized the domain expert with ITS concepts and the KAFITS 

framework (see Section 5.1.2 for a list of what a domain expert needs to know to use 

9In Section 5.1.1 each phase is further refined and described. 

10 “Solid work” means three to five days a week for two to five hours a day. “Weekly” means once a week 

for two to five hours on that day. The domain expert also worked some hours at home, as described in 

Section 5.3.2. 
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Figure 4.2 Linear Equilibrium Part of Curriculum 

KAFITS). The curriculum was designed at the topic grain size (i.e the entire topic net was 

designed) and details of presentations for several of the topics were begun. 

After Phase 1 the domain expert’s participation was weekly until the end of the study, 

except for two weeks of solid work in Phase 5. The expert worked in the research lab on 60 

days over the 13 month period spanning Phases 2, 3, 4, and 5. 

Phase 2. Entering the Linear Equilibrium portion of the statics tutor— 

1^ months. Mid August to late Se-ptember 1989. At the beginning of Phase 2 the first 

knowledge base manager (Linton) joined the research team. Our initial curriculum focus 

(indeed our focus for most of this study) was the 8 topics in the linear equilibrium portion 

of the topic network (called the “LE curriculum,” see Figure 4.2). These topics formed a 

stand-alone curriculum unit that could be designed and tested independently of the rest of 

the statics curriculum. During Phase 2 Camp cogitated about the curriculum details in this 

area and filled out worksheets (see Appendix M) for the instances of topics, presentations, 

and crane booms, which he gave to Linton to enter into the knowledge base. Camp also 

drew sketches (on paper) of graphics to be shown with some of the presentations. 
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Linton first built the topic network, entering the information for the approximately 40 

topics of the statics curriculum and tested the topics and topics links at a syntactic level. 

Next he entered the presentations for the LE curriculum as Camp created them. Linton 

also used a drawing program (Canvas (tm)) to create the graphics for 18 pictures for this 

part of the curriculum, according to Camp’s sketches.11 Linton’s work with the research 

team ended at the end of Phase 2. During this time he spent 36 hours entering data, 34 

hours testing the data, and 43 hours creating graphics. 

Phase 3. Debugging the linear equilibrium curriculum—2 months. October 

through November 1989. At the start of Phase 3 the domain expert was trained in the use 

of the Browser. During Phase 3 he exercised the curriculum that was entered by Linton in 

Phase 2, and debugged and edited the knowledge base. He worked weekly over this period, 

a total of nine times. At the end of this period he thought that the LE curriculum was 

ready to be tested with students. 

Phase 4. Testing the linear equilibrium curriculum—5 months Early Decem¬ 

ber 1989 through late April 1990. There is a fair amount of temporal overlap of Phases 4 

and 5 (see Figure 4.1). They are described separately because they are functionally different 

and involve independent tasks. 

The linear equilibrium portion of the curriculum was tested four times during Phase 

4.12 Between each test modifications were made to the knowledge base and the KAFITS 

program according to what was observed. 

The first test (Test #1) involved eight associates of the lab (students, faculty, and staff) 

who used the tutor and typed in their comments as they were using it. The testing took 

two weeks (December 7th to 21st). Test #1 was intended to determine whether the tutor 

was ready to be tested on high school students—either by bringing them into the lab, or by 

bringing a computer to the high school. After some minor modifications, it was determined 

11 Some presentations required the crane boom, and others required diagrams or pictures. The crane boom 

configurations were specified by Camp on paper work sheets. 

12There were no other tests involving students during this study, therefore the LE curriculum was the 

only portion tested with subjects. 
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that the system was indeed ready, and it was decided that we would bring students into the 

lab. 

The second, third, and fourth tests were administered by Gonzalez and involved volun¬ 

teer high school students coming to the lab to use the tutor for one to two hour tutoring 

sessions, for which they were remunerated $10. All of the subjects were students in Camp’s 

physics classes, who had covered in class the material which Camp thought was prerequisite 

for the statics tutor. In addition they had already been introduced to the main concepts of 

the statics tutor, including linear equilibrium, gravity, static forces, and Newton’s Laws.13 

Students worked either alone or in pairs. The tutoring sessions were all at least partly 

supervised, with Gonzalez sitting next to the students for part or all of the session and 

talcing notes. After each session the participants were asked these questions:14 

1. What kind of physics experience have you had? 

2. Did you find the use of the tutor easy? If not, which aspects were confusing or 

difficult? 

3. Did you enjoy using it? Why or why not? 

4. Did you learn anything by using the tutor? If so, what? 

5. What additional features would you like to see included in it? Why? 

6. (Where applicable:) Did you enjoy using the tutor with another student? How would 

it have been different if used alone? 

7. Any other comments about the tutoring session? 

The three tests were given as follows: 

• Test #2: February 22nd, three students worked separately. 

13Charlie intended the tutor to be used to reinforce and deepen existing knowledge in statics, not teach it 

for the first time. 

l4Some the the interviews were taped and notes were taken during others. 
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• Test #3: March 22nd, four students participated, two as a pair and two independently. 

• Test #4: April 20th, four students participated, two as a pair and two independently. 

On this day, unlike the others, Camp observed the sessions. 

Phase 5. Expanding the Knowledge Base—9 months. Early January through 

August, 1990. During Phase 5 the knowledge base was expanded to include all the topics 

in the topic network (Figure 1.3). All of the topics had been instantiated in Phase 1, 

but most were empty or contained only topic summaries or definitions (only topics in the 

LE curriculum were complete). During the first four months (January through April) 

Camp worked exclusively on designing the contents of the extended curriculum (including 

incorporating misconception objects (Mis-KUs) for the first time) and filling out work sheets 

which Gonzalez entered into the knowledge base. From early May through early August 

(three months beginning with the last student trail) both Gonzalez and Camp exercised 

the curriculum and made changes, often working side by side. Gonzalez finished her work 

with the project in early August and Camp worked alone using the Browser for the final 

two months of the study.15 

4.3 Data Collection 

The main form of data collection for this study was field notes. Ninety three pages 

of notes were taken, covering 55 sessions in which the knowledge engineer interacted with 

the domain expert. Notes were not taken for about thirty of the sessions, since on many 

days (especially toward the end of the study) Camp came in and continued his work in¬ 

dependently. The journal notes include numerous diagrams and sketches, and about 40 

short quotes by the domain expert. There were also several large newsprint sheets of brain¬ 

storming notes and diagrams generated by the domain expert and knowledge engineer from 

the eaxly design stages of this study. A separate notebook was kept to record thoughts 

15 At the completion of the study the entire statics curriculum was still not ready for students, and Camp 

continued to work on it. 
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and information related to this study that was not associated with actual sessions with 

the domain expert, to keep data from knowledge engineering sessions separate from other 

notes. A daily record of all modifications made to the code was also kept. This was used 

to determine the dates when KAFITS features were added or when code bugs were fixed. 

Highlights of the journal notes were transcribed into print in two ways: a chronological 

listing, and a categorization according to the issues addressed. 

In addition two types of data files were analyzed. Edit record files were analyzed to 

obtain rough quantitative data on the time spent on various types of knowledge base modi¬ 

fications, and session record files (which include typed-in comments from the student) were 

analyzed to make conclusions about trial runs of the tutor. 

Finally, a two-hour post-study interview was done with Camp. Though the interview 

was audio taped, we did not do a detailed analysis of a trascript of this interview for this 

study. However we list the questions asked and include many exerpts from the interview in 

Appendix C. 



Chapter 5 

RESULTS, ANALYSIS AND DISCUSSION 

This research project was unique among ITS research in that we studied ITS knowledge 

engineering with educators and include empirical data about the design steps taken. Our 

intent was to identify and explore issues and to suggest potential solutions in a new area of 

study—ITS knowledge acquisition with educators. Therefore we use formative evaluation 

and case study research methodologies, which allowed us to accomplish two things: 1. 

develop a benchmark (“existence proof’) of a workable ITS shell and knowledge acquisition 

method that can serve as a base line for further work; and 2. identify tradeoffs and problems 

encountered in using the computer system and knowledge acquisition method that can serve 

as constraints on (or guidelines for) future work. Our research methodology has allowed us 

to suggest an upper and lower bound for ITS designers, describing what might work (and 

in one case has) and cautioning about what might not work.1 

Littman & Soloway [1988] discuss the importance of doing both “external” and “inter¬ 

nal” evaluations of ITSs—we do both in this study.2 External evaluations involve assessing 

the behavior of the system in relation to users, while interned evaluation analyzes the rela¬ 

tionship between the system’s architecture and its behavior. Unlike most external evalua¬ 

tions, ours will focus on the relationship between the system and the domain expert rather 

than the system and the student. We evaluate the power, usability, and efficiency of the 

KAFITS system based on computer work logs (edit records), comments from the domain 

expert, and field notes taken by the experimenter. We also discuss cognitive considerations 

‘This could also be framed as providing sufficiency and constraint conditions on ITS design. 

2Though we concur with their advice on the general types of evaluation needed, we do not follow many 

of Littman & Soloway’s specific suggestions, since they focus on modeling the student. 
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in the design of the system. Littman & Soloway describe internal evaluation as answering 

questions such as: “What does the system know?” (i.e. what could be inferred from its 

knowledge given infinite processing), and “Wfiat can the system do?” (i.e. given what it 

knows and its ability to infer, what can it tractably infer?). Our internal evaluation includes 

an assessment of epistemological and representational aspects of the conceptual vocabulary 

and curriculum representation. 

Chapter 3 described the KAFITS system, the use of which is our benchmark for an ITS 

shell usable by educators; the first section of this chapter describes our benchmark knowl¬ 

edge acquisition process (or method), and the remainder of this chapter addresses issues 

and tradeoffs encountered. We document our ITS design process, give quantitative results, 

and discuss knowledge representation issues, interface design issues, and cognitive consid¬ 

erations. Results, analysis, and discussion are combined and interleaved for readability. 

5.1 ITS Knowledge Engineering with Classroom Teachers 

In this section we describe our design process3 for building the statics tutor, discussing 

the steps taken. We also discuss the knowledge and skills domain experts and knowledge 

engineers need. 

5.1.1 Steps in the ITS Design Process 

The design process was reminiscent of “ontogeny recapitulating philogeny”—that is, de¬ 

velopment of the statics tutor over the course of the study roughly paralleled the evolution 

of computer aided instructional systems over the last few decades. Specification of instruc¬ 

tional content passed through classroom-like, CAI-like, and finally ITS-like phases. The 

3The terms “the design process” and “knowledge acquisition method/process” both refer to the process 

we followed to build the statics tutor. In general there are also design steps for designing the learning 

environment and studying student pre-conceptions of the domain, and these steps are part of the ITS design 

process but not part of the “knowledge acquisition process.” We did not do need to do these two steps 

because they were essentially complete when the project began. 
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process was one of moving from script-like, procedural, linear representations of the content 

to increasingly declarative and more flexible representations. The design process addressed 

this general question: how can a teacher’s conceptions of subject matter and teaching meth¬ 

ods be transformed from general knowledge based on classroom and one-on-one instruction 

to a detailed yet flexible conceptualization that is appropriate for computer-based tutor¬ 

ing? Two parallel tasks were necessary. The first was guiding the teacher through a series 

of structured interviews which defined and refined their knowledge according to a specific 

representational framework (KAFITS in this case). The second task involved training the 

teacher in the skills and concepts needed to design an ITS. The ITS design process described 

below is the guidance method. The training method, which was interleaved with the design 

process, is described in Section 5.1.2 (although the reader will find some mention of training 

in the description of the guidance method). 

Figure 5.1 shows an outline of the design process—the knowledge acquisition method 

used to design the statics tutor. The steps cover the four phases mentioned in Section 4.2: 

Phase 1 (initial curriculum design) has been refined into steps 1 to 7, Phase 2 (entering 

the LE curriculum), Phase 3 (debugging the LE curriculum), and Phase 4 (testing the LE 

curriculum) correspond to steps 8, 9 and 10, respectively. Finally, in Phase 5, steps 5, 7-9 

were repeated for most of the remaining statics curriculum. A detailed analysis of the time 

it took for each step is found in Section 5.3.2. Below I give a detailed description of each of 

the steps.4 

Overview meetings. During the first meeting with the domain expert (Dr. Charles 

Camp) we discussed our goals and the available resources. I gave an overview of these 

aspects of the KAFITS framework: the domain knowledge base, the topic network, tutoring 

strategies, and the student model. I also mentioned the availability of the crane boom 

4For this (and only this) section of the paper the author found it stylistically preferable to refer to himself 

in the first person singular, because this section discusses the author’s interactions with the domain expert. 
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1. Overview meetings 

2. Content Brainstorming 

3. Design classroom script 

4. Design topic network 

5. Design CAI-Iike scripts 

6. Design default tutoring strategies 

7. Fill in work sheets 

8. Knowledge base data entry 

9. Semantic debugging of knowledge base 

10. Student trial runs 
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Figure 5.1 ITS Knowledge Acquisition Method 

(The Design Process) 

simulation and some curriculum materials written by others for topics related to the crane 

boom.5 

Content brainstorming. Taking several factors into account, including the availabil¬ 

ity of the crane boom simulation, we arrived at a general idea of the the high level content, 

and some rough behavioral objectives for students. Camp wanted the tutor to teach a basic 

qualitative understanding of Newton’s laws for static situations. He wanted to “try to stay 

away from the big and the messy” and said “even though the simulation calculates the 

numbers easily [we should] avoid getting mired in [numbers]” [6/15/89]. Camp’s behavioral 

goals were for students to write force equations for simple crane boom configurations and 

answer some qualitative questions that would indicate a good intuitive grasp of the material. 

We discussed the knowledge that the average student was assumed to have before starting 

the tutor. Camp described common misconceptions in statics and the difference between 

misconceptions and “stuck points” (or “stall out places”), where students often get hung 

5The first three meetings were held in Camp’s office at the high school were he taught so that he would 

be more comfortable. Among the materials I brought were large sheets of newsprint for brainstorming 

activities. After the third meeting all meetings were held at the UMass lab. 
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up or need extra help. At the end of the brainstorming sessions we had sketched a high 

level topic network, containing ten nodes and five prerequisite relationships.6 

Classroom script. To anchor discussion of the curriculum in a concrete and familiar 

context, I next asked Camp to design an outline for classroom-style lessons of the subject 

matter, including key examples, explanations, and questions. He framed his goal this way: 

“we need a sequence of qualitative problems that will move the student along to a good 

understanding” [6/15/89]. The script was at the level of a detailed overview; it did not in¬ 

clude remedial or advanced material and did not branch for misconceptions. The classroom 

script afforded a more concrete example of what Camp wanted to teach. 

Topic network. We analyzed the classroom script to produce a hierarchical list of 

topics and sub-topics, clarifying the content to a greater level of detail than in the high level 

network produced during content brainstorming. Next I introduced Camp to some basic 

aspects of the KAFITS framework, that the topics are arranged in a semantic network, 

each containing presentations specifying student-tutor interactions. We organized the list 

of topics into a network, at first without attending to the semantics of node types or 

link types. The goal was for completeness and circumscription of the curriculum. Next 

I instructed Camp in additional aspects of the KAFITS framework including: knowledge 

types, topic levels, and types of relationships between nodes. I also introduced the “spiral 

teaching” effect noted in Section 5.4.3. These new concepts allowed important distinctions 

and relationships in the network to be articulated, and the network was refined accordingly. 

For instance, the distinction between principles and procedures helped Camp sort some 

subject matter into more refined topics. 

C Al-like scripts. • At one point, after several hours discussing fine points of the topics’ 

contents and relationships at an abstract level, uncertainty and ambiguity about the scope 

and overlap of the topics became an issue (i.e. What did each topic represent?). This may 

seem like a trivial problem, solvable by writing a clear definition or behavioral objectives for 

6Only 6 of these high level topics eventually made it to the final 41 node topic net; the rest were pruned 

out as we refined the scope of the curriculum. 
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each topic, but fuzzy areas kept arising and our discussions were straying too far from the 

presentations Camp had designed for the classroom script. To move toward the concrete 

and specific again, I asked Camp to compose CAI-like tutorial scripts, or “story boards.” 

For each script he was to assume that a student started at one of the topic nodes and took 

a typical path which would pass though several nodes. This was done, starting at several 

high level topics, so that much of the curriculum was considered. These detailed scripts 

specified curriculum features such as diagrams, crane boom configurations, motivations, 

summaries, explanations, examples, tasks, hints, and branches according to student behav¬ 

ior. They were written in terms of presentations and topics, and contained much of the 

information needed for topic and presentation objects. These scripts were CAI-like because 

all curriculum paths and branches were explicitly specified. 

Designing default tutoring strategies. Next I introduced the concept of strategies 

that would determine: 1. How to traverse the topic network, 2. Which of the available 

presentations would be given, and 3. What type of response was to be given to the student 

(these correspond to the topic, presentation, and response decision levels in Figure 3.2). 

Before strategies were discussed ideas and constraints for tutoring were discussed in terms of 

“rides.” For example: “to teach a composite topic teach all of its parts,” “teach sub-concepts 

before other sub-parts,” “check that a topic is not already known before teaching it,” and 

“don’t congratulate the student after a correct answer if they got it wrong previously.” 

Some of these rides were suggested by Camp and some by me. The very structure of topic 

and presentation objects automatically suggests certain possibilities and orderings, which 

could also be seen as rules. For example, topics have a slot called Motivation, which should 

come near the beginning of teaching a topic; and presentations have a slot called Hints, 

which should be given (if at all) soon after an incorrect student answer.7 Taking all of the 

“rides” into consideration I drafted preliminary strategies for the topic and response levels. 

Early drafts of the strategies were like scripts, showing the order of all of the actions as 

if all would be included (as in the most verbose possible strategy). Later versions were in 

rThough most of the structure of KAFITS objects was determined before the case study began, several 

object slots were added or changed over the course of the statics curriculum design as a result of suggestions 

from Camp or needs that I perceived while working with him. 
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terms of flexible action networks (PANs) and switches (see Section 3.1.7 for a discussion 

of PANs, and Appendix E for diagrams of the final strategies). Three strategies for the 

presentation level were discussed. The default presentation strategy was trivial: to give the 

presentations for a topic level in the order they appeared in the topic’s slot. Camp also 

designed a presentation strategy specifically for the {FBD-identify-forces} topic, which is 

shown in Appendix E. We also discussed using a bridging analogies strategy [Murray et al. 

1990] for some topics, although this was not implemented. 

KAFITS worksheets: re-designing for flexibility and modularity. Camp was 

informed that the instructional context of topics and presentations is not predetermined 

when the curriculum is conceptualized in a flexible way allowing for multiple strategies. For 

example, he could not assume that {Linear-equilibrium-concept} would be, in all situations, 

preceeded by {Linear-equilibrium-intution}, or that a topic’s definition would be preceeded 

by its motivation, or that an answer-reason will be preceeded by the answer give-away 

because different strategies could order them differently. I also introduced the student 

initiative feature, which allows students to jump from one part of the curriculum to another. 

Consideration of these additional degrees of flexibility created a need for the components 

of the curriculum to be modified toward modularity and multiple uses (with dependencies 

on other parts made explicit if possible).8 Camp was also advised that information relevant 

to many different strategies should be included in all objects (or as many as are feasible, 

in order to maximize the flexibility made possible with multiple tutoring strategies); i.e. 

most instance slots should be filled in (eg. most topics should have a motivation, summary, 

examples, etc.). With these suggestions in mind, Camp re-designed the curriculum for the 

final time, specifying it at a level detailed enough for entry into the computer. 

To facilitate data entry I designed paper worksheet forms with templates showing the 

information required for topics, presentations, Mis-KUs, and crane-boom objects (see Ap¬ 

pendix I for samples). The templates served as reminders of the attributes of objects as well 

as worksheets for curriculum design. Camp needed to be introduced to some basic syntax 

8Designing for complete flexibility was not feasible—tradeoffs are discussed in Section 5.4.3. 
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at this point, since the contents of slots were restricted by data type (for example: a list of 

numbers, text, an integer, etc.). 

Knowledge base data entry. To enter Camp’s curriculum into the computer, Linton 

(the first knowledge base manager) first created blank topics for all nodes in the topic net. 

Linton ran preliminary local and globed tests of the knowledge base and tested the the tutor’s 

flow through the topic network using a strategy called Skim, which traverses the network 

according to prerequisite and other topic relationships, giving only a brief description of 

each topic (which at this point was blank), without trying to “teach” the topic. Then 

Linton entered and tested the information from the topic and presentation work sheets. 

The tests were mostly syntactic, checking that the material was entered as specified by the 

domain expert. Linton needed one hour of instruction about the basics of the Browser to 

get started using it (though more time was spent learning additional features). Being the 

first extensive user of Browser, he had many suggestions that resulted in code modifications. 

Semantic debugging of the knowledge base. Next Camp performed a semantic 

debugging of the computer-based curriculum. He ran the tutor, tried numerous combina¬ 

tions of student responses and strategies, and made many changes to the knowledge base 

using the Browser. (Camp was trained in basic Macintosh concepts and basic Browser fea¬ 

tures just prior to this). The first runs were performed with verbose strategies, so that all 

elements of the curriculum would appear. Test runs were performed choosing all correct 

answers, then all wrong answers, then a mixture. Less verbose strategies were then used, to 

test the flow of the tutorial dialog when some components of the curriculum were skipped. 

Student trials. Nineteen subjects test ran the LE curriculum. Camp and Gonzalez 

analyzed the test results to improve the knowledge base. A description of the student trials 

is given in Section 5.2. 

In summary, the above description provides a schematic view of our design process. The 

steps also serve as a methodological framework for others building ITSs and engaged in ITS 

knowledge acquisition. The design process assumes that the instructor (or knowledge base 
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managers) will actually build a tutor, doing most of the knowledge entry and testing, and 

it assumes a knowledge engineer is available to supervise the process.9 

5.1.2 Training the Domain Expert 

Here I discuss what the domain expert needed to know and how he was trained, and 

make general suggestions for training ITS domain experts. 

Encouraging a Vision of the Final Product 

Very early in the design process the teacher should be encouraged to form a fairly 

concrete vision of the look and feel of the proposed tutor. Fortunately, we were able to 

show Camp both a prototype of the crane boom simulation and an example of a small 

prototype KAFITS-based tutor in operation, including examples of tutoring sessions and 

the Browser in use. These experiences significantly clarified his conception of the look and 

feel (but not the content) of the proposed tutor (a more detail discussion of the importance 

of a concrete context in training is given in Section 5.5.2). Though I had explained the 

functionality of the simulation to him earlier, its potential as a learning tool became much 

more apparent when he played with the system. He envisioned scenarios for asking students 

to draw force vectors on free-body diagrams that he did not consider when given only 

pictures and a description of the simulation (“It was really good that we looked at the 

[simulation] yesterday” [6/30/89]).10 

A Galaxy of Knowledge 

Teachers have much to learn on the road to becoming ITS domain experts. As mentioned 

above, the domain expert was trained in parallel with the early design steps. An overview 

of the galaxy of knowledge needed by the domain expert for this project is shown in Figure 

9However, an almost identical process could be followed in cases were the knowledge engineer interviews 

the domain expert to extract knowledge and then does the data entry and testing him/herself. 

10Camp also had numerous suggestions for improving to the simulation, most of which were implemented. 
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5.2 (at the start the teacher already knew some of the items under the domain pedagogy 

category, and bits and pieces of other categories from an ITS Summer Teacher’s Institute). 

I claim that most of the knowledge listed will be need by a domain expert involved in 

building any intelligent tutor, if they participate in design, implementation, and testing.11 

Training in Instructional Theory 

Originally I had planned to introduce the domain expert to instructional design theories 

(by Reigeluth, Merrill, and Gagne, as mentioned in Section 2.2), and encourage him to 

incorporate instructional design principles into the curriculum. I soon realized that this 

would lead to an information overload and detract from the goals of the study. It was 

enough for Camp to re-conceptualize his own ideas about teaching statics in terms of the 

KAFITS framework and to participate in a formative evaluation of the KAFITS interface, 

without assimilating new theories of instruction. Learning and applying instructional design 

principles so that they are second nature could have taken additional months. Also, these 

principles usually consist of constraints on the content and form of the material presented to 

the student, whereas Camp was already sufficiently constrained by the limitations inherent 

in representing human teaching knowledge in a computer.12 Therefore, the only elements 

of instructional theory used were those that were already incorporated into the KAFITS 

framework (see Section 2.2.7). 

As a benchmark for the degree of information complexity a knowledge engineer can 

introduce to a domain expert, consider our use of knowledge types. Appendix B shows 

a handout which explains knowledge types. After reading this document, Camp said “I 

thought it was really quite clear...a reasonable thing to ask [a domain expert] to do...a lot of 

the examples in the handout are from domains I am familiar with” [7/7/89]. At this point 

11 More powerful knowledge acquisition interfaces will minimize the need to know the details of syntax and 

representation framework. 

12Camp demonstrated his understanding of this constraint during a session where we were talking about 

the difficulties of designing sophisticated tutoring strategies that might approximate some human tutoring 

capabilities: “We could put a probe on their forehead for telling if they are confused, and we need one 

attached to their butts to see how much they are wiggling around ’cause they’re bored” [6/5/90]. 
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• Basic ITS and AI concepts. 

- Distinction between declarative and procedural information; objects, slots, classes, 

instances, semantic networks. 

- Lisp basics (code as data, source code vs. compiled code). 

- Familiarity with expert systems (rules). 

- Familiarity with seminal ITS research and ITS systems. 

• The KAFITS framework. 

— Conceptual vocabulary. 

— Overall structure (four-level decision model, etc.). 

— The student model. 

— Tutoring strategies (switch sets and PANs). 

• The KAFITS interface. 

— Macintosh basics (using the mouse, Mac file folders, windows, menus). 

- Basic syntax ( (lists), :KEYWORDS, “text”). 

— Using the Browser (operations, help features, etc.). 

• The learning environment. 

— Using the crane boom simulation (dozens of features and parameters). 

— The student interactions and the accessible information about student behavior. 

- Canonical specifications of crane boom configurations. 

— The student interface and student initiative feature. 

• Design process and knowledge management 

- Computer information storage concepts . 

— Familiarity with knowledge modularity issues (see Section 5.4.3). 

- Filling out template forms and managing edit records and trace files. 

• Domain pedagogy. 

- Abilities and knowledge of average (and non-average) students. 

- Common misconceptions and buggy knowledge. 

- Key examples, questions, and explanations, prerequisites, etc. 

— Teaching strategies (that have worked in the classroom or one-on-one tutoring). 

- Relevant cognitive and educational research. 

— Other sources of curriculum knowledge (such as workbooks, textbooks, films, etc.). 

Figure 5.2 Knowledge Needed by the Domain Expert 
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he had assimilated the information at a recognition level, meaning he understood quite well 

when I talked in terms of knowledge types, and could engage in discussions about subtle 

issues. However, his understanding was not integrated at the recall level, since he could 

not on his own give definitions of knowledge types, and several weeks later he became fuzzy 

about the meanings of knowledge types, saying “a lot of water’s gone under the bridge since 

[I read that handout]!” [8/2/89].13 

There is a tradeoff between letting the teacher use his practical knowledge and domain 

expertise vs. constraining him to use principles from instructional theories. Constrain¬ 

ing him too much may “cramp his style” and inhibit creativity and intuition, yet some 

instructional principles are very powerful and have a high likelihood of improving instruc¬ 

tional quality. One solution to this tradeoff is having the domain expert learn instructional 

principles and then modify them according to his practical knowledge and decide the most 

effective and practical contexts in which to apply them. However, the concepts and guide¬ 

lines of instructional theory are not trivially applied, and it may take an unreasonable 

amount of time to practice using them in various contexts to gain sufficient mastery. This 

was evidenced in several situations in which I recommended an instructional design princi¬ 

ple to Camp (such as having a conceptual prerequisite to a principle) and he agreed that it 

was a good idea, but later was not able to piece together the reasoning for the decision he 

had made. 

Training for Other Users 

The guidance and training methods described above are best suited for domain experts 

who are novices at using KAFITS. The method is designed to incrementally introduce the 

concepts and representational framework as they are needed, in parallel with the design of 

13By the second month of the design process we had labeled all topics according to knowledge type. As 

mentioned above, knowledge types helped Camp clarify his organization of the curriculum. I had originally 

thought we would eventually design different strategies for each knowledge type, but this was not done 

because of the problems of introducing too much new instructional theory, and because the scope of the 

study was to study knowledge acquisition of domain knowledge, not strategy knowledge. 
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the curriculum.14 Domain experts who do not build a tutor from scratch, but modify an 

existing tutor, will need to know less. Knowledge base managers need to know as much 

about the KAFITS interface as the domain expert, less about the KAFITS framework, and 

little about ITS concepts and domain pedagogy. 

5.1.3 Working with the Domain Expert 

In this section I describe several experiences or aspects of working with the domain 

expert which I believe is of general concern to ITS knowledge engineers. 

Opportunism in design guidance. As in many design processes, the pre- 

implementation stages of the ITS design process involved alternating between creative, 

expansive, brainstorming phases, where “completeness” was a goal, and contracting, refin¬ 

ing, pruning phases, where “concreteness” was a goal. As knowledge engineer I needed to 

be sensitive to when it was most propitious to step back for a global overview or analysis 

and when it was appropriate to focus in and refine, get concrete, and/or implement. As 

mentioned, the design process described is only a schematic; in any particular knowledge 

engineering session bits from several phases may have been present, and I had to make deci¬ 

sions about the appropriateness of leaving the main objective to review material or preview 

future issues. 

Opportunism in training. The earlier description of the design process showed sev¬ 

eral occasions where I introduced the domain expert to new material needed for the next 

design step. In addition to having a general plan for how and when this information should 

have been be communicated, I had to be prepared to make opportunistic training decisions. 

For instance, I had planned on introducing knowledge types after the topic network was 

complete, at which time I had planned to refine the curriculum by determining the knowl¬ 

edge types of the topics. But I found it necessary to introduce knowledge types earlier than 

that because it helped Camp clarify some of his thoughts about how to divide the curricu- 

14 A domain expert who is already familiar with the KAFITS framework can skip many steps, and domain 

experts who are interviewed by a knowledge engineer but do not use the KAFITS system (as in more 

traditional AI knowledge acquisition) clearly will not need to learn as much or go through the same process. 
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lum into discrete topics [7/5/89]. On another occasion [7/20/89], when I asked Camp to 

design CAI-style scripts, he said he needed to know what kinds of student parameters he 

should assume he had access to, since the branches in the script should depend on student 

behavior. At this point I introduced more detail about the KAFITS student model, long 

before I had planned to.15 

Scaffolding and context in training. In general, one does not want to overwhelm 

the domain expert with information, and it is best to introduce new information in a 

context in which it makes sense and can be used.16 This is consistent with constructivist 

learning theories [von Glasersfeld (in press)] and apprenticeship teaching theories [Collins 

et. al 1986]. As an example of the power of learning in concrete and realistic instructional 

contexts, consider the following. Approximately eight months before this study began, 

Camp attended a three week ITS Summer Teacher’s Institute17 in which he was introduced 

to ITS and AI concepts, and worked in small groups to design simulation environments 

and “story boards” for hypothetical intelligent tutors. I was therefore surprised when, after 

only one day of working with Camp on this study he said “[Now I have a] hell of a lot 

better idea of the name of the game,” not as a criticism of the Summer Institute, but as an 

expression of a picture that had finally become clear to him. The institute’s designers (I 

was one) included group work to anchor the participant’s knowledge in experience and give 

them a chance to apply what they had learned, but the participants were not as constrained 

or guided as they would have been if they had been designing actual ITS systems within a 

clear implementation framework. 

As mentioned in the discussion on training, it is important for the domain expert to 

have an early vision of the “look and feel” of the proposed tutor—and the more concrete 

and realistic this vision the better. Teachers not exposed to intelligent computer tutors will 

have difficulty envisioning the range of possible actions and decisions a computer tutor could 

15During this discussion Camp suggested severed student model modifications which were later 

implemented. 

16My notes indicate that I was often concerned about overwhelming and/or discouraging Camp with too 

much information. Fortunately he had a high tolerance for complexity and ambiguity. 

l7At the UMass Dept, of Computer and Information Science. 
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take.18 Their specification of computer-based curriculum will be more limited bv their con¬ 

cept of curriculum as preparation for classroom lectures and activities. Therefore exposing 

new domain experts to working ITSs in domains similar to theirs is highly recommended. 

The usefulness of lateral thinking. As knowledge engineer I often had to strike a 

balance between focusing the discussion on content relevant to the ITS and allowing the 

discussions to stray as the domain expert circled around for a landing, or spun off on a 

tangent. Apparently, it is extremely rare that classroom teachers have the opportunity to 

talk with an interested party about what they teach, the way they teach, and the problems 

that come up in their teaching. Working with an ITS knowledge engineer is one such oppor¬ 

tunity. The motivational aspects of this opportunity mitigated the frustration and tedium 

that were part and parcel of ITS construction. Camp’s tangential thoughts and anecdotal 

classroom stories served several purposes. They were divergent (“lateral”) thinking pat¬ 

terns that often led to creative solutions or reminders of important information. In addition, 

even as the content of discussions seemed to drift away from necessary information, they 

anchored the discussion and Camp’s thoughts in the concrete reality of a classroom or one- 

on-one tutoring situation. It was apparent that forcing the discussion to remain focused on 

creating knowledge base instances would have been frustrating, dry, and overly abstract for 

Camp. 

The domain expert’s initial knowledge. I have mentioned elsewhere that some of 

the ideas a domain expert brings to an ITS project can be detrimental to the ITS design 

process, such as notions of classroom teaching which limit his concept of the range of 

possibilities the intelligent tutor affords. But our discussion would not be complete without 

noting that a good domain expert comes to the work with a wealth of essential knowledge. 

Numerous times during the curriculum design Camp demonstrated his vast and detailed 

knowledge of teaching high school physics, as evidenced by the quotes in Figure 5.3.19 

18The situation is probably even worse for teachers not exposed to any type of computer aided instructional 

system, though exposure to traditional CAI might limit the teacher’s sense of the range possibilities for ITSs. 

19These quotes also illustrate that Camp was quite sensitive to whether students were actually learning 

and believing what was presented, as opposed to simply wanting them to get correct answers to questions. 
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• “An awful lot of the mistakes are made in the preliminary parts [of the free body 

diagram solution]” [6/26/89J. 

• “Not many that get the free body diagram right get the sum of forces [equaling zero] 

wrong” [6/26/89]. 

• “Let’s stay away from cans of worms like friction” [7/5/89]. 

• “That area [around {Types-of-forces}] is a nasty little area in there,” and jokingly: 

“Unfortunately I know too much about it from [involvement in classroom physics teach¬ 

ing research projects]” [8/29/89]. 

• “Fortunately we are not trying to teach the dynamic third law; I’m convinced nobody 

knows how to teach that...and fortunately nobody believes it [anyway]!” [12/12/89]. 

• “[In my participation on research in classroom methods for teaching physics] the thing 

I’ve learned mostly is how hard it is to [teach this material]. There are really some 

problems in teaching this stuff.” [1/9/90]. 

Figure 5.3 Quotes by the Domain Expert on Teaching Physics 

ITS designers should search for domain experts with this level of understanding about the 

subject matter. 

The complexity and magnitude of designing an ITS. Though Camp worked 

very productively and (to us at times surprisingly) enthusiastically on this project for its 

entire duration, the magnitude and complexity of the task before him was sometimes a 

source of frustration and momentary exasperation, as exemplified by the quotes in Figure 

5.4. Tolerances for uncertainty, ambiguity, and complexity are desired characteristics of ITS 

domain experts. Camp was a good candidate for this project in this respect; he started 

working on the statics tutor in the dawn of his growing understanding, well before having 

a detailed picture of the overall KAFITS system. 

Making efficient use of the domain expert’s time. A substantial commitment 

is needed by the domain expert to design an ITS from scratch. Camp had many other 

commitments (school teachers’ commitments during school session are usually numerous 

and overwhelming), so his time was precious. Having knowledge base managers on the 
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• “[There are] sure a hell of a lot of options!” [6/15/89]. 

• “Boy, there’s plenty of room for creative thinking here!” (said somewhat sarcasti¬ 

cally, but with excitement, putting his head down on the desk, shaking it, grinning) 

[6/15/89]. 

• “Boy, there’s a lot of levels to think about this thing on!” [7/30/89]. 

• “When you pass out your dissertation you better give them a bottle of Tylenol!” 

[7/30/89]. 

• “When I think about the range of ideas we have here on this paper [a printout of the 

knowledge base] I sit back and say ‘woah!’ We have enough physics ideas here to choke 

a horse!” [9/18/89]. 

Figure 5.4 Quotes About ITS Design Process Complexity. 

design team helped us make the best use of Camp’s time. (See Section 5.3 for an estimate 

of the time commitment needed to design the statics tutor.) 

Most of Camp’s participation was once a week. This is, in part, disadvantageous com¬ 

pared with more frequent visits.20 Progress on this project was more efficient during the 

periods when Camp came in frequently (several days a week) and was “on a roll.” Camp 

had to build complex mental models of the KAFITS software and his curriculum and have 

these readily accessible in his mind for efficient work.21 Camp’s life as a teacher was so full 

during the school session that it took a significant amount of time (about a half hour or 

more within each session) to get re-established after a week’s break. On several occasions 

Camp expressed his frustration with the (necessary) infrequency of his work with me, for 

example: “Getting my head around this whole [topic network] is mind boggling. Getting 

my head around parts of it [at a time] is no problem. If I had my druthers I'd take a team 

of about four physics teachers and work on it for six months” [2/14/90]. 

However, in our case, having the domain expert come weekly did have some advantages. 

Modifications to the KAFITS system to add new features or re-conceptualize aspects of 

20During the school year frequent visits may not be possible. 

21 Even “simple” tasks like driving a car or using a hand held calculator require complex mental models 

[Young 1983]. 
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the framework often took weeks, and fixing code bugs sometimes took days. In many ITS 

design efforts the simulation environment will be built or modified while the tutor is being 

built (the crane boom simulation underwent substantial modifications according to Camp’s 

recommendations), amid spreading the teacher’s involvement over a longer time allows a 

more complete system to be developed. 

The amount and complexity of information the domain expert must learn, and the 

“preciousness” of his time, highlight the importance of usability and effectiveness for the 

knowledge acquisition interface. Structures and concepts that are visually reified act as 

reminders of the underlying framework and limit the user’s cognitive processing load. 

Computer vs. classroom instruction. On several occasions Camp commented on 

hypothesized benefits of computer tutoring as compared to classroom instruction. When 

the simulation was first described to him he was impressed with the possibility of animating 

the objects in a statics problem and the possibility of showing diagrams being constructed 

piece by piece, for example having the vectors of a free body diagram added one at a time. 

He described how he had often been frustrated that textbook or blackboard diagrams do 

not easily convey important concepts because of their static nature and limited number of 

pictures. He also thought that the computer tutor would give more instructional leverage to 

less advanced students, who benefit more from repetition and diagrams. He also liked the 

idea of being able to allow more than one right answer to questions, so that correct answers 

with different shades of meaning or emphases were possible. He noted that putting more 

than one correct answer in textbook or handout questions sometimes leads to confusion 

due to the delayed feedback, saying “[students] are left in suspense too long” [8/7/89]. In 

contrast, the immediate feedback potential of computer tutors allows students to be told 

that theirs was not the only correct answer, or be given a reason why another correct answer 

was preferred. 
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Summary of the Design Process 

In this section we described our “design process” (or knowledge acquisition method) for 

building the statics curriculum.22 It has ten steps spanning design, implementation, and 

testing activities, and should serve as a first pass road map for other ITS knowledge engi¬ 

neering efforts. We also described the content of and methodology for instructing/training 

the domain expert in the concepts and skills required. 

The design process is a schematic which does not show the overlap of steps. Since there 

actually was overlap, the need for the knowledge engineer to make opportunistic guidance 

and training decisions was discussed (training was interleaved with design, and new concepts 

were introduced as needed). The wide range of knowledge needed by the domain expert 

was listed, most of which, we anticipate, would be needed by a domain expert involved 

in designing and implementing any intelligent computer tutor. Important characteristics 

of domain experts were noted, including a high tolerance for complexity and ambiguity, 

significant knowledge of the pedagogy of his domain, and the ability to make a significant 

time commitment. Important knowledge engineering skills were noted, including flexibility 

in moving between expansive brainstorming phases and refining concretizing phases, bal¬ 

ancing listening with guidance, and sensitivity to when new concepts need to be introduced. 

See Section 2.4.2 for a discussion of the knowledge acquisition methods we used. 

We pointed out the value of giving the domain expert a clear vision of the look and 

feel of the final product, including the possibilities for student-tutor interaction, early in 

the design process. We also described tradeoffs involved in teaching the domain expert new 

instructional theories. 

We gave anecdotal evidence for potential frustration of domain experts involved in this 

type of project, and noted how precious their time is. Having knowledge base managers on 

the design team and designing the KAFITS interface for usability mitigated the size and 

22 For the remainder of the document the author will use the first person plural. 



185 

complexity of the demands placed on the domain expert and allowed us to make efficient 

use of his time. 

5.2 Results of the Statics Tutor Test Runs 

As mentioned in Chapter 4, 19 subjects test ram the LE curriculum, including 8 lab 

associates and 11 high school students, in four test groups, each separated by about a 

month. It took an average of about 1.5 hours to complete the LE curriculum. Two of 

the tutoring sessions involved pairs of students running the tutor; the rest were one-on-one 

tutoring. The domain expert was interested in getting feedback about the quality of the 

student interactions and the pedagogical quality of the lesson. However, the experimenter 

was mainly interested in how the domain expert and knowledge base manager gathered 

evaluative information and used the Browser to modify the knowledge base. Below we will 

describe and give results of the statics tutor test runs and discuss these results. 

Suggested Changes from Student Trials 

Students’ comments (both verbal and typed) and observations by the test administrator 

(Gonzalez) lead to several dozen minor changes to KAFITS code and the statics knowledge 

base. There were between five and twenty suggestions per session (with about 30% overlap 

from duplicate comments), which we regard as a low number, considering the amount of 

curriculum presented and the complexity of what the students saw. That relatively few 

suggestions were made and that most of them were superficial leads us to these hypotheses: 

1. the look and feel of the KAFITS student interface was minimally acceptable, 2. the 

LE curriculum was minimally acceptable; and 3. Camp and Gonzalez’s test runs (semantic 

debugging) of the domain knowledge base were fairly thorough.23 

23Note, however, that had we been measuring whether students learned physics, more changes would 

probably have been made. 
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Although changes were made to both KAFITS code and the knowledge base in between 

each of the four test groups, the quantity of suggested changes per session did not decrease 

noticeably from the first to the last test group. This indicates that the curriculum quality 

(which started at an “acceptable” level) had not begun to “level off” yet. We cannot 

estimate how many more student trials it would have taken to have student comments level 

off to a “very low” number. Due to fundamental limitations in the “intelligence” of the 

computer tutor, the needs of all students could never be met at a level comparable to one- 

on-one human tutoring, and perhaps the quantity of student comments would always be at 

the level observed in our tests. 

Suggested changes to the domain knowledge base were of several types, including: word¬ 

ing (eg. spelling and grammar), pedagogy (eg. answers or explanations that didn’t make 

sense), and format (eg. a question being too big so that part of it scrolled off the window 

before it could be read; a picture that was shown before its text description rather than after 

it). Gonzalez’s analysis of session trace hies to produce summaries of student comments 

went smoothly. Camp’s and Gonzalez’s editing of the domain knowledge base to account 

for student comments also went smoothly. Camp used his own judgment to decide which 

of the suggestions warranted changes in the knowledge base. 

Student Comments and Critiques 

Most of the subjects reported overall enjoyment of their tutoring sessions, though there 

were moments of frustration. On the average they did not seem to learn a great deal of new 

material, but they found several features of the tutor helpful. To give the reader a feel for 

the student’s experiences, we include the following student comments, first positive ones, 

and then critical ones.24 There were substantially more critical comments than positive 

ones, but the vast majority of critical ones concerned problems or questions with specific 

pieces of the curriculum content, and only general comments are listed below. 

24 All quotes in this section are paraphrases. 
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Positive comments: 

• The overall [dialog] flow seems to be smooth and continuous....Once I became familiar 

with how the system worked [menus, etc.] things seemed to run quite smoothly [session 

175]. 

• The hints were very helpful, providing ways of thinking about the problem I hadn’t 

thought of [session 234A1. 

• It is helpful that the tutor gives more than one way of answering the questions [session 

256]. 

• Being able to see the vectors change and meter values change without having to 

calculate the numbers is nice [session 234A]. 

Critical comments: 

• There is too much reading [text] in some areas [session 234A]. 

• The tutor gives too much information after you get the correct answer [session 249]. 

• The flow of the tutor does not make sense to me here. It does not go back to the 

crane boom simulation problems [session 252]. 

KAFITS code and strategy changes. A small number of Lisp code and tutoring 

strategy changes (about 15) were made as a result of student trials.25 This number is 

small partially because the system was exercised significantly by the domain expert and 

knowledge base managers prior to student trials, and suggested changes were made at that 

time. Code changes from the student trials included the interruptable menu feature, the 

trace file format, and changes to the simulation (eg. changing the vector colors for more 

visibility). Also, about three code bugs were discovered by students, suggesting that no 

matter how much the design team exercises the software, students will think of new ways 

to use it—therefore, student trials were essential for working out code bugs. 

“Strategies were represented in computer code in the version of KAFITS used for the student trials. 
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Most of the code changes were strategy related. A single strategy was used for the 

duration of each tutoring session; the “default” response strategy, which is rather verbose, 

was used for the first three test groups, and a less verbose strategy (called New-r-brief) was 

used for the fourth test group. Students were not shown how to use the student initiative 

menu (Section 3.2.4) to alter the current strategy. An often repeated comment during the 

first three test groups was that the tutor was too wordy (see critical comments above). 

Yet in the fourth test group (with the less verbose strategy) two students mentioned that 

they would liked to have seen an explanation or elaboration after they answered a question 

correctly, just as they did when then they answered a question incorrectly. Their wish would 

have been granted if the default response strategy were in use rather than New-r-brief. This 

weakly demonstrates the potential utility of multiple tutoring strategies and the need for 

student control of tutoring style. As a result, of these comments a feature was added to the 

student initiative menu that allowed students to get an answer explanation and elaboration 

of the previous presentation. 

Several other strategy changes were suggested and later implemented, including: a stu¬ 

dent initiative feature allowing the student to backtrack and review or re-answer the last 

presentation given; and a modification to the response strategy so that the student was not 

congratulated (for example: “that’s good”) when she answers correctly after her second or 

third try at the question. 

There were several useful suggested code and strategy changes that we did not implement 

(but plan to), including: the capability for a student to see her progress in the lesson (for 

example, to know whether she was almost done); a “there is only one possible answer left” 

message given when the student has tried all but one answer choice unsuccessfully; a “you 

have already tried that choice” message given when the student answers the same way twice; 

and the capability for advanced students to skip the easy level presentations in all topics. 
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Other Student Trial Observations 

Camp intended the statics curriculum to be used after the learner had some initial 

exposure to important concepts from a classroom or textbook. He also assumed (see Section 

4.1.3) that the tutor would be most useful to students of average or below average ability. 

All of the high school participants had had one semester of physics and were currently 

enrolled in an advanced physics class. About half were of greater than average ability and 

the other half were of average ability in their physics classes, according to Camp. Therefore 

the students that volunteered for this study were not optimal from the perspective of the 

anticipated instructional leverage of the statics tutor, which was expected to have greatest 

impact on average or below average students. Camp’s intentions and assumptions held true, 

as evidenced by the following sample of student comments: 

• I didn’t learn any new concepts, but it was helpful as a review or supplement [session 

234]. 

• The tutor helped clarify some ideas about statics [session 232]. 

• It was good as a review for material already learned, but not to learn it initially 

[session 245]. 

Different learning styles were noted. One student [session 232] spent a lot of time playing 

with the crane boom simulation; he enjoyed exploring various crane boom configurations 

and tried to discover rules governing the force vectors. This student took the longest to 

finish the LE curriculum, 2| hours. 

The pair of students in group #4 worked well together and had many motivated ex¬ 

changes. Fewer student comments were typed during this session than during the other 

one-on-one sessions, perhaps because students tend to interact with the computer less when 

they can communicate with each other. 

The pair of students in group #3 was mismatched—one student was familiar with Mac¬ 

intosh computers; the other student was not totally fluent in English and had no familiarity 
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with Macs. In this session the first student tended to take control and not include the 

second student (who seemed timid) in decision making. 

Domain expert observation. Test #4 was unique in that Camp sat nearby and 

observed the sessions. This was the first time Camp had ever witnessed anyone being given 

the curriculum he had designed, and, significantly, he said there were “no big surprises” 

from his observation of the two one-on-one sessions and one paired session. Camp thought 

that his presence may have affected the confidence of two of the students. In addition he 

thought that using the tutor with pairs of students was “valuable.” 

Student comment facility. Students were quite willing to take the time to type in 

their comments. This may have been because they knew they were part of an experiment 

or software evaluation. Also their willingness to enter comments may have been due to the 

fact that students rarely have the opportunity to critique the teacher (though they would 

undoubtedly have much to say) and the KAFITS student comment facility provided such 

an opportunity. 

Summary of the Test Runs 

In summary, the KAFITS student interface was fairly robust and complete after being 

exercised by the knowledge engineers and the domain expert, and the statics knowledge 

base was fairly bug free after being debugged by the domain expert. However, student 

trials did result in the detection of interface and knowledge base bugs, leading to important 

modifications. The LE curriculum tried runs, involving 19 subjects and taking an average 

of 11 hours, went fairly smoothly. The overall style and content of the curriculum was 

acceptable according to students and according to the domain expert who observed four 

students running the tutor. However, several of the students, who were on the average 

more advanced in physics than students for whom the statics curriculum was thought to be 

optimal, complained of it being too wordy, and said it gave a good review of the material 

but that they did not learn anything new. 
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These were supervised lab experiments, and we were not particularly concerned with 

student learning. We assume that many changes would need to be made to both the student 

interface and the statics curriculum for it to be robust enough to be used in a classroom, but 

the student trials suggest that the KAFITS system (both the framework and the interface) 

is a viable tool for designing, implementing, and testing ITS curriculum. 

5.3 Quantitative Analysis of the Curriculum and Design 

Process 

The driving questions for quantitative analysis of the data are: 

• How can the size and structure of the knowledge base be measured to allow for com¬ 

parative analysis of knowledge bases? 

• How much effort is required by each participant in each step of designing the statics 

tutor? 

• Approximately how much time did it take (per hour of instruction, and per curriculum 

topic) to design the statics tutor? 

Much of the analysis is approximate, entailing estimations and extrapolations (we explic¬ 

itly note points of estimation and approximation in our discussion below). We consider this 

acceptable since we are only looking for order of magnitude answers to the above questions. 

5.3.1 Curriculum Size and Complexity 

Here we give metrics for analyzing and comparing the domain knowledge base and 

describe the size and complexity of the topic net, the entire domain knowledge base, and 

the LE portion of the curriculum. 
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The Topic Network 

Following are important characteristics of the topic net: 

• Total nodes: 41. 

• Breakdown by completeness of node: 24 full topics, 8 empty composite topics, 7 

overview topics, and 2 (full) Mis-KUs.26 

• Equivalent full nodes: 28.27 

• Node fullness ratio: (28/41) 0.68. 

• Total topic net links:28 51. 

• Links per node: (51/41) 1.2. 

• Topic time: (assuming an average of 6 hours to rim the entire curriculum)) 8.8 minutes 

of instruction per topic. 

The total nodes, node fullness ratio, and links per node can be used to compare the 

statics topic net with other topic nets, or to compare parts of the statics topic net with 

each other. The total number of nodes may not yield a fair comparison, since some portion 

of them will be empty or only partially completed; the equivalent full nodes is a better 

method for comparison. The links per node is a metric of the complexity of the network. 

Since we have no data on KAFITS topic nets for other domains, these figures are provided 

26A “full” topic contains presentations for teaching it; an “overview” topic contains no presentations, 

but may contain a motivation, summary, wrap-up, etc.; and “empty” nodes contain only pointers to other 

nodes. Topics may be overview or empty intentionally, or because they have not been completed. All of the 

composite topics in the statics curriculum are empty (i.e. their whole is equal to the sum of their parts). 

27The equivalent full nodes gives an indication of the size of the curriculum that is independent of how 

many nodes are empty or overview, and is calculated as follows: empty nodes count as one twentieth of a 

full node, and overview nodes count as one fifth of a full node. This roughly reflects both the time it takes 

to implement the node and the on-line tutoring time for full vs. empty vs. overview topics. 

28The number of topic net links does not give a complete picture of the topic relations. Implicit links 

(such as ordering determined by text order in a slot), and local links (such as reaction and remediation links 

associated with particular question answers) are not included. 
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for comparison with future topic nets, and to compare the LE curriculum with the entire 

statics curriculum, which we do below. 

The Domain Knowledge Base 

Following are more figures (not related to the topic network) for the domain knowledge 

base: 

• Total knowledge base instances: 252. 

• Breakdown according to object type: 38 topics, 2 Mis-KUs, 81 presentations, 48 

pictures, 40 crane-booms, 43 others (including pictures, sounds, storage instances, 

lessons, examples, and questions). 

• Object type ratios: (81/41) 2.0 presentations per node;29 (81/26) 3.1 presentations 

per full node. 

• Total transactions: 511;30 about 12 transactions per node. 

• Domain knowledge base (Saved-instances file) size: approx. 200 kbytes of text/source 

code on disk; 90 hard copy pages. 

The presentations per node gives a measure of the amount of subject matter in (or the 

“depth” of) the average topic. Technically, presentations are used to represent expository 

and inquisitory interactions with the user. However, when an expository interaction is 

a block of text, it is entered as a text string (i.e. there is no need to create an entire 

presentation object just to store a block of text).31 Therefore, to get another perspective 

29“Nodes” are used rather than topics so that Mis-KUs will be included. 

30Transactions are the smallest units of discourse. Each block of text stored in a slot, and each picture, 

simulation, etc., accounts for one transaction (randomly chosen text is which is not included in this figure). 

All KAFITS text is canned. A more complicated method for calculating the number of potential student 

transactions would be needed for generated text. The number of transactions may be a more useful metric 

for comparing the size of a KAFITS knowledge base with other computer-based curriculum than the number 

of topics or presentations. 

31 Object slots that contain information for interacting with the student can point to a presentation or 

contain text. 
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on the amount of information in the knowledge base and to enable comparison with other 

computer tutoring systems, we total the potential student “transactions,” the text strings in 

the knowledge base. Each slot (including Motivation, Definition, Question. Hint, Reaction, 

etc.) counts for one transaction if the slot contains text to be given to the student.32 

Linear Equilibrium Part of the Curriculum 

The following data are for the LE curriculum (see Figure 4.2): 

• Total topics: 12. 

• Breakdown according to object type: 12 topics, 16 presentations. 

• Object type ratios: (16/12) 1.3 presentations per node; (16/7) 2.3 presentations per 

full node. 

• Equivalent full nodes: 8 (7 full topics; 2 empty topics, {Linear-equilibrium} and 

{Vectors}; and 3 summary topics, the parts of {Vectors}). 

• Node fullness ratio: (8/12) 0.67. 

• Total links: 14 (only links from LE topics). 

• Links per node: (14/12) 1.2. 

Much of the most detailed data for this study was taken during the development of the 

LE curriculum. Values for node fullness ratio, links per node, and object type ratios for 

the entire curriculum are quite similar to those for the LE curriculum. This allows us to 

extrapolate some data from the LE curriculum to the entire curriculum. 

32Six of the primitive actions (the default hint, tell-wrong, tell-ok, encourage wrong, encourage-ok, and 

congratulate) use randomly chosen text from pre-defined sets (see Section 3.1.2) if the corresponding pre¬ 

sentation slot is empty—these are not included in the total transactions. 
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Tasks 

Development Training 

Steps Design 

Implementation 

Figure 5.5 Project Task and Step Terminology Relationships 

5.3.2 Design Steps and Person-hours 

Here we look at the person-hour effort involved in building the statics tutor. There are 

many perspectives for analyzing available data and many relevant variables to compare, 

including: curriculum part (the LE curriculum vs. the entire curriculum); participant roles 

(domain expert vs. knowledge engineer vs. knowledge base manager); project steps and 

tasks (development vs. training vs. design vs. implementation). Below we present and 

analyze the data, describing and comparing variables. 

Figure 5.5 shows the relationships between the terms we use to describe the design 

process (this diagram is also a schematic of the layout of Figure 5.6). There are two kinds 

of “steps:” design and implementation. Within each step there are two kinds of “tasks:” 

development (which includes production and guidance)33 and training. “Training” refers to 

the initial instruction for how to carry out a task, plus all other instruction not related to 

any specific task, such as teaching about the KAFITS framework, ITS concepts, etc. The 

table in Figure 5.6 contains a detailed analysis of person-hours involved in the project. It 

is organized with project steps in the rows and project tasks in the columns. A description 

of each of the steps was given in Section 5.1.1. 

Person-hour Analysis Table description and assumptions. Below we explain 

the table in Figure 5.6. The notes below the table explain exceptions to the assumptions 

and calculations given here. 

1. We make a working assumption that there is no overlap between steps. 

33 “Guidance” refers to ongoing guidance related to the task at hand. 
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Who k 
Note Step 

Total 

days 

Lab 

hours 

Home 

hours 

Total 

hours 

Train 

-ing 

Dev¬ 

elop. 

LE-dev 

-elop. 

Stat. 

dev. 

1. C-l Overview .5s 3.5 0 3.5 3.5 0 0 0 

2. C Brainstorm 2.5s 12.5 5 17.5 6.2 11.2 2.8 11.2 

3. C Class. Script 2s 10 4 14 5 9 2.2 9 

4. C Topic Net 2s 10 4 14 5 9 2.2 9 

5. C-2 CAI Script 2s 10 10 20 5 15 15 45 

6. C Strategies 1.5s 7.5 3 10.5 3.8 6.7 1.7 6.7 

7. C Work Sheets 4.5s 22.5 9 31.5 5 26.5 26.5 79.5 

8. L-3 Data Entry NA 52 ~0“ 52 3 49 49 147 

9. C-4 Debugging 9w 27 4.5 31.5 4 27.5 27.5 82.5 

10.G-5 Testing NA 30 0 30 3 27 27 81 

Design (steps 1-4, 6) 43.5 16 59.5 23.5 35.9 NA 35.9 

Implement, (steps 5, 7-10) 141.5 23.5 165 20 145 NA 435 

Totals all NA 185 39.5 224.5 43.5 181 154 471 

Table Notes: 

1. The overview step differs from others in that the teacher had no home hours and the entire step 

constitutes training time. 

2. An estimated 6 hours extra home hours over a vacation period was added. 

3. Linton’s hours were recorded by him, not estimated by the number of days he worked: 36 hrs. data 

entry plus 17 hours to organize and test the knowledge base (I subtracted from his 34 hours an 

estimated 17 hours wasted on unnecessary organization because there was no knowledge base save 

feature yet) equals 52 hours. Linton’s time does not include time spent on picture drawing: 43 hours 

for 18 pictures (2 of which were not for the LE curriculum). 

4. Estimation for semantic debugging: 3 days off line, 4 days on-line to “first pass,” plus estimated 2 

more days on line before testing, equals 9 days. 

5. Gonzalez’s hours spent setting up and administering tests are estimated as follows: preparation 5 

hours, administration 15 hours, data collection 10 hours, totaling 30 hours. 

Figure 5.6 Person-hour Analysis for Building the Statics Tutor 
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2. Total days. The estimated number of days working: “s” means solid time (approx¬ 

imately daily work), “w” means weekly time. All other numbers in the table are in 

hours. 

3. Lab hours vs. home hours: We estimate that solid days are 5 lab hours and 2 home 

hours, and weekly days are 3 lab hours and 1/2 home hours. 

4. Total hours is lab hours plus home hours. 

5. Training time is estimated to be one half of the lab time until after step 6, then it is 

estimated on a step by step basis. 

6. Development time is total time minus training time. 

7. LE curriculum Development time for those steps that were relevant to the entire 

curriculum (steps 2, 3, 4, and 6) is estimated to be 25% of total development time. 

For other steps it is equivalent to the development time.34 

8. The development time for the statics curriculum was estimated as follows: For steps 

1-4, and 6 it is equivalent to the total development time; for the rest of the steps 

it is four times the LE development time, times 0.75, for an assumed (and quite 

conservative) 25% efficiency increase. 

9. Key for “Who” column: C- Camp, L-Linton; G-Gonzalez. For notes see the num¬ 

bered notes below the table. 

10. Subtotals—design vs. implementation. Steps 1, 2, 3, 4, and 6 apply to the design 

of the entire curriculum. The implementation subtotal includes only steps working 

on the LE curriculum, and does not include design work. The LE development total 

includes design and implementation, and does not include training or time spent on 

other curriculum parts.35 

3<There are 41 nodes in the topic net. The LE curriculum has 12 nodes, or 25% of the total (also, the LE 
curriculum has (8/28) 29% of the equivalent full nodes of the entire curriculum). Therefore we estimate 

that the LE curriculum development time is 25% of the development time for the statics curriculum. 

35I.E. the difference between the LE development column and the implementation subtotal. As a data 

cross check, note that the total for the LE development column (151.1 hours for LE work, which includes 
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Domain Expert KB Managers Knowledge Engineer All Total 
Train. Devel. Train. Devel. Train. Guidance Train. Devel. 

Design 22.7 36.8 0 0 22.7 3.7 46 40.5 86.5 

Implem. 14 203 6 234 20 32 40 469 | 509 

Totals 36.7 240 6 234 42.7 35.7 86 510 596 

277 240 79 596 

Figure 5.7 Time vs. Participant Role 

11. Totals are for design of the entire curriculum, i.e. all ten steps (or equivalently, design 

steps plus implementation steps). 

Person-hours vs. participant role. Figure 5.7 shows a breakdown of the time 

commitment vs. participant role for the entire statics curriculum. The domain expert and 

knowledge base manager hours are from the training and statics development columns of 

Figure 5.6. Steps 8 and 10 from Figure 5.6 were summed for the knowledge base manager 

time, and the remaining steps in Figure 5.6 go toward domain expert time. The knowledge 

engineer’s time (which was not included in Figure 5.6) consists of training time and guidance 

time. Knowledge engineer training time is equivalent to the domain expert training time 

plus the knowledge base manager training time. Knowledge engineer guidance time is 

estimated at 10% of the domain expert development time plus 5% of the knowledge base 

manger development time. 

Analysis and Comparisons 

Summary calculations. The total time spent to build the statics tutor is estimated 

to be 596 hours. This includes training and development for all participants, and does not 

include development of the KAFITS system, development of the crane boom simulation, 

or time spent creating picture graphics. It took (596/41) 14-5 hours per topic net node to 

build the statics curriculum. Assuming the entire curriculum provides an average of six 

hours of teaching it took (596/6) 98.8 hours per hour of on-line instruction to build the 

all non-training time) is equal to the implementation subtotal of the development column (142 hours of LE 

work for only implementation steps) plus 25% of the design subtotal for the development column (because 

25% of 36.8 hours is the part of the design time used for the LE curriculum). 
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statics tutor. These numbers are estimates intended to yield order of magnitude figures. 

We believe that they are applicable to similar ITS projects using KAFITS, to within 50 

percent. 

Factoring out training. Training time is considered to be one-shot, i.e. a participant 

is instructed in something only once, regardless of the size of the curriculum. Reminders 

or reviews of this information are considered to be “guidance,” which is included in the de¬ 

velopment time for the domain expert and knowledge base managers. The domain expert’s 

total training time was about 40 hours, spread over about 24 working days, interleaved with 

production work.36 The total training time was (37.5+6+43.5) 87 hours, or (87/596) 14.7% 

of the total time. Factoring out training time it took (.853x596/6) 84.3 hours per hour of 

on-line instruction (i.e assuming prior training). This is the time to create each additional 

hour of instruction, assuming training is complete. 

Following are comparison figures expressed in percentage of the total time: 

As a function of role: The knowledge engineer’s, domain expert’s, and knowledge 

base managers’ efforts were (79.2/596) 13.3%, (280/596) 47.2%, and (234/596) 39.4%, re¬ 

spectively, of the total time. The domain expert’s time was comparable to the knowledge 

base managers’ time, which was about three times as much as the knowledge engineer put 

in. 

As a function of step: Design took (86.5/596) 14.5%, and implementation took 

(507/596) 85.5% of the total time. I.E. implementation took about six times as much effort 

as design. 

As a function of task: Training was ((37.5+43.5)/596) 14.7%, and development 

was ((243+228+35.7)/596) 85.3% of the total time. Note that knowledge base managers’ 

36We do not include time from the ITS Summer Teacher’s Institute in the domain expert’s training 

time. The domain expert learned many general ITS concepts in this institute, but this covers only a small 

percentage of the total training material (see Figure 5.2). 
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training time was only (6/37.5) about one sixth as much as the domain expert’s training 

time, even though they had comparable development times.37 

5.3.3 Analysis of Other Data 

All of the above figures were based on the nature of the tasks and amount of days spent 

on each task. Below we analyze data from edit records and work sheets (which have the 

dates of design and data entry on them) and note how these data compare with the above 

figures. 

Edit record data exist for 69 separate working days.38 About 25% of these days consisted 

of creating instances from work sheet data, and the remaining 75% involved testing and 

editing the curriculum.39 

A cursory analysis of edit record data gave the following figures: 

• The average time it takes to enter one worksheet form into the knowledge base using 

the Browser, i.e. create a new instance, is about 25 minutes (data ranges from 19 to 

30 minutes). 

• Data from editing records logged during test runs of the statics tutor indicate that 

the average time it takes to find a bug in the curriculum and edit the knowledge base 

to fix the bug is about 6 minutes (data ranges from 2.4 to 11.6 minutes with outliers 

removed). 

• From Camp’s and Gonzalez’s edit records, we can hypothesize that there was an initial 

start-up time for using the Browser, during which the average time it took to make a 

37It is only a coincidence that total design time is almost equal to total training time, and that total 

implementation time is almost equal to total development time. 

380n some days there was more than one editing session. We cannot give the total number of editing 

sessions or the total amount of time spent editing, because some edit records were combined, and some data 

were lost. The breakdown of person vs. how many days for which editing information exists is: Linton 7, 

Camp 15, Gonzalez (or Camp and Gonzalez working together) 47—totaling 69. 

39There were a total of 18 worksheet entry days, consisting of 25% of Gonzalez’s edit record days, 70% of 

Linton’s edit record days, and none of Camp’s edit record days. 
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change was about 11 minutes; i.e., we saw a two-fold improvement in efficiency after 

a start-up period lasting one to three editing sessions. 

• The data do not confirm or reject the hypothesis of a longitudinal trend toward 

increased efficiency over the months as improvements were made to the Browser. 

Comparison of actual time vs. extrapolated time. Some of the numbers in 

Figure 5.6 for the entire curriculum are extrapolations based on data from the LE curriculum 

(justified because the LE Curriculum and the entire curriculum were shown to have similar 

characteristics). It would be desirable to compare the extrapolated total time to build the 

statics tutor (596 hours) with the actual time Camp, Gonzalez, and Linton worked over 

the sixteen months of the study. Unfortunately the development work was not closely 

monitored in Phase 5, after the LE curriculum was tested, when the most of the remainder 

of the curriculum was designed, entered, and debugged. 

Camp’s total time was well recorded—he put in a total of 75 days (27 solid days and 48 

weekly days) over the course of the entire study (29 of these days were totally unsupervised). 

The previously given method for estimating total time (7 hours per solid day and 3.5 hours 

per weekly day) gives a total of 357 hours. This figure corroborates (is only about 25% 

more than) the estimated 280 hours in Figure 5.6. Linton worked only during Phase 2, 

and his time has been given as 52 hours (see note 2 in Figure 5.6). Gonzalez put in a 

total of 550 hours (according to payroll data) in Phases 4 and 5. A task/time analysis 

of Gonzalez’s participation is difficult to determine. It was estimated that she spent 30 

hours supervising the student trials. She also spent some time developing a small KAFITS 

tutor explaining how to use the crane boom simulation (which was not completed). A fair 

amount of time was non-productive, due to time spent reorganizing edit records before we 

had a clear system for managing them, and hardware problems (Lisp system crashes and 

bad floppy disks) leading to loss of data which had to be re-entered. Also, during many of 

the editing sessions in Phase 5, Gonzalez and Camp tested and modified the tutor together, 

which confounds calculations of total hours spent editing. 
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The estimated total knowledge base manager time for building the statics tutor is 240 

hours (Figure 5.7). Subtracting Linton’s 52 hours leaves 188 hours for Gonzalez’s effort. 

That 188 of her 550 hours were spent on work directly contributing to the implementation 

of the statics tutor is not unreasonable, given the above discussion. In summary, though 

an analysis of the actual time spent by the participants is too uncertain to show close 

corroboration with the figures extrapolated from the LE curriculum, the actual time spent 

is comparable to the extrapolated time. 

5.3.4 Summary of the Quantitative Analysis 

Our estimations indicate that the 41 node (39 topics and 2 Mis-KUs) statics curriculum 

would provide an average of six hours of on-line instruction. Its design and implementation 

took about 14 hours per topic, each topic representing an average of about 9 minutes of 

on-line instruction. It took approximately 100 hours to produce each hour of on-line 

instruction (85 hours if training is not included), which is comparable to the estimated 

design time for conventional CAI given in the literature [Gery 1987].40 This figure is to be 

interpreted with caution,41 and suggests that computer tutors with the “intelligence” and 

flexibility inherent in a KAFITS-based tutor can be built with effort comparable to that of 

traditional CAI. 

The following comparisons were calculated for building the statics curriculum: the total 

training time was about 40 hours for the domain expert and 6 hours for the knowledge 

base managers; the domain expert and knowledge base managers put in a comparable 

amount of time, which was about three times as much as the knowledge engineer put in; 

and implementation took six times as much effort as design. 

40Our estimate includes training and development time for the domain expert, knowledge base managers, 

and training and guidance time for the knowledge engineer. It does not include time to create picture 

graphics or program the simulation environment. 

41 The hours of development per hour of instruction is not a rigorous comparative metric, in part because 

the longer students take to learn, the more efficient the design process seems, using this measurement. 
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The figures above for the entire curriculum were extrapolated based on figures for the LE 

curriculum. An analysis of data from edit records and work sheets for the entire curriculum 

shows slight corroboration with some aspects of, and otherwise does not contradict, the 

extrapolated figures. 

5.4 Knowledge Representation Issues 

Human knowledge, whether about driving a car, designing a space craft, or teaching, 

does not exist in neatly defined, clearly named packages—it is inherently complex, densely 

connected, fuzzy, and ambiguous. Yet to use knowledge in computer tutors we try to repre¬ 

sent it in individual units with clear structure. The problems of classifying and organizing 

human knowledge to create external representations have been dealt with extensively from 

many different perspectives in philosophy, psychology, education, library science, computer 

science, etc. (eg. [Mervis & Rosh 1981, Winograd & Flores 1986]). Brachman & Levesque 

[1985, pg. xiii] note that “there are tremendous subtleties in the notions of ‘representation,’ 

‘knowledge,’ and their combinations” in AI knowledge representation. That so much effort 

has been spent on the problem, and that this effort has not resulted in any widely accepted 

general solutions, attests to its salience as a fundamental issue in ITS knowledge acquisition. 

In this study we do not contribute to the general theory of knowledge representation. We 

discuss key issues related to knowledge representation and describe how these issues were 

discovered and handled. In addition we discuss the design of the KAFITS framework, pay¬ 

ing particular attention to the conceptual vocabulary, and discuss problems and potential 

solutions in designing highly flexible and modular domain knowledge bases. First, however, 

we discuss experiences that influenced knowledge representation in the original prototype 

KAFITS system. 
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5.4.1 Development of the Original KAFITS Framework 

It took several years to develop the KAFITS framework and software that served as 

the prototype for this study. Many changes were made during the course of this study, 

but the basic structure and vocabulary remained fairly constant. In the first month of 

the study we noted (in the research journal) that the KAFITS framework was anticipating 

many of Camp’s needs, indicating that he “was on the right track” [6/30/89]. Many times 

in our early conversations Camp would ask: “but how do we deal with [so-and-so],” and 

the author would answer that the framework could account for it in [such-and-such] a way. 

Examples of KAFITS features that anticipated his questions are: multiple correct answers, 

reactions (allowing short responses particular to each possible student answer), diagnosis 

of misconceptions, synthesizer nodes, and elaborations to correct answers-plus many other 

such features. 

How was the prototype framework developed? What were the reasons for design deci¬ 

sions? Unfortunately, the years previous to the start of the case study were not as closely 

documented as the case study itself, but we can describe some foundation for the concep¬ 

tual vocabulary. There were two main sources of information: personal experience working 

with educators, and instructional design theory literature, most notably the work of Merrill 

[1983], Reigeluth [1983] and Gagne [1985].42 We will not attempt to analyze why we used 

certain parts of instructional design theories and not others; the author assimilated much 

from articles and books over the years and included a small part of this information into 

KAFITS—only what the author thought to be immediately useful and understandable to 

users. 

Personal experiences that influenced this study but took place before this study in¬ 

clude working with many educators trying to formalize their curriculum and instructional 

knowledge. We worked with: 

• Three college professors who were associated with our research group; 

42Familiarity with other ITS systems must also have had some influence our design decisions, but not in 

specific ways that we can document. 
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• Four high school and college educators associated with the Exploring Systems Earth 

project, centered at San Francisco State University; and 

• A dozen high school teachers who participated in the UMass ITS Summer Teachers’ 

Institute. 

We also conducted an informal study with eight associates of our lab (most of whom 

were also teachers) on tutoring strategies and primitive tutorial actions, which involved 

group analysis of taped tutorial sessions. 

We succeeded in extracting from these experiences a set of ubiquitous “primitive” 

tutoring actions, some general patterns or scripts for tutoring actions, and parameters 

and reasons for the actions. The list of commonly occurring actions is not surprising, 

and corresponds to many of the topic and presentations slots: motivations, examples (of 

different kinds), definitions, prerequisites, summarizing, hinting, elaborating, etc. Common 

strategies or patterns include (this is a small subset): refraining—reflecting the student’s 

ideas back to her with irrelevant information filtered out and important aspects emphasized; 

alternating between focusing in on details and stepping back to overview, summarize, or 

give a context or reason; beginning instruction with declarative statements—definitions or 

procedure descriptions—and then continuing with an example or operationalization; and 

offering met a-comments such as “this is a hard one.” Since this study did not focus on 

representing multiple alternative tutoring strategies, most of these were not incorporated 

into the case study. Similarly, strategy parameters were not studied much in the case study. 

In summary, the prototype KAFITS conceptual vocabulary evolved over years in re¬ 

sponse to working with educators to represent pedagogical knowledge. It was modified 

according to the findings of this study to produce the final KAFITS conceptual vocabulary 

(Section 3.1.6). Despite all of this foundational work, the vocabulary is relatively simple— 

of the many dozens of descriptors identified, covering a broad band of behavior and many 

shades of meaning, only a few were used, mainly due to our goal of simplicity. We in¬ 

cluded those terms which seemed necessary and clearly explainable, even though a larger 

vocabulary would have been more precise. 
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5.4.2 Conceptual Vocabulary and Semantic Uncertainty 

The KAFITS conceptual vocabulary (see Section 3.1.6 for a description) is a language for 

representing knowledge about curriculum and teaching. The KAFITS vocabulary worked 

well in this study, and constitutes a benchmark for further efforts. There were many issues 

and tradeoffs involved in designing it, and in this section we discuss design considerations 

related to the understandability and uncertainty of vocabulary terms and discuss how pro¬ 

cedural knowledge affects the declarative meaning of terms. 

Vocabulary Understandability 

Our goal was to minimize abstract and technical terminology, and to minimize 

complexity—but still maintain a workable degree of flexibility, power, and clarity. We 

cannot give formulas for how these decisions were made, but will describe the tradeoffs 

involved, and give examples of specific decisions made.43 

In the original framework the term “KU,” or knowledge unit, was used for what eventu¬ 

ally became “topic” objects. Terms such as “topic” or “subject-unit” were initially avoided 

because they lacked precision and had differing meanings in different mundane contexts. 

The term “knowledge unit”44 seemed a more technically precise term for a piece of domain 

knowledge of arbitrary knowledge type and arbitrary grain size. However, in trying to ex¬ 

plain the system to educators we often found that this term was confusing; its meaning 

didn’t stick in their minds, but drifted and got fuzzy from one training session to the next. 

Some users confused knowledge unit with “slot” or “object,” both of which, in different 

senses, are also units of knowledge. So we changed it to the term “topic” which, though 

less precise, has not caused confusion. In contrast to the case of “knowledge unit,” is the 

case of the term “Mis-KU,” where we decided to stay with a more technical term. In the 

early system design we wavered about calling Mis-KUs “misconceptions,” because the lat- 

43 And see Section 2.2 for a discussion of how the Performance-Content Matrix was designed with usability 

in mind. 

440riginally coined by Deborah Servi [1986]. 
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ter term has the advantage of being commonly understood. But it was not precise enough, 

since we wanted a term that would stand for any type of buggy knowledge, whether mis¬ 

conception, misinformation, skill-bug, etc. The term “Mis-KU” did not cause confusion, 

probably because it did not bring competing interpretations to the user’s mind.45 

Semantic Uncertainty 

In analyzing the documented instances of terminological uncertainty from the case study 

we found two useful distinctions, one between ambiguity and fuzziness, and the other be¬ 

tween intentional and inherent uncertainty.46 Terms can be uncertain because they overlap 

with other terms (“ambiguity”) or because the boundaries of the term are unclear (“fuzzi¬ 

ness”). The ambiguity problem manifests itself in questions such as “Is this thing an X 

or a Y?”—where “this thing” is something you are trying to classify. It occurs when there 

is more than one term available for similar things. The fuzziness problem manifests itself 

with questions like “What is an X?” and occurs when the uncertainty does not concern 

similar competing terms. Example questions revealing fuzziness are: “What is supposed to 

go in the elaboration slot?” and “What is a composite knowledge type?” 

Uncertainty in the conceptual vocabulary was either “intentional” or “inherent”. In¬ 

tentional terminological uncertainly occurs when a term is created with intentional 

fuzziness or ambiguity.47 As an example of intentional uncertainty consider the term “mo¬ 

tivation.” Prior to and during this study, the following ways to motivate or introduce a 

topic were identified: 

45In hindsight, there are some KAFITS terms we would like to have changed, but the effort to re-tool the 

code and teach the new term to the expert in the midst of the study was prohibitive: “K-bug” (knowledge 

bug) would be more self-explanatory than “Mis-KU;” “situation” is more precise than “example;” “task” 

is more precise than “question.” We think these new terms would work as well or better than the existing 

terms, but will not know unless they are tried. 

46There are more rigorous ways of categorizing semantic uncertainty, but we will keep it simple here. 

47It may appear unusual or sound self-serving to say that any uncertainty that is not intentional is inherent. 

Actually, any particular instance of ambiguity or fuzziness could probably be engineered out, perhaps at 

a cost of increased complexity or by being more esoteric. But there will always be some uncertainty in 

terminology, and getting rid of it in one place moves it elsewhere (for example, replacing a term with 

several more precise terms takes care of uncertainty at one level, but the new terms will have their own 

uncertainty)—some amount of uncertainty is inherent. 
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• Playing: allow the student to play or explore in order to get an intuitive feel of the 

domain from a concrete context; 

• Reminding: remind the student of previous knowledge (and relate it to the current 

topic); 

• Enticing: pose a question or describe a phenomenon that instills curiosity; 

• Persuading: motivate the need to learn by posing a problem that is not solvable 

without new knowledge; 

• Advanced organizing: give the big picture or road map; and 

• Epitomizing: give a concrete prototypical example or anecdote which epitomizes the 

topic (this term borrowed from Reigeluth [1983b]). 

But only one slot, Motivation, was implemented to cover all of these possibilities. We 

mentioned all of the possible senses of Motivation to Camp, and left it up to him to decide 

what to put in Motivation slots. Similarly the Wrap-up topic slot could be used to conclude 

a topic by elaborating on it (giving incidental information, e.g. “by the way...”), comparing 

or contrasting it to other topics, summarizing the content or purpose of a topic, or cleaning 

up “white lies” (dealing with previous simplifying assumptions)—but only the Wrap-up slot 

was implemented and covers all of these possibilities. 

The above examples involve intentional uncertainty, where uncertain in terms’ precise 

meaning allowed for flexibility of its contents and uses. Intentional uncertainty is useful 

when the domain expert does not need to explicitly distinguish between the meanings of a 

term in a tutoring strategy. As an example of a case were a term was refined into several 

more precise terms, consider “feedback,” which was refined to allow for strategies that 

differentiated types of feedback. Early versions of KAFITS had one term, “feedback,” for 

what was eventually refined into “reaction,” “give-away,” “reason,” and “elaboration.” 

There were also cases of inherent terminological uncertainty. For example, the 

distinction between topics and Mis-KUs was not always clear. A “common misconception 
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to one teacher may be an “important topic” to another. Camp decided to call {Force- 

on-vs-by-confusion} (confusing forces on objects with forces by objects) a topic, yet called 

{Tension-on-vs-by-confusion} a Mis-KU. His reasoning was that the former was a topic he 

assumed every student needed to be taught, while the latter was something to be remediated 

when a student was diagnosed as having the misconception. Similarly, there were times when 

Camp was not sure whether the feedback he wanted to give the student was an answer- 

reason or an elaboration. Similar uncertainty was documented with the terms motivation 

vs. summary, summary vs. definition, and concept vs. principle. Though each individual 

instance of terminological uncertainty could probably have been engineered out, some degree 

of uncertainly is unavoidable, and the exact meanings of many terms will come only through 

common understanding from a dialog between domain expert and knowledge engineer. 

Level of abstraction. Uncertainty in terminology is often closely relate to design 

decisions about the level of abstraction or generality of terms in a system. For instance, 

we believed that having fewer first class object types in the KAFITS framework facilitated 

understandability and extendibility, and also made the KAFITS interface simpler. For 

example, we decided that the general term “motivation” was more appropriate than its 

refinements, and that “feedback” was too general and needed refinement. A related issue is 

deciding what entities in the system will be “first class objects.” Topics are first class objects 

in the KAFITS system. We chose not to have “fact,” “procedure,” etc. (the knowledge 

types for topics) be first class objects. Rather, the knowledge type is indicated by a topic 

slot.48 (See the discussion of mixins in Section 3.1.4.) In brief, the designer must balance 

terminological precision with usability when deciding the appropriate level of abstraction 

of terms. 

Next we discuss another significant source of terminological uncertainty, the conflation 

of declarative and procedural knowledge. 

48We also limited the proliferation of first class objects in the following cases: Mis-KU objects were used 

rather than types of mis-knowledge (“misinformation,” “procedural bug,” etc.); and “example” objects were 

used rather than types of examples (extreme cases, analogies, counter examples, etc.). 
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Interaction of Declarative vs. Procedural Knowledge 

In a sense, the “meanings” of terms depend fundamentally on how they are used. In AI 

systems this concerns the distinction between declarative and procedural knowledge. Ideally, 

ITS designers (and the designers of all expert systems) try to represent declarative and 

procedural knowledge separately. This is done with the working assumption that declarative 

and procedural knowledge are independent, that a piece of knowledge can be represented 

without regard to how it is used, and that a piece of knowledge can be used in multiple ways. 

This assumption is exactly what gives KAFITS its flexibility and power—for example, a 

topic is represented in a way that allows it to be used to teach, summarize, give examples, 

etc. However, we found much evidence attesting to the fact that declarative and procedural 

knowledge are highly interdependent. Specifically, the meaning of a term (or slot) can not 

be separated from how it is used—in fact one can make an argument that quite the opposite 

is true: that a term’s meaning is completely determined by how it is used. 

For example, Summary is a topic slot that contains text. We could have called the slot 

“topic-slot-7,” or “foobar,” but “summary” is a more useful term because it reminds the 

user of its intended meaning.49 What does “summary” really mean? It depends on how 

strategies use it.50 Strategies could conceivably use it in several ways: to summarize after 

teaching the topic, to preview the topic, to provide a stand-alone overview of the topic, or to 

review a topic after it was taught.51 Each of these potential uses provides a different sense 

of the term “summary,” and that meaning affects what the teacher specifies as the slot’s 

content. An “official” meaning of “summary” might have been put in a user’s guide or on an 

on-line help system, but in our case it was a shared meaning stemming from conversations 

between the domain expert and the knowledge engineer. 

49Lenat et. al (1981, pg. 71) calls inappropriately reading meaning into symbol names a “knowledge 

illusion.” 

50 Actually a slot name’s meaning depends on how strategies use it and on how it is related (implicitly or 

explicitly) to other bits of information in the knowledge base. 

51 That there are so many potential meanings of the term might indicate that we should have used a more 

precise term (or several) in its place. 
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There were several other instances of procedural vs. declarative interdependence doc¬ 

umented in the case study. On different occasions the meanings of the Summary and 

Elaboration slots were unclear to Camp without reference to how they were used in the de¬ 

fault strategies. There were also instances of co-dependence between two or more meanings: 

the meanings of Motivation and Prerequisite depend on which comes first (i.e. whether pre¬ 

requisite means prior to motivating a topic or prior to teaching it); the meanings of the 

Summary and Definition slots were seen by Camp as co-dependent because both summary 

and definition could be given while teaching a topic, so they should not say the same thing. 

Summary of Tradeoffs in Designing the Conceptual Vocabulary 

One of the main design issues of the KAFITS conceptual vocabulary was the uncertainty 

(i.e. fuzziness and ambiguity) of its terms. Some degree of terminological uncertainty is 

unavoidable, but in specific cases it can be repaired by replacing a term with a clearer one or 

replacing a term by several more precise ones. However, the introduction of esoteric terms 

or unchecked expansion of terminology has negative effects on usability, so new terms should 

not be introduced unless a clear need is perceived. Also, some terminological uncertainty is 

intentional and allows flexibility because multiple senses of a term allow multiple uses. 

One source of terminological uncertainty is dependence of (declarative) meaning of terms 

with how they are used (procedurally). Although independence of declarative and procedu¬ 

ral knowledge is a useful working assumption, determining the meanings of attributes in a 

computer system often defies this assumption. And though the separation of declarative and 

procedural knowledge is a crucial aspect of the KAFITS system, we found ample evidence 

in the case study that the meaning of slots has some dependence on the strategies that 

access them. Fortunately, even though there were instances where procedural knowledge 

was intertwined with declarative knowledge, the working assumption of their independence 

was still used and useful. 

Usability implies sufficient simplicity and understandability. Problems with conceptual 

terms often stem from confusion with other terms in the conceptual vocabulary, or with 
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the mundane use of words. Ultimately, empirical data or experience is needed for any 

determination of usability. 

5.4.3 Flexibility and Modularity in the Domain Knowledge Base 

The previous section on conceptual vocabulary and semantic uncertainty dealt with 

the general meaning of KAFITS slots (and other terms). In this section we discuss issues 

concerning the contents of the slots—specifically, how the contents can be designed to allow 

for the potential flexibility inherent in the KAFITS framework. 

To take advantage of the power of multiple tutoring strategies the domain knowledge 

base must be designed with a high degree of flexibility. There are two types of flexibility 

involved: “object sequencing” and “action selection.” Object sequencing flexibility 

refers to the diversity of potential paths through a space of similar objects. For example, 

a variety of strategies can be designed for traversing the topic net (a space of topics and 

Mis-KUs), and (though we did not take advantage of this capability in the statics tutor) 

a variety of strategies for traversing a space of presentation objects (for example, a space 

of positive and negative examples). Action selection flexibility refers to the capability 

to choose and order primitive actions in numerous ways according to strategies. Another 

way to think about action selection flexibility is to say that the objects in the knowledge 

base are represented so that they can have many uses (eg. Mis-KUs can be remedied and 

diagnosed). 

If a topic or presentation is written in a way that assumes a certain instructional con¬ 

text (what comes immediately before it in a tutoring session) then it is less flexible; and 

when it is given to the student in a context that was not intended it will not make sense. 

Therefore, topics and (to a lesser extent) presentations should be relatively modular and 

context-free—independent of sister objects, when possible. But it is difficult to design the 

knowledge base contents so that the flexibility allowed by multiple tutoring strategies can 

be taken advantage of. As mentioned previously, human knowledge is not easily repre- 
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sented in modular, independent chunks. Several issues have been identified: granularity, 

interdependence, structure, and discourse flow; each is discussed below. 

Knowledge Granularity 

Our answer to the question “How big is a topic?” is based on pragmatics rather than 

epistemology: a topic should be whatever size the expert needs it to be, i.e. if the expert 

wants to refer to a chunk of knowledge (for example as a prerequisite of another topic) 

the system should have an abstract representation for it. Conversely, even if a topic could 

technically be broken into many parts, this should not be done if the whole topic is the only 

thing that is ever referred to.52 The KAFITS system has three mechanisms for chunking 

domain knowledge: the lesson object, topic levels, and the Parts attribute, each described 

below. 

The lesson object (see Section 3.1.2) is the first chunking mechanism. Topics can be 

grouped arbitrarily in a lesson, and, by specifying a teaching strategy in the lesson object, 

they can be taught with a particular pedagogical style or perspective. 53 

Topic levels, distinguishing levels of performance and mastery within a topic, are 

the second mechanism for dealing with grain size. Slots and strategies can refer to these 

levels individually, such as in teaching only the use-easy level of a topic. Without levels 

within topics, entire topics would have to be created to be able to refer to each level of 

performance / mastery. 

A third mechanism for chunking is the Parts topic attribute. Using this attribute, 

topics at any level of curriculum generality can be represented and the topic network can 

have hierarchical relationships of arbitrary depth (eg. we can create topics as general as 

“introductory statics,” and as specific as “equilibrium of static forces in the x direction for 

52Often it would be possible to re-interpret the presentations or levels within a topic as entire topics. 

“We did not make much use of the chunking capability of lesson objects in the statics tutor, but as 

an example use: four different lessons could be created containing the same group of topics but taught in 

introductory, review, qualitative, and quantitative perspectives, by specifying different tutoring strategies in 

each lesson. 
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two simple bodies”). If the knowledge that a parent topic refers to is more than the sum of 

its parts, then the parent topic contains instructional material, otherwise the parent topic 

is empty (it only points to its part topics); teaching it is equivalent to teaching its parts, 

and knowing it means knowing its parts. 

Normally the parts of a topic should be of the same type as the parent topic. For 

example, a concept has conceptual parts, and a procedure has procedural parts. But some 

groups of topics that the domain expert wanted to refer to could not be categorized according 

to knowledge type because they were the union of several different types of knowledge. To 

address this we created a node type called composite. The parts of a composite topic can 

be of any topic type (eg. {Linear-Equilibrium} has parts {Linear-equilibrium-concept}, 

{Linear-equilibrium-intuition}, and {Linear-equilibrium-principle}). 

Knowledge Modularity vs. Interdependence 

To allow flexibility, topics should be designed modularly, with all dependences on other 

topics made explicit (as in prerequisite relationships)—Lesgold (1988) calls this “internal 

coherence.”54 Though our goal was to design topics modularly we were often faced with 

situations in which topics were inherently interdependent or overlapping. For example, 

the student has to know something about {Types-of-forces} to fully understand {Linear- 

equilibrium}, yet some understanding of {Linear equilibrium} is prerequisite to learning 

about {Types-of-forces}. These two topics are prerequisites of each other, an untenable 

situation for most ITSs. Also, some knowledge is about the relationship between two 

topics and should not be contained in either one of the topics exclusively. The KAFITS 

framework has two mechanisms for dealing with topic interdependence: synthesizers and 

spiral teaching, each described below. 

54The same is true for presentations, which are more flexible if written independently of other presen¬ 

tations. However, one can safely assume a fair amount about presentation order within a topic level. In 

addition, in some cases the relationships in a section of the topic net so tightly constrain the ordering of 

topics that one can make assumptions about topic order. 
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Some of the curriculum concerned relationships between two topics and could not prop¬ 

erly be associated with any single topic. Lesgold [1988] emphasizes the need to provide 

curricular “glue” to relate topics. The Motivation and Wrap-up topic slots (as well as the 

Introduction and Conclusion lesson slots) are appropriate places to mention how topics are 

related, but this relationship is only salient for the topic whose slot has the information. 

Reigeluth [1983b] uses the term synthesizer for instructional components used to interrelate 

and integrate individual content units. KAFITS includes a synthesizer node type which 

points to two or more topics and compares or contrasts them. Like the composite node 

type, it is not a knowledge type and was created to address a representational need. In the 

end, synthesizers were not used for the statics curriculum (Motivation and Wrap-up slots 

were used to compare topics), but we give two hypothetical examples of how strategies could 

use synthesizer objects. One possible strategy relates two topics the student has learned: 

after a topic is taught check whether a synthesizer connects it with another known topic, 

and if so, teach the synthesis material. Another possible strategy connects new information 

with existing information before the new information is presented: before a topic is taught, 

check whether a synthesizer connects it with an already known topic and, if so, present the 

synthesis material. 

Spiral Teaching 

In classroom teaching and one-on-one tutoring topic interdependence is often dealt with 

using some form of “spiral teaching” [Van Heuvelen 1987]. In the prototypical example of 

spircil teaching several topics are presented at an introductory level, and then again at a 

more advanced level, and so forth, as many times as necessary. We have had some success 

in implementing spiral teaching in KAFITS, by utilizing the levels of performance/mastery 

and the ability to encode different levels of prerequisites. As Lesgold [1988] points out: “the 

concept of prerequisite [relations between topics in tutoring systems] has been inadequate 

in the past.” KAFITS incorporates a refinement to the typical prerequisite relationship by 

allowing levels of prerequisites (corresponding to the different types of prerequisite links in 

Figure 1.3, see Section 3.1.5). 



216 

Using this refined encoding of prerequisite relationships, along with the ability to en¬ 

code topic part-whole relationships, KAFITS produces spiral teaching.55 For example, 

{Linear-equilibrium} has {Linear-equilibrium-intuition} and {Linear-equilibrium-principle} 

as parts. {Linear-equilibrium-intuition} has {Linear-equilibrium-principle} as a famil¬ 

iar prerequisite. When {Linear-equilibrium} is taught it first starts to teach {Linear- 

equilibrium-intuition}, which in turn needs {Linear-equilibrium-principle} to be taught at 

the familiarity level. Later (after {Linear-equilibrium-intmtion} and {Linear-equilibrium- 

concept} have been taught), {Linear-equilibrium-principle} is revisited, this time taught at 

the easy level. 

Alternative Curriculum Structures 

Many structures for curriculum have been proposed in the literature: networks, tables, 

trees, scripts, etc. When humans teach they are free to organize topics in any way and 

use any strategy to traverse this organization, and they can choose different structures for 

different needs. However, in the KAFITS system the method for structuring curriculum 

must be consistent to reduce complexity in the representational framework and the resulting 

confusion for users.56 The basic curriculum structure of the KAFITS system is flexible: 

topics (and Mis-KUs) are arranged in a network; the topics are of different types; the 

relationships that link the nodes of the network are of different types; and each topic 

has levels of understanding. The specific topic types, link types, and level names used in 

the statics tutor were developed to be general, but are prototypes, likely to change when 

a sufficiently different domain is represented. Below we discuss alternative methods of 

structuring curriculum and how these fit into the KAFITS system. 

Some curriculum structures are hierarchical or tree-like. For example Ausubel’s [1963] 

“meaningful learning” theory suggests that each discipline consists of sets of hierarchically 

organized concepts. Burton’s [1982] Buggy system uses a lattice to represent subsumption 

55The resulting tutoring is similar to a breadth-first traversal of the topic network. 

56 However, with a given structure, strategies can be designed to traverse that structure in many ways. 



217 

relationships between skills and sub-skills. Tree and lattice structures are kinds of networks, 

so tree and lattice structures are easily implemented in KAFITS by using the “part” link. 

Some curriculum structures use a prerequisite network structure, such as Gagne’s [1985] 

“essential prerequisites” and the BIP system’s “curriculum information net” [Barr et al. 

1975]. Goldstein’s [1982] genetic graph is a network structure which represents analogy, 

refinement, generality, and buggy relationships between procedural rules. These are all 

network structures, so they could also be implemented using KAFITS by implementing the 

appropriate link types. 

The methods above do not sufficiently account for the overlapping or multi-perspective 

nature of knowledge. Lesgold’s [1988] “curriculum goal lattice” accounts for the fact that 

there are many views on the same curriculum material. He shows how curriculum for 

an electricity tutor can be taught from the perspective of circuit types, electricity laws, 

electricity concepts, or problem types. Though teaching from each perspective gives an 

approximately identical set of student explanations and tasks, each perspective results in 

a different ordering of the explanations and tasks. KAFITS has the capability to model 

this behavior, since it has lesson objects “above” topics which can specify high level goals 

and strategies, and presentation objects “below” topics, which can be referenced by more 

than one topic. However, though the goal lattice can be implemented using the KAFITS 

framework, we relied on the spiral teaching method mentioned above to account for topic 

overlap in the statics curriculum. 

Statics Domain Dimensions 

During the statics tutor case study many curriculum structures were discussed (the 

discussions being initiated by both the domain expert and the knowledge engineer) that 

constituted different views (or perspectives or dimensions, as in Rissland et al. [1984]) 

on the curriculum material. Most of these were not implemented in the course of the 

case study but are worth mentioning because they illustrate the multidimensional na¬ 

ture of curricula and how KAFITS can represent these curricula structures. For instance 
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Pedagogical Dimension Levels or Values 

Intuition/Application force existence, force direction (opposite), force mag¬ 

nitude (equality), write equations, solve equations 

(quantitative) 

Difficulty/Complexity (or mastery) easy, typical, difficult problems 

Problem Types/Contexts hanging objects, falling objects, rolling objects, in¬ 

clined planes, colliding objects, exploding objects, etc. 

Force Type tension forces, gravity forces, rigid body contact forces, 

compressible body contact forces, etc. 

Spatial Orientation horizontal forces, vertical forces, all orientations, rota¬ 

tional (torque) 

Figure 5.8 Perspectives for Teaching Newton’s Third Law 

there are many approaches to teaching that bodies exert equal and opposite forces on 

each other, i.e. {Newtons-third-law}. Figure 5.8 shows several perspectives (dimensions) 

and levels of presentation for each perspective.57 Each of these perspectives has substan¬ 

tial overlap with others, and theoretically each perspective could be a topic, for exam¬ 

ple: {Qualitative-newtons-third-law}, {Quantitative-newtons-third-law}, {Understanding- 

inclined-planes}, {Understanding-collision-situations}, {Horizontal-forces}, etc.58 It would 

be exceedingly difficult to represent the curriculum so that {Newtons-third-law} could be 

taught from all of these perspectives, but it is possible to incorporate them in a limited way. 

One way to implement these dimensions in tutoring involves conceptualizing the curricu¬ 

lum in terms of a table, with one of the dimensions in the rows and another dimension in the 

columns. For example, for a table containing force types vs. problem type, teaching could 

involve moving across the rows and columns according to some strategy, such as teaching 

all force types for each problem type (see Figure 5.8). (This scheme can be extended from 

a two dimensional table to an array of arbitrary dimensions.) Though conceptually sim¬ 

ple, tabular representations of curriculum are restrictive. For example, a straightforward 

method for simulating spiral teaching, one we did not adopt, involves a tabular representa- 

57The dimensions listed are not arbitrary; they all have pedagogical relevance which we will not explain in 

detail here. In classroom instruction many divergent examples of a concept are usually necessary to promote 

a deep understanding. Multiple views and contexts are useful for teaching a single topic because students 

learning is context dependent. 

58 White & Frederiksen’s [1986] model evolution instructional strategy is similar, teaching the same material 

from increasingly more sophisticated perspectives. 
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tion of curriculum with one dimension (rows) for topics and the other (columns) for levels 

of difficulty. In this method spiral teaching involves weaving back and forth over all topics 

from simple to more difficult levels. Though workable, this method is too restrictive, and 

much of the flexibility of network representations is lost when a tabular representation is 

used, and topics would be confined to a rigid ordering.59 As in our implementation of spiral 

teaching, the topic levels of KAFITS could be used (if they were renamed for some topics) 

to incorporate multiple perspectives in a limited way. 

Discourse Flexibility vs. Context Dependence 

As stated above, the tutor’s flexibility is directly related to the modularity and inde¬ 

pendence of the knowledge base contents. We have mentioned that complete modularity 

and independence is not possible, so the goal of the knowledge engineer is to achieve, or to 

help the domain expert achieve, the highest degree of context independence feasible, given 

the difficulty of the task. We found that, in practice, it is often difficult for the domain 

expert to design curriculum that assumes no global discourse context because to do so he 

must consider many alternative paths through the topic net and alternative permutations 

of the primitive actions (see Section 5.5 for a discussion of cognitive factors). For instance 

{X-axis-forces} is a part of {X-axis-equilibrium} and is also a part of {FDB-WRITE- 

EQUATIONS} (as shown in Figure 1.3), so {X-axis-forces} could be reached from two 

different paths, each having a different discourse history. Also, prerequisite relations can 

ensure that one topic has been taught before another but not that the prerequisite topic 

was presented immediately before (it could have been taught at any time in the past). As 

a third example of the difficulty of context independence, the domain expert was advised 

that the answer-description could not assume that hints were given, since some strategies 

do not give hints. 

59 Actually there is some flexibility inherent in the tabular method—two teaching strategies are possible. 

Moving straight down a column results in teaching a single topic at all levels of difficulty (i.e. depth first 

traversal); moving straight across a row results in teaching all the topics at the same level of difficulty (i.e. 

breadth first traversal). 
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Designing too much modularity into the knowledge base can result in abrupt or choppy 

tutorial discourse. Making every chunk independent can (at least with canned text systems) 

lead to repetition and can prevent smooth transitions between ideas (topics). We have 

taken a pragmatic approach to this tradeoff, resulting in a compromise between curricular 

flexibility and smooth discourse: designing with modularity is encouraged, but not required 

of the domain expert. The domain expert is not expected to test every conceivable network 

path and combination of primitive actions but, rather, tests many paths with several tutorial 

strategies and adjusts the knowledge base for smooth discourse. This approach worked well 

in this study, and student trials indicated that the tutorial discourse for the statics tutor 

was reasonably smooth.60 

A related problem is that when a change is made to the domain knowledge base, the 

domain expert must keep in mind the many ways that the modified information could be 

used, including how it might affect nearby topics or presentations, and various potential 

trajectories through the topic net. Potentially even more difficult is changing or adding 

tutoring strategies. Though the domain expert tries to consider different possibilities when 

designing the curriculum, his vision of the range of possible situations will be somewhat 

limited by what he knows of the existing strategies. For example, after the third set of 

student trials Camp noted that it would be feasible for advanced students to skip all the 

easy level presentations. This would require that the easy and typical level presentations 

would have to be written so that the easy level could be skipped and teaching could start at 

the typical level. We never implemented this strategy change, but it is possible that many 

of the presentations would have had to be edited had we done so. 

5.4.4 Summary of Knowledge Representation Issues 

In this section we first described how the original KAFITS framework (especially the 

conceptual vocabulary) grew out of experience doing knowledge engineering with educators, 

60However, we did not experiment with very diverse strategies in this study, therefore the degree of 

difficulty in designing smooth discourse with more elaborate strategies is an open question. 
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Knowledge Repre¬ 

sentation Issue or 

Problem 

Design Tradeoffs Solution or 

KAFITS 

Mechanism 

Vocabulary 

Understandability 

Minimize overly ab- -vs.- Maximize 

stract or technical flexibility, clarity, 

terms expressiveness 

Analysis of empiri¬ 

cal evidence of 

confusion 

Vocabulary 

Uncertainty 

Minimize ambiguity -vs.- Some uncertainty is 

and fuzziness unavoidable and 

some is useful and 

intentional 

Allow ambiguity 

that provides flexi¬ 

bility without con¬ 

fusing the user 

Vocabulary 

Simplicity 

Minimize -vs.- Maximize clarity 

size and complexity and expressiveness 

of vocabulary 

Introduce new 

terms 

only when need is 

demonstrated 

Level of 

Abstraction 

Minimize prolifera- -vs.- More first class ob- 

tion of first class ob- ject types increases 

ject types expressiveness 

Use slots to specify 

some sub-categories 

Knowledge 

granularity 

Knowledge is chunked at many levels of abstraction Lessons, topic lev¬ 

els, Part slot, com¬ 

posite topic type 

Modularity &: 

Interdependence 

Maximize knowl- -vs.- But some interde¬ 

edge modularity pendence is 

unavoidable 

Synthesizers, spiral 

teaching, 

“glue slots” (Moti¬ 

vation, Wrap-up) 

Discourse Flexi¬ 

bility &: Context 

Dependence 

Maximize -vs.- Maximize flexibility 

smooth flow of dis- and context 

course transactions independence 

and ideas 

Interface al¬ 

lows easy movement 

between testing and 

modifying 

Figure 5.9 Summary of Knowledge Representation Design Tradeoffs 
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analysis of taped tutorial sessions, and the instructional design literature. We then described 

knowledge representation design tradeoffs, documenting examples from the case study when 

possible, and gave suggestions or mechanisms which address knowledge representation is¬ 

sues. The issues were organized into two categories: conceptual vocabulary/semantic un¬ 

certainty, dealing with the general meaning of KAFITS terms, and curriculum flexibil¬ 

ity/modularity, dealing with the contents of the KAFITS knowledge base. The table in 

Figure 5.9 summarizes the knowledge representation issues identified, the design tradeoffs 

involved, and KAFITS mechanisms that constitute partied solutions. We also gave evidence 

that the declarative meaning of terms can depend on how they are used procedurally. 

We mentioned several alternative curriculum structures, including knowledge hierar¬ 

chies, sub-skill lattices, prerequisite networks, genetic graphs, curriculum goal lattices, and 

curriculum views (pedagogical dimensions), and indicated how each could be implemented 

within the KAFITS framework. We also showed how the statics curriculum could be taught 

from a number of pedagogical perspectives. 

5.5 Cognitive Considerations, Interface Design, and User 

Participation 

Some of the issues and tradeoffs identified in this study are epistemological in nature, 

related to fundamental characteristics of knowledge such as terminological fuzziness and 

ambiguity, and the massively interconnected nature of knowledge; these epistemological 

issues were discussed in Section 5.4. Other issues identified are psychological in nature, 

having to do with human cognitive capabilities and limitations. In this section we document 

issues related to the domain expert’s cognition and discuss how cognitive considerations 

affected the design of the KAFITS interface and the knowledge acquisition methodology. 

We also discuss the importance of user participation in designing KAFITS. 
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5.5.1 Procedural Nature of Curriculum Mental Models 

Norman [1983, pg. 7] makes a useful distinction between conceptual models and mental 

models. A conceptual model is a model that a designer or teacher invents in order to provide 

an appropriate (accurate, consistent, and complete) representation of a system to a user or 

student. A mental model is a naturally occurring evolving property or structure in a human 

mind. Mental models are by their nature incomplete, unstable, and runable; and are not 

necessarily accurate. Below we discuss one case where a KAFITS conceptual model was at 

odds with the domain expert’s mental model. 

Normally teachers are exposed to predominantly linear representations of instructional 

material, such as in textbooks and lesson plans, and the experience of teaching itself is, 

of necessity, composed of a linear ordering of events. Thus it is not surprising that we 

have found that teachers’ mental models of the instructional process tend to be linear 

and procedural.61 62 This is in sharp contrast with the declarative nature of domain 

knowledge represented in intelligent tutors. For instance, we have found that perceiving 

the KAFITS topic net as a declarative representation of relationships between topics is 

difficult for those who, like most teachers, are not trained in computer science.63 There 

is a persistent tendency for teachers to interpret the network as a procedural specification 

of topic ordering.64 Camp himself noted this tendency: “It’s hard to get away from linear 

types of notions [about teaching, when one is] teaching [in the] classroom all the time” 

[7/5/89], 

61 Observations concerning teachers are from experiences working with over a dozen high school and college 

teachers over several years. 

62Garg-Janardan & Salvendy [1988] report similar findings (in the expert systems field) of users confound¬ 

ing process (procedural) and content (declarative) knowledge. They hypothesize that the expert’s internal 

schema, compiled over a history of solving problems, contains process and content knowledge, and suggest 

that it is not feasible to attempt to structure knowledge elicitation to elicit only one or the other. 

63The network is (in part) a set of prerequisite constraints and hierarchical relationships between topics, 

not a specification of how topics will be ordered when tutoring. 

6,fThey seem to have little trouble accepting an explanation of the declarative nature of the network when 

it is presented to them, but fall back into procedural interpretations of it when designing tutors. 
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We observed four phenomena related to the difficulty of assimilating the declarative 

nature of the topic network, described below. All of these occurred in the first months of 

the study, after which Camp had a deeper understanding of the declarative nature of the 

domain knowledge. 

Confusing parts with prerequisites. We noted several instances where Camp in¬ 

terpreted the relationship between two topics as “topic X needs to be taught before topic 

Y” and used a prerequisite link when the topics actually had a part-whole relationship and 

the part link was more appropriate.65 

Confusing evidence with action. On one occasion, while we were discussing Mis- 

KU values in the student model, Camp said “so if it’s confirmed, then we go remediate it, 

right?” He forgot for a moment that Mis-KIJ evidence in the student model does not imply 

branching immediately to remediate, but that this information may (or may not) be used 

at some later point to cause the Mis-KU to be remediated. 

Inversion of a subordinate topic relationship. Figures 5.10 and 5.11 show non- 

optimal topic relationships as drawn by Camp (on the left), along with the more appro¬ 

priate representation that was eventually included in the curriculum (on the right). Topic 

{Gravity} is subordinate to (i.e. a part of) topic {Forces-at-a-distance}, as shown to the 

right of Figure 5.10. Normally topic parts are taught before topics, so {Gravity} should be 

taught before {Forces-at-a-distance}. Camp’s original sketch of the relationship between 

these topics is shown on the left in the figure. He was thinking of the topic net procedurally, 

and put {Gravity} before {Forces-at-a-distance}.66 

Linearization of a subordinate topic relationship. {X-axis-forces} and {Y-axis- 

forces} are subordinate to {FBD-write-equations}, as shown to the right of Figure 5.11. 

Normally the first topic listed in the Part slot to be taught first, and Camp wanted {X- 

65The difference is significant because strategies can specify that parts and prerequisites be ordered 

differently. 

66Similarly, beginning computer science students often have difficulty conceptualizing that in depth first 

network traversal sibling nodes are evaluated before their parents, even though the search starts with the 

parents. 



As specified bv domain expert: Correct connections: 

Figure 5.10 Inversion of Subordinate Topic Relationship 

axis-forces} is taught before {Y-axis-forces}. His initial sketch of this relationship is shown 

on the left in the figure. Again he was thinking of the net procedurally, showing the topics 

in the order they would be presented to the student. 

The above discussion underscores the importance of considering the compatibility be¬ 

tween the cognitive model offered by an interface or representational framework, and the 

mental models that users bring with them to the task. If enough information is available this 

compatibility should be considered during system design. In any case, software evaluators 

should be aware of incompatibilities between cognitive and mental models. In some cases, 

such as when the user has a misconception, the best approach to the incompatibility may 

be to instruct the user in a new model, rather than alter the interface to reflect the user’s 

model. This was the case for the domain expert’s tendency to see a declarative network as 

a procedural network. 

5.5.2 Cognitive Factors in Curriculum Size and Complexity 

In Section 5.4.3 we discussed how tradeoffs between domain knowledge modularity, 

knowledge overlap, and discourse smoothness made the domain expert’s job more diffi¬ 

cult. We found that the domain expert was more often frustrated by the sheer size of the 
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As specified bv domain expert: Correct connections: 

Figure 5.11 Linearization of Subordinate Topic Relationship 

knowledge base than these epistemological issues. In addition, it was observed that issues of 

curriculum size and complexity were more pronounced than conceptual vocabulary issues.67 

Here we document how cognitive factors relate to the size and complexity of the knowledge 

base. 

For most of the first two and a half months of the project Camp worked several days 

a week and arrived at the final version of the topic network only after repeated revisions. 

He had constructed a complex mental model of the curriculum, much of which involved 

subtle reasoning and distinctions about the meanings of topics, their boundaries, and their 

relationships (such as the meanings of and difference between {X-axis-forces} and {X-axis- 

equilibrium}). For most of the later months of the project Camp worked weekly, often 

focusing on a small part of the network for a long period of time; some the details of the 

curriculum faded from his long term memory or were not immediately accessible without 

reconstructing his reasoning process. He often found it difficult to “get his head around” 

[his words] the entire curriculum, i.e. maintain an accurate mental model of it. Figure 5.12 

has several quotes that illustrate Camp’s frustration with the magnitude of the curriculum 

he was designing (see also the quotes in Section 5.3.1). 

6TuThe biggest problem for Camp is not with the syntax or semantics of the framework, but with the 

semantics of the [curriculum]” [lab journal 3/22/90]. 
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• “There are so many fuzzy little pieces” [6/26/89, referring to breaking {Linear- 

equilibrium} into parts]. 

• “I get really discouraged trying to think of which is the best way to [organize the topic 

net]” [7/5/89]. 

• “Part of what’s taken a lot of time is all this checking back [to previous work sheets and 

how] to make [this work sheet] different or consistent with [previous ones]” [8/3/89]. 

• “One of the big issues is: How does the person dealing with the content figure out 

where they are?” [10/25/89]. 

• “It’s so easy to fall off the wagon with some of this stuff .. .1 start putting stuff in 

[{Rigid-bodies}] that belongs in [{Newtons-3rd-law}]” [3/6/90]. 

Figure 5.12 Quotes about Curriculum Size 

• “Oh God! we can’t do everything for everybody here! Argh!!” [7/30/89]. 

• “I keep thinking there is some awful path in there that is just insane, where if someone 

stepped in there they would get garbage” [8/1/89]. 

• “No matter what way they go though here, fastways, backward, forward—you have 

to make sure it makes sense!” [8/8/89]. 

• About test running the tutor to debug the curriculum: “After two or three wrong 

answers I get my brain sort of unhinged as to where I am” [11/14/89]. 

Figure 5.13 Quotes about Modularity 

A related problem, mentioned in Section 5.4.3, is the difficulty of designing the knowledge 

base modularly, trying to account for the many possible paths through the curriculum and 

various uses for each object. Keeping track of all of these possibilities puts strong demands 

on working memory. The quotes in Figure 5.13 illustrate Camp’s occasional frustration 

with these demands. 

In summary, the curriculum is large and complex, and in order to design or modify it the 

domain expert needs to maintain an accurate mental model. This complex mental model 

can fade (become less accessible or less accurate in long term memory) if is it not used 

(accessed) regularly. In addition, designing and modifying the curriculum requires having 
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large parts of this mental model in working memory to reason about multiple interactions 

between pieces of it, and this is sometimes challenging. In the next section we describe 

aspects of the KAFITS system and our knowledge acquisition design process designed to 

mitigate these and other problems. 

5.5.3 Design Principles 

Our goals were to design the KAFITS system and the knowledge acquisition process for 

power, efficiency, and ease of use. We have discussed some of the many design tradeoffs 

and cognitive considerations involved in meeting these design goals. Here we abstract a set 

of design principles which describe how we addressed the design goals and which also serve 

as recommendations for future investigations of ITS knowledge acquisition interfaces and 

methods. We list these design principles below, and in succeeding sections expand upon 

them, giving examples of how they were followed. 

1. Cognitive fidelity of the interface. The interface should provide the user with a 

clear and accurate cognitive model of the underlying framework. 

2. Accessibility and management of the domain knowledge. The user should be 

able to view the (static) knowledge base in multiple ways and easily navigate among 

related items. 

3. Monitoring and testing the knowledge base. It should be easy for the user to test 

and modify the knowledge base and monitor dynamic processes and data structures. 

4. Assistance and efficiency of the interface. The interface should have features 

which facilitate efficient work and provide assistance when needed. 

5. Managing the curriculum development process. The knowledge acquisition 

process should facilitate both the on-line and off-line aspects of building a tutor 

throughout all phases of the project. 
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Cognitive Fidelity of the Interface 

In designing the KAFITS framework we tried to follow this “conceptual simplicity de¬ 

sign guideline”: no conceptual aspect of the framework should be so complex that it can’t 

be clearly represented visually in the interface.68 Though this guideline was not followed 

completely, it helped us keep the representational structure simple. Visually reifying the 

structure of the framework through the topic network display and the Browser reduces the 

user’s working memory load by “off-loading” information to the interface that would nor¬ 

mally take up space in the user’s working memory, and reduces demands on long term mem¬ 

ory because the interface serves as a reminder of the underlying representational structure. 

The following concepts and structures were given visual counterparts in the interface:69 

• The structure of the curriculum and relationships between topics is reified by the topic 

net graphical display; 

• The topic level displays illustrate that topics are composed of several levels of under¬ 

standing; 

• The hierarchical organization of information (i.e. the types, instances, and slots) is 

reified by laying out adjacent type, instance, and slot tables in the Browser, with the 

instance table visually changing when the type table is clicked on, and the slot table 

visually changing when the instance table is clicked on; 

• Strategies are reified by the graphical PAN displays and the switch set displays; 

• The correspondence between Browser operations and the things they operate on is 

reified by locating pop-up menus of type, instance, and slot operations directly below 

the corresponding tables. 

68This applies to the conceptual level of the framework. At the implementation level this restriction does 

not hold. 

69These interface features relate to the static information in the knowledge bases; later we will list features 

related to dynamic information and processes. 
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Some structural aspects of the framework do not have corresponding interface realiza¬ 

tions, most notably the four-level decision model and the structure of the student model. 

An interface showing the decision levels would be more important if we dealt more with 

multiple strategies at each of the four levels, and could be added in the future. An interface 

for the student model could also be added in the future, assuming a more general framework 

for diagnosis and student modeling is developed (as will be discussed in Section 6.4). 

Domain Knowledge Accessibility and Management 

The user should be able to view the knowledge base from different perspectives and 

different levels of abstraction and should be able to easily navigate among related items. 

The Referenced-by slot, and the “recent-instances,” “browse-slot,” “browse-instance,” and 

“describe-connections” browser operations allow the user to take note of and/or access 

instances that are connected to the instance currently being worked on in the Browser. The 

following features gave the user a variety of levels of granularity from which to view the 

curriculum: the topic net shows the entire curriculum; topic level displays show the topic 

levels of all current topics; the “describe topic details” operation on topic nodes gives an 

overview of the presentations called by each topic level; and the Browser shows the lowest 

level details of each topic and presentation. 

Monitoring and Testing the Knowledge Base 

It should be easy for the user to exercise the knowledge base, monitor how knowledge 

base items are being evoked during tutoring, monitor changes in dynamic data structures, 

and modify the contents of the knowledge base. Dynamic processes in the tutor are reified 

by: highlighted topic net nodes that follow the path through the curriculum, highlighted 

PAN nodes that follow the flow of control through strategies, and topic level displays that 

show movement from one topic level to the next and show dynamically changing values of 

the student model. In addition, the KAFITS interface facilitates easy movement between 

testing and modification tasks, as mentioned previously. 
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Assistance and Efficiency Features 

The non-technical background of the assumed user and the preciousness of the domain 

expert’s time underscore the importance of assistance and efficiency features. Several help, 

assistance, and efficiency features were provided, as described in Section 3.5.1, including: an 

on-line help/info system, disaster avoidance, data type checking, and keystroke short-cuts. 

In addition, the features listed in previous sections related to cognitive fidelity, knowledge 

base accessibility, and monitoring are all assumed to contribute to easy and efficient use.70 

Managing the Curriculum Development Process 

The knowledge acquisition method should facilitate both on-line and off-line aspects of 

the design, implementation, and testing phases. Two issues we encountered are worthy of 

note: off-line support and file management, each described below. 

Work sheets. When the statics tutor project began, we had envisioned much of the 

design work being done on-line. However, we found that off-line tasks were sometimes more 

appropriate, and that off-line support artifacts were needed.71 For instance, we envisioned 

the domain expert working with the Browser to design the curriculum in much the same way 

that a writer uses a word processor to design a document. But it soon became clear that 

a paper worksheets would better fit our needs for opportunistic design and working on the 

curriculum away from the lab (such as at home). Appendix M has samples of worksheets 

used. Their format went through several revisions, according to input from the domain 

expert and knowledge base managers (for example, the diagram sketching area to the right 

on the topic worksheet was suggested by Camp as a way to get a quick visual overview of 

the contents of the topic72). 

70We make a tentative assumption that increased ease of use increases efficiency, but this has not been 

tested and may not be true for some features or for advanced users. 

71 It is conceivable that new software tools could be added that would alleviate the need for the off-line 

tasks and artifacts we found necessary. 

72Camp mentioned that a graphical topic overview such as this would be helpful to have on line, but this 

was not implemented. 
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Knowledge base hard copy. At first the Saved-instances file (see Section 3.4.1) was 

used only to store code representations of the knowledge base objects so that they could 

be loaded back into the system. We thought the KAFITS interface would be a sufficient 

tool for all tasks involving inspection of the knowledge base. But we found that a hard 

copy printout of the knowledge base, formatted for readability (see Appendix I), had some 

advantages. It was easier for the user to see at a glance (or on adjacent pages) all of the 

information related to a specific topic or presentation. Also, the domain expert could take 

the printout home and proofread it, marking changes for later revision. 

File management. Although mundane, supervision in managing knowledge base ver¬ 

sions, paper forms, and edit records was important. Before the Saved-instances file feature 

was completely working, Linton spent a significant amount of “non-productive” (in retro¬ 

spect) time combining and organizing edit records. Gonzalez initially started a new edit 

record every working day and also tried to organize editing records according to purpose, 

such as “new instances” and “modified instances.” It was eventually suggested that she 

use a single edit record for a week or more, until the next version of the code-image was 

created, but until this happened she spent a significant amount of non-productive time 

managing, combining, and re-combining edit record contents. Accordingly, one of the jobs 

of the knowledge engineer is to supervise and provide guidance on data file management. 

5.5.4 User Participatory Design 

Our user participatory design process has given rich and detailed information on usabil¬ 

ity. We used this information to improve the KAFITS system and the design methodology 

and tried to follow two guiding implementation principles: 1. design in what the user needs; 

2. don’t add anything else (Occam’s Razor). Below we argue for the importance of user 

participatory design by describing features that directly resulted from user participation as 

well as features that were designed without user participation that were not usable.73 

73The prototype KAFITS system existing at the beginning of this study was in part based in several years 

experience working with educators (see Section 5.4.1). These experiences had a significant effect on the 
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Features inspired by user participation. We believe the following features would 

not have been conceived without user participation: 

• topic level displays (Section 3.2.3), 

• pop-up operations menus (Section 3.5.1), 

• readable Save-instances file (Section 3.4.1), 

• topic detail feature (Section 3.5.1), and 

• numerous menu and Browser operations. 

Features modified due to user participation. We delayed the implementation of 

some features until sufficient experience working with users was gained to inform the design 

specifics. This “wait and see” design attitude was quite useful since our conception of 

features changed, or we discovered that some features were not needed, before we expended 

the effort of implementing them.74 Below we list features which were conceived without 

user participation, but were subsequently modified due to user participation: 

• In the original framework all presentation objects had only slots for pointing to an 

example instance (which specified the picture, crane boom set-up, etc.) and a ques¬ 

tion instance (which specified the question, hints, elaborations, etc.). KAFITS was 

designed in this way for flexibility purposes, as explained in Section 3.1.2. However, 

this extra level of indirection proved to be very frustrating for the users, so example 

design of the representational framework, but very little of this prior experience involved on-line work, so 

feedback about the KAFITS interface came mostly during this study. 

74 As a programmer the author has experienced the common desire to implement new program tools, add 

new features, and re-conceptualize representational structures based solely on his own experience using a 

program. Code changes, usually for purposes of generality, clarity, and/or efficiency, can be made without 

discretion if they affect only the implementation level, but caution must be taken if they affect the conceptual 

level of the system or the interface to the user. The software developer is not a typical user, and his needs and 

conceptualization of the software might differ radically from those of a typical user. Acting on the temptation 

to add new capabilities to a system (sometimes called “creeping featurism”) can also drain valuable time 

from a software development project. Thus an “implement only as needed” attitude is recommended. 
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and question slots were added (via mixins, described in Section 3.1.4) to presenta¬ 

tions. This was cited by one knowledge base manager (Gonzalez) as a substantial 

improvement. 

• The student model was not implemented until one or two months after the project 

began, since during that time the domain expert had come sufficiently up to speed to 

provide important suggestions for its design. 

• On severed occasions the syntax of object slots was changed to improve usability, for 

example, the correct answer slot, which contains a fist of indices into the answer- 

description fist, originally contained the correct answers verbatim. It was originally 

thought that the additional effort of representing the information twice would be 

offset by not having the indirection of using an index, but this proved to be a false 

assumption. 

• Other user motivated changes included: changes to worksheet forms, changes to the 

crane boom simulation, and changes to the conceptual vocabulary. Also see Section 

5.2 for changes made to KAFITS due to data from student trials. 

Answers without questions: features implemented but not used. Another way 

to argue for the importance of user participation is to fist features that were implemented 

without user input that were deemed inadequate or went unused.75 Such features include: 

• the “recent instances” feature, 

• the “topic details” feature, 

• most of the command-key short-cuts, 

• the help/info system, 

• and several menu and browser operations. 

75This is not a strong argument because the features may have been underutilized due to inadequate 

training, poor interface design, or idiosyncratic characteristics of the participants. 
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With the help system in particular, we discovered that the design was not completely 

responsive to the user’s needs. Most of the assistance the domain expert needed was along 

the lines of “something funny is going on here” or “I thought I was here [in this mode or 

function] but I ended up here.” A (standard, non-intelligent) help system is of little use 

in such situations. After the first couple of months the domain expert had extremely few 

conceptual questions regarding the framework or the interface. However, the knowledge 

engineer did occasionally give unsolicited advice of a conceptual nature while looking over 

the domain expert’s shoulder. If the domain expert had a misconception about the system, 

or was in a situation where he could have used a more efficient method to accomplish a 

task, he did not know it, and a traditional help system would not be useful. 

However, failure to learn or utilize software features may be due to fundamental psycho¬ 

logical phenomena. In “Paradox of the Active User,” Carroll & Rosson [1987] point to two 

tendencies of users using sophisticated software such as word processing programs: “peo¬ 

ple have considerable trouble learning computers,” and “their skills tend to asymptote at 

relative mediocrity.” They claim that these are empirical phenomena and hypothesize that 

they are due to fundamental conflicts in the user’s cognitive and motivational strategies, 

rather than poor software design. They describe two “paradoxes.” The first paradox, called 

“production bias,” is that people’s desire to get the job done often reduces their motivation 

to learn new ideas, even when the new ideas might get the job done faster. The second, 

called “assimilation bias,” is that irrelevant similarities between new information and old 

information (eg. other features of the same program, other programs, or other technical 

artifacts) cam mislead or blind the user so that they make assumptions about the software 

that inhibit learning. 

User participation and software testing. We have argued for the importance of 

user participatory design by documenting aspects of the system that benefited from user 

participation and aspects of the system that were poorly designed due to lack of user 

participation. User participation is useful for software testing as well as software design. 

For most of the study we had at least two users using the system. Each change we made 
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to the software was tested, if not rigorously then at least realistically by two users from the 

target audience. (But this can be frustrating for them, as mentioned in Section 4.1.4.) 

5.5.5 Summary of Cognitive Considerations and Interface Design 

Designing systems for usability requires considering cognitive aspects of software use. 

Since no a priori theory exists which will predict the cognition of an average user (or any 

particular user), and since new technology, by its very nature, introduces unknown variables 

into situations, user participation is crucial to ensure usability in software design. In this 

Section we discussed several cognitive factors for designing ITSs: 

1. Designers must evaluate whether the cognitive model they want to convey corresponds 

with the mental model the user actually builds; 

2. The user’s previous knowledge must be considered, especially when misconceptions or 

confusion with mundane uses of terms could interfere with understanding the system; 

3. Teachers’ mental models of curriculum tend to be procedural in nature (as documented 

by four observed phenomena), and this must be considered when training them to use 

a declaratively represented curriculum knowledge base. 

4. The domain expert’s mental models of curriculum and software are complex and 

put strong demands on working memory and long term memory (as documented by 

numerous quotes); 

5. Designing cognitive fidelity into the interface helps to convey the correct cognitive 

model, reduces demands on working memory by off-loading information onto the 

medium, and reduces demands on long term memory by reminding the user of the 

underlying representational framework; 

6. Failure to learn or utilize software features is sometimes due to a fundamental conflict 

between the user’s goals of producing vs. learning, rather than poor software design. 
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We presented several ITS knowledge acquisition interface design principles for realizing 

(and dealing with tradeoffs between) our design goals of power, efficiency, and ease of 

use. These principles relate to: cognitive fidelity; facilitating accessibility, monitoring, 

and management of both static and dynamic information; assistance and efficiency; and 

providing support for off-line activities. We also gave two implementation guidelines related 

to user participation: “include what the user needs,” and “don’t include anything else.” To 

argue for these guidelines and for user participation in general, we documented features 

affected by user participation, and features that were poorly developed because of lack of 

user participation. 



Chapter 6 

SUMMARY AND RECOMMENDATIONS 

In this Chapter we summarize the results and contributions of this study and discuss 

limitations to the generality of these results and contributions. Then we offer several ex¬ 

tensions to our framework as recommendations to the ITS research community, including: 

(1) a generalization of our software design which provides a context within which to com¬ 

pare KAFITS with other generic ITSs and serves as a design specification with which to 

build future generic tutor shells; (2) a general theory for incorporating knowledge classifi¬ 

cation schemes (“K-types”) into intelligent tutors; and (3) a discussion of “collaborative, 

inspectible, persuadable computer tutors.” Then we give a number of recommendations 

for future research; and finally we offer recommendations to the educational community, 

including a vision for how generic ITS systems could be incorporated into public education 

and industry training. 

6.1 Contributions 

We have reported on the formative evaluation of a knowledge acquisition tool for intel¬ 

ligent computer tutors and on a case study of the tool being used by three educators to 

design a tutor for statics. Using the case study and formative evaluation methodologies has 

allowed us to describe a benchmark ITS knowledge acquisition tool and to identify key design 

issues and design tradeoffs for building similar tools. We have also described a benchmark 

ITS knowledge acquisition process and identified key design issues and tradeoffs for the ITS 

design process. Below we summarize the main contributions of this study. 

238 
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Involving Educators in ITS Design 

We have demonstrated that it is feasible to involve educators in ITS construction at a 

highly collaborative hands-on level, i.e. fully participating in design, implementation, and 

testing.1 Building an ITS is analogous to writing a textbook in terms of the magnitude 

of expertise and effort required, so we expect only select teachers to participate in ITS 

construction. We listed several characteristics of instructors that make them good ITS 

domain experts (see Section 5.1.2). We described the method and content of our instructor 

training in Section 5.1.2 and summarize the overall time commitment below. Building an 

ITS is at times frustrating for the domain expert (as described in Section 5.1.3); however it is 

on the whole rewarding and enjoyable (see Appendix C). Finally, the domain expert’s initial 

knowledge, mental models, and cognitive limitations must be considered when designing 

knowledge engineering sessions and tools (see Section 5.5.2). For instance, we have identified 

a tendency for educators to construct procedural internal representations of ITS curriculum 

even when this information is declarative (non-procedural) (Section 5.5.1). 

A Generic ITS Representational Framework 

We have designed, implemented, and successfully used a generic framework for repre¬ 

senting “what to teach” and “how to teach it” in intelligent tutors. The framework in¬ 

cludes: a conceptual vocabulary that is designed for expressiveness and usability; a cur¬ 

riculum model consisting of a topic network, misconceptions, knowledge types, and levels 

of performance/mastery within topics; a method for representing tutorial strategies (called 

Parameterized Action Networks), and a method for overlay student modeling. Our frame¬ 

work incorporates some considerations from instructional design theory and is unique among 

generic ITS frameworks in that multiple tutoring strategies are represented and dynamically 

selected during tutoring. 

1 Though others have built ITS shells intended to be used by non-programmers we know of no other 

inquiry that studies educators’ use of such a system. 
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We discussed issues and design tradeoffs affecting the representation of domain knowl¬ 

edge in intelligent tutors and gave mechanisms and solutions for them (see Figure 5.9). The 

main tradeoffs identified were: (1) the expressiveness/power/precision vs. the understand- 

ability/simplicity/usability of the conceptual vocabulary, and (2) the modularity/flexibility 

vs. smooth pedagogical/discourse flow of the curriculum. Although it is desirable to sepa¬ 

rate declarative and procedural knowledge in ITS knowledge bases, we have noted that some 

degree of interdependence between declarative and procedural information is unavoidable 

(Section 5.4.3). 

An ITS Knowledge Acquisition Interface 

We have implemented and successfully used a set of tools for acquiring pedagogical and 

domain knowledge from instructional experts. The tools support an accurate and fairly 

complete cognitive model of the underlying representational framework of the system by 

visually reifying key system concepts and structures. Tools were built to browse (inspect 

and navigate within) the knowledge base, modify the knowledge base, test the knowledge 

base, and monitor the state of the system while it is tutoring. The tools also constitute 

an experimental workbench usable by instructional researchers for rapid prototyping and 

testing of curriculum and tutoring strategies. In Section 5.5.4 we discussed how our user- 

participatory design process led to a highly usable system, and we discussed issues and 

tradeoffs for designing powerful yet usable tools. 

An ITS Knowledge Acquisition Process 

We have outlined a process for involving educators in building an ITS using knowledge 

acquisition tools. The ten-step process used to build the statics tutor (see Figure 5.1) 

spans design, implementation, and testing, uses several knowledge acquisition techniques, 

and enables the instructor’s conception of the curriculum to evolve through classroom-like, 

CAI-like, and ITS-like phases. We have also identified important issues and tradeoffs for ITS 

knowledge acquisition, covering issues of domain expert training, important characteristics 
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of domain experts and knowledge engineers, plus techniques and guidelines for conducting 

knowledge acquisition sessions. 

Quantitative Analysis of the Design Process 

The statics curriculum covers 41 topics and misconceptions and represents about six 

hours of on-line instruction.2 Our analysis of size, complexity, and other properties of the 

topic network and knowledge base is given in Section 5.3 (these properties allow compari¬ 

son of the statics knowledge base with knowledge bases of other domains). The main result 

of our person-hour analysis of the design process (in Section 5.3.2) is that it took about 

100 hours to build the statics tutor per hour of on-line instruction,3 or about 85 hours of 

development time for each hour of on-line instruction if training is subtracted. These fig¬ 

ures are (surprisingly) comparable to similar estimates for building traditional computer 

aided instructional systems [Gery 1987], but should be interpreted cautiously because they 

incorporate many assumptions and because hours of effort per hour of instruction is not 

a very satisfactory metric for the effectiveness of ITS tools (see Section 5.3.2). The major 

conclusion we take from these figures is that intelligent tutors with modular knowledge 

representation and flexible tutorial response can be built with about the same effort as CAI 

systems (which do not have this degree of flexibility). Additional figures are: implementa¬ 

tion took about six times as long as design; total training time was 40 hours for the domain 

expert and 6 hours for the knowledge base managers; and the knowledge engineer’s time was 

about one third the domain expert’s time. (See Figures 5.6 and 5.7 for additional results of 

quantitative analysis.) 

2Much of our analysis is extrapolated from data collected during the design and testing of the Linear- 

equilibrium portion of the statics curriculum, which constitutes about one quarter of the entire statics 

curriculum. 

3This figure includes both production and training time spent by the domain expert, knowledge engineer, 

and knowledge base managers to design, implement, test, and refine the statics tutor using the KAFITS sys¬ 

tem; but does not include the development of the KAFITS system itself, building the simulation environment 

(the crane boom), or creating graphics pictures. 
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Other Contributions to ITS Research 

The contributions mentioned above all relate to ITS knowledge engineering, the focus 

of our study. There are several tangential contributions to the ITS field that are not related 

to this focus: 

• Student Modeling. Our overlay student model is more sophisticated than most student 

models reported in the literature and has severed unique features, including nonmono¬ 

tonic reasoning, reasoning with uncertainty, and multiple levels of inferencing. 

• Student Initiative. The KAFITS student initiative feature represents the beginnings 

of a facility allowing students to have significant control over the style and content of 

their learning (see also Section 6.3.4 below). 

• Strategy Representation. Parameterized Action Networks (PANs), described in Sec¬ 

tion 3.1.7, are an efficient and powerful way to represent multiple tutoring strategies, 

and facilitate easy prototyping and experimentation of tutoring strategies. 

• ITS Design and Evaluation. The evaluation of ITSs is a research issue in itself, and we 

have discussed and given examples of many evaluation methods and tradeoffs (Section 

2.5). Our study is an example of using a combination of about a dozen evaluation 

methods (mainly qualitative methods, with some semi-quantitative methods) to in¬ 

vestigate an exploratory research area. 

Relation to Previous Work 

Our survey and analysis of the AI and ITS literature (Chapter 2) in the areas of generic 

ITS shells, empirical research and iterative design, knowledge acquisition methods, and 

evaluation methods offers many general suggestions to ITS designers in each of these areas. 

In Chapter 2 we also relate our study to previous work in these areas (at the end of each 

of the sections). In addition, below (in Section 6.3.2) we propose a classification of ITS 

systems which places our work in perspective with previous and future generic ITSs. 
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6.2 Limitations 

Methodological Limitations 

In Section 1.5 we noted general methodological factors which limit our ability to gener¬ 

alize our results, including: that we studied the building of a single tutor in one domain, 

that there was only one teacher (and a total of three users of the software) involved in 

the study, that the researcher’s objectivity was potentially affected because he was also the 

knowledge engineer and software designer, and that the software was not constant over the 

course of the study since it was periodically modified according to user needs. Limitations 

due to the low number of subjects and domains is partially mitigated by the fact that our 

original framework was designed from years of experience prior to this study working with 

educators in computer tutoring (see Section 5.4.1). 

Limits to the KAFITS System and ITS Design Process 

Here we note specific limits to the contributions mentioned above (our list of limitations 

parallels the list of contributions). 

• Involving Educators in ITS Design. Though we have demonstrated that it is feasible 

and useful to involve educators in ITS design, we have not demonstrated that incorpo¬ 

rating ITSs into education is beneficial or cost-effective. We discuss (below, in Section 

6.5) issues in using KAFITS-built tutors in classrooms. 

• A Generic ITS Representational Framework. Intelligent tutoring systems fall roughly 

into one of two categories: curriculum-oriented tutors for teaching declarative knowl¬ 

edge (including concepts, facts, and principles), and expert system tutors which teach 

procedural knowledge and contain rule-based representations of the domain and stu¬ 

dent knowledge (usually having sophisticated diagnostic capabilities). KAFITS is 

most suited to building curriculum-oriented tutors for teaching declarative knowl¬ 

edge. Though the framework does not prohibit building other types of tutors, we 
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have no data yet on how KAFITS needs to be modified to build procedural tutors. 

In Section 6.4 we discuss future research in these areas. 

• An ITS Knowledge Acquisition Interface. We are confident that our domain knowl¬ 

edge base Browser and our monitoring tools are robust and usable (though many 

improvements are possible).4 The strategy interface is still in prototype form; it has 

not been used extensively by typical users. Similarly, the student interface an early 

prototype. We discuss future research on the KAFITS interfaces below (in Section 

6.4). 

• An ITS Knowledge Acquisition Process. Since we have gone through our ITS de¬ 

sign/knowledge acquisition process in its entirety only in one domain, it is only a 

base-line from which to build future ITSs.5 Our process does not include steps for 

task analysis of domain expertise (because we were not representing procedural do¬ 

main knowledge) or cognitive studies of students’ misconceptions (since the domain 

expert had participated in previous such studies) which are necessary for some do¬ 

mains. 

• Numerical Analysis. The validity of our numerical results is particularly susceptible to 

uncertainty due to our low number of subjects (and single domain). (Though we argue 

for the prototypicality of the subjects in this study in Section 4.1.2.) The quantitative 

results are meant to be order-of-magnitude and require further verification. 

4 Note however that KAFITS is still a prototype system. For any type of software the effort required to 

move the software from the prototype stage to a bug-proof “product” with documentation is considerable. 

5This process worked for a domain expert who had some previous exposure to ITS concepts and otherwise 

was not familiar with the design process. The design process (especially training) would have to be altered 

for experts with more or less starting knowledge. 
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6.3 Recommendations and Proposals to the ITS Research 

Community 

6.3.1 Recommendations 

In general, we have recommended more teacher participation in building ITSs and better 

evaluation in ITS research. Specific recommendations for those designing ITSs or doing 

ITS-related research are distributed throughout this document: in Section 2.1.3 we listed 

six desirable features for ITS shells (or generic ITSs); in Section 2.2 we recommended 

that ITS designers become more familiar with instructional design theory and that ITSs 

incorporate knowledge type classification schemes; in Section 2.2.3 we listed seven “basic 

areas of instruction” that we recommend be included in all ITSs; in Section 2.3.1 we listed 

six steps to follow in doing ITS research; in Section 2.3.1 we recommended that an iterative 

design process be combined with a user-participatory design process for building ITS tools; 

in Section 2.4 we described a number of ITS knowledge acquisition methods (summarized in 

Figure 2.3) and discussed tradeoffs in using them; in Section 2.5.3 we described a number 

of ITS evaluation methods (summarized in Figure 2.4) and recommend using primarily 

qualitative and formative evaluation methods for “exploratory” studies and for reporting 

within the research community. 

6.3.2 NEO-KAFITS and Class Z Tutors 

Below we generalize the KAFITS representational framework to provide a pruned-down 

design specification on which to base future work and to provide a framework for com¬ 

paring KAFITS with other ITS shells. We also discuss tradeoffs in deciding how much 

“intelligence” or inferencing power to include in an ITS. 
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NEO-KAFITS 

The KAFITS representational framework is a prototype and we do not expect future 

research to duplicate it exactly as specified in this document—some of its features are more 

essential than others. Therefore we offer a high level design specification of a generalization 

of KAFITS, called NEO-KAFITS (after Clancey’s [1986b] NEOMYCIN, a generalization 

of the MYCIN system).6 A high-level specification of the NEO-KAFITS generic ITS 

framework is as follows: 

1. Three knowledge bases are used. Curriculum objects and their attributes are stored 

in a domain knowledge base. Tutoring rules or strategies, which access the infor¬ 

mation in the domain knowledge base to produce tutorial behavior, are represented 

using a clearly defined set of actions and predicates, and are stored in a strategic 

knowledge base. The system also has a dynamic knowledge base which includes 

dynamically updated models of the student’s mental state and the tutorial discourse.7 

2. Curriculum is represented in a curriculum or domain knowledge network which 

includes topic nodes and other curriculum entities, such as Mis-KUs and Synthesizers. 

3. The framework is object-oriented, including but not limited to these object types: 

topics (used to specify the “macro-level” of instruction), and presentations (used 

to specify the “micro-level” of instruction). 

4. Topic objects are classified according to knowledge type (see the discussion in Sec¬ 

tion 3.1.5 on knowledge types). 

5. The nodes of the topic network are related by a variety of topic links, which may 

include, but are not limited to, prerequisite and subsumption links. 

6NEO-KAFITS is a generalization of the KAFITS representational framework, but not the KAFITS 

knowledge acquisition interface. 

7Refinements on these three knowledge bases are possible, such as representing the student model and 

discourse models in separate knowledge bases, and distinguishing diagnostic rules from tutoring rules. A 

knowledge base for domain expertise is also needed for systems that include a performance model of domain 

problem solving. 
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6. Topics can have multiple levels of understanding (or performance or mastery) (see 

Section 3.1.5 for a discussion of topic levels). 

7. Presentation objects define the expository and inquisitory interactions with the 

user, including specifications of the learning situation and the task given to the learner. 

8. A layered overlay student model is used which calculates its values as follows: 

topics values are based on topic levels, topic level values are based on presentations, 

and presentations values are based on individual student transactions (see Section 

3.3). 

The NEO-KAFITS representational framework is a powerful (general, extendible, flex¬ 

ible, expressive) and usable (understandable and non-complex) core on which to build 

KAFITS-like knowledge acquisition tools. The following specifics of the KAFITS system 

have been extracted: the four-level decision model; the use of PANs to represent strategies; 

the specific types of topic network nodes and links; the specific topic levels; all but two of 

the object types; the names of the object slots, primitive actions, and strategy parameters; 

and most features of the KAFITS student model. 

Like KAFITS, NEO-KAFITS is best suited for non-procedural domains which do not 

require rule-based representations of expert and novice knowledge. It is also best suited for 

directive (or curriculum driven) tutoring as opposed to reactive (or coaching or diagnosis 

driven) tutoring.8 9 In addition, since it is curriculum-driven, domains with highly inter¬ 

active overlapping topics, in which it is difficult to distinguish individual topics or in which 

many topics are taught simultaneously, are not well suited for NEO-KAFITS.10 

aNote that considerable student control is still possible in NEO-KAFITS systems. 

9These opinions are subject to change as a result of future studies using KAFITS in procedural domains 

or with reactive tutoring strategies. 

10Rich interactive learning environments are best suited for such domains, but representing domain knowl¬ 

edge in these domains is difficult, so guiding and measuring student learning will be difficult for any style of 

computer tutor. 
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Class Z Computer Tutors: A Proposal 

It is difficult to make direct comparisons of this work with other ITS research because re¬ 

search goals differ among research efforts. Unlike our work, most ITS research does not have 

generality as a main goal, and instead focuses on: embodying a specific theory of cognition, 

learning, or instruction (such as Anderson’s ACT* theory and Merrill’s component display 

theory); applying a specific AI technology to computer tutors (such as machine learning or 

case-based reasoning); and/or optimizing learning in a specific domain (such as algebra or 

PASCAL programming). Efforts that do have generality as a main goal attempt to design 

powerful and general frameworks but do not focus on usability, teacher involvement, or the 

knowledge acquisition process (as was discussed in Section 2.1). However, in order to gen¬ 

eralize the results of this study and make recommendations for future work, we must put 

this work in context with previous studies. Toward this end we define characteristics of a 

class of generic ITSs that address our criterion for usability. The following characteristics 

serve as design guidelines for realizing the goals of practicality and teacher participation. 

• Separate domain and strategic knowledge bases. Domain knowledge and 

strategic knowledge should be represented in separate knowledge bases. The tutoring 

strategies or rules in the strategic knowledge base determine how and when to use the 

domain knowledge. Domain knowledge should be represented in a flexible manner, 

allowing multiple tutoring strategies to use it in diverse ways. 

• Clearly defined representational framework and conceptual vocabulary. 

The basic representational entities, their attributes, and the allowed relationships 

between them should be pre-defined or defined early in the design process (though 

minor modifications may occur during the ITS design).11 The syntax and semantics 

of the data structures of the domain and strategic knowledge bases should be explicit 

and general. 

11 This contrasts with ITS projects which start with design goals for the performance of the final computer 

tutor and then determine what representational and control formalisms will best suit their needs. 
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• Knowledge acquisition tools. Tools must be built which allow easy inspection, 

monitoring, and modification of knowledge bases. 

• Usability and understandability. The conceptual vocabulary and tools should be 

designed to be used by educators who are not computer scientists. 

We call intelligent tutors or ITS shells with these characteristics “Class Z computer 

tutors.” Class Z tutors bridge the gap between ITS research and practical application of 

this research, allowing educators to participate hands-on in ITS design and testing. For 

reasons given in the next section, Class Z tutors will tend not to incorporate “state of the 

art” AI technology that has not been “hammered out” and broadly tested (though they 

may employ novel strategies or structures using proven AI technology). Because Class Z 

tutors have clearly defined representational frameworks, their knowledge acquisition and 

monitoring tools, student modeling methods, and student interfaces can be standardized 

and used in many tutors. 

To put Class Z tutors and the KAFITS system in perspective with each other and 

with other ITS systems, we show a subsumption classification scheme of types of ITSs in 

Figure 6.1. This hierarchy is sparse because it is a prescriptive classification designed to 

emphasize and recommend important characteristics of generic ITS shells, not a descriptive 

classification designed to compare existing ITSs. 

There are five levels to the hierarchy: 1. ITSs are defined as in Section 2.1.1; 2. 

Generic ITS shells are defined and described in Section 2.1; 3. Class Z tutors are 

described above (we know of no system other than KAFITS that fits the definition of 

Class Z tutors); 4. NEO-KAFITS as described above; and 5. the KAFITS system as 

described in Chapter 3. KAFITS, NEO-KAFITS, and Class Z tutors employ AI modeling 

and knowledge representation paradigms but do not include heuristic search of problem 

spaces as is characteristic of many AI systems.12 We call them “low inference” systems, as 

described next. 

l2However, heuristic search is not excludedby these frameworks. 
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Figure 6.1 Class Z Hierarchy 
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“Low Inference” Intelligent Tutors 

Our experience building the statics tutor suggests that practical and effective intelligent 

computer tutors can be built without incorporating sophisticated heuristic search techniques 

or runable cognitive models of expert and student knowledge. The exclusion of these ele¬ 

ments may seem detrimental, but we argue that it is sometimes desirable to build tutors 

with these limitations. 

Inferencing in tutoring systems can happen in three areas: domain reasoning, tutorial 

reasoning, and diagnostic reasoning. The inferences performed by KAFITS in these areas 

are few and not very sophisticated: (1) Since our representation of the domain knowledge is 

not rule-based, we do not “reason” about the domain. (2) Our representation of strategies 

uses a procedural network, which, unlike some rule-based methods of representing strate¬ 

gies, does not require search among alternative tutorial actions,13 and does not plan ahead 

or backtrack. (3) Our student model performs inferencing through its several levels as 

described in Section 3.3 but does not employ search techniques. 

There are many areas where deeper forms of reasoning (more sophisticated search and 

inferencing) could be added to KAFITS to calculate what is canned or pre-determined, for 

example: 

• generating natural language rather than using canned text; 

• accepting natural language student input in the place of multiple choice menus and 

mouse gestures; 

• calculating which topics are prerequisites of other topics based on pedagogical prop¬ 

erties; 

• inferring correct answers, hints, and answer reasons based on an underlying represen¬ 

tation of domain knowledge, and; 

13Except for cases where a conflict resolution scheme is used to pick a node that “passes” because more 

than one arc emanating from a node “passes.” 
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• making the tutoring strategies self-imp roving based on successful student achievement; 

One reason we have not incorporated these more sophisticated computational mecha¬ 

nisms is that our study focuses on representational adequacy rather than inferencing power. 

That is, we have attempted to identify primitive actions and properties that are sufficient 

or necessary for encoding knowledge about what to teach and how to teach it, and have 

represented most of this knowledge in shallow forms. But there is a more fundamental 

reason for not incorporating some of this more sophisticated inferencing: the technology 

required is, with the current state of the art, not robust enough and/or (in cases requir¬ 

ing detailed cognitive task analysis) is too labor-intensive to meet our goals for practical 

intelligent tutors that can be built with educators participation. 

If all the knowledge in KAFITS (except the student model) is stored (canned), can 

it be said to be “intelligent?”14 Wenger [1987, pg. 5] describes the intelligence in ITSs 

by comparing ITSs “generative” capability with traditional CAI, noting that traditional 

CAI encodes an expert’s decisions while ITS encodes the knowledge and/or reasoning that 

underlies decisions. KAFITS is generative in that it generates tutorial dialog and infers a 

student model “on the fly” (at run time). The knowledge underlying this dialog is repre¬ 

sented explicitly in action networks. However, the distinction between encoding decisions 

and knowledge is not clear cut, since we can treat any tutoring ride as a decision for which 

there is a deeper reason or cause. For instance, the knowledge underlying KAFITS’s action 

networks is not represented explicitly. In fact, the enterprise of AI can be seen as an attempt 

to encode increasingly deeper (or more generative, abstract, and explicit) levels of meaning 

toward, in the extreme, encoding first principles from which all other information can be 

inferred. 

As an illustration of this progression from encoding decisions to encoding general rules 

and deeper principles, consider the following (“English-ized”) hypothetical ITS tutoring 

rules and principles, where each item is intended to be an abstraction or reason encompass¬ 

ing the previous one: 

14 We will ignore philosophical issues about the definition of intelligence. 
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1. If question-12 is answered wrong, give explanation-5. 

2. If the student gets a question wrong twice, then give a canned explanation. 

3. If the student is very confused, then give an additional level of feedback. 

4. Give students several opportunities to think about each situation so that they may 

learn from their mistakes, then scaffold feedback of increasing levels of specificity. 

5. Learning happens through an active process of concept formation while trying to 

account for new information within in the context of previous knowledge. 

This progression of hypothetical ITS tutoring “rules” goes from the trivial to the im¬ 

possible. The first item illustrates the low-level coupling of diagnosis and action found in 

(non-intelligent) CAL The second item illustrates a type of tutorial reasoning that is typical 

of today’s intelligent tutors. A tutor using this rule must keep a record of the student’s 

behavior, but the reason why the rule is applicable is not explicit. The third item is well 

within the state of the art for ITS. A tutor using this rule must have abstract models of 

the student’s mental state and the tutoring process.15 The fourth item states a pedagog¬ 

ical belief or strategy, and represents the principle behind the previous rule. It could be 

operationalized in a limited way but is not precise enough to be part of a robust ITS (with 

today’s technology). The final item is based on a theory—a psychological, or philosophical 

assumption. It represents the reason for the previous principle and the purpose for the rule 

above it. Representing and using knowledge at this level of abstraction is clearly out of the 

reach of current technology. 

The more abstract items listed above, as well as the potential additional KAFITS in- 

ferencing mechanisms listed above axe conceivable, but may not be practical or tractable in 

realistic settings. In the extreme one could ask: “Why go through all the trouble of defining 

a curriculum and tutoring strategies at all? Why not use a deep causal representation of 

15 A diagnostic strategy must infer the level of “confusion” from student behavior (such as number of times 

asking for help), and the appropriate interpretation of “feedback” must be inferred based on the current 

state of the tutorial session. 
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domain knowledge and its pedagogical properties, and let AI rules infer the relationships 

and ordering of the subject matter?” The answer is perhaps obvious: the problem is in¬ 

tractable except in limited cases. Educational researchers have not successfully developed 

a general, well defined theory for constructing curricula from first principles, so we will not 

be able to program a computer to do so. The tradeoffs between “intelligence” and prac¬ 

ticality /usability implicit in the above discussion are illustrated in the continuum shown 

in Figure 6.2. On a continuum of knowledge and inference sophistication, with CAI-like 

systems simulating book- or lecture-style learning at one extreme, and future generation 

ITS systems simulating human one-on-one tutoring at the other extreme, systems which 

are geared toward teacher participation and realistic applications must focus on the less 

sophisticated end of the spectrum. 

Difficulty realizing ATs potential is not only due to limitations in human knowledge 

but also limitations in our ability to represent human knowledge in machines. Much arti¬ 

ficial intelligence research is based on a reductionist assumption that all knowledge can be 

represented in simple modular units and that complex behavior results from interpreting a 

large number of these simple knowledge units with a simple mechanism [Winograd & Flores 

1986, Simon 1981], and this reductionist assumption has yet to be substantially supported 

empirically. Currently we have a limited repertoire of formalisms and mechanisms for rep¬ 

resenting knowledge (including rules, frames, and propositions). The vast majority of types 

of human knowledge and skills (see the complex knowledge types in Figure 2.2) have not 

been simulated non-trivially in machines. We have been able to model facts and simple 

procedural skills, but language, mental models, complex problem solving, metacognition, 

creativity, etc. have been simulated only in very simplified forms.16 One school of thought 

hypothesizes that all that is missing is a critical mass of enough knowledge (Lenat et. al 

[1986] write of “knowledge acquisition from strength”). But the successes of AI research 

in toy domains has been notoriously difficult to scale up to realistic situations. Buchanan 

16We have given evidence in this study of some seemingly intractable problems related to the fuzziness 

and ambiguity of knowledge (Section 5.4.2). 
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[1987], of the “paradox of increased knowledge,” argues that “we rarely can predict whether 

the effect of more knowledge will be positive or negative.” 

Therefore, in designing general frameworks for computer tutors with practicality and 

usability as key goals, we must be aware of limitations in the state of the art of intelligent 

systems, regardless of whether these limits are the result of insufficient knowledge base 

depth and breadth, fundamental limitations of mechanisms used to represent knowledge, or 

unavailability of articulated human knowledge. 

We suggest that, given the current state of the art, ITS rules should be implemented 

on the level of item three above, and that all such rules be annotated with the principles, 

assumptions, and/or theories that justify them. This allows systems to be evaluated and 

modified on the basis of their underlying assumptions and allows tutoring systems to explain 

(in a limited way) why they are performing tutoring or discourse actions. 

To guide ITS developers in deciding the depth or level of sophistication of reasoning 

mechanisms they use, we suggest that three factors be considered: technical practicality, 

human factors limitations, and educational needs, as described below. 

• Technical practicality. The representational framework must be tractable for in¬ 

structional domains of realistic size and complexity. That an AI mechanism has been 

used successfully in a limited context is not sufficient to assume it will scale up or 

transfer to new domains. 

• Human factors. For some knowledge, even if it can be represented tractably, the 

state of the art may dictate that its representation is too complicated and esoteric for 

use by those who are not AI researchers or programmers. If educators are to build 

and experiment with intelligent tutors then they must understand, access, and modify 

the encoded knowledge. 

• Educational needs. Learning complex and deep forms of knowledge is essential in 

most domains. The content of intelligent tutors should not be limited to the simple 

types of knowledge that AI technology can currently represent. ITSs must attempt to 
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teach complex knowledge even if this knowledge must be represented in shallow forms 

such as canned text. 

Summary of NEO-KAFITS and Class Z Tutors 

In this Section we gave eight high-level design specifications which generalize the 

KAFITS framework (not the interface) by excluding all but essential features of the repre¬ 

sentational framework. The specification for proposed new system, called NEO-KAFITS, 

is given as a core upon which to build future systems, and also serves to highlight those 

features of KAFITS that are most central. 

Then, to place our work in perspective with other ITS projects, we proposed a class of 

ITSs aimed at practicality and usability by educators. We gave four guidelines for designing 

the representational frameworks and interfaces for such systems, which we call Class Z 

tutors. Class Z tutors facilitate educators’ full integration into the design, implementation, 

and evaluation of computer tutors. 

Finally, we discussed the appropriate amount of “intelligence” or inferencing sophisti¬ 

cation in intelligent tutors. We discussed tradeoffs in usability vs. inferencing power and 

argued that Class Z tutors should be “low inference tutors,” given the current state of the 

art of AI. 

6.3.3 Toward A Theory of Knowledge Types 

There is considerable lack of agreement in the ITS research community over optimal, or 

even adequate, tutoring strategies (or rules) for computer tutors.17 This lack of agreement, 

though somewhat attributable to divergent underlying psychological, cognitive, or episte¬ 

mological assumptions, can be largely attributed to the existence of divergent instructional 

goads that are not clearly articulated. For example, disagreement over the optimal level of 

feedback or learner control in intelligent tutors often boils down to differing priorities about 

17There is also little agreement in the educational research community over optimal teaching strategies. 
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the type of knowledge to be learned. Consider these diverse pedagogical goals: (1) learn 

specific domain facts and solve standard problems; (2) obtain a conceptual and intuitive 

understanding of the content; (3) learn general problem solving and metacognitive skills. 

Discussions of alternative tutoring strategies rarely articulate fundamental differences in 

pedagogical priorities. The inadequate articulation of instructional goals or priorities is, in 

part, due to the lack of a sufficient technical vocabulary for describing the subject matter. 

Here we propose the beginnings of a model for “knowledge types” which provides a descrip¬ 

tive vocabulary for specifying instructional content and strategies in intelligent tutors. 

We follow “Gagne’s hypothesis” that there are different types of knowledge (or “learned 

capabilities”) and that there are different methods appropriate for promoting the learning 

of each type (see Section 2.2.7). A knowledge classification scheme can be based on charac¬ 

teristics of the behavior that the knowledge allows, or can be based on an underlying theory 

of cognition (or on both, as in Merrill [1983]). 

The Procedural/Declarative Distinction 

Gagne’s [1985] instructional theory, Merrill’s [1983] PC-matrix, and the KAFITS Modi¬ 

fied PC-matrix (Figure 2.2 and Appendix B), are examples of knowledge type classifications. 

Knowledge type distinctions are made throughout the ITS literature, but the vast majority 

of them are much less elaborate that the three schemes mentioned above. Many discus¬ 

sions of knowledge types in the ITS literature are founded upon the distinction between 

declarative and procedural knowledge,18 yet instructional scientists are clear that we need 

to distinguish many types of knowledge if we are to make headway in articulating ped¬ 

agogical principles. The procedural vs. declarative distinction not only lacks sufficient 

expressiveness, it may actually be detrimental. VanLehn [1987, pg.60], speaking from an 

AI perspective, says that the procedural/declarative distinction is “notorious...as a fuzzy, 

seldom useful differentiation.” We recommend that the procedural/declarative distinction 

18Other types of knowledge are mentioned, such as mental models, and common sense knowledge, but 

these are not clearly defined; and some systems add minor refinements such as describing two classes of 

procedural knowledge. 
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be abandoned (except in contexts where it has a precise meaning, as in the ACT* theory 

of cognition) and that more descriptive and precise ones be used in its place. 

Mapping From Observables to K-types to Tutoring Actions 

Our model of K-types (knowledge types) will not prescribe a specific classification 

scheme; it proposes properties for K-type schemes in general. We assume that knowl¬ 

edge classification will take a form similar to Merrill’s, in that operationally determinable 

characteristics (such as behavioral objectives) of each piece of subject matter can be mapped 

to a knowledge type and knowledge types map to instructional methods. A simplified hy¬ 

pothetical example of this two step mapping is: (1) If a student is required to read and 

memorize a piece of information with the goal of being able to recall it verbatim in the 

future, that piece of knowledge is classified as a fact. (2) Facts are taught by repeated 

presentation of the information in different contexts until the student remembers the fact in 

a novel context. This mapping can be done manually, or can be automated or assisted by a 

rule-based system (as in [Merrill 1983]), but we believe that the classification of knowledge 

and the selection of corresponding strategies should not be forced upon the instructional 

designer (however, the system could suggest alternatives and argue against unusual designer 

choices, giving reasons for its suggestions). K-type schemes represent both a descriptive and 

a prescriptive model for instruction; they provide a language for describing the concepts, 

conditions, methods, and outcomes of instruction, and they provide a prescription of how 

to sensitize instruction to knowledge types. 

K-type Internal Structure 

A major feature of our preliminary theory of K-types is that all knowledge type represen¬ 

tations have a common structure. This common structure allows general representational, 

inferencing, and control mechanisms to be built, and it also facilitates the pedagogical anal- 
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ysis of knowledge. We propose that all of the following attributes be represented for all 

knowledge types:19 

• Name—the indicator used to identify a piece of knowledge, such as the name of a 

concept or procedure. Some K-types, such as facts, may not have names. 

• Definition—a description, statement, or definition for the knowledge piece. It may 

be a statement for facts, a definition (including necessary and sufficient properties) 

for concepts, a list of steps for procedures, etc. 

• Examples, including positive examples, negative examples, analogies, etc. Examples 

may take different forms for different K-types (e.g. pictures for concrete concepts and 

“walk throughs” for procedures). 

• Components. Each K-type will have a characteristic method for representing sub- 

parts (e.g. concepts are made of attributes and sub-concepts, procedures are made of 

concepts and sub-steps, principles are made of concepts and relations). 

• K-bugs. Each K-type will have a characteristic type of “mis-knowledge” (e.g. mis¬ 

conceptions for concepts, buggy rules for procedures, and misinformation for facts). 

• Performance levels.20 Levels can be similar to the PC-Matrix levels, or can be any 

of the other possibilities mentioned in Section 5.4.3. Each K-type could have its own 

characteristic levels, such as levels of explanatory depth for principles, and levels of 

detail for procedures. 

• Strategies. Each K-type will have recommended methods for (1) conveying the 

knowledge, (2) giving feedback, and (3) remediating K-bugs. 

• Alternative representations. Each K-type will have characteristic alternative 

methods for representing the knowledge, for example with pictures, text, graphs, 

animated “walk-throughs,” etc. 

19These attributes can be either stored or inferred. 

20This is an extension to Merrill’s performance levels (Section 2.2.4). 



261 

Note that the overall structure of all K-types is the same, but that specifics of the 

structure usually depend on the K-type (or sub-K-type, see below). In a tutoring sys¬ 

tem, all topics (knowledge pieces) may share additional attributes, as with the Motivation, 

Prerequisites, and Summary slots of the KAFITS system. 

Sub-K-types 

We will assume for expository reasons that the K-type scheme is implemented in an 

object-oriented ITS representational framework, although this is not required. The scheme 

will define a number of K-type classes, and each topic (or instructional unit) will be an 

instance of a K-type class, inheriting its default attributes and procedures. 

For any knowledge categorization scheme developed there will be cases were refinements 

to K-types (i.e. sub-types of the K-type classes) are needed. For instance, principles can 

be descriptive or prescriptive [Reigeluth 1983b], concepts can be classical or fuzzy [Mervis 

& Rosh 1981], and procedures can be linear or hierarchical. Sub-K-types will inherit 

default values and procedures from their parents, and can override these defaults. The K- 

type scheme designer must pay attention to complexity and usability issues; more baroque 

schemes are less usable, and designers should avoid a proliferation of K-type distinctions 

that do not map into concrete differences in tutorial behavior or knowledge acquisition 

clarity (as was found to be the case in Bloom’s [1956] early knowledge taxonomy). Also, 

tabular schemes, such as Merrill’s PC-Matrix, may be more understandable than hierarchi¬ 

cal schemes. 

Domain Types 

Domains tend to have characteristic overall structures, and K-type schemes can fa¬ 

cilitate articulating this structure. For example, Reigeluth [1983b] prescribes that each 

domain be assigned an “organizing content type”—conceptual, theoretical (principle-like), 

or procedural—that best fits the characteristics of the domain and the instructional goals. 
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His “elaboration theory of instruction” specifies methods for selecting and sequencing con¬ 

tent according to the organizing content type. Others have categorized domains according 

to whether their structure is predominantly procedural, historical, structural, causal, teleo¬ 

logical, inferential, etc. (see also Wenger’s [1987, Chapter 15] description of types of domain 

articulation). Domain types have characteristic links between topics, for example analogy, 

physical-part, a-kind-of, etc.21 K-type schemes should incorporate, or at least provide guid¬ 

ance for, schemes for categorizing entire domains, and they should be useful in determining 

optimal overall instructional strategies for domains (as well as for individual topics). 

Benefits of K-types 

We believe that K-types have the following benefits to ITS performance and the ITS 

knowledge acquisition process: 

1. K-types provide a precise vocabulary for articulating the domain expert’s instruc¬ 

tional objectives; 

2. K-types provide a technical vocabulary allowing ITS designers to articulate charac¬ 

teristics of instructional content, facilitating comparison among ITSs; 

3. K-types facilitate ITS content representation by providing clear inter-topic struc¬ 

ture and extra-topic structure; 

4. K-types facilitate the decomposition and organization of high level curriculum 

goals, content, and tasks; 

5. K-types facilitate the acquisition and representation of domain content and tu¬ 

toring strategies; 

21Wenger [1987, pg. 331] describes several “justification types,11 such as structure, functionality, and 

constraints, that could form the basis for topic links. 
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6. For K-type schemes based on instructional theories, instructors designing an ITS will 

automatically be using instructional or cognitive theories and would indirectly 

be learning some of this theory; 

7. Tutoring rules and behavior will be less ad-hoc, and more diverse and effective. 

The Cost of Increased Complexity 

Incorporating the above described aspects of K-type schemes into the representational 

framework of an ITS involves serious tradeoffs. The main factors mitigating against the 

benefits listed above are increased complexity and the subsequent decreased usability and 

leamability of the more powerful framework. Adding the extra power may move systems 

out of alignment with the design principles for Class Z tutors and may affect their accessi¬ 

bility by the educational community, as demonstrated by our description of problems with 

introducing the domain expert in our study to K-types (Section 5.1.2). However, most of 

the aspects of K-types are inspired by instructional design theory, so, while such systems 

may be out of reach for classroom teachers, they should be usable by instructional designers. 

In addition, if the rules for K-type categorization and strategy selection were automated 

in an expert system (as in Merrill’s [1983] theory), and if the expert system explains its 

reasoning to the teacher, this may offset the increased complexity. However, such systems 

must allow the user to override the imposed rules so that their knowledge acquisition ses¬ 

sions can be structured opportunistically (bottom up or top down). We do not w’ant to tie 

the instructional designer’s hands behind his back with obligatory rules since there are sure 

to be important exceptions to most rules. 

Summary of the K-types Model 

We have proposed the beginnings of a model of knowledge types (K-types) for ITS, 

which we claim will provide ITS researchers with a technical vocabulary for articulating 

important characteristics of domain contents, help domain experts articulate and organize 

instructional content, and improve the quality of computer tutoring by sensitizing tutoring 
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rules to K-types. We have not suggested a specific K-type classification scheme but suggest 

structures and properties that K-type schemes should have. Our discussion included a 

suggested canonical internal structure for K-types, advice about refining K-types into sub- 

K-types, and a discussion of how K-types can generalize into “domain types.” We also 

discuss usability/power tradeoffs in implementing K-type schemes. 

6.3.4 Collaborative, Inspectible, Persuadable Computer Tutors 

Ideally, learning involves a significant amount of collaboration between the student and 

the teacher. Thus far a high degree of collaboration has not been realized in computer 

tutors. Most ITSs give the student little control over the goals, content, or style of the 

tutorial session. ITSs that offer unobtrusive advice or “coach” a student are a step in 

the right direction but typical do not let the student feel as if she is in control of her 

learning. ITSs that allow free exploration in simulated environments without any guidance 

give the student control of her activities, but not of her learning, since she is usually not 

sure what she is learning or how well she is learning it. We believe that part of what has 

been missing is an acknowledgment of where different areas of expertise lie. There are three 

areas of expertise to consider, corresponding to the three prototypical functions of an ITS: 

the student model, the domain model, and the teaching model. Cleaxly the computer tutor 

is the expert at teaching, i.e. an expert in specific pedagogical knowledge about the domain 

and general knowledge about communication skills. The tutor has knowledge such as what 

topics are prerequisites of others, which topics are more difficult, and the best strategies 

for conveying different types of knowledge. Less recognized is the fact that it is the student 

herself who is the expert on the student model. She knows much more than the tutor 

about what she knows and doesn’t know, what her plans are, her personal history, and 

how she likes to learn—the computer tutor’s student model represents only a guess at what 

is in the student’s head. Some researchers are starting to realize this and are designing 

ITS architectures that let students convey more directly what they think, asking students 

explicitly about their knowledge and beliefs, or allowing their actions to give evidence of 

their knowledge or plans [Self 1988]. Even less recognized is the fact that the student and 
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the computer tutor share expertise about the domain. There are two reasons for this. First, 

the student, unlike the “intelligent” tutor, is an intelligent being, having common-sense 

knowledge about the world and the ability to put information together in flexible new ways. 

In this respect the student actually “knows” much more about the subject matter domain 

than the computer tutor even before the first lesson begins. Second, the student’s knowledge 

state evolves from novice to expert as she learns, and if she learns well she will, by virtue 

of her flexible intelligence, surpass the computer tutor and be able to solve problems that 

the tutor could not solve.22 

Our view that the student and tutor have complementary areas of expertise argues 

for the need for more collaborative tutors. The KAFITS student initiative feature (Section 

3.2.4) embodies the primitive beginnings of student/tutor collaboration, and our design goal 

of having a clearly defined representational framework and conceptual vocabulary facilitates 

building collaborative tutors. Having a consistent unified format for curriculum material 

allows the tutoring rules and student interface to be re-used in many tutors and domains. 

For instance, a framework with a standard mechanism for representing hints allows a student 

interface which lets the student ask for hints in any situation, for tutors in any domain. 

Ridgeway [1988] calls for “transparent” ITSs that give the student access to the fol¬ 

lowing information that most systems possess implicitly or explicitly: a specification of 

the knowledge to be acquired, the teaching techniques, and beliefs about the current state 

of the user. Along these lines, we propose that ITSs be designed to be “collaborative, 

inspectible, persuadable tutors.” Their domain knowledge, student model, and teaching 

knowledge should be open to inspection, and both the content and the inferences of these 

components should be explainable. Since students share expertise of the student model 

and domain knowledge with the tutor, ITSs should allow a student to take control of her 

learning, set the instructional agenda, and even manipulate the student model and tutoring 

style. And since it is the tutor who has the expertise about teaching the domain knowledge, 

22 Humans are good at what in AI is called “explanation based learning,” in which a small number of 

understood examples, in combination with general common-sense knowledge, yield deep and broad knowledge 

that goes far beyond what could be induced based solely on the characteristics of the examples. 
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ITSs should provide firm guidance when needed and be able to prevent the student from 

doing things that there is sufficient reason to believe are counterproductive or damaging 

(such as choosing a teaching strategy that does not make sense in the current context, 

or irresponsibly altering the data in the student model)—thus the term “persuadable” is 

used rather than “controllable.” Again, the KAFITS student initiative feature illustrates a 

primitive start toward this goal, which needs much further study. Following is a preliminary 

compendium of features we recommend for future ITSs that are collaborative, inspectible, 

and persuadable, along with hypothetical natural language statements by the tutor (T) or 

student that illustrate the features.23 

1. Transparent student model 

• What misconceptions do you think I have? 

• Do you think I have mastered vectors? 

2. Transparent tutor 

• What strategy are you using? 

• Why did you give me that example? 

3. Inspectible, navigable knowledge base 

• What does “vectored interrupt” mean? 

• Give me another example of a convex polyedron. 

• Had electricity been invented when Kant was born? 

• How did you conclude it was a carburetor malfunction? 

4. Persuadable tutoring strategies 

• Slow down, explain each step, I’m getting confused. 

• Don’t give so many hints, I want to think it through myself. 

23Some of these may be beyond the current state of the art, or at least outside the scope of Class Z tutors, 

but we present them to point the direction for future work. 
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• I think I learn better with quick feedback for wrong answers. 

5. Persuadable agenda 

• First teach me about vectors. 

• Skip this topic. 

• Lets stop here, I’ll be back tomorrow. 

• I want to experiment on my own now. 

6. Collaborative advice 

• What do I need to know to be able to learn about entropy? 

• Is this topic difficult to learn? 

• T: My analysis suggests that you may have one of these misconceptions.do 

you want to choose one to try to remediate?24 

• T: It seems like you are confused, should I start giving more detailed explana¬ 

tions? 

7. Manipulatable learning environment 

• What if the universal law of gravity were an inverse cube law? 

• I’m approaching Jupiter’s third moon, fire the left thruster for three seconds. 

Making all of this power available to the learner does not mean it will be utilized. 

Students are not accustomed to having this level of information about, or control over, 

a learning situation. They are not accustomed to monitoring their learning or problem 

solving progress [Confrey 1985] and/or altering their learning environment according to 

reflective metacognitive analysis. When we evaluate the success of such systems we are 

sure to find that students initially under-utilize the potential. Students must be assisted 

(by a human or automated teacher) in assimilating the new possibilities available to them. 

Collaborative, inspectible, persuadable intelligent tutors not only serve to teach subject 

matter, but provide exciting new arenas for learning and practicing metacognitive skills. 

24Brown’s [1985] physics ITS is a good example of this sort of collaborative tutoring. 
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Summary of Collaborative, Inspectible, Persuadable Tutors 

We began our discussion of student/tutor interfaces by noting that, although we can 

assume that the computer tutor has significantly more expertise in pedagogy than the 

student, it is the student who has more expertise in issues of the “student model,” and that 

the tutor and student share (or have complementary types of) expertise of subject matter. 

These considerations lead us to propose that future ITS student interfaces be collaborative, 

inspectible, and persuadable. To elaborate on these three terms we gave a compendium 

of student interface features with example student interactions for each. Finally we noted 

that utilizing the flexibility provided by such student interfaces would not come naturally 

to students and that such interfaces provide unique environments for improving students’ 

metacognitive skills. 

6.4 Recommendations for Future Research 

This study has unearthed more questions than it has answered and has identified more 

new issues than addressed previously identified ones. In this section we suggest several 

fruitful areas for continued research which directly extend this work, describing relevant 

issues and offering questions that could guide research design.25 

Representing Additional Domains 

The conclusions reached in this study are tentative, partly because the case study in¬ 

volved only one domain and one domain expert. Working with other domain experts and/or 

building tutors in other domains would provide important new data. Working on domains 

“near” to the one used in this study (such as adding torque or quantitative problem solving 

25We also maintain a long list of potential KAFITS modifications and new features, such as a context 

sensitive help system and a domain knowledge base consistency checker, but we will not present these here. 

Several suggestions for inferring (rather than storing) slot contents, and possibilities for improvements using 

AI technology were mentioned in Section 6.3.2. 
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to the statics domain, or working on kinematics or dynamics) has the benefit of extending 

our current work and corroborating our findings but has the drawback of not addressing 

important issues of generality. Representing “farther” domains could answer some of these 

questions: How much does the KAFITS framework need to be modified in order to repre¬ 

sent domains that axe primarily procedural or factual? Can KAFITS be used to provide 

“coaching” style tutorial guidance for micro-world learning environments? Can KAFITS 

be used to implement a “model tracing” [Anderson et. al 1985a] style tutor in a domain 

where domain knowledge is represented in an expert system? 

Tools for Acquiring Strategic Knowledge 

In this study we focused on the teacher’s construction of the domain knowledge base, 

using the associated tools. Unlike the domain knowledge base, which was designed and 

built entirely by users, the strategic knowledge base (containing the tutoring strategies) 

was designed by the knowledge engineer with some input from the domain expert.26 The 

strategies incorporate recommendations from several instructional design sources but are 

fairly ad-hoc, few in number, and designed to be adequate, not optimal. An important 

next step for this work is studying knowledge acquisition processes and tools for strategic 

knowledge. Motivating questions include: What kind of interface features are most use¬ 

ful for inspecting, modifying, and monitoring strategies? What aspects of designing and 

managing strategic knowledge are most difficult for educators (especially those who are not 

programmers)? Are there important properties of teacher-designed strategies and teachers’ 

mental models of their teaching strategies? 

Experiments with Instructional Strategies 

Another future direction for this work is the incorporation of several strategies from 

cognitive science and/or instructional science. Here the questions would be: What are 

the difficulties in formalizing these strategies or principles so they can be represented in a 

26We have designed a preliminary Strategy Editor (Section 3.2.2), but not through user-participation. 
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computer system? How do these strategies compare in test runs with students? Can the 

strategies be represented so that they are underst and able and “tweakable” by teachers? 

Does KAFITS facilitate the evaluation and improvement of these theory-based tutoring 

strategies? 

In Section 6.3.2 we discussed knowledge type classification schemes. KAFITS has the 

capability to represent K-type schemes and tutoring strategies that are sensitive to K-types, 

but this capability has not been significantly used. Therefore, another research direction 

involves implementing a more elaborate K-type classification scheme and the associated 

tutoring strategies. 

Student Modeling and Diagnosis 

The KAFITS overlay student model and diagnostic mechanism axe its least general and 

least developed components. Although it has more expressiveness and functionality than 

most ITS overlay student models, its implementation is ad-hoc and not easily extendible. 

This is in part because student modeling in non-procedural domains (for which KAFITS 

is best suited) is quite difficult [Anderson 1983, VanLehn 1983], and little has been done 

in the field to formalize general characteristics of overlay models (although several working 

examples of overlay models can be found, for example Goldstein [1982]). The representa¬ 

tional scheme and tools for student modeling in KAFITS should be made as general and 

flexible as its domain and strategic knowledge base representations and tools. Motivating 

questions include: How should diagnostic rules be represented? Can a single student mod¬ 

eling/diagnostic framework be used for both procedural and non-procedural domains? Can 

the structure of the student model be made to automatically reflect the structure of the 

domain and strategic knowledge bases? 

In addition, there axe a number of features we would like to see added to KAFITS 

student modeling, including: student-selected confidence or “makes sense” measurements 

that augment student answers; having students specify “reasons” for their answers; more 



271 

recent student answers being given more weight; and storing information about student 

learning styles and preferences. 

Interfaces and Tools 

Ideally an intelligent tutor should have powerful and usable interfaces or tools for inspect¬ 

ing, modifying, monitoring, and evaluating its knowledge bases. KAFITS has such tools 

for the domain knowledge base and the beginnings of such tools for the strategic knowledge 

base. We also need such tools for the student model (containing declarative information) 

and the diagnostic mechanism (containing rules). Solving student model representational 

issues mentioned above is prerequisite to developing these tools. 

In Section 6.3.4 we discussed the desirability for collaborative, inspectible, persuadable 

computer tutors. The KAFITS framework allows for a significant range of student control, 

but the KAFITS student interface was, like the student model, not extensively developed 

or studied. This study focused the interaction between the domain expert, the computer 

system, and the knowledge engineer. More work is needed in designing and testing the 

student interface. This work is limited because the student interface, more that any other 

ITS component, is intimately linked with the instructional domain, especially if simulations 

or micro-worlds are employed. Still, many general student interface features, such as those in 

the KAFITS student initiative menu (Section 3.2.4), can be studied. Motivating questions 

include: To what extent can students comprehend and use such a wide variety of options? 

How can we encourage students to take control? What kinds of questions do students 

want answered while they are learning? What is the student’s cognitive model of her own 

knowledge and learning process while using a computer tutor? What types of tools will give 

students a conceptual picture of what the tutor is doing so that they can make informed 

decisions to control tutoring sessions. 
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Moving Into the Classroom 

Finally, further development and evaluation is needed to push application of the KAFITS 

tool from the lab to the classroom or training context. Doing this would involve extending 

KAFITS to address some of the issues mentioned above related to the student model and 

student interface. It has been said that a piece of software that runs in the lab is only ten 

percent of the way to being a product. Similarly, there are many unforeseen yet impor¬ 

tant issues related to routine use of KAFITS by teachers and students in natural settings. 

Questions motivating research include: What is the best role for the teacher—how much 

and what type of student guidance is optimal? What is the best mix of classroom teaching 

and computer tutoring? Are students more motivated when they work in pairs? Do stu¬ 

dents use the student control capabilities more when they work in pairs? How can KAFITS 

integrate into existing classroom structures, such as grading, labs, and classes of limited 

length? Does KAFITS facilitate multiple experts (teachers) designing and modifying the 

knowledge base? 

6.5 Recommendations for the Instructional and Educa¬ 

tional Communities 

Although we have argued for the importance of including educators in building ITSs, we 

have not offered much evidence of benefits of incorporating ITSs in education (except that 

the domain expert indicated that he learned things from the experience of building a tutor 

that could be used in his classroom teaching—see Appendix C). In Section 1.1 we discussed 

the great “potential” of ITSs, and Shute [1990] offers some recent evidence that using ITSs 

can result in significant enhancement to learning in both classroom and workplace training 

situations. We will therefore take it for granted that ITSs do enhance learning when designed 

appropriately, used in domains where they have shown to be effective, and when properly 

integrated into educational infrastructures where students and administrators fully support 

ITS learning. 
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But this still leaves many questions. Most relevant to this study is the question of 

whether an ITS shell is useful and effective for widespread use in realistic educational 

settings. First we will present an idealist (best-case) vision of how a KAFITS-like (or Class 

Z) system could be integrated into the school setting. Then we will discuss issues hindering 

the realization of this vision. Finally we predict that ITSs will, in the near future, have 

more impact in industry training than public schools. 

A Best-Case Future Scenario 

Class Z tutors are now standard tools for designing intelligent tutoring, training, and 

assistance programs. The price of the necessary hardware and software has fallen to a 

reasonable level, and ample funding has been provided to integrate ITSs into schools. Some 

teachers integrating ITSs into their courses can be found at all grade levels for most academic 

subjects (though ITS use is by no means universal). Peer groups of teachers exist in most 

schools so that teachers can support and learn from each other in their efforts to make the 

best use of this new technology. Most of these teachers have participated in one-week teacher 

training seminars on how to incorporate ITSs and their associated curriculum materials 

into the classroom. These seminars include discussions of grading, progress monitoring, 

classroom management27 and an overview of basic ITS concepts.28 Some teachers have 

gone on to further workshops that instruct them in how to use ITS shells such as KAFITS 

to alter an ITS, so that they can, for example, change the text of an explanation, add new 

examples, change the prerequisites of a topic, or change the teaching strategy to give more 

hints. A small number of teachers have become “domain experts” who participate in ITS 

development teams. 

The number of domain experts building intelligent tutors is of the same order of mag¬ 

nitude as the number of educators writing textbooks and designing professional quality 

27Including discussions of classroom “topologies” (eg. a single computer used for demonstrations in front 

of the class; one computer per pair; per group; per student). 

28Including a discussion of what the “intelligent” in ITS means and does not mean, so that teachers do 

not project too much “smarts” into computer tutors. 
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curriculum materials for widespread use. ITSs are accompanied by curriculum materials 

such as workbooks, descriptions of lab experiments, teacher guidelines, etc. The rapid- 

prototyping nature of ITS shells (tools) allows designers to: easily test and modify the 

tutors, build new tutors on top of existing tutors, and evaluate the effectiveness of alterna¬ 

tive instructional theories and strategies. As with textbooks and current-day CAI, teachers 

have several published tutors to choose from for any given subject. The number of teachers 

trained to modify the content or strategies of a tutor is on the order of the number of “mas¬ 

ter” teachers in a school system. Typical teachers may make a few minor modifications 

if they are ambitious and very comfortable with computers in general, but most do not. 

Also, some ITSs are published with a small number of categories of changes pre-defined, so 

that teachers can tailor the software for their needs easily, if their needs are captured by 

the pre-defined list of options. The incorporation of practicing teachers as co-researchers in 

academic studies of ITSs is becoming widespread, as is including teachers on design teams 

that produce ITSs for distribution. 

Most teachers using these systems, especially those who study the topic network and 

strategy networks of a tutor (tools are provided to view these) report that they have a 

more sophisticated and organized understanding of the relationships between topics in their 

subject, have come to appreciate the importance of anticipating misconceptions, and are 

thinking of their own teaching more in terms of “strategies.” Those teachers who go the extra 

step to modify the tutor to fit the needs of their classroom, curriculum, or teaching style, 

experience an increased sense of “ownership” and understanding of the intelligent tutor. 

They are excited by the possibility of trying new strategies and curriculum structures. They 

report that modifying ITSs causes substantial reflection on their teaching and considerable 

reconceptualization of their understanding of the domain and the instructional process. 

Problems with Realizing the Vision 

Clearly, the vision described above is not a probable extrapolation of current trends 

in education. We suggest several current trends or factors which act as barriers to the 
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realization of our vision of incorporating ITSs into the educational system (assuming that 

eventually adequate technology will be readily available). These trends and factors are given 

to enumerate obstacles to using ITSs in schools, and point to areas of potential problems 

should ITSs be used routinely in schools. 

• Funding and other rescources. Substantial funding would be required to realize our 

vision in public schools. Some of the cost would involve hardware and software, 

but even assuming these were donated or priced reasonably, resources axe needed to 

restructure how classes are taught to take best advantage of this new technology. 

Additional classroom and/or lab space would be needed in most schools. Also, in 

introducing computers into the classroom there has been a fairly consistent trend to 

spend more money (proportionally) on hardware, less on software, and very little on 

teacher training or support (as expanded on below). This disproportionate allocation 

of funds [Johnson 1988] leaves schools burdened with computers no one is trained 

or willing to use, or worse yet, with outdated hardware that has no useful software 

written for it. 

• Teacher training and creative planning time. Using ITSs in the classroom could 

eventually lighten the teacher’s load, but there is a startup time required for learning 

how to incorporate ITSs into classrooms. Unfortunately, teachers do not get sufficient 

paid time for teacher training or job enhancement, and when they are given the 

opportunity to attend a workshop, there is usually no support system at their job 

site that encourages them to integrate what they have learned into their classroom, 

and there is no follow-up evaluation and feedback on their attempt to integrate the 

new technology. In addition, our vision assumes that teachers have the time to think 

creatively about their curriculum and try out new content or strategies—but “extra 

time for creative planning of classes is not available to many teachers. 

• Teacher acceptance. “Intelligent” tutors may be threatening to some teachers for 

many reasons. First, as has been found with incorporating existing computer software 

into classrooms, students tend to quickly learn more about the software than the 
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teacher and axe more familiar with computers in general than the teacher. This 

requires that teachers take on new roles in the classroom and challenges some teachers’ 

sense of competence, autonomy, control, and authority. “Intelligent” tutors pose the 

additional threat of a machine that knows more about the subject matter than the 

teacher. Though this may rarely be true in reality, the perceived threat will be very 

real. In an ethnographic study of the attitudes and beliefs of students, teachers, 

and administrators in a school where the GEOMETRY tutor (an ITS developed by 

Anderson & Boyle [1985]) was being used in five geometry classes, Schoefild & Verban 

[1988, pg. 20] note “evidence of many teachers’ indifference to or even resistance 

to the idea of using computers in their teaching.” Allowing teachers to inspect and 

modify computer tutors will tend to demystify the systems and give teachers a sense 

of control, but the teachers most likely to feel threatened are the ones least likely to 

“open up” and play with this new technology. 

• Organizational support. The support (on many levels) of educational administra¬ 

tors is crucial for new technology to have an impact, but the educational institu¬ 

tion/infrastructure is often slow to change, or changes only in reaction to crisis or 

public opinion. 

• Computer naivete. Unfamiliarity with the nature of computers can have two mani¬ 

festations. At one extreme is fear and recalcitrance to change, at the other is passive 

acceptance of ITSs, over reliance on them, and over-estimation of their capabilities 

(or “intelligence”). 

• Embedding ITS concepts into the educational culture. When a new technology is 

introduced into a sub-culture, there is a (usually awkward) startup time in which the 

creators and users of the technology assimilate some of each other’s models and con¬ 

cepts. It will take a while for educators to understand the key concepts, capabilities, 

and limitations of ITSs, and it will take a while for the builders of ITSs to establish 

design criteria that meet the needs of users (both teachers and students). Consider 

the first word processing programs. Though they are commonplace now, when word 
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processors were introduced, there was no shared corpus of models or vocabulary about 

integrating them into the home or work environment. The key concepts of malleable 

text, separating text from formatting, permanent vs. temporary computer memory, 

etc., took a while to sink in. It also took some time for industry to stabilize good 

standards for manuals, help features, and tutorials (if they yet have). ITSs are more 

complex than word processors, perhaps more comparable to CAD/CAM programs. 

The learning curve for embedding ITSs into the educational culture will probably be 

even longer than that for word processing systems. 

Individually, each of the above factors could conceivably be mitigated by a concerted 

effort involving parents, educators, and administrators. But when these factors are con¬ 

sidered as a whole, the author must admit to a fair amount of pessimism regarding the 

probability of such dramatic change in the educational system.29 Therefore, we must look 

to the work place and home for a more optimistic prediction of near-term ITS use. 

ITSs in Industry 

Although all of the above trends and warnings are applicable to industry as well as 

public education, they are less severe in industry settings. Businesses are freer to allocate 

resources, prioritize human efforts, and instigate follow-up and support systems, and can 

implement these changes at any level of an organizational structure (for example they can 

try it out on a small scale). Also, adults in training programs tend to be more motivated 

learners than children and young adults in public schools. For these reasons, we predict 

that in the near future ITSs and ITS shells will have more impact in industry than public 

education.30 Once ITSs are accepted and understood in the context of industry training 

(and perhaps in home education) they will integrate more easily into schools. 

29It is conceivable that the hardware and software would be available, but the other problems are more 

difficult to tackle. Schofield &: Verban [1988, pg. l] note that the “rapid proliferation of microcomputers 

in schools [over the last ten years has been] truly startling [but that] the effect of this change...is not ^as 

obvious].” 

30See Johnson [1988] for pragmatic considerations in implementation of ITSs in industry and military 

training. 



Appendix A 

TERMS AND DEFINITIONS 

Below we give word senses, meanings, and synonyms for some of the important concepts 

and terms used in this document. 

• AI. Artificial Intelligence. Discussed in Sections ?? and 6.3.2. 

• Browser. The interface for viewing and editing information in the domain knowledge 

base. 

• CAI. Computer aided (or assisted) instruction. In ITS research CAI usually refers to 

“non-intelligent” or traditional educational software. 

• Design process. In most of this document “the design process” refers to the process 

we used to build the statics tutor; it is synonymous with “the knowledge acquisition 

process” since our study focused on knowledge acquisition. 

• Domain. We use the word “domain” to mean the content area or subject matter area. 

Domain expertise is expertise in solving problems in the domain. 

• Domain expert. Traditionally in AI, the domain expert is the person serving as the 

source of expertise in building an expert system. The terms “teacher,” “tutor,” “do¬ 

main expert,” “subject matter expert,” and “instructional designer” are used inter¬ 

changeably to refer to the hypothetical user of the KAFITS tool, or, in some contexts, 

the teacher who participated in this study. 

• Educator. Term used to cover teachers, tutors, instructional designers, and educa¬ 

tional researchers. 

• Instance. (See Object.) 

• ISD. Instructional systems design. Also called instructional theory, instructional de¬ 

sign theory. 

• ITS. Intelligent tutoring system. Intelligent tutoring systems, intelligent learning envi¬ 

ronments, knowledge based tutoring systems, and intelligent computer aided instruc¬ 

tion (ICAI) systems are different terms with similar meaning, i.e computer assisted 

learning programs which incorporate artificial intelligence technology and paradigms. 

These terms can imply a focus on different issues for different authors, but for the 

purposes of this document we treat them as equivalent. 
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• Knowledge acquisition (KA). Knowledge acquisition is the process of acquiring an 

expert’s knowledge for representation in an AI system. 

• KAFITS. Knowledge Acquisition Framework for ITSs. KAFITS is a representational 

framework and an interface allowing an instructor to represent his/her knowledge in 

terms of that framework. Usually “KAFITS” refers to both the framework and the 

interface, unless the distinction is relevant and otherwise noted. 

• Knowledge base (KB). The information stored in an expert system. KAFITS has two 

main knowledge bases: the domain knowledge base and the strategic knowledge base. 

• Knowledge base manager. The knowledge base manager is a member of the ITS design 

team whose task is to input the knowledge as specified by the domain expert (usually 

on paper worksheets) into the knowledge base and test the curriculum for obvious 

errors (i.e. errors not related to the domain content). 

• Knowledge engineer, knowledge engineering (KE). The knowledge engineer is a scien¬ 

tist or engineer who works with a domain expert to represent domain expertise in an 

AI system. “Knowledge engineering” is the process of eliciting the domain expert’s 

knowledge and encoding it in an AI system. 

• LE. Linear equilibrium. A topic in the statics curriculum dealing with the balancing 

of forces acting on a stationary abject. 

• LE-curriculum. The portion of the statics curriculum surrounding the linear equi¬ 

librium topic. This subset of topics was the focus of the first several phases of this 

study. 

• Lesson, topic, presentation. These terms refer to KAFITS object types unless other¬ 

wise stated. 

• Micro/macro levels. The macro level of instruction involves “what to teach” and the 

micro level involves “how to teach it.” 

• Object, instance, slot. An object (or frame) is the fundamental unit of representing 

things in many AI systems. AI objects (and frames) refer to an entity and specify the 

important attributes of that entity, and usually also specify values or default values for 

these attributes. Objects are different from “frames” in that objects have procedures 

called methods associated with them. There are typically two types of objects in 

object-oriented systemsD: classes and instances. Classes refer to categories of things 

(such as Dogs) and instances refer to specific entities (such as Fido, an instance of the 

class Dog). The attributes (or parameters, or properties) of objects are called slots 

(eg. Color, Size, and Owner for Dogs). 

• PC Matrix. Performance-Content Matrix. A knowledge type classification scheme 

originally designed by Merrill [1983]. KAFITS uses a modification of Merrill’s PC 

Matrix. 

• Pedagogical knowledge (or pedagogical expertise, sometimes called propeadutics). In¬ 

formation about how to teach, including tutoring strategies and specifics about the 
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topics such as prerequisite, examples, etc. used specifically for teaching (as opposed 

to being used in problem solving or performance in the domain). 

• Slot. (See object.) 

• Statics tutor. The KAFITS system combined with the knowledge base for the statics 

domain. 

• Strategy, strategic knowledge. Tutoring strategies are explicit representations of tu¬ 

toring rules or principles. 

• Strategy Editor. The interface for viewing and editing the information in the strategic 

knowledge base. 

• Teacher, tutor, instructor. Used interchangeably unless use indicates a more specific 

meaning. (See domain expert.) In this document when we refer to a computer “tutor” 

we usually mean a tutor built using KAFITS, i.e. the KAFITS system combined with 

the knowledge base of a particular domain. Similarly “the tutor” will usually refer to 

the statics tutor built during this study. 

• Tutoring strategy, tutoring rule. These are used interchangeably unless use clearly 

implies a more specific meaning. 

• User. The term “user” refers to persons using the KAFITS system for knowledge 

engineering (primarily domain experts and knowledge base managers), not students 

using the tutor. 

The following abbreviations are used in the Bibliography: 

• AAAI. American Association of Artificial Intelligence. 

• ACM. Association of Computing Machinery. 

• IJCAI. International Joint Conference on Artificial Intelligence. 

• ITS. Intelligent Tutoring Systems conference. 

• LRDC. Learning Research and Development Center, University of Pittsburgh, Pitts¬ 

burgh, PA. 



Appendix B 

KNOWLEDGE TYPE DESCRIPTIONS 

The following document was given to KAFITS users to familiarize them with the knowledge 

types used in KAFITS. (This classification scheme is more elaborate that the one used in 

KAFITS for this study, shown in Figure 2.2.) 
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A Classification Scheme for Types of Knowledge and Instruc¬ 

tional Objectives 

In this document we explain a system for classifying types of knowledge, instructional 

objectives, learned behavior (all three of there terms have essentially equal meaning for our 

present purpose). (The system is an extension of a system designed by Dr. David Merrill 

called a Performance-Content Matrix.) 

CLASSIFY ACCORDING TO COMPLEX VS. BASIC KNOWLEDGE 

We define two broad categories of knowledge (information, instructional objectives, skills, 

or learned abilities), Basic and Complex. 

Basic knowledge 

Definition: An instructional objective is Basic Knowledge if it can be categorized as a fact, 

concept, skill, or principle. These four terms are defined later. 

Complex knowledge 

Definition: Complex knowledge includes any instructional objective that is not Basic knowl¬ 

edge. Complex knowledge is a catch-all category for the types of knowledge that are too com¬ 

plicated to be defined clearly and concretely (by educational and psychological researchers). 

Examples: Complex knowledge includes the following types of abilities and skills: 

• General problem solving skills (such as breaking the problem into parts, checking the 

answer, etc.) 

• Metacognitive skills (self-diagnosis or self-analysis of one’s thinking or problem solving 

process). 

• Scientific inquiry, discovery, and hypothesizing skills (includes data collection and 

analysis skills). 

• Formal logical skills, such as deduction. 

• Mental models. Complex “gestalts” of densely connected information allowing a sys¬ 

tem to be modeled and mentally “run.” 

• Creativity. (According to any number of definitions.) 

Complex skills are ubiquitous, needed for the mastery of many subjects. From the list 

of examples given above, you can see that some of these overlap and most of them are 
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hard to define precisely. Thus, we axe mainly interested in determining whether an instruc¬ 

tional item is Complex or not, and not concerned with categorizing sub-types of Complex 

knowledge. 

THE PERFORMANCE-CONTENT MATRIX 

The diagram [Figure 2.2 in this dissertation] shows the Performance-Content Matrix, with 

the classification scheme for Basic Knowledge There are four content types: Facts, Concepts, 

Principles, and Procedures. We classify knowledge in this way to help organize instructional 

objectives and to aid in determining teaching methods (since different knowledge types 

usually require different methods). 

There axe six levels of performance possible with each content type (not including the parts 

of the matrix blocked out). These levels allow further useful distinctions in instructional 

objectives, for example, memorizing of the steps of a procedure (Remember); vs. actually 

being able to use the procedure (Apply); vs. being able to invent a new and better procedure 

which accomplishes the same goal (Create); vs. knowing in what situations the procedure 

is useful (Meta-knowledge). 

The terms we are using may have other meanings in other contexts. We have tried to use 

cleax terminology, but some confusion is inevitable, therefore we include examples of the 

knowledge types and discuss possible confusions in this document. 

CONTENT TYPES 

Fact 

Description. Facts are arbitrary associated pieces of information. 

Examples. A proper name, a date, an event, the name of a particular object. 

Possible confusions. Fact vs. Remember. The Remember performance level is sometimes 

confused with the Fact content type. The definition of a concept, the statement of a prin¬ 

ciple, and the list of the steps in a procedure can all be memorized and recalled. These are 

all instructional objectives at the Remember level. We use the category Fact for memorized 

bits of associated information that are not part of the definition of Concepts, Procedures, 

or Principles. 

Fact vs. Meta-knowledge. Facts are also sometimes confused with the Meta-knowledge 

performance level. The Met a-knowledge level is for information about knowledge, such as 

why it is good to know about it, when it is used, where you learned it, etc. 

Classification hints. Due to the possible confusions with the Fact content type vs. the 

Remember and Meta-knowledge performance levels, make sure the thing you are classifying 

is not a Remember or Met a-knowledge level item (for a Concept, Procedure, or Principle) 

before you decide to classify it as a Fact. 
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Elaboration. The learner’s knowledge of a fact is evidenced by recalling something from 
memory. The student is given some stimulus, such as a name, symbol, picture, etc., and is 
asked to recall some associated information. 

Concept 

Description. Concepts are groups of objects, events, situations, attributes, or symbols that 
share some common characteristics and are identified by the same name or phrase. Using 
concepts involves recognizing or analyzing the characteristics (or properties) of things. 

Examples. Most of the words in a spoken language are concepts. Some concepts are con¬ 
crete, such as ’’toaster oven”, and some are more abstract, such as “equity”. Some concepts 
have very exact criterion (definitions), such as ’’mammal”, “president”, and “Monday”, and 
some have more fuzzy criterion, such as “chair” and “symmetry”. 

Possible confusions. The word “concept” is used for many things, such as in “having a 
conceptual understanding of.” Our meaning here is limited to the classification sense of 
the word “concept”. That is: identifying instances of a Concept, being able to invent new 
instances of a concept, etc. If you want to know whether a knowledge type for some piece 
of content is a Concept, ask yourself whether you are talking about classification of things, 
or distinguishing between different types of things, as in “is this a.”, or “what kind of 
thing is this?” or ”is this a situation where you need...?” 

Concept vs. Principle. Concepts are sometimes confused with Principles (which are rela¬ 
tionships between concepts). For example, the equation “F = m a” (Newton’s second law') 
is a Principle. Each of the components, force, mass, and acceleration, are Concepts. We can 
ask the student to determine whether a situation involves the Concept of force (as opposed 
to, say, momentum). This involves a Concept because it is a classification of situations (into 
those which do and do not involve force). However, to “understand Newton’s second law’” 
is to understand a Principle. 

Concept vs. Meta-knowledge. Concepts are sometimes confused with Meta-knowledge (a 
Performance Level) and Complex Knowledge (such as problem solving skills). The wrord 
’’conceptual understanding”, used to mean deep understanding of some topic, is not the 
meaning of Concept we use here (though having a deep understanding usually includes 

having an understanding of the Concept). 

Concept vs. Procedures. Procedure sometimes followed to label or classify things. If 
the instructional goal is to memorize or use this specific procedure, the content type is 
Procedure. For example, “Igneous rock” is a Concept, and understanding the concept 
involves begin able to identify things that are and are not instances of igneous rock, but a 
specific step-by-step process for identifying igneous rock is a Procedure. 

Elaboration. The purpose of this document is to assist in learning the meaning (or our 

meaning) of Concepts such as Fact, Performance-level, Concept, Basic-Knowledge-type, 
etc. and being able to classify instructional topics using these Concepts. 
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Procedure 

Description. An ordered sequence of steps and decisions necessary to accomplish some goal. 

Examples. Divide 455 by 15 (the long division algorithm). The procedure given for filing 

tax returns. Solve the following linear equations. 

Possible confusions. (See the Concept vs. Procedure possible confusion above.) 

Elaboration. Being able to perform a step in a procedure or make a decision within in a 

procedure requires sufficient understanding of the Concepts used in the step or decision. 

Principle 

Description. Principles are explanations or predictions of why things happen in the world. 

They are cause-and-effect, correlational, or constraint relationships. 

Examples. Physical laws in the form of equations, such as ”PV=NRT” (the Ideal Gas Law), 

are principles. Other principles, Hot air rises; He who laughs last laughs best. 

Possible confusions. Principles are often stated in terms of equations. The general ability 

to solve word problems and equations is a Complex Knowledge Type, not a Principle. 

Mental Models often consist of a closely related set of Principles, such as how the weather 

system or how car engines work. Each individual relationship is a Principle (such as “heating 

air causes it to rise” or “the starter causes the engine to turn over”), an understanding of 

the entire set (such as “what causes rain fall?” or “how does a car engine work?”) is (very 

roughly) a Mental Model. 

Elaboration. Principles consist of a relationship between Concepts. The Concepts must be 

sufficiently understood to be able to use the Principle. 

PERFORMANCE LEVELS 

Remember 

Performance at the Remember level requires the learner to search memory in order to 

reproduce or recognize information. 

Sub-levels of the Remember level. There are four sub-levels of the Remember performance 

level, i.e. there are four types of performance behavior possible. They depend on two things: 

whether the information is recalled verbatim or paraphrase, and whether the information re¬ 

called is a generality or instance. Thus, the four levels are: Remember-generality-verbatim, 

Remember-generality-paraphrase, Remember-instance-verbatim, and Remember-instance- 

paraphrase. 

Verbatim vs. Paraphrase. Verbatim is used in its usual sense, meaning that a fact, defini¬ 

tion, steps, diagram, etc. must be recalled exactly as originally learned. A paraphrase is an 
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alternate representation which has the same meaning. The recall of the alternate represen¬ 

tation could be via an alternate wording, or via an alternate mode of representation such 

as a diagram, by pointing, graphs, etc. 

Instance vs. Generality. Generalities are abstract definitions, rules, procedures, etc., which 

are true or applicable for many situations. An instance is a specific example of a concept 

or a specific application of a procedure of principle. All facts are Instances. Instances 

of Principles are explanations of how or why the Principle applied to a specific situation. 

Instances of Procedures show the steps taken to use the procedure in a specific situation. 

Instance of Concepts are exemplars of the concept. 

Possible confusions. Recalling alternate representations can be a Complex Knowledge Type 

if it involves a lot of inferencing, such as converting between written descriptions of a 

situation, formulas centered representations, graphical representation, and diagrammatic 

representations. We do not include such conceptually difficult or complex tasks in the 

Remember level. 

Use (or Apply-Use) 

Description. Successful performance at the Use level requires that the student be able 

to apply the knowledge within a context where it is clear that the piece of knowledge is 

applicable. 

Problem-Solve (or Apply-Problem-Solve) 

Description. Successful performance at the Problem-Solve level requires that the student 

recognize that the piece of knowledge is applicable, and then apply it. Given a physics 

problem which requires using “F=MA,” a Use performance task would be: “Use Newton’s 

second law to solve the following problem...”. A Problem-Solve performance task for the 

same problem situation would be “Solve this problem...”. In the later case, the student 

needs to recognize the need for Newton’s second law and then apply it. 

Create-Instance 

Description. The Create-instance performance level requires that the student find or create 

a new instance of a generality. 

Create-Generality 

Description. The Create-generality performance level requires that the student derive, in¬ 

vent, or find a new abstraction, given two or more instances of it. 
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Meta-Knowledge 

Description. Meta-knowledge is knowledge about knowledge, such as: why it is important 

to know, where it is used, where you learned it, whether it is hard to apply, etc. It is explicit 

knowledge, i.e. the student demonstrates the knowledge verbally (or in written form). 



Appendix C 

POST-STUDY INTERVIEW WITH THE DOMAIN 

EXPERT 

What follows are excerpts from an interveiw with the domain expert done on March 26, 1991, 

several months following the end of this study. The domain expert had continued to work 

improving the statics tutor in the period between the end of this study and the interview. 

We prepared a series of interview questions, most of which were answered, but the ordering 

of topics in the interview was partly determined by the flow of the conversation. We do not 

include a complete transcription of this interview, nor an analysis of the interview, as part 

of this study (though these could be done at some future date). In the excerpt below “KE” 

refers to the knowledge engineer (the interviewer), and “DE” refers to the domain expert 

(Camp). All knowledge engineer questions are paraphrases rather than quotes. 
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[First the knowledge engineer (KE, interviewer) overveiwed the project steps (see Figure 

5.1) with domain expert (DE).] 

KE: What was good about the entire process? 

DE: What’s exciting about designing and working on something like this is that there’s just 

an incredible amount of room for creativity...the environment is rich enough so that...if a 

teacher is interested in getting ideas across to people...[he/she has the flexibility and power 

to do so]. It’s a really great challenge; it’s a really fun environment for somebody like me 

to work in. 

KE: WTiat wasn’t good, what was hard, or what could have been improved about the entire 

process? 

DE: The thing that jumps to mind first is [that there were times] we were having sort 

of difficulty between hardware and software or something [and] doing the same thing over 

again about three weeks in a row, at least it seemed like that...Kim and I were spinning 

our wheels quite a bit, where we kept loosing stuff or blowing our stuff up or something...ya 

know—[the software was] in development there for a while and things seemed to get in 

trouble. ...For me that was one of the more frustrating parts. 

KE: What was good about the interface, the tools and software? 

DE: What really jumps to mind is the ability to go plowing into it and saying...I’m going to 

act like a student and test this thing out and...going along and saying ‘that’s not right...I 

want to fix that,’ and not having to write some long complicated note and come back two 

hours later and get into the right module and the right section, but be able to stop the 

damn thing to go in, fix it [chuckles], get back out, pick up where you left off and keep 

going. To my mind this is really amazing, and...makes it so much more possible to [improve 

the tutor] during development and testing. That feature makes a tremendous difference in 

how far you get when you work on a big project like this. 

It was really nice the way the system continued to evolve and got so much easier to use. [For 

instance, with the topic level displays] showing where you are [in the curriculum]...I can just 

see things cranking along over there on the right hand screen...[it is] nice to visually keep 

in touch with where I am at [as the information] evolves. [Before that tool was developed] I 

can remember [Kim and I] suffering from...‘I want to fix something, but where the heck [in 

the knowledge base] is it?’—so the [displays are] such a powerful feature. There is so much 

information available to help figure out where you are and what’s wrong and where to fix 

it in reasonably short order. 

KE: What was the most difficult or hardest to use about the tools and software? 

DE: I certainly remember for while in the beginning thinking, ‘gee, how long is it going to 

take me to get comfortable with this?’ As I look back I can’t think of anything in particular 

that was] silly or needlessly complicated for what we are trying to do here...it seems like a 

really fine structure. 

...Being clean- about [the difference between] topics and presentations took a while. 
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[Interviewer asked again about problems with the interface, but Charlie did not have any 

more specific comments, except to say there were some features he didn’t use.] 

KE: What was good about the statics tutor itself? 

DE: In spite of my sort of initial reservations I would have to say [the flexibility of the 

curriculum]. At first I thought ’That’s crazy, he wants [the student] to be able to start 

anywhere in here!’ [i.e. in the curriculum topic network]. However, I do feel as I look at 

this now that there are really about four major logical starting places where a person could 

dip in here and start to learn a good deal, with a little background. 

To me its amazing the different kinds of [curriculum] relationships that this has made 

possible...[for instance] the idea that the misconception strategy is really different than 

other strategies, [and] the free-body diagram solution strategy, [and] that you can say ‘let’s 

let them play with [the crane boom] for a while’ in the linear equilibrium intuition stuff—the 

ability to allow for that much variety is really amazing. 

KE: What could have been better about the statics tutor? 

DE: The thing that troubles me is that I wish I might have been able to use a bit more 

variety in terms of the style in which I designed questions and [answers]. I don’t know 

if that was so much a limitation of the system or a limitation of my imagination. I have 

thought ‘aw, another multiple choice question here with a sort of not wholly exciting picture 

to go with it,’ it would be nice to think of a wilder way to go at it. At times I wish there 

were not such a percentage of multiple choice. Good multiple choice really requires a lot 

of attention to build. But good multiple choice has some advantages [over other response 

methods]. It would be nice [for the student] to be able to type in equations, or type in an 

explanation to an answer. 

KE: If you were going to do it all over again what would you do differently? 

DE: In the best of worlds I would have more people power resources...three teachers, a 

couple more helpers... 

KE: What about the help features and assistance features? 

DE: I didn’t tend to look at the system a lot in terms of the system helping me, which 

may be partly due to the way I learned about computers and programming on some pretty 

unfriendly systems. [My attitude was] ‘if you’ve got a problem, you’ve got to figure it out 

yourself, and if [one attempt] doesn’t work, try something else.’ That may say something 

about my mind set. I do notice my [high school] programming students using help utili¬ 

ties..with great ease..but it is not my immediate reaction to say ‘Oh, let me look it up.’ I 

was to a large degree focused on content. 

KE: What was good and bad about working with the knowledge base managers? 

DE: When I was trying to get a lot of content out [on worksheets] it was really good not 

to be distracted with hardware and trying to push it all into the machine. Kim i Gonzalez] 

was a physics person [has a degree in physics] so I interacted more with her than Frank 

[Linton]...she asked some valuable questions. I felt comfortable around both of these folks. 
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[There was probably more frustration on their side that mine..since I was only here once a 

week. 

KE: Do you have any suggestion for training future domain experts, or any suggestions for 

future domain experts? 

DE: I thought all of [the information I was introduced to was] really important stuff. It was 

tricky enough to get started from scratch...it does take a bit of a feel to get on board...and 

we reviewed [some material and terms] quite a few times. I would say that they would 

definitely want to be patient with themselves. You really don’t want to do this on an island, 

but work with someone else. I have a hard time seeing someone just sitting down to tackle 

this alone [without a knowledge engineer.] They will be happier if they interact and share 

this with somebody. 

KE: How important was the ITS Summer Teacher’s institute? 

DE: ...[some of the material was not directly relevant but] having those concepts rattling 

around my mind for a yean1 had some effect. 

KE: What’s your gut feeling about how this kind of tutor can be used in a classroom (given 

that the students we tested were above average in ability)? 

DE: That is a very interesting issue. I’d love to be able to fool with it more [and] see how 

we could do with more average kind of students. I’d like to see how much the advanced 

students could do with [only] a little background [in the prerequisite concepts]...but I don’t 

have any solid answers on that. 

KE: Are there any big pieces missing before moving this into the classroom? 

DE: [Not really, but] the student model [i.e. incorporating confidence measurements and 

more elaborate abstractions of student mental states] is an interesting challenge down the 

line...sounds pretty tough to me...a whole other can of worms. 

Following are questions asked the domain expert that are not summarized here: 

• How do you think things would have been different if you came in every day instead 

of once a week? 

• About how many changes were made to the knowledge base as a result of the student 

trails? On the average, what kind of changes were they? 

• What do you think about the way the curriculum was designed in a linear classroom 

style, then later on worksheets? Did the worksheets work out OK; can you picture 

doing it without them? 

• What do you think about the quantitative results [Camp was shown total time spent 

on training and implementation for the four participants, see Figure 5.7] and the 

assumptions made in the calculations (as listed in Section 5.3.1)? [He found no obvious 

problems with the figures or assumptions.] 
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KAFITS MENU OPERATIONS 

Below is a hierarchical list the KAFITS menu operations, showing the features available to 

the user (instructional designer or domain expert) and the student (in the “student menu”). 

• Student Menu 

- Run the Statics LESSON 

- Make a student COMMENT 

- TEACH a topic 

- DESCRIBE a topic 

— TEST my knowledge of a topic 

— Give me a HINT 

- TeH me the ANSWER 

- REPEAT the last presentation 

- Change the TEACHING STYLE 

- Display session STATUS 

- Play with the SIMULATION 

— QUIT the tutor 

• Knowledge Engineering Menu 

- Student Model Utilities 

* IGNORE the student model 

* RESET the student model 

* SAVE the student model 

* LOAD a student model 

* Full SM SUMMARY 

* BRIEF SM summary 

* LIST all SM objects 

- KB Utilities 
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* CLEAR all windows 

* Change the screen CONFIGURATION 

* Test a PICTURE object 

* Test a CRANE BOOM object 

* Alter crane boom COLORS 

* List SLOTS in knowledge base 

* Load changes for DEMO 

* Toggle show TOPIC NET 

* Install NET-EDITOR menu 

* Install NET-PROGRAMMER menu 

Strategy Utilities 

* Show CURRENT strategies 

* NEW current RESPONSE strategy 

* ALTER response strategy 

* CREATE response strategy 

* ERASE response strategy 

* NEW current TOPIC strategy 

* ALTER topic strategy 

* CREATE topic strategy 

* ERASE topic strategy 

PAN Utilities 

* CREATE a new PAN 

* HIDE current PAN 

* Hide ALL PANs 

* SHOW ah PANs 

* Show SELECTED PANs 

* SAVE PANs 

* Toggle TRACE PANS 

* Toggle use DEFAULT NAMES 

* Toggle DUMMY nodes& arcs 

* SELECT a PAN 

Preferences 

* Trace window on? 

* User type 

* Trace dialog? 

* Use student model? 

* Trace file name 

* Demo lesson name 

* SAVE preferences 



* SHOW preferences 

* DESCRIBE preferences 

- REMOVE tutor menus 

- Tutor HELP/INFO 

- Start BROWSER 

- Install LISP menus 

- QUIT tutor and Lisp 

Browser Menu 

- Record and File Operations 

* Make a COMMENT 

* SAVE all instances 

* View an EDIT RECORD 

* View SESSION TRACE 

* View KNOWLEDGE BASE 

* Choose any FILE to open 

- Misc. Operations 

* Reset RESENT INSTANCES 

* CROSS-REFERENCE the K-base 

* Raise Browser WINDOWS 

- Preferences 

* Operator name 

* Record-file name 

* Set Type double-click action 

* Set Instance double-click action 

* Set Slot double-click action 

* SAVE preferences 

* SHOW preferences 

* DESCRIBE preferences 

- QUIT Browser 

Browser Pop-up Menus 

- Type Operations 

* New INSTANCE 

* New instance with MIXINS 

* DESCRIBE types 

- Instance Operations 

* VIEW instance 



* EDIT instance 

* COPY instance 

* DELETE instance 

* BROWSE instance 

* TEST instance 

* Add instance NOTE 

* DOCUMENTATION on slots 

* View CROSS-REFERENCES 

* STUDENT MODEL status 

— Slot Operations 

* VIEW slot 

* EDIT slot 

* DOCUMENTATION slot 

* BROWSE slot 

* LISP inspect 

Browser Editor Menu 

- DONE editing 

- ABORT editing 

- REVERT buffer 

- Editor HELP 

— CLEAR buffer 

- Slot DOCUMENTATION 

- PASTE previous edit 



Appendix E 

STRATEGIES USED IN THE STATICS TUTOR 

In this Appendix we show the PANs for the default strategies used in this study. KAFITS 

allows strategies at four levels: Lesson, Topic, Presentation, and Response. 

The default lesson level strategy is trivial (and not shown below): all the topics listed as 

goal topics in the lesson sequence are taught (at the typical performance level) in the order 

listed. 

The default presentation level strategy is also trivial (and not shown below): all of the 

presentation for a given topic level are run in the order listed. An alternate presentation 

level strategy was used for the FBD-identify-forces topic. This strategy involves giving a 

series of tasks related to a sequence of crane boom configurations, and is shown at the end 

of this Appendix. 

The default PANs for the topic and response levels are more elaborate, and their PANs are 

shown below. Several switch sets (not shown) were defined for these PANs. 

The first two pages show the five PANs for the default topic strategy. The next two pages 

show the eight PANs for the default response strategy. The last page shows the presentation 

level PAN for the FBD-identify-forces topic. 

“(Rand)” under the name of a node indicates that the node action produces a random text 

item from a list of similar items. “(Rand2)” indicates that random text is given if there is 

no text specified in the knowledge base. 
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Appendix F 

CRANE BOOM SIMULATION DETAILS 

We will not describe the functionality of the crane boom simulation in detail, but below are 

diagrams that illustrate some of its features and parameters. 
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Appendix G 

SAMPLE TUTORIAL DIALOG 

Below is an annotated sample of a typical tutorial dialog to give the reader a sense of what 

it is like to rim the statics tutor. Note that the inclusion of the various elements of the 

knowledge base (elaborations, hints, etc.) depends on the current strategy. 
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SAMPLE TUTORIAL DIALOG 

[TOPIC: {LINEAR-EQUILIBRIUM-INTUITION}] 

[MOTIVATE-TOPIC] You are going to be given some crane boom situations and 

then asked what will happen when one variable in the 

simulation is modified. 

[DEFINE-TOPIC] Given an object in equilibrium, changing one of the 

forces must result in a change in one or more of the 

other forces, if the total system is to remain in 

equilibrium (i.e. not move). 

[START-QUESTION: {LE-INTUITI0N-EASY1}] 

[A CRANE BOOM DIAGRAM IS GIVEN] 

How would you expect the tension force in the cable to 

change if the weight were moved to the left? 

:::Choose: 

Tension force increases. 

Tension force decreases. 

Tension force remains the same. 

:::Chosen:Tension force decreases. 

[Response-ok? CORRECT] 

[CHALLENGE] Please use the simulation now to move the weight left 

and right to see that it confirms your prediction. 

[SIMULATION COMES UP. STUDENT PLAYS WITH IT, AND EXITS IT.] 

[GIVE-AWAY] When you moved the weight to the left you may have 

noticed that the force of the wall holding up the boom 

is greater and the cable tension is reduced. 

[REASON] If you think of the weight moved far to the left, it 

should seem that the wall is providing most of the 

support. When the weight is on the right side, the 

cable must provide most of the support. 

[ELABORATION] Think about the extreme case when the weight is moved 

almost all the way to the wall. At this location the 

weight should put very little load on the cable. 
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[.] 

[START-QUESTION: {LE-INTUITI0N-TYPICAL1}] 

[A CRANE BOOM DIAGRAM IS GIVEN] 

If the cable were shortened, raising the end of the 

boom, how would the tension force in the cable change? 

:::Choose: 

Tension force increases. 

Tension force decreases. 

Tension force stays the same. 

:::Chosen:Tension force decreases. 

Response-ok? CORRECT 

[CONGRATULATION] Good job! 

[REASON] Notice, as the end of the boom swings up, how the wall 

must support more and more of the weight. 

[ELABORATION] Think about the extreme case when the boom is almost 

vertical. Then you can probably see that the wall is 

holding up the whole boom. 

[.] 

[SUMMARIZE-TOPIC] Since one may always think of the crane boom as being in 

equilibrium, one should try to see that an increased 

force in one location should always be compensated by 

increased balancing force(s) elsewhere. The opposite 

for decreasing forces should be true. 

[WRAP-UP-TOPIC] When working on this type of problem you are urged to 

draw a picture showing all the forces on the beam. 

Then you will hopefully be able to reason how a change in 

one force will effect the other force(s) acting on the beam. 

[.X 

[START-QUESTION: {LE-PRINCIP-EASY1}] 

[A PICTURE IS GIVEN] 

A person is pushing a refrigerator straight across a 

warehouse floor at a steady speed of two miles/hour. 
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How could one possibly think of the refrigerator being 

in equilibrium? 

:::Answer Choices: 

:::A. The refrigerator is not in equilibrium because the 

worker is much stronger than any other force in the problem. 

:::B. The refrigerator is in equilibrium because the 

refrigerator is pushing back on the worker exactly as 

hard at the worker is pushing on the refrigerator. 

:::C. The refrigerator is in equilibrium because the 

friction force from the floor is opposite and equal to 

the force of the worker. 

:::D. The refrigerator is in equilibrium because the force 

of the worker is balanced by both the force of inertia 

and the force of friction combined. 

:::E. The force of inertia is balanced by the force of 

gravity that pulls the object down. 

:::Chosen: B. 

Response-ok? NO 

[ENCOURAGEMENT] I think I understand your answer. 

[REACTION] Be careful. The two forces named are equal but only 

one of these forces acts on the refrigerator. 

[GIVE-HINT] You need to find an explanation as to how all the forces 

acting on the refrigerator could be balanced. 

Please try again... 

[.] 

[...Response-ok? YES] 

[CONGRATULATION] That’s good! 

[REASON] Since friction is caused by tiny bumps on the floor it 

is hard to imagine that the friction force could 

balance the force of a strong worker. It may help to 

think of many of these little bumps working together. 

[ ] 



Appendix H 

SAMPLE OBJECT INSTANCES 

Example instance of one of each type of object in the system are shown below to document 

the slots associated with the object types.1 

1Not all objects of a given type have the same slots, because the mixin feature allows other slots to be 

added. The instances shown below are for the default mixins for each object type, as used in ninety five 

percent of all objects in the knowledge base. 
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SAMPLE INSTANCES 

;; Sample LESSON 

(NEW-LESSON :NAME {LINEAR-EQUILIBRIUM-LESSON} 
:NOTES ("This lesson was used in the June student tests.") 
:REFERENCED-BY () 
:INTRODUCTION "This lesson will focus on a qualitative understanding 

of Linear Equilibrium for static objects. " 
:LESSON-SEQUENCE ( (SET-TOPIC-STRATEGY ’GENERAL-TEACH) 

(SET-RESPONSE-STRATEGY ’VERBOSE) 
{LINEAR-EQUILIBRIUM}) 

:CONCLUSION "This concludes the LINEAR-EQUILIBRIUM lesson—Have a nice day 

) 

;; SAMPLE TOPIC 

(NEW-TOPIC :NAME {LINEAR-EQUILIBRIUM-INTUITION} 
:NOTES ("should have familiarity with newtons laws?-tm" "i need 

to re-check the motivation later.-cc") 
:REFERENCED-BY ({FBD-S0LUTI0N-ANALYSIS} {LINEAR-EQUILIBRIUM}) 
:TOPIC-TYPE COMPLEX 
:DEFINITION "Given an object in equilibrium, changing one 

of the forces must result in a change in one or more of 
the other forces, if the total system is to remain in equilibrium 
(i.e. not move)." 

:PREREQUISITES (:FAMILIAR ({LINEAR-EQUILIBRIUM-PRINCIPLE}) 
:DEEP-FAMILIAR ({?}) :EASY ({?}) :TYPICAL ({?}) :DIFFICULT ({?})) 

:PARTS (:CONCEPTS ({?}) :OTHER ({?})) 
:MOTIVATION "You are going to be given some crane boom 

situations and then asked what will happen 
when one variable in the simulation is modified." 

:SUMMARY "Since one may always think of the crane boom as being in 
equilibrium, one should try to see that an increased force in one 
location should always be compensated by increased balancing force(s) 
elsewhere. The opposite for decreasing forces should be true." 

:WRAP-UP "When working on this type of problem you are urged to draw 
a picture showing all the forces on the beam. Then you will 
hopefully be able to reason how a change in one force will effect 
the other force(s) acting on the beam." 

:META-KNOWLEDGE () 
:REMEMBER () 
:USE-EASY ({LE-INTUITI0N-EASY1} {LE-INTUITI0N-EASY2}) 
:USE-TYPICAL ({LE-INTUITI0N-TYPICAL1} {LE-INTUITI0N-TYPICAL2}) 

•.USE-DIFFICULT () 
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: DIAGNOSTIC-QUESTIONS () 

:CRITICAL-MISCONCEPTIONS () 

:LOCAL-TOPIC-STRATEGY () 

) 

;; Sample PRESENTATION 

(NEW-PRESENTATION :NAME {CENTER-OF-MASS-EASY1} 

:MIXINS ({EXAMPLE-MIXIN} {QUESTION-MIXIN}) 

:NOTES () 

:REFERENCED-BY ({CENTER-OF-MASS}) 

:SET-UP (SHOW-PICTURE {TWO-BLOCKS-ON-BEAM}) 

.-TAKE-DOWN () 

:ANSWER-TYPE :MULTIPLE-CHOICE 

:INTRO-TEXT "The 2 kg block and the 5 kg block are on a massless beam." 

:QUESTION-TEXT "Where would the center of mass of the system be located?" 

:ANSWER-DESCRIPTIONS ("Nearest to point A." 

"Nearest to point B." 

"Nearest to point C." 

"Nearest to point D." 

"Nearest to point E.") 

:REACTIONS (5 "You have the right idea but consider the fact that 

the boom is massless.") 

:REMEDIATION-INFO () 

:CORRECT-ANSWERS (3) 

:CONGRATULATE () 

:CHALLENGE () 

:HINTS ("Think of where you could put a support under the beam and 

have it balance.") 

:GIVE-AWAY ("The center of mass must be nearer the 5 kg than the 

2 kg mass.") 

:REAS0N ("If you placed a 7 kg mass at the center of mass it would 

balance the same as the two separate masses.") 

:ELABORATE ("Actually the distance from the 2 kg mass to the center 

of mass is 2.5 times as far as the distance from the 5 kg to the 

center of mass. This is the inverse of the mass ratio.") 

:LOCAL-RESPONSE-CONTROL () 

:RESPONSE-STRATEGY NORMAL-RUN-PRESENTATION 

:CB-INTERVENTION-FUNCTION NUL-INTERVENTION-FUNCTION 

) 

[Note: The presentation above includes mixins for example and question 

object slots. Example objects and question objects (rarely used in the 

statics domain) have a subset of the slots shown for the presentation 

above.] 
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;; Sample PICTURE 

(NEW-PICTURE :NAME {TWO-BLOCKS-ON-BEAM} 

:MIXINS () 

:NOTES () 

:REFERENCED-BY ({CENTER-OF-MASS-EASY1}) 

:RESOURCE-ID 7 

:DESCRIPTION "A massless beam with a 2 kg block on one 

end and a 5 kg block on the other." 

:RESOURCE-FILE "statics-7.pic" 

:DRAWING-FILE "statics-pictures" 

) 

;; Sample CRANE BOOM 

(NEW-CRANE-BOOM :NAME {SUM-Y-FORCES-2} 

:NOTES ("add in the wall force and display in free body 

mode in right screen with answer reason?") 

:REFERENCED-BY ({PR0CED-SUM-Y-F0RCES-TYPICAL2-EX}) 

:TYPE LEFT-DIAGRAM 

:M0DE PHYSICAL 

:CABLE-HEIGHT-H INFINITE 

:ALPHA 90 

:BEAM-LENGTH-B 10.0 

:BEAM-CTR-MASS-C 5.0 

:WEIGHT-POS-D 10.0 

:CABLE-POS-K 6 

:MASS-WEIGHT-WM 10.0 

:BEAM-WEIGHT-WB 4 

:ANGLES-SHOWN () 

:VECTORS-SHOWN (TC WB W) 

:LENGTHS-SHOWN () 

:METERS-SHOWN (TC WB WM) 

:VECTOR-SCALE :AUTO 

:PICTURE-SCALE :AUTO 

: SHOW-WHEN-CREATED? T 

:LEAVE-SHOWN-WHEN-DONE? () 

) 

;; Sample MIS-KU 

(NEW-MIS-KU :NAME {COMPRESSION-ON-VS-BY-CONFUSION} 

:MIXINS () 

:NOTES () 
:REFERENCED-BY ({COMPRESSIBLE-BODY-FORCES} {FORCE-ON-VS-BY-CONFUSION}) 

:DIAGNOSTIC-SCRIPT ({C0MPRESSI0N-0N-VS-BY-DIAG1} {C0MPRESSI0N-0N-VS-BY-DIAG2}) 
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:REMEDIATION-SCRIPT ({COMPRESSION-MIS-KU-REMEDl} {C0MPRESSI0N-MIS-KU-REMED2}) 

) 

;; Sample SOUND 

(NEW-SOUND :NAME {CATS-MEOW} 

:MIXINS () 

:NOTES () 

:REFERENCED-BY () 

:RESOURCE-ID 25903 

:DESCRIPTION "cat meowing" 

:RESOURCE-FILE "tev-sounds" 

:ORIGINAL-SOUND-FILE "" 

) 

;; Sample STORAGE object 

(NEW-STORAGE :NAME {RANDOM-TEXT} 

:MIXINS () 

:NOTES ("This instance is not meant to be run. 

It only stores values and text to be used elsewhere.") 

:REFERENCED-BY () 

:TRY-AGAIN ("Please try again..." "Try it one more time..." 

"Try it again...") 

:GIVE-AWAY-INTRO ("The correct answer is: " "The answer is: " 

"This is the right answer: ") 

:TELL-WRONG ("That’s not quite right." "Your answer is incorrect." 

"Sorry, but that is wrong.") 

:TELL-0K ("That’s right." "That’s exactly right!" 

"Your answer is correct.") 

:ENCOURAGE-WRONG ("I think I understand your answer." "Well...") 

:ENC0URAGE-0K ("OK," "fine,") 

:CONGRATULATE ("Very good!" "That’s good!" "Good job!") 

:HELLO ("hi" "hello" "hi there" "welcome") 

) 



Appendix I 

SAMPLE SAVED-INSTANCES FILE 

Portions of a saved-instances-file are shown below, including a table of contents, instances, 

and cross references. 
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SAVED INSTANCE FILE 

M M M ) M ) f >) M M ))»))))))) M ) M )))))))))))) M M) M ) M M )))))))))))) M ) ) 

Tutor Instance SAVE file for tutor edit session. 

Time: 13:49:31. Date: 12/12/1989. 

File: "Tutor-data:Tupits-saved-instances:tutor-inst-7.lisp" 

Operator: tom 

; TABLE OF CONTENTS 

#1 

TOPICS: 

{ALL-FORCES-ARE-ELASTIC} 

{CENTER-OF-MASS}. 

{COMPRESSIBLE-BODY}. 

{CONTACT-FORCES}. 

{DUM-TOPIC}. 

{FBD-CONCEPT}. 

{FBD-IDENTIFY-FORCES}... 

{FBD-IDENTIFY-MAIN-BODY} 

{FBD-SOLUTION-ANALYSIS}. 

{FBD-SOLVE-EQUATIONS}... 

[.] 

{Y-AXIS-FORCES}. 

MISC. PRESENTATIONS:.. 

MISC. OTHER INSTANCES: 

CROSS REFERENCES:. 

» 

> END TABLE OF CONTENTS 
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I# 

9999999999999999999999999999999999999999999999999999999999>9999999999>>>) 

LESSON: {LINEAR-EQUILIBRIUM-LESSON} 

99999999999999999999999999999999999999999999999999999999999999999999999999 

(NEW-LESSON :NAME {LINEAR-EQUILIBRIUM-LESSON} 

:NOTES () 

:REFERENCED-BY () 

:INTRODUCTION "This lesson will focus on a qualitative understanding 

of Linear Equilibrium for static objects. " 

:LESSON-SEQUENCE ((SET-TOPIC-STRATEGY 5GENERAL-TEACH) 

(SET-RESPONSE-STRATEGY ’VERBOSE) 

{LINEAR-EQUILIBRIUM}) 

:CONCLUSION "This concludes the LINEAR-EQUILIBRIUM lesson—Have a nice day!" 

) 

9999999999999999999999999999999999999999999999999999999999999999999999999 

TOPIC: {FORCES-AT-A-DISTANCE} 

99999999999999999999999999999999999999999999999999999999999999999999999999 

(NEW-TOPIC :NAME {FORCES-AT-A-DISTANCE} 

rMIXINS () 

:NOTES ("This topic tries to make clear the difference between 

forces that act at a distance as compared to contact forces." 

"For Use Easy and Use Typical, see the notes on the original sheet. 

Synthesizer link to 3rd-law-existance.") 

:REFERENCED-BY ({TYPES-OF-FORCES}) 

:TOPIC-TYPE CONCEPT 

:PREREQUISITES (:FAMILIAR ({?}) :DEEP-FAMILIAR ({?}) :EASY ({?}) 

•.TYPICAL ({?}) -.DIFFICULT ({?})) 

:PARTS (:CONCEPTS ({GRAVITY} {OTHER-FORCES}) :OTHER ({?})) 

:SUMMARY "In order for you to be sure that a particular force can act 

at a distance, you should be able to remember an example where you 

have seen this kind of force reach out and attract or repel an object 

through empty space." 
:MOTIVATION "A most amazing type of force is the kind that can reach out 

through empty space and influence (push or pull) another body." 

:DEFINITION "When a body can reach out through space with an apparently 
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invisible influence and push or pull another object, we say this type 

of force is a force that acts through a distance and does not require 
contact of the two bodies." 

:USE-EASY ({FORCE-AT-A-DISTANCE-EASY1}) 

:USE-TYPICAL ({FORCE-AT-A-DISTANCE-TYPICALl}) 

:USE-DIFFICULT () 

:WRAP-UP "In our every day lives gravity would seem to be the strongest 

force that can act at a distance." 

:TEACH-STRATEGY NORMAL-TEACH-TOPIC 

:LOCAL-TEACH-CONTROL () 

:CRITICAL-MISCONCEPTIONS () 

) 

999999999999999999999999999999999999999999999999999999999999999999999999999 

(NEW-PRESENTATION :NAME {FORCE-AT-A-DISTANCE-EASYl} 

:MIXINS ({EXAMPLE-MIXIN} {QUESTION-MIXIN}) 

:NOTES ("This is a counter example. Tries to deal with the impetus misconception.") 

:REFEREN CED-BY ({FORCES-AT-A-DISTANCE}) 

:INTRO-TEXT "" 

:LOCAL-RESPONSE-CONTROL () 

:RESPONSE-STRATEGY NORMAL-RUN-PRESENTATION 

:SET-UP (SHOW-PICTURE {BAT-HITS-BALL}) 

:TAKE-DOWN () 

:ANSWER-TYPE :ABC-CHOICE 

:QUESTION-TEXT "When the ball hits the bat and flies away, what 

type(s) of forces are involved?" 

:ANSWER-DESCRIPTIONS ("Only contact force (when the ball is touching 

the bat)." 

"Both contact forces (when the ball touches the bat) and the force at 

a distance (that keeps it going when it has left the bat)." 

"Only forces that act at a distance really matter in this problem.") 

:REACTIONS () 

:REMEDIATION-INFO () 

:CORRECT-ANSWERS (1) 

:CONGRATULATE () 

:CHALLENGE () 

:HINTS () 

:GIVE-AWAY "It is tempting to think of the bat as still pushing on 

the ball after it has left contact with the bat. 

However, you may find it helpful to think of the ball as 

coasting after it stops touching the bat." 

:REASON "The contact force between the bat and the ball only 

influences the ball while they are touching. There are 

no forces that act at a distance between the bat and the ball." 
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:ELABORATE () 

:CB-INTERVENTION-FUNCTION NUL-INTERVENTION-FUNCTION 

) 

(NEW-PICTURE :NAME {BAT-HITS-BALL} 

rMIXINS () 

:NOTES () 

:REFERENCED-BY ({FORCE-AT-A-DISTANCE-EASY1}) 

:RESOURCE-ID 18406 

:DESCRIPTION "[no picture description available]" 

:RESOURCE-FILE "statics-2.pic" 

:DRAWING-FILE "CRANE-BOOM-DWGS.1" 

) 

C.] 

9999999999999999999999999999999999999999999999999999999999999999999999999 

Misc. Presentations: 

999999999999999999999999I999999999999999999999999999999999999999999999999 

[.] 

9999999999999999999999999999999999999999999999999999999999999999999999999 

Misc. other instances:: 

[.] 

I I I I 1 I M I I I t I I I ) I I » I I I I I I » I > > I t I I ) I > I > I I I > » I I I ) 1 I I ) 1 I » I I » I ) I I I I I > I I 1 I I I 1 » 

Cross references for PRESENTATIONS: 

9999999999999999999999999999999999999999999999999999999999999999999999999 

{F0RCE-AT-A-DISTANCE-EASY1} cross references: 

Appears in slot USE-EASY of instance {FORCES-AT-A-DISTANCE}. 

{FORCE-AT-A-DISTANCE-TYPICAL1} cross references: 

Appears in slot USE-TYPICAL of instance {FORCES-AT-A-DISTANCE}. 

{GRAVITY-F0RCE-EASY1} cross references: 
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Appears in slot USE-EASY of instance {GRAVITY} 

M ) M M ) f M ) M M M) M )>)))>))) M M) M M ) M ) M )) f ) M) M » M )))) M M )))))>) ) 

Non-existing instances found in Cross References: 

M I t M I M M M ) M M M M ) M » ) ) ) ) M ) ) ) M ) M I I I » I I M ) ) ) ) M I M M ) ) M ) ) M M M ) ) 

Instance 

Instance 

Instance 

{DUM-MIS-KU} refers 

{GRAVITY} refers to 

{GRAVITY} refers to 

to nonexisting: {DUM-KU}. 

nonexisting: {EARTH-ROTATION}, 

nonexisting: {AIR-PRESSURE}. 

I# 

999999999999999999999999999999999999999999999999999999999999999999999999999 

End of Cross References 

;;************************************** ********************************** 

;;41 Topics. 

;;3 Mis-KUs 

;;68 Presentations. 

;;250 Total instances. 



Appendix J 

SAMPLE LESSON LISTING 

The lesson listing file has one entry for each tutorial session started. A sample of this file 

is given below. 
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File: Session-listings.txt 

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}. 

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-235.out. 

Student: Steve Brown. Date: 2/23/1990 Time: 16:35:8 

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}. 

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-237.out. 

Student: Gint Flarb. Date: 2/27/1990 Time: 15:5:26 

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}. 

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-244.out. 

Student: Trent Todlis. Date: 3/15/1990 Time: 14:14:22 

Demo lesson tutoring session. Lesson: {LINEAR-EQUILIBRIUM-LESSON}. 

Trace file: Breakfast:tutor:tutor-data:tup-traces:trace-245.out. 

Student: Barb. Date: 3/15/1990 Time: 16:5:59 

[.] 



Appendix K 

SAMPLE EDIT RECORD 

A portion of an edit record containing changes made by the domain expert is shown. Note 

the comments entered by the domain expert for the knowledge engineer. 
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SAMPLE EDIT RECORD 

9999999999999999999999999999999999999999999999999999999999999999)9999999 

New Record file for tutor edit session. 

Time: 12:7:33. Date: 8/7/1990. 

File: :Tutor-data:Tupits-edit-records:DB7/24/90 

999999999999999999999999999999919999999999999999999999999999999999999999 

999999999999999999999999999999999999999999999999999999999999999999999999 

Starting tutor edit session. 

Time: 12:9:36. Date: 8/7/1990. 

Operator: cc 

Session record file: :tutor-data:tup-traces:trace-290.out 

999999999999999999999999999999999999999999999999999999999999999999999999 

;;Recording: 

(RL:ASSERT-VAL {LE-CONCEPT-EASYl} 

’QUESTION-TEXT 

’"The person shown weighs 450 Newtons. If the earth is 

pulling down on this person with a 450 N force, what 

other force is acting to keep this body in equilibrium?") 

#I COMMENT: 

Tom — Notice the question scrolls off the screen when all 4 ans 

choices are displayed, cc 

I# 

(RL:ASSERT-VAL {LE-C0NCEPT-TYPICAL2} 

’ANSWER-DESCRIPTIONS 

*("2 Newtons Southwest" "1 Newton South and 1 Newton West" 

"1 Newton Southwest" 

"1.41 Newtons Southwest")) 

;;Recording: 

(RL:ASSERT-VAL {X-AXIS-FORCES} 

’MOTIVATION 

’"Most crane boom problems involve both X and Y forces. 

While this section involves practicing with only 

horizontal forces, you are reminded that you can ignore 

any Y-forces present.") 



#I COMMENT: 

Tom, Why isn’t this starting with Y-Forces ?? CC 

I# 

; ;Recording: 

(NEW-CRANE-BOOM :NAME {CB-TWO-FORCES} 

:MIXINS NIL 

:N0TES ("Massless boom with mass hanging from center 

and vertical cable in center.") 

:REFERENCED-BY NIL 

:TYPE LEFT-DIAGRAM 

:M0DE PHYSICAL 

:CABLE-HEIGHT-H 9.0 

:ALPHA 45.0 

:BEAM-LENGHT-B 10.0 

:BEAM-CTR-MASS-C 5.0 

:WEIGHT-POS-D 5.0 

:CABLE-POS-K 5.0 

:BEAM-HEIGHT 7.5 

:MASS-WEIGHT-WM 10.0 

:BEAM-WEIGHT-WB 0 

:ANGLES-SHOWN NIL 

:VECTORS-SHOWN NIL 

:LENGTHS-SHOWN NIL 

:METERS-SHOWN NIL 

:VECTOR-SCALE :AUT0 

:PICTURE-SCALE :AUT0 

:SHOW-METERS? T 

:SHOW-WHEN-CREATED? T 

:LEAVE-SHOWN-WHEN-DONE? NIL) 

[.1 

ENDING tutor edit session. 

Time: 13:8:22. Date: 8/7/1990. 



Appendix L 

SAMPLE TRACE FILE 

Trace files, like the one shown below, record the transactions of tutorial sessions. Note the 

comment entered by the student near the end. 
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SAMPLE TRACE FILE 

New trace file name: :tutor-data:tup-traces:trace-159.out 

Starting Crane Boom tutoring session. 

Student Model Reset. 

******************* 

******Time stamp: 13:13:10. 

START-LESSON: {LINEAR-EQUILIBRIUM-LESSON} 

LESSON-INTRO: 

:::This lesson will focus on a qualitative understanding of 

Linear Equilibrium for static objects. 

NEW-TOPIC-STRATEGY: GENERAL-TEACH 

NEW-RESPONSE-STRATEGY: VERBOSE 

START-TOPIC: {LINEAR-EQUILIBRIUM} 

START-PREREQUISITES-OF: {LINEAR-EQUILIBRIUM} 

FINISH-PREREQ-OF: {LINEAR-EQUILIBRIUM} 

TEACHING-PARTS-OF: {LINEAR-EQUILIBRIUM} 

CONCEPT-PART-OF: {LINEAR-EQUILIBRIUM} 

******Time stamp: 14:33:13. 

START-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT} 

[.] 

MOTIVATE-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT} 

:::Many problem situations in physics are much simpler if 

the forces acting on an object are balanced. It is 

important to learn to recognize these balanced force situations. 

DEFINE-TOPIC: {LINEAR-EQUILIBRIUM-CONCEPT} 

:::An object is in equilibrium if the forces acting on the 

object balance each other. We sometimes say there is 

no unbalanced force or the sum of the force vectors is zero. 
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:::Choose: 

Click here to CONTINUE 
**************** 
INTERRUPT the session 

:::Chosen:Click here to CONTINUE 

CHOOSING-NEXT-EASY-PRESENTATION: {LINEAR-EQUILIBRIUM-CONCEPT} 

START-PRESENTATION: {LE-C0NCEPT-EASY1} 

START-EXAMPLE: {LE-C0NCEPT-EASY1} 

START-QUESTION: {LE-C0NCEPT-EASY1} 

:::The person shown weighs 450 Newtons. If the earth is 

pulling down on this person with a 450 N force, what 

other force is acting to keep this body in equilibrium? 

:::Choose: 

No other force is needed because the person is standing still. 

Balanced forces are not needed for objects in contact with the earth. 

The person’s legs push up to keep him from falling down. 

The ground pushes up with a force of 450N. 

INTERRUPT the session 

:::Chosen:The ground pushes up with a force of 450N. 

Response-ok? CORRECT 

FINISH-QUESTION: {LE-C0NCEPT-EASY1} 

:::Good j ob! 

:::Although it is often hard to believe, the solid ground 

does push up with a force of 450N. This force just 

balances the gravity force which acts downward on the person. 

:::Choose: 

Click here to CONTINUE 

INTERRUPT the session 

SESSION-SUSPENDED: 

[Student comment entered here.] 
**************** STUDENT COMMENT: ******************* 

could put a picture with the three forces here 
****************************************************** 

[ ] 



Appendix M 

SAMPLE PAPER WORKSHEETS 

Below are examples of the worksheets used by the domain expert to specify the curriculum 

for data entry by the knowledge base manager. Paper forms were designed for topics, 

presentations, Mis-KUs, and crane-booms. 
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H. 

TOPIC 

(T) 

Motivation 

S/>\ 

Topic name TEM S(QM 

tS 

a. v-»pc = C-N o»u^ 

I (J) Fo*<*. S•—L :v-v fa«7t' C—~i_ a. 

'<D Fj«j. s*~c »*\ c-i: a. ^YP® 
Ca \a Cr p~t 

4 

, / , JLl -Hi«i P'Wv. 

'Cr ' ^ >'AC ^ NQteS& PICt3’ 

We. +& Ee, clevis- a-lOtodc 
v^e.1 «.4-WsUlp beftoewv. -Ha_ -£i/-<u..s p«c(i/«*j #4. 

■fcwo *-wJ£ a. r*p-e «—-f4t_ JJJm. £?-f 
t*t -Hjl. mldLUe O'A a, /ope. 

Definition , r „_C ^ 
-eyodS- +1'*-. acff*3 o**- e/*dL of a~'- 

-tle-vw*^- w»HU 4fu /ope, X-P ^9U* +Kf»*k «A a. 
.. *'»[’-«- «-* Wautv^ **'*^*»j slw/t y»«- vv1*^ 

-H-l. is -H%o 3awvo +*4- /ope. 
use-easy 

i e«ai/v»-Use - <?aL£j4 —- 

Tfc^iiovv - Use. - easy -- 

Use-typical 
TVwsJir* - Use - 7“yP<cJi 

T**»4la^- Use -Typ<«-aJ 2. 

Summary A plcaL 4: ropt */ sP^ *el e^<l lm~L 
oopo$lU- ~£»r<k£ *•> -fwo a*A^S. Si»ac«. C(W' 

, #1 lJ r ac Cr^ptsej. ~*~1 c^t.cU4 Pttct*j 
be fW5Ut of- °5 C~£S ^ as ^ e?ua( ~ 
we Co-v -Hvtufr of ^ ^ 

piece wlfUU +**- vV‘t* 

Wrap-up jiao, 
Ar.o. - ^ ^ sp*+ wiffk , 

fkfl_ /Ope . 
Notes: . 

L* (se<_ +»p +**- f*5c) 

Entered: CU ¥e/#r 
Who: When 

•
M
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Presentation Name Co™passion - MiS-/cU- Re^uAl 

Diagram-descripton (set-up) , v < 
o£ «- ^JuusUiS^ a. CaW- *3<x.W~ 

a_ bu^v^oev- octhu^jJL A- uxlII Cfio J/ 

^ Intro-text ru. ii pusLt^ on &■ e**f wfcf«li 
pavJ-lj Cs**ji\r€SS2£ Qw -S^VOv'j £p(r|v^ a.~ifojcLuL "fd 

. 4Ui_ u/all . 
^Question-text 

Title: tf a* pusUs cxr4- t* St**- 

n-text » / n i, i. i o 
f^ou; wki^vj horl-SmTia -ftircci <*>€- act/w^ 

A) 1 8.) 2 c.) 3 a) 
Correct-answers 

v/Hintl 4ve, i*cL*Ahy s<nw^A^e. or £>rce_s 

pu^Utv^ on o’f^i.v- 0^>j ^cJ'S ? 

Hint 2 

OvvjL 
3 ^1/ 

^ Answer give-away 73\e*^c- art, +-u/<? , 
*n/-v* p^LN^ on f<u„ catr-f 4^<- 

Spr(\^ pastil^ 

v-/Answer reason 
Tk«- cr^/y j 

cn -fL<_ C-a^-f“ a^€_ abjecJZ fiy+-7 avZ- 

Elaboration: 

Ca*~£Cc/ 
:-coL 

by 

*4. 

OVV <U^h 

Covv SoUr f tv/ r-/ ft /J 
‘f'J O^/t / /f/ 

List of possible answers 
(for each you can specify: 

Reaction, Misconception/Branch) . 
"^O /4nr <v-eu J^,*j Ca^l 1 ^ 

so 4Ure. wi«f be. +"‘> £”'“s 
-P^i Car- •f- -H-^f C<j-v\CeJ. 

Mo/ Mv/o/ 

a.c'/'IWj 
J 

°*\ 

Notes 

Entered: KD£ te-jo-io 

Who: When 
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mis-ku Name_ 

Notes & pictures 

Diagnositc-script 

Remidiation-script 

For Topics... 

Notes 

Entered: 

Who: When 
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Crane Boom Name So^ y 

Copy of crane boom f/o/fg - C61 

[Interactive Simulation] 
or [left Diagram] or [right Diagram] 

cable height (h) JufUf A) 

beam length (b) 

weight postition on beam (d) IQ 

9 

cable postion on beam (k) 

beam-cntr-mass (cm) 

beam angle (alpha) 

beam weight (WB) 

mass’s weight (WM) 25" 

Lengths shown [d b k cm h] 

Angles shown [ alpha beta ] 

Vectors shown [@Fwffii)(WM)] 

Vectors components shown 
[ Actual X Y Normal Radial ] 

Meters shown (for simul. only) 
[@ fw <m<&] 
[<f bk cm ri alpha beta ] 

Mode [abstract] [physical] [free body] 

Show when created? [yes] [no] 

Leave shown when done? [yes] [no] 

Notes 

clisp 

1 
QvtU'fi Ji- ■-'Typical^. 

0 S\ ZTaJl Co\nSL ±. 
U-4- vhhr 

wi 
i ^ -TWfl- ^ \A*4<jjL C*a- 

Who: When 
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