21 research outputs found

    Traveling Trends: Social Butterflies or Frequent Fliers?

    Full text link
    Trending topics are the online conversations that grab collective attention on social media. They are continually changing and often reflect exogenous events that happen in the real world. Trends are localized in space and time as they are driven by activity in specific geographic areas that act as sources of traffic and information flow. Taken independently, trends and geography have been discussed in recent literature on online social media; although, so far, little has been done to characterize the relation between trends and geography. Here we investigate more than eleven thousand topics that trended on Twitter in 63 main US locations during a period of 50 days in 2013. This data allows us to study the origins and pathways of trends, how they compete for popularity at the local level to emerge as winners at the country level, and what dynamics underlie their production and consumption in different geographic areas. We identify two main classes of trending topics: those that surface locally, coinciding with three different geographic clusters (East coast, Midwest and Southwest); and those that emerge globally from several metropolitan areas, coinciding with the major air traffic hubs of the country. These hubs act as trendsetters, generating topics that eventually trend at the country level, and driving the conversation across the country. This poses an intriguing conjecture, drawing a parallel between the spread of information and diseases: Do trends travel faster by airplane than over the Internet?Comment: Proceedings of the first ACM conference on Online social networks, pp. 213-222, 201

    A Study into Detecting Anomalous Behaviours within HealthCare Infrastructures

    Get PDF
    The theft of medical data, which is intrinsically valuable, can lead to loss of patient privacy and trust. With increasing requirements for valuable and accurate information, patients need to be confident that their data is being stored safely and securely. However, medical devices are vulnerable to attacks from the digital domain, with many devices transmitting data unencrypted wirelessly to electronic patient record systems. As such, it is now becoming more necessary to visualise data patterns and trends in order identify erratic and anomalous data behaviours. In this paper, a system design for modelling data flow within healthcare infrastructures is presented. The system assists information security officers within healthcare organisations to improve the situational awareness of cyber security risks. In addition, a visualisation of TCP Socket Connections using real-world network data is put forward, in order to demonstrate the framework and present an analysis of potential risks

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Mapper on Graphs for Network Visualization

    Full text link
    Networks are an exceedingly popular type of data for representing relationships between individuals, businesses, proteins, brain regions, telecommunication endpoints, etc. Network or graph visualization provides an intuitive way to explore the node-link structures of network data for instant sense-making. However, naive node-link diagrams can fail to convey insights regarding network structures, even for moderately sized data of a few hundred nodes. We propose to apply the mapper construction--a popular tool in topological data analysis--to graph visualization, which provides a strong theoretical basis for summarizing network data while preserving their core structures. We develop a variation of the mapper construction targeting weighted, undirected graphs, called mapper on graphs, which generates property-preserving summaries of graphs. We provide a software tool that enables interactive explorations of such summaries and demonstrates the effectiveness of our method for synthetic and real-world data. The mapper on graphs approach we propose represents a new class of techniques that leverages tools from topological data analysis in addressing challenges in graph visualization

    Analytical Review of Data Visualization Methods in Application to Big Data

    Get PDF
    This paper describes the term Big Data in aspects of data representation and visualization. There are some specific problems in Big Data visualization, so there are definitions for these problems and a set of approaches to avoid them. Also, we make a review of existing methods for data visualization in application to Big Data and taking into account the described problems. Summarizing the result, we have provided a classification of visualization methods in application to Big Data

    OSoMe: The IUNI observatory on social media

    Get PDF

    OSoMe: The IUNI observatory on social media

    Get PDF

    An Information-Theoretic Framework for Evaluating Edge Bundling Visualization

    Get PDF
    Edge bundling is a promising graph visualization approach to simplifying the visual result of a graph drawing. Plenty of edge bundling methods have been developed to generate diverse graph layouts. However, it is difficult to defend an edge bundling method with its resulting layout against other edge bundling methods as a clear theoretic evaluation framework is absent in the literature. In this paper, we propose an information-theoretic framework to evaluate the visual results of edge bundling techniques. We first illustrate the advantage of edge bundling visualizations for large graphs, and pinpoint the ambiguity resulting from drawing results. Second, we define and quantify the amount of information delivered by edge bundling visualization from the underlying network using information theory. Third, we propose a new algorithm to evaluate the resulting layouts of edge bundling using the amount of the mutual information between a raw network dataset and its edge bundling visualization. Comparison examples based on the proposed framework between different edge bundling techniques are presented
    corecore