4,857 research outputs found

    Adaptive Subcarrier PSK Intensity Modulation in Free Space Optical Systems

    Full text link
    We propose an adaptive transmission technique for free space optical (FSO) systems, operating in atmospheric turbulence and employing subcarrier phase shift keying (S-PSK) intensity modulation. Exploiting the constant envelope characteristics of S-PSK, the proposed technique offers efficient utilization of the FSO channel capacity by adapting the modulation order of S-PSK, according to the instantaneous state of turbulence induced fading and a pre-defined bit error rate (BER) requirement. Novel expressions for the spectral efficiency and average BER of the proposed adaptive FSO system are presented and performance investigations under various turbulence conditions and target BER requirements are carried out. Numerical results indicate that significant spectral efficiency gains are offered without increasing the transmitted average optical power or sacrificing BER requirements, in moderate-to-strong turbulence conditions. Furthermore, the proposed variable rate transmission technique is applied to multiple input multiple output (MIMO) FSO systems, providing additional improvement in the achieved spectral efficiency as the number of the transmit and/or receive apertures increases.Comment: Submitted To IEEE Transactions On Communication

    On the BER of Multiple-Input Multiple-Output Underwater Wireless Optical Communication Systems

    Full text link
    In this paper we analyze and investigate the bit error rate (BER) performance of multiple-input multiple-output underwater wireless optical communication (MIMO-UWOC) systems. In addition to exact BER expressions, we also obtain an upper bound on the system BER. To effectively estimate the BER expressions, we use Gauss-Hermite quadrature formula as well as approximation to the sum of log-normal random variables. We confirm the accuracy of our analytical expressions by evaluating the BER through photon-counting approach. Our simulation results show that MIMO technique can mitigate the channel turbulence-induced fading and consequently, can partially extend the viable communication range, especially for channels with stronger turbulence

    Experimental and Analytical Investigations of an Optically Pre-Amplified FSO-MIMO System With Repetition Coding Over Non-Identically Distributed Correlated Channels

    Get PDF
    This paper presents theoretical and experimental bit error rate (BER) results for a freespace optical (FSO) multiple-input-multiple-output system over an arbitrarily correlated turbulence channel. We employ an erbium-doped fiber amplifier at the receiver (Rx), which results in an improved Rx’s sensitivity at the cost of an additional non-Gaussian amplified spontaneous emission noise. Repetition coding is used to combat turbulence and to improve the BER performance of the FSO links. A mathematical framework is provided for the considered FSO system over a correlated non-identically distributed Gamma-Gamma channel; and analytical BER results are derived with and without the pre-amplifier for a comparative study. Moreover, novel closed-form expressions for the asymptotic BER are derived; a comprehensive discussion about the diversity order and coding gain is presented by performing asymptotic analysis at high signal-tonoise ratio (SNR). To verify the analytical results, an experimental set-up of a 2 × 1 FSO-multiple-inputsingle-output (MISO) system with pre-amplifier at the Rx is developed. It is shown analytically that, both correlation and pre-amplification do not affect the diversity order of the system, however, both factors have contrasting behaviour with respect to coding gain. Further, to achieve the target forward error correction BER limit of 3.8 × 10−3 , a 2 × 1 FSO-MISO system with a pre-amplifier requires 6.5 dB lower SNR compared with the system with no pre-amplifier. Moreover, an SNR penalty of 2.5 dB is incurred at a higher correlation level for the developed 2×1 experimental FSO set-up, which is in agreement with the analytical findings

    Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel

    Get PDF
    The performance of underwater visible light communication (UVLC) system is severely affected by absorption, scattering and turbulence. In this article, we study the performance of spectral efficient DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in combination with the transceiver spatial diversity in turbulence channel. Based on the approximation of the weighted sum of lognormal random variables (RVs), we derived a theoretical exact bit error rate (BER) for DCO-OFDM systems with spatial diversity. The simulation results are compared with the analytical prediction, confirming the validity of the analysis. It is shown that spatial diversity can effectively reduce the turbulence-induced channel fading. The obtained results can be useful for designing, predicting, and evaluating the DCO-OFDM UVLC system in a weak oceanic turbulence condition

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects
    corecore