6,938 research outputs found

    Objective prior for the number of degrees of freedom of a t distribution

    Get PDF
    In this paper, we construct an objective prior for the degrees of freedom of a t distribution, when the parameter is taken to be discrete. This parameter is typically problematic to estimate and a problem in objective Bayesian inference since improper priors lead to improper posteriors, whilst proper priors may dom- inate the data likelihood. We find an objective criterion, based on loss functions, instead of trying to define objective probabilities directly. Truncating the prior on the degrees of freedom is necessary, as the t distribution, above a certain number of degrees of freedom, becomes the normal distribution. The defined prior is tested in simulation scenarios, including linear regression with t-distributed errors, and on real data: the daily returns of the closing Dow Jones index over a period of 98 days

    Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

    Get PDF
    Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants' birthweights in the range between 250 and 1500 grams.Comment: 41 pages, 9 figure

    User-Friendly Covariance Estimation for Heavy-Tailed Distributions

    Get PDF
    We offer a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element-wise and spectrum-wise truncation operators, as well as their MM-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key observation is that the estimators needs to adapt to the sample size, dimensionality of the data and the noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate their practical use, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.Comment: 56 pages, 2 figure
    • …
    corecore