741 research outputs found

    Robust adaptive controller for wheel mobile robot with disturbances and wheel slips

    Get PDF
    In this paper an observer based adaptive control algorithm is built for wheel mobile robot (WMR) with considering the system uncertainties, input disturbances, and wheel slips. Firstly, the model of the kinematic and dynamic loops is shown with presence of the disturbances and system uncertainties. Next, the adaptive controller for nonlinear mismatched disturbance systems based on the disturbances observer is presented in detail. The controller includes two parts, the first one is for the stability purpose and the later is for the disturbances compensation. After that this control scheme is applied for both two loops of the system. In this paper, the stability of the closed system which consists of two control loops and the convergence of the observers is mathematically analysed based on the Lyapunov theory. Moreover, the proposed model does not require the complex calculation so it is easy for the implementation. Finally, the simulation model is built for presented method and the existed one to verify the correctness and the effectiveness of the proposed scheme. The simulation results show that the introduced controller gives the good performances even that the desired trajectory is complicated and the working condition is hard

    Robust Backstepping Tracking Control of Mobile Robot Based on Nonlinear Disturbance Observer

    Get PDF
    This paper presents a robust backstepping control (BC) method based on nonlinear disturbance observer (NDOB) for trajectory tracking of the nonholonomic wheeled mobile robot (WMR) in the presence of external disturbances and parameters uncertainties. At first, a bounded Fuzzy logic based backstepping controller (BFLBC) is designed to control the WMR without considering the effects of the external disturbances and the parameters uncertainties. Typically, the conventional BC controller depends upon the state tracking errors analysis, where unbounded velocity signal is produced for the applications that have huge tracking errors. Therefore, a fuzzy logic controller (FLC) is introduced in this research in order to normalize the state tracking errors, so that the input errors to the BC are bounded to a finite interval. Finally, the designed BFLBC is integrated with the nonlinear disturbance observer in order to attenuate the external disturbances and model uncertainties. The simulation results show the effectiveness of the proposed controller to generate a bounded velocity signal as well as to stabilize the tracking errors to zero. In addition, the results prove that the proposed controller provide an excellent disturbance attenuation as well as robustness against the parameters uncertainties

    Adaptive sliding mode control for uncertain wheel mobile robot

    Get PDF
    In this paper a simple adaptive sliding mode controller is proposed for tracking control of the wheel mobile robot (WMR) systems. The WMR are complicated systems with kinematic and dynamic model so the error dynamic model is built to simplify the mathematical model. The sliding mode control then is designed for this error model with the adaptive law to compensate for the mismatched. The proposed control scheme in this work contains only one control loop so it is simple in both implementation and mathematical calculation. Moreover, the requirement of upper bounds of disturbance that is popular in the sliding mode control is cancelled, so it is convenient for real world applications. Finally, the effectiveness of the presented algorithm is verified through mathematical proof and simulations. The comparison with the existing work is also executed to evaluate the correction of the introduced adaptive sliding mode controller. Thoroughly, the settling time, the peak value, the integral square error of the proposed control scheme reduced about 50% in comparison with the compared disturbance observer based sliding mode control

    An observer-based type-3 fuzzy control for non-holonomic wheeled robots

    Get PDF
    Non-holonomic wheeled robots (NWR) comprise a type of robotic system; they use wheels for movement and offer several advantages over other types. They are efficient, highly, and maneuverable, making them ideal for factory automation, logistics, transportation, and healthcare. The control of this type of robot is complicated, due to the complexity of modeling, asymmetrical non-holonomic constraints, and unknown perturbations in various applications. Therefore, in this study, a novel type-3 (T3) fuzzy logic system (FLS)-based controller is developed for NWRs. T3-FLSs are employed for modeling, and the modeling errors are considered in stability analysis based on the symmetric Lyapunov function. An observer is designed to detect the error, and its effect is eliminated by a developed terminal sliding mode controller (SMC). The designed technique is used to control a case-study NWR, and the results demonstrate the good accuracy of the developed scheme under non-holonomic constraints, unknown dynamics, and nonlinear disturbances

    Robust control of underactuated wheeled mobile manipulators using GPI disturbance observers

    Full text link
    This article describes the design of a linear observer–linear controller-based robust output feedback scheme for output reference trajectory tracking tasks in the case of nonlinear, multivariable, nonholonomic underactuated mobile manipulators. The proposed linear feedback scheme is based on the use of a classical linear feedback controller and suitably extended, high-gain, linear Generalized Proportional Integral (GPI) observers, thus aiding the linear feedback controllers to provide an accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and perturbation inputs. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities, and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Simulations reveal the effectiveness of the proposed approach

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade
    corecore