946 research outputs found

    Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures

    Full text link
    Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n^11). Although we were able to reduce this to O(n^6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Graph-distance distribution of the Boltzmann ensemble of RNA secondary structures

    Get PDF
    BACKGROUND: Large RNA molecules are often composed of multiple functional domains whose spatial arrangement strongly influences their function. Pre-mRNA splicing, for instance, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium harbors useful information on the shape of the molecule that in turn can give insights into the interplay of its functional domains. RESULT: Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between a fixed pair of nucleotides can be computed in polynomial time by means of dynamic programming. While a naïve implementation would yield recursions with a very high time complexity of O(n(6)D(5)) for sequence length n and D distinct distance values, it is possible to reduce this to O(n(4)) for practical applications in which predominantly small distances are of of interest. Further reductions, however, seem to be difficult. Therefore, we introduced sampling approaches that are much easier to implement. They are also theoretically favorable for several real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules. CONCLUSIONS: The graph-distance distribution can be computed using a dynamic programming approach. Although a crude approximation of reality, our initial results indicate that the graph-distance can be related to the smFRET data. The additional file and the software of our paper are available from http://www.rna.uni-jena.de/RNAgraphdist.html

    Viral RNAs are unusually compact.

    Get PDF
    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly

    RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequences

    Get PDF
    Motivation: RNA secondary structure plays an important role in the function of many RNAs, and structural features are often key to their interaction with other cellular components. Thus, there has been considerable interest in the prediction of secondary structures for RNA families. In this article, we present a new global structural alignment algorithm, RNAG, to predict consensus secondary structures for unaligned sequences. It uses a blocked Gibbs sampling algorithm, which has a theoretical advantage in convergence time. This algorithm iteratively samples from the conditional probability distributions P(Structure | Alignment) and P(Alignment | Structure). Not surprisingly, there is considerable uncertainly in the high-dimensional space of this difficult problem, which has so far received limited attention in this field. We show how the samples drawn from this algorithm can be used to more fully characterize the posterior space and to assess the uncertainty of predictions

    RNA Folding Pathways in Stop Motion

    Get PDF
    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution NMR data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions

    The ends of a large RNA molecule are necessarily close

    Get PDF
    We show on general theoretical grounds that the two ends of single-stranded (ss) RNA molecules (consisting of roughly equal proportions of A, C, G and U) are necessarily close together, largely independent of their length and sequence. This is demonstrated to be a direct consequence of two generic properties of the equilibrium secondary structures, namely that the average proportion of bases in pairs is ∼60% and that the average duplex length is ∼4. Based on mfold and Vienna computations on large numbers of ssRNAs of various lengths (1000–10 000 nt) and sequences (both random and biological), we find that the 5′–3′ distance—defined as the sum of H-bond and covalent (ss) links separating the ends of the RNA chain—is small, averaging 15–20 for each set of viral sequences tested. For random sequences this distance is ∼12, consistent with the theory. We discuss the relevance of these results to evolved sequence complementarity and specific protein binding effects that are known to be important for keeping the two ends of viral and messenger RNAs in close proximity. Finally we speculate on how our conclusions imply indistinguishability in size and shape of equilibrated forms of linear and covalently circularized ssRNA molecules
    corecore