20,504 research outputs found

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Shape-changing solar sails for novel mission applications

    Get PDF
    In order to increase the range of potential mission applications of solar sail technology, this paper introduces the concepts of shape change and continuously variable optical properties to large gossamer spacecraft. Merging the two concepts leads to the idea of solar sails as multi-functional platforms that can have potential benefits over conventional solar sails by delivering additional key mission functions such as power collection, sensing and communications. To this aim, the paper investigates the static deflection of a thin inelastic circular sail film with a variable surface reflectivity distribution. The sail film is modelled as a single surface framed by a rigid supporting hoop structure. When changing the reflectivity coefficient across the sail surface, the forces acting on the sail can be controlled without changing the incidence angle relative to the Sun. In addition, by assigning an appropriate reflectivity function across the sail, the load distribution due to solar radiation pressure can also be manipulated to control the billowing of the film. By an appropriate choice of reflectivity across the sail, specific geometries can be generated, such as a parabolic reflector, thus enabling a multi-functional sail. This novel concept of optical reconfiguration can potentially extend solar sail mission applications

    A formal foundation for ontology alignment interaction models

    No full text
    Ontology alignment foundations are hard to find in the literature. The abstract nature of the topic and the diverse means of practice makes it difficult to capture it in a universal formal foundation. We argue that such a lack of formality hinders further development and convergence of practices, and in particular, prevents us from achieving greater levels of automation. In this article we present a formal foundation for ontology alignment that is based on interaction models between heterogeneous agents on the Semantic Web. We use the mathematical notion of information flow in a distributed system to ground our three hypotheses of enabling semantic interoperability and we use a motivating example throughout the article: how to progressively align two ontologies of research quality assessment through meaning coordination. We conclude the article with the presentation---in an executable specification language---of such an ontology-alignment interaction model

    SUNNY-CP and the MiniZinc Challenge

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    • …
    corecore