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Abstract

The recent introduction of Content Distribution Networks (CDNs) enhances the delivery of high quality multimedia content to end
users. In a CDN architecture, the content is replicated to so-called surrogate servers, generally at the edge of the transport network, to
improve the quality of service (QoS) of streaming multimedia delivery services. By using peer-to-peer (P2P) technologies, these edge serv-
ers can co-operate and provide a more scalable and robust service in a self-organizing CDN.

In this paper, we propose a set of distributed replica placement algorithms (RPAs), based on an Integer Linear Programming (ILP)
formulation of the centralized content placement problem. These algorithms further enhance the CDN performance by optimizing the
network and server load, reducing network delays and avoiding congestion. Although the proposed algorithms are designed for and test-
ed on different network topologies, we focus on robust ring based CDNs in this study. Content placement on such a network topology
can be calculated analytically and can be used for comparison.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The quality of service offered by single server (or single
site cluster) architectures is often insufficient for popular
multimedia websites or streaming services. Overloaded
servers and congested transport networks degrade the user
experience noticeably. A growing number of content pro-
viders therefore benefits from content distribution services
offered by companies like Akamai [1]. They use high capac-
ity overlay networks in combination with surrogate servers
at the edge of the Internet to deliver their bandwidth-inten-
sive content. Consequently, the central server is offloaded,
and the latency and network traffic reduced.

The development of static (offline) placement strategies
for server replicas further enhances CDN performance
[4–7,13]. These algorithms decide where to replicate specific

content, in order to reduce bandwidth consumption and
latency at low infrastructure usage costs. Content Server
Selection algorithms then direct users to the appropriate
surrogate server, offering the best achievable quality of
service.

Inspired by the extremely popular peer-to-peer file shar-
ing applications, P2P technologies at the level of the surro-
gate servers have been introduced. This makes direct
communication between them possible, so that information
on local traffic patterns can be exchanged. By using these
P2P architectures in CDNs [8], a more robust, scalable
and efficient service can be provided. The distributed repli-
ca placement and retrieval algorithms, to be executed by all
cache nodes independently, can now dynamically (online)
adapt to new content supplied to the CDN, to a changing
user request pattern or to varying network conditions.

This paper studies offline as well as online replica place-
ment strategies, applicable on general network topologies.
In order to be able to compare both approaches to an ana-
lytical model, the presented experiments are performed on
ring topologies, which are widely used in recent CDN
deployments. The efficiency of the proposed RPAs has also
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been validated on more general topologies, which has been
presented in other work [9,17]. The simulations for the cen-
tralized ILP solution have been performed using Cplex
[19], the distributed algorithms have been evaluated using
a discrete event simulator.

The remainder of this paper is divided into two main
parts: Sections 3–5 present a centralized and static (offline)
approach for the replica placement problem, while Sections
6 and 7 propose a distributed and dynamic (online) replica
placement strategy.

Into more detail, this paper is structured as follows.
First an overview of related work on replica placement in
CDNs is presented in Section 2. Section 3 introduces an
analytical solution technique and an ILP formulation for
the centralized approach on networks without topology
constraints. The main costs to be minimized are the overall
network bandwidth consumption and storage costs. Both
models are compared for a ring based CDN topology in
Section 4. An approximation of the analytical solution will
lead to basic design rules for ring based CDNs. The
analytical solution can also be used for a larger network
topology, including a tree-based access network, as studied
in Section 5.

Two distributed heuristics are proposed in Section 6.
Contrary to the computationally heavy centralized solu-
tions (this problem is NP-complete, as proven in [7]), these
algorithms can be executed on networks with more com-
plex topologies. Furthermore, they are able to dynamically
adapt the replica placement to changing user demands,
varying network occupations or new content added to
the network. Simulation results for these heuristics on a
network with a ring topology are compared to results from
the static ILP formulation. In Section 7, these distributed
algorithms are extended to dynamically support load
balancing and avoid congestion in the network.

The last section concludes this paper and presents some
ideas for our future work, as this study is part of a more
general content distribution architecture [15,16].

2. Related work

The advantages of replica placement algorithms over
typical caching strategies have been studied in [5] and var-
ious RPAs have been proposed in recent studies [4,13]. A
detailed overview of the available models and algorithms
as well as a framework for evaluating them is given in
[6]. While most models have a similar cost function (opti-
mizing bandwidth and/or storage usage costs for a given
request pattern), less attention has been given to network
constraints (limited link or storage capacities). Further-
more, a large part of these algorithms are designed for spe-
cific network topologies only (e.g. tree topology [14]). The
possible use of these algorithms to reduce the server load or
to avoid network congestion has not been given much con-
sideration either. The benefits of adding workload informa-
tion to placement algorithms are studied in [4]. Although
[7] and [8] show that the introduction of peer-to-peer

systems in content delivery networks has a potential to fur-
ther improve the network performance, few developments
have been made on distributed replica placement
algorithms. These studies on RPAs in CDNs [4,11,12]
and unicast streaming CDNs [10], as well as similar work
on proxy caching techniques [18] also show that greedy
algorithms that take distance metrics and content popular-
ity into account perform better than more straightforward
heuristics such as LRU (Least Recently Used) or LFU

(Least Frequently Used).
This work deals with the aforementioned shortcomings,

in order to offer a replica placement solution that enhances
the service quality at low network costs, for different
topologies.

3. General static problem formulation

As stated in the introduction of this paper, we start with
handling the static problem, i.e. the content delivery system
is in steady state, from a centralized point of view. This
means that the set of requested objects (streams) does not
change, and the request rates of these objects also remain
constant. We start with the analytical formulation for gen-
eral network topologies and present an ILP formulation
that takes network constraints into account afterwards.

3.1. Analytical formulation

Let O = {o1, . . . ,oF} denote the object set which is
offered for download to the users, and let ri denote the total
number of requests for object oi during the period [0,T].
The size (measured in bytes) of object oi equals si, the
streaming bitrate is bi. The infrastructure to host the con-
tent set O is characterized by a graph G, consisting of a
set of vertices V (of size N), which are interconnected by
a set of edges E. For the time being, we assume that the
edges are not congested and able to carry the traffic
generated in the content delivery network.

Given G, O, ri, si and bi, the problem now is to find the
optimal set of surrogate servers Si (with cardinality
|Si| = ni) for each object oi by optimizing the cost associated
with both transmitting and storing this particular object at
the surrogate servers. When we define CT as the cost to
transmit one unit (e.g. one object) over one link and CS

as the cost to store one unit of content (e.g. one object),
the input parameter a = CS/CT indicates the relative
trade-off between storage and transport costs. Without loss
of generality, CT can be set to one, so that the cost Ci,
incurred by storing and streaming the object oi in the
CDN, is then given by

Ci ¼ biridi Sið Þ þ asini; ð1Þ
where di is the average distance between requestor and
node serving the request. This average distance can either
be a simple hop count or a more sophisticated sum of indi-
vidual link costs. Obviously, as suggested in Eq. (1), the
quantity di is a function of the set Si. The contribution
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biridiðSiÞ to (1) will be referred to as transport cost, while
asini will be called storage cost.

In principle, since the server disk capacity is assumed
unlimited, as well as link bandwidth, the total cost

C ¼
XF

i¼1

Ci ð2Þ

can be optimized by minimizing each of the Ci indepen-
dently. This minimization can be done straightforwardly
by an exhaustive strategy. However, it is clear that solving
the problem this way becomes computationally unfeasible
for large values of N, since Ci should be calculated for each
subset of V (excluding of course the empty set, since each
object should be available at at least one location, so
ni > 0). However, one can easily show Ci(ni) to have a single
minimum (because the transmission part monotonically
decreases as a function of ni, while the storage contribution
obviously increases), and therefore, when considering
increasing values of ni (starting with ni = 1), the search
comes to an end as soon as Ci increases. This all leads to
the rather simple algorithm to calculate the optimal surro-
gate server location sets Si and associated minimal costs
presented in Fig. 1. Based on the results found using this
procedure, the CDN can be dimensioned (surrogate server
sizes and link bandwidth). Of course, if not all nodes of the
physical network are eligible for storing content, one re-
moves these nodes from the set V, ensuring that the value
di is calculated correctly.

In general, solving the CDN optimization problem using
this procedure is complex, mainly due to the complicated
structure of the function diðSiÞ, which both depends on net-
work topology (G) and request patterns (request rates from
each end user location for each file). For regular topologies
and request patterns, and more specifically ring networks
with uniform user behavior, it will be shown in Section 4
that the optimization problem can be solved analytically.

3.2. ILP-problem formulation

The algorithm shown in Fig. 1 has several drawbacks,
besides of being computationally intensive for large net-
works. No limitations on surrogate server sizes, nor on
bandwidth usage are taken into account, and hence the
procedure is not suited for optimizing resource usage on
an already installed infrastructure. To overcome these
shortcomings, an Integer Linear Programming (ILP) for-
mulation is presented in this section.

3.2.1. Network parameters

Every edge e from E has a cost parameter ce (e.g. a delay
penalty to model congestion on the link) and a maximum
bandwidth capacity ue. All nodes n from V have a storage
capacity mn (higher than 0 for the cache nodes A � V). The
cost to store an object o from O is equal to the size so of the
object. Apart from a size so, every object also has a fixed
bitrate bo. This may correspond to the constant bit rate
of a streaming file for a Video on Demand service. The
requests rates rn,o from the user nodes n from D � V for
each of the files are given. These rates also reflect the pop-
ularity of the files to the users. We also define Do as all the
users requesting object o.

The main variables in the objective function are the
transport variables he,d,o and the storage variables zn,o:

• he,d,o is 1 if edge e is used to deliver object o to destina-
tion d, 0 otherwise

• zn,o is 1 if node n is used to cache object o, 0 otherwise

There is one auxiliary variable xn,d,o:

• xn,d,o is 1 if node n is used to cache object o for destina-
tion d, 0 otherwise

We define In as the set of incoming edges of node n, On

as the set of outgoing edges.

3.2.2. Objective function

Now that all symbols and variables are explained, the
objective function F can be expressed as follows:

F ¼
X
d2Do

X
o2O

X
e2E

cebord;ohe;d;o þ a
X
o2O

X
n2V

sozn;o: ð3Þ

The objective function has to be minimized and consists of
two parts, the transport cost and the storage cost:

• The first part of formula (3) is the transport cost. It is the
cost related to the use of bandwidth. If edge e is used to
transport object o to destination node d (or in other
words if he,d,o is 1) then there is a cost of cebord,o associ-
ated with that use.

• The second part is the storage cost. It defines the cost for
caching object o in node n as so (the size of object o), if
zn,o is 1.

Fig. 1. Exhaustive strategy to calculate optimal surrogate server location
sets for replica placement for a set of objects O={o1, . . . ,oF}, characterized
by request rates ri.
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In order to be able to emphasize on the importance of
one of these costs, a parameter a is introduced to linearly
combine both costs. If a is zero, only the transport cost is
considered to be important. If a is high the storage cost
is more important and the solution found will have only
few cached files.

3.2.3. Constraints

3.2.3.1. Capacity constraints.X
d2Do

X
o2O

bohe;d;o 6 ue 8e 2 E; ð4Þ

X
o2O

sozn;o 6 mn 8n 2 V : ð5Þ

Constraint (4) imposes a restriction on the total flow
through the edges. This flow cannot exceed the capacity
of the edge. Constraint (5) imposes a restriction on the
amount of cached content in a certain node. This cost must
not exceed the capacity of that node. There are |E| + |V|
capacity constraints.

3.2.3.2. Auxiliary constraints.

xn;d;o 6 zn;o 8d 2 Do; 8o 2 O; 8n 2 V : ð6Þ
This auxiliary constraint takes care of the relationship be-
tween xn,d,o and zn,o. Constraint (6) indicates that if node
n stores object o (i.e. zn,o is one), this can be done for multi-
ple destinations (i.e. xn,d,o can be one for several destination
nodes o 2 Do).

3.2.3.3. Flow conservation constraints.X
e2In

he;d;o ¼
X
e2On

he;d;o 8n 2 V n d n A; 8d 2 Do;

8o 2 O; ð7Þ

xn;d;o þ
X
e2In

he;d;o ¼
X
e2On

he;d;o 8n 2 A; 8d 2 Do;

8o 2 O; ð8ÞX
e2In

he;d;o ¼ 1 8n 2 Do; d ¼ n; 8o 2 O; ð9Þ

X
e2In

he;d;o ¼
X
e2On

he;d;o 8n 2 D; 8d 2 Do; d 6¼ n; 8o 2 O:

ð70Þ
These constraints regulate the flows between source and
destination nodes. Constraint (7) ensures the traffic
through ‘‘normal’’ nodes (nodes that are not cache or des-
tination nodes), constraint (8) takes care of cache nodes
and constraint (9) is for destination nodes.

Constraint (7) indicates that node n should let incoming
data from object o for destination d pass through to the
next node on the path. Constraint (70) does the same for
destination nodes acting as normal nodes (e.g. destination
nodes laying on the path towards other destination nodes).
Constraint (8) indicates that cache node n should let

incoming data from object o for destination d pass through
to the next node on the path, except when it is the source
node for that download (then xn,d,o = 1 and he,d,o = 0 on
all incoming edges). Constraint (9) indicates that destina-
tion node n should receive the object he requested on one
of his incoming edges.

3.2.3.4. Binary constraints.

he;d;obinary 8e 2 E; 8d 2 Do; 8o 2 O; ð10Þ
zn;obinary 8n 2 V ; 8o 2 O; ð100Þ
xn;d;obinary 8n 2 V ; 8d 2 Do; 8o 2 O: ð1000Þ
Constraint (10) imposes that all variables are binary.

3.2.3.5. Additional constraint.X
e2E

he;d;ope 6 pmax 8d 2 Do; 8o 2 O: ð11Þ

Constraint (11) can be used as an additional constraint to
set a maximum penalty on a parameter for each object
stream. Examples are restrictions on the total delay (pe rep-
resents the delay on link e) or the hopcount (pe = 1), for the
total path of a stream.

3.2.3.6. Robustness constraint.X
n2A

zn;o P f þ 1 8o 2 O: ð12Þ

Restriction (12) adds robustness to the content delivery ser-
vice. Every file should at least have f + 1 different locations
in the network, with f the maximum number of simulta-
neously failing caches.

4. Network design for ring based CDNs

In this section, we make a comparison between the
analytical and the ILP model for a CDN with a ring
topology and determine a set of network design rules.
The ring network consists of N nodes that are all
candidate surrogate servers (Fig. 2). A total of F objects
{o1, . . . , oF} are available for a certain period [0, T].
During that period, a total of R requests are made, with
ri requests for object oi. We make the additional assump-
tion that all users are connected through an access net-
work link to one of the N ring nodes. Since this access
network is assumed given, the transport cost on these
access links cannot be optimized. Furthermore, we assume
that all requests are equally spread over the N nodes dur-
ing the given time interval.

Since the number of possible replica placements or
routes is limited on a ring network, the centralized
approach is still scalable for larger values of N. On more
complex topologies, the scalability of the ILP solution is
very limited (outside of the scope of this paper, studied in
[9,17]). The distributed solution presented later on in this
paper however is very scalable, since only local traffic
patterns are taken into account.

3316 T. Wauters et al. / Computer Communications 29 (2006) 3313–3326
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4.1. Analytical solution

Due to the symmetry of the problem, it is obvious that
for a given number of surrogate servers, an optimal loca-
tion is achieved by maximizing the distance between indi-
vidual surrogate servers. For N nodes and n surrogate
servers, and q the remainder of dividing N by n, such that

N ¼ N
n

� �
nþ q ¼ d0nþ q; ð13Þ

we have n � q nodes serving requests aggregated by d0 ring
nodes, and q nodes serving d0 + 1 nodes (of course assum-
ing shortest path routing). Note that this observation yields
an optimal set Si for a given ni, thereby avoiding the opti-
mization step of the algorithm presented in Fig. 1 (more
specifically step 1.2). The following analytical expression
for diðnÞ can easily be derived:

diðnÞ ¼
d0 þ 1

2

� �
1� n

N
d0 þ 1

2

� �� �
: ð14Þ

Given this expression, the procedure given in Fig. 1 can be
considerably simplified as follows (see Fig. 3), observing
that

D�CiðniÞ ¼ CiðniÞ � Ciðni � 1Þ > 0

¼ biri diðniÞ � diðni � 1Þ
h i

þ asi ð15Þ

¼ biriD
�diðniÞ þ asi

Note that this procedure is valid for any problem (topology
and request pattern) where diðnÞ is only a function of the
size of Si, and where the optimal surrogate server location
Si can be found directly from ni. This is for example not the
case when the user demand is asymmetrical. In that case,
this analytical solution offers an upper limit for the total
cost, since the replicas of an object can be placed closer

to the users requesting that object than for a symmetrical
user demand.

In Fig. 4 this analytical solution is compared to the ILP
solution for a ring network with N = 8 surrogate servers,
serving a total of R = 10,000 requests for F = 20 objects.
Small differences in transport and storage cost are visible,
but the total cost (transport cost + a Æ storage cost) is iden-
tical in both cases. When a is sufficiently low (low storage
cost), all 20 objects are replicated on all surrogate servers
(storage cost = F Æ N = 160 units) and the transport cost
is limited to the fixed streaming cost on the access links
(transport cost = R Æ d(n) = 10,000 units, since the average
distance d (n) on the access network is 1). When storage is
expensive (a is high), every object is found on only one sur-
rogate server (storage cost = F Æ 1 = 20 units) and the
transport cost reaches its maximum value (transport
cost = R Æ d(n) = 30,000 units, since the average distance
d(n) is 3:1 for the access network link plus 2 for the average
distance on the ring network with 8 surrogate servers).
Note that the transport and storage costs are much more
sensitive to small changes to the input parameter a for
lower values (a < 100).

An approximation n0i to the optimal value ni can be
found by solving

D�Ciðn0iÞ ¼ 0 ð16Þ

Fig. 3. Exhaustive strategy to calculate optimal surrogate server location
sets for replica placement for a set of objects O = {o1, . . . ,oF}, character-
ized by request rates ri, on a ring based CDN.
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in the interval [1, N]. If (16) has no solution in this interval,
either n0i ¼ 1 or n0i ¼ N , depending on the sign of D�Ci(1).
When we assume that each object has the same size si

and streaming bandwidth bi, we can set si and bi to one
without loss of generality. Solving (16) is then clearly
equivalent to solving

D�diðn0iÞ ¼ �
a
ri
: ð17Þ

In the specific case of a ring based CDN, we can find an
additional estimate n00i for ni, by approximating the function
diðnÞ Eq. (14) by

d 0iðnÞ ¼
N 2 � n2

4Nn
; ð18Þ

which is obtained by replacing all integer divisions by their
real valued counterparts. This allows to find

D�d 0iðnÞ ¼ �
1

4N
� N

4nðn� 1Þ ð19Þ

and solving now

D�d 0iðn00i Þ ¼ �
a
ri

ð20Þ

(which is a quadratic equation in n00i ) gives the following
approximation for ni:

1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

Nri
� 1

4N 2

� ��1
s2

4
3
5: ð21Þ

Since however ni should be an integer value, satisfying
D�Ci(ni) < 0, and because approximation (21) implies
D�Ci(ni) = 0, we expect the approximation (21) to be sys-
tematically too large. More specifically, since we should
round (21) down to the smaller integer value, this estimate
is on average too large by 0.5, giving the following im-
proved estimate for ni

n00i ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

Nri
� 1

4N 2

� ��1
s

: ð22Þ

One further notices that apparently the optimal number
of surrogate servers for each object is strongly dependent
on the parameter a

Nri
, and to a lesser degree the network

size N itself. If the expression in the right hand side of
Eq. (21) gives results exceeding N, of course the limit
value N is taken as estimate for ni. Similarly, since at
least one copy of each object should be stored in the
network, the value one is taken as approximation for
ni in case (22) yields values smaller than one. More
explicitly

n00i ¼

N a
Nri
< 1

4N2 þ 1
4N2�1

1 a
Nri
> 1

4N2 þ 1
3

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

Nri
� 1

4N2

h i�1
r

otherwise

8>>>><
>>>>:

: ð23Þ

4.2. Design rules for ring based CDNs

In this section, the results obtained above for pure ring
based CDNs are used to dimension both storage space and
network capacity. To arrive at numerical results for these
values, assumptions must be made concerning the relative
request rates of the objects in the set O. The well-accepted
Zipf-like distribution [2,3] is here used to describe this rel-
ative object popularity, i.e.

ri /
1

ib
; 1 6 i 6 F ð24Þ

with typical values for b between 0.5 and 1.0 [2,3]. Let the
total amount of requests (i.e. requests from all users during
the interval [0,T]) be R, giving

ri ¼ R
i�b

PF
i¼1

i�b

¼ R
A

i�b; 1 6 i 6 F : ð25Þ

Large b values indicate a relatively small set of extremely
popular objects, leading to less storage space requirements
at the surrogate servers.

4.2.1. Storage capacity

The total storage capacity needed in the ring network
(s), in case the total cost is optimized, can be calculated
from

s ¼
XF

i¼1

sini: ð26Þ

Assuming no correlation between object size and popular-
ity, and denoting the average object size as s, this
becomes

s ¼ s
XF

i¼1

ni � s
XF

i¼1

n00i : ð27Þ

In order to calculate the latter value (where the approxima-
tion (23) is used for ni), the object indices i1 and iN are de-
rived from (23). The index iN is the largest value for which
n00i yields the value N, while i1 is the smallest value for which
only one object copy is stored in the ring. From (23) it
follows that

a
Nri1
¼ 1

4N2 þ 1
3

a
NriN
¼ 1

4N2 þ 1
4N2�1

;

(
ð28Þ

which, using the Zipf-like popularity distribution (25)
yields immediately

i1 ¼ NR
aA

1
4N2 þ 1

3

	 
h i1=b

iN ¼ NR
aA

1
4N2 þ 1

4N2�1

	 
h i1=b
:

8><
>: ð29Þ

Using these values, s can now be calculated as
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s � s
PF
i¼1

n00i

¼ s Nmin iN ; Fð Þ þ
Pmin i1;Fð Þ

max min iN Fð Þ;1½ �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aA

NR ib � 1
4N2

h i�1
r 

þmax F � i1; 0ð Þ
�
: ð30Þ

To simplify this expression, the middle term (30) is replaced
by

Xmin i1;Fð Þ

max min iN Fð Þ;1½ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NR
aA

i�b

r

which is justified in view of the i-range values (between i1
and iN) of interest for this expression. If now the summa-
tions are approximated by integrals, we find the following
expression for s:

s
s
� Nmin iN ; Fð Þ þ 1

2

ffiffiffiffiffiffiffi
NR
a

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

F 1�b � 1

r

� min i1; Fð Þ1�b=2 �max min iN ; Fð Þ; 1½ �1�b=2

1� b=2

þmax F � i1; 0ð Þ: ð31Þ

Of course, the case iN > F is of no practical use, since
this would imply that all objects are stored on all loca-
tions, and that the ring network is actually not used.
Therefore, for all practical situations, (31) becomes

s
s
� NiN þ

1

2

ffiffiffiffiffiffiffi
NR
a

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

F 1�b � 1

r

�min i1; Fð Þ1�b=2 �max iN ; 1ð Þ1�b=2

1� b=2

þmaxðF � i1; 0Þ: ð32Þ

4.2.2. Link capacity

The total link capacity needed in the ring network
(l), in case the total cost is optimized, can be calculated
from

l ¼
XF

i¼1

biridiðniÞ: ð33Þ

Assuming no correlation between object bitrate and popu-
larity, and denoting the average object bitrate as b, this
becomes

l ¼ b
XF

i¼1

ridiðniÞ � b
XF

i¼1

rid
0
iðniÞ: ð34Þ

Taking into account the approximation (18) and the Zipf-
like distribution (25), the total link capacity is given by

l

b
¼
XF

i¼1

R
A

i�b N 2 � n2
i

4Nni
: ð35Þ

Fig. 5 compares the transport and storage cost for the exact
and approximated analytical solution. The curves for the
storage cost s and the transport cost l are given by the
Eqs. (31) and (35) respectively.

4.2.3. Influence of traffic parameters
We used the analytical solution to study the influence of

different traffic parameters on the transport cost for a given
network design. We assume that a ring network with 8 sur-
rogate servers is optimally designed for distributing 20 files
with a Zipf-like content popularity [2] (Fig. 6) with param-
eter b = 0.7 (according to [2] and our own measurements
on peer-to-peer file sharing applications [3]). In total
10,000 requests are made for these files, evenly distributed
over the 8 surrogate servers. The transport cost for the
scenario with symmetrical user demand is given in Fig. 7
(tc (1:1),(x:y) meaning that for every x requests at the first
surrogate server, y requests are made at each other surro-
gate server).
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We now look at the increase in transport cost that
occurs when this optimally designed network is used for
different traffic parameters.

The influence of the Zipf parameter b is rather small.
When the actual value of b is 0.5 (50% of all requests are
made for the 7 most popular files) or 1.0 (50% requests
for top 3) instead of 0.7 (50% requests for top 5), the trans-
port cost is never higher than 2% above the optimal solu-
tion (1% higher on average).

The influence of traffic asymmetry is more noticeable.
When the storage locations are defined for a symmetrical
user demand, the transport cost is given by tc (1:1) in
Fig. 7. When 3000 requests are made at 1 surrogate server
and 1000 requests at each of the other surrogate servers (tc
(3:1)), the transport costs would normally decrease
according to the ILP solution for this asymmetrical design,
but in the situation of a symmetrical design the transport
cost will depend on the location of the surrogate server
with 3000 requests, compared to the storage locations.
The actual transport cost will then be somewhere between
the best (tc (3:1) best) and the worst (tc (3:1) worst, 30%
higher) case. When all 10,000 requests arrive at 1 surrogate
server, the transport cost can be very high (tc (1:0) worst)
if no optimal (ILP) design is used to take the traffic asym-
metry into account.

5. Network design for ring based CDNs with a tree access

topology

In a next step, we introduce surrogate servers in the
access network and extend the analytical solution present-
ed above. We assume a tree topology consisting of L lev-
els, each with a split xl (the number of outgoing links for
each node at level l,l = 1 . . . L). The links in the access
network are unidirectional. Like in the previous section,
we study the situation where the request pattern is
symmetrical.

5.1. Analytical solution

The least popular objects will be stored on one or more
of the N surrogate servers on the ring network (level 0), as
described in the previous section. When the number of
requests ri is high enough, storage in the access network
becomes beneficial. Due to the symmetry of the problem
and the unidirectional access network links (no co-opera-
tion possible), an object should be stored at every surrogate
server of the appropriate level.

Object oi will be stored in the lowest level of the access
network (level L, closest to the users) when the total cost
(cache cost and transmission cost) at that level is lower then
the total cost one level higher, or when

N �
YL

j¼1

xj � a � si þ ri � diðSL;iÞ � bi

< N �
YL�1

j¼1

xj � a � si þ ri � diðSL�1;iÞ � bi: ð36Þ

In general, an object oi will be stored at level l when

N �
Yl

j¼1

xj � a � ðslþ1 � 1Þ > ri � ðdiðSl�1;iÞ � diðSl;iÞÞ

> N �
Yl�1

j¼1

xj � a � ðsl � 1Þ ð37Þ

This means that the algorithm of Fig. 3 has to be modified
into the procedure of Fig. 8.

5.2. Experimental results

Using this strategy, the benefits of storage in the access
network can be studied on different topologies, similar to
the one presented in Fig. 9. A central server is connected
to the core ring network, where the edge surrogate servers
are located. In the access network, multiple levels of

Fig. 8. Exhaustive strategy to calculate optimal surrogate server location
sets for replica placement for a set of objects O={o1, . . . ,oF}, characterized
by request rates ri, on a ring based CDN with a tree access topology.
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aggregation are present, with hub surrogate servers at each
level. The users are connected to level one hub surrogate
servers, which are in turn grouped together by level two
hub surrogate servers in a tree topology.

The influence of the parameter a, the split rate in the
access network and the number of edge surrogate servers
is shown in Fig. 10, for the analytical solution.

The total number of users and requests is kept con-
stant: 100,000 users and two requests per month per
user, for a total number of 500 files. In Fig. 10a the
number of edge surrogate servers is constant (4), in
Fig. 10b the split rate is constant (4_4 or 4 outgoing
links for level one and level two hub surrogate servers)
and in Fig. 10c a is constant (0.001). We notice that
the efficiency of the hub surrogate servers increases for
lower values of a and for denser user populations (lower
split rates or less edge surrogate servers, when the num-
ber of users is kept constant).

For a = 0.0001, a split rate of 2 per hub surrogate server
and four edge surrogate servers (Fig. 10a), all requests are
served by the hub surrogate servers in the access network.

6. Dynamic heuristics for content replication

Contrary to the centralized and static solutions in the
previous sections, the distributed and dynamic algorithms
presented in this section do not calculate global replica
placements. Each surrogate server determines by itself, at
run-time, which content is stored locally, depending on
the traffic passing the node, and dynamically replaces
stored content in case of changing request patterns.

Due to the decentralized nature of the algorithms, the
results are slightly less optimal than for centralized solu-
tions, but the CDN can now more easily adapt its replica
placement to network failures or changes in user behav-
iour and provide a more robust content distribution
service.
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Fig. 9. Ring network with tree access topology (two levels).
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6.1. Heuristics

In this section, we present two heuristics based on simi-
lar assumptions as for greedy algorithms (based on popu-
larity and distance metrics), with a different point of view
on storage costs (limited or unlimited cache sizes). Both
algorithms can also introduce specific link costs, which
can be used to provide load balancing on the network
(see Section 7).

6.1.1. ‘‘Survival of the Fittest’’ heuristic

Every time a file passes one of the surrogate servers, this
node will modify a parameter for that file. In this heuristic,
this parameter An,f for file f in node n only depends on the
transport cost (amount of bandwidth used):

An;f ¼ T n;f : ð38Þ
When a file f passes by node n, the transport cost Tn,f is
raised by the cost (number of bandwidth units on each
link) to transport file f from the source node to node n (this
cost would not be required if the file would have been
stored in node n). We first store all the passing files until
the surrogate server is filled up (limited storage capacity)
and then drop stored files in favor of more popular or more
distant files (i.e. with higher values for An,f) passing by
(‘‘Survival of the Fittest’’, SF). Note that this does not nec-
essarily mean that every surrogate server stores the content
that is locally most popular. Tn,f also depends on the dis-
tance to the other nodes storing file f. Therefore it is possi-
ble that a very popular file f is not stored in a surrogate
server, because another surrogate server nearby already
stores a replica of it.

Fig. 11 shows the normalized network and central server
load for the core network part (with central server) of
Fig. 9. We assume that 500 files are available at the central
server. When each of the surrogate servers in the core
network can store 100 files, the network load (occupied
bandwidth) drops to less than 50% of its maximum value
(when no caches are present). The central server load
(number of simultaneous streams at the server) even
decreases to 30%.

6.1.2. ‘‘Storage Renting’’ heuristic

This algorithm is similar to the first, but now a storage
cost is included in the calculation of the parameter An,f

(unlimited cache sizes). When this parameter is positive,
the file will be cached (or stay cached), otherwise it will
not be cached (or be dropped). The parameter An,f for file
f in node n is calculated as follows:

An;f ¼ T n;f � a � Sn;f : ð39Þ
Besides the transport cost Tn,f a storage cost Sn,f is
introduced.

Sn,f is raised by 1 every time unit file f is stored in node n

(‘‘Storage Renting’’, SR). This way using a storage slot has
a certain cost as well, so that this heuristic can also be used
to determine the optimal size of the surrogate servers in the
different parts of the network. Sn,f is multiplied by the fac-
tor a, describing the relative cost between bandwidth and
storage. If a is low, only the transport cost is considered
to be important, as in the SF heuristic. If a is high the stor-
age cost becomes more important and the solution found
will have only few stored replicas of the available content.

An example for this heuristic on the topology given in
Fig. 9 is shown below. We assume that the central server
stores 500 files (e.g. video streams) and that storage slots
can be available on the core network as well as on the
access network. First all content is only served by the cen-
tral server, but after a while more files are stored at the sur-
rogate servers (Fig. 12). The storage cost corresponds to
the amount of used storage slots (or stored replicas) and
is shown as the total cost per level (all level one hub
surrogate servers, level two hub surrogate servers or edge
surrogate servers).

For the given input parameters, introducing large stor-
age facilities in the access network is not very beneficial:
in steady state only 8 files are stored in each level one
hub surrogate server, 20 in each level two hub surrogate
server and about 180 in each of the edge surrogate servers.
When the access network servers would receive more hits
(more popular content, a more dense access network, . . .)
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Fig. 11. Network and central server load on a ring network with 8
surrogate servers.
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Fig. 12. Storage cost in the core and access network (a = 0.001, 500 files,
32,000 user requests, 100 level two hub surrogate servers, 600 level one hub
surrogate servers, 100 users per level one hub surrogate server).
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or when storage is cheaper (lower values for a), storage in
the access network could have more advantages.

6.2. Comparison

In this section, the results of the SR heuristic are com-
pared to the exact ILP solution for a ring network with 8
surrogate servers and 10,000 requests in total. Fig. 13
shows the average extra network cost (transport costs plus
a times the storage cost), caused by the distributed nature
of the SR heuristic. The results are never worse than 6%
above the ILP solution on average (8% for the worst case
out of 10 simulations per value of a) for 20 available files,
12% for 100 files (15% worst case) and 18% for 500 files
(25% worst case).

Note that the results for the ILP solution in Fig. 13 for a
certain value of a correspond to the results for the distrib-
uted SR heuristic for a value of a that is 10,000 times small-
er. This is because the centralized solution calculates the
content placement for all 10,000 requests at once, while
the distributed solution adapts the content placement after
each single request.

7. Dynamic heuristics for content replication with load

balancing

7.1. Introduction

To illustrate the importance of load balancing, Fig. 15
shows the bandwidth occupation (in number of simulta-
neous streams) on the different links of the core network
given in Fig. 14 (1 server and 4 surrogate servers).

The SF heuristic is used and the surrogate servers can
store 100 of all 500 available streams. First the central
server serves all requests, but at the steady state situation
the surrogate server are filled and serve many requests as
well (see also Fig. 4). The outgoing links of the central
server (links 1 and 10) are heavily loaded, compared to
the other links. Links 2, 4, 7 and 9 are not used at all.

When a more uniform load on each of the links could
be achieved, a higher number of user requests could be
supported by the network. Therefore, the goal of the
following heuristics is to minimize the deviation of the
actual link loads from the average link load. We assume
that the link capacity is uniform on the network.

7.2. Heuristics

Both distributed RPAs can easily be adapted to support
load balancing. The only changes in the algorithm are
made in the calculation of Tn,f as part of the parameter
An,f. Tn,f represents the streaming cost for file f in surrogate
server n. When a file passes node n, Tn,f is raised by the cost
to transport the file from the source node to node n. Until
now the cost ce for using a link was set to 1 for each link.
This means that the transport cost between two nodes is
proportional to the number of hops between them. Now
we change the cost ce of a link e to

ce ¼
1

1� leð Þc
� �

ð40Þ

with le the actual load on link e (in %, relative to the link
capacity). Some values for ce are given in Table 1 (c is set
to 1). When the link load is at 95% of its maximum
capacity, the cost for using this link for a new download
is 20 times higher than the cost for using a free link. Note
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capacity, no load balancing is done (ce = 1). By introducing
these link costs, the congested links will be avoided when
calculating the shortest path (weighted Dijkstra algorithm)
between the user and the candidate surrogate servers stor-
ing the requested file. Even when a congested link has to be
used, the values for Tn,f (and consequently An,f) will be
higher for all nodes n after the congested link(s) on the
path. Therefore more content will be stored beyond the
congested link(s).

The situation in Fig. 15 now changes to that in Fig. 16.
The load on all links is now much closer to the average val-
ue (the variance is much lower) and links 4 and 7 also carry
streams. Note that the average value of the total link load
will be higher in the load balanced situation, compared to
the original case, where the total bandwidth occupation on
the network was minimized. Spreading the load over all the
network links will therefore also slightly increase the aver-
age load.

7.3. Experimental results

To study these extended heuristics, simulations were
performed on a network with a central server connected
to a core ring with 8 surrogate servers (like on Fig. 9).
On average 450 streams are present on the network, 500
files (with Zipf-like popularity distribution) are available.
The requests (10,000 in total) are uniformly distributed
over the different destination nodes and served over the
least congested path. The results for the SF heuristic are

compared for different situations: with or without load bal-
ancing and for different cache sizes. The parameter c is set
to one.

In Fig. 17 the influence of load balancing on the average
bandwidth on the core network links is shown. For inter-
mediate cache sizes on the surrogate servers, the average
bandwidth is up to 40% higher than in the optimal situa-
tion without load balancing. However, the deviation of
the actual link load around this average is much lower,
as shown in Fig. 18.

Balancing the load on the network comes at the price of a
higher average link bandwidth. The influence of the param-
eter c is not clearly visible on this network topology, since the
content placement is already near the optimum. Simulations
on more complex topologies fall outside of the scope of this
paper, but show that larger values for c increase the level of
load balancing (higher average bandwidth and even lower
values for the standard deviation) [17].

8. Conclusion

In the first part of this paper, we have presented a
static solution for the replica placement problem in
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Table 1
Link Cost for a given load

Load ce

0 1
0,50 2
0,90 10
0,95 20
0,99 100

0,999 1000
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CDNs. We have compared an ILP formulation of the
problem to the analytical solution for ring based CDNs.
Both approaches showed that the load on the network
and the central server can be considerably decreased.
Adding storage facilities in the access network or even
at the home network can be cost effective and might
be interesting to study in future work.

Afterwards two distributed algorithms have been intro-
duced. These heuristics dynamically adapt the replica
placement to variations in the network load, user behav-
iour or available content. This way congestion in the
network can be avoided and a more robust service can be
provided, at the price of a slightly increased network
load.

The introduction of link costs in the load balancing
algorithms can also be used for different objectives.
Instead of specifying the link load, they could also repre-
sent transfer or propagation delays. Minimizing link
delays together with other network resources can be
interesting for future work. While the approach of
storing whole files, as presented in this paper, is very
effective for Video on Demand services, a method of
storing partial files (e.g. with sliding intervals) can be
interesting for very popular content (e.g. live television)
and will also be studied in future work.
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