33 research outputs found

    Distributed watermarking for secure control of microgrids under replay attacks

    Full text link
    The problem of replay attacks in the communication network between Distributed Generation Units (DGUs) of a DC microgrid is examined. The DGUs are regulated through a hierarchical control architecture, and are networked to achieve secondary control objectives. Following analysis of the detectability of replay attacks by a distributed monitoring scheme previously proposed, the need for a watermarking signal is identified. Hence, conditions are given on the watermark in order to guarantee detection of replay attacks, and such a signal is designed. Simulations are then presented to demonstrate the effectiveness of the technique

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    New Challenges in the Design of Microgrid Systems:Communication Networks, Cyberattacks, and Resilience

    Get PDF

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Brief Survey on Attack Detection Methods for Cyber-Physical Systems

    Get PDF

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft
    corecore