29 research outputs found

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Self Organization of Tilts in Relay Enhanced Networks: A Distributed Solution

    Full text link

    Coordinated Multi-Point Clustering Schemes: A Survey

    Full text link

    Enabling self organisation for future cellular networks.

    Get PDF
    The rapid growth in mobile communications due to the exponential demand for wireless access is causing the distribution and maintenance of cellular networks to become more complex, expensive and time consuming. Lately, extensive research and standardisation work has been focused on the novel paradigm of self-organising network (SON). SON is an automated technology that allows the planning, deployment, operation, optimisation and healing of the network to become faster and easier by reducing the human involvement in network operational tasks, while optimising the network coverage, capacity and quality of service. However, these SON autonomous features cannot be achieved with the current drive test coverage assessment approach due to its lack of automaticity which results in huge delays and cost. Minimization of drive test (MDT) has recently been standardized by 3GPP as a key self- organising network (SON) feature. MDT allows coverage to be estimated at the base station using user equipment (UE) measurement reports with the objective to eliminate the need for drive tests. However, most MDT based coverage estimation methods recently proposed in literature assume that UE position is known at the base station with 100% accuracy, an assumption that does not hold in reality. In this work, we develop a novel and accurate analytical model that allows the quantification of error in MDT based autonomous coverage estimation (ACE) as a function of error in UE as well as base station (user deployed cell) positioning. We first consider a circular cell with an omnidirectional antenna and then we use a three-sectored cell and see how the system is going to be affected by the UE and the base station (user deployed cell) geographical location information errors. Our model also allows characterization of error in ACE as function of standard deviation of shadowing in addition to the path-loss

    DYNAMIC USER-CENTRIC CAPACITY MAXIMIZATION BY OPTIMIZING ANTENNA PARAMETERS

    Get PDF
    Cellular network has become the primary means of voice as well as data communication. With sophisticated but affordable end user devices e.g. smartphones, tablet PCs etc. and ubiquity of mobile connectivity, users are able to access a range of multimedia services requiring low to high data rate and with desired quality of experience everywhere and all the times. However, mobile network operators (MNOs) always have limited bandwidth resources as compared to users’ demand, as bandwidth is the most expensive resource in the network. Thus MNOs always seek new tools and technologies to optimally utilize the available bandwidth to accommodate maximum number of users and provide high quality of services, maximizing the revenue in return. Especially, in the case of ultra-dense heterogeneous deployment of small cells equipped with massive-MIMO antenna configuration operating over mmWave spectrum in 5G, automated solution for dynamic spectrum optimization with respect to rapidly changing users and network requirement will be of critical importance. This thesis presents a novel scheme for spectral efficiency (SE) optimization through clustering of users. By clustering users with respect to their geographical concentration we propose a solution for dynamic steering of antenna beam by dynamically adjusting antenna azimuth and tilt angles with respect to the most focal point in every cell that would maximize overall SE in the system. The proposed framework thus introduces the notion of elastic cells that can be potential component of 5G networks. The proposed scheme decomposes large-scale system-wide optimization problem into small-scale local sub-problems and thus provides a low complexity solution for dynamic system wide optimization. Every sub-problem involves clustering of users to determine focal point of the cell for given user distribution in time and space, and determining new values of azimuth and tilt that would optimize the overall system SE performance. To this end, we proposed three user clustering algorithms to transform a given user distribution into the focal points that can be used in optimization process: the first is based on received signal to interference ratio (SIR) at the user; the second is based on received signal level (RSL) at the user; the third and final one is based on relative distances of users from the base stations. We also formulate and solve an optimization problem to determine optimal radii of clusters. The performances of proposed algorithms and framework are evaluated through system level simulations. Performance comparison against benchmark where no elastic cell deployed, shows that a gain in spectral efficiency of up to 26% is achievable depending upon user distribution in each cell

    Tilt Angle Optimization in Two-Tier Cellular Networks - A Stochastic Geometry Approach

    Get PDF
    In this work, we address the antenna tilt optimization problem for a two tier cellular network consisting of macrocells and femtocells, where both tiers share the same spectrum and their positions are modelled via two independent Poisson Point Processes (PPPs). First, we derive the coverage probability for a traditional cellular network consisting only of macrocells and obtain the optimum tilt angle that maximises the overall energy efficiency (EE). Gains of up to 400% in EE were found for a scenario (approximately) equivalent to a hexagonal cell deployment with cell radius of 200 m when the optimum tilt was selected. We then proceed to model the Heterogeneous Network (HetNet) scenario where femtocells are also deployed in the network’s area. We observe that the macro users performance is highly sensitive to the interference emanating from the femtocell tier. In order to circumvent this issue, interference coordination by employing a guard zone for the macrocell user is proposed. Subsequently, we formulate a joint optimization problem where we derive both, the radius of a guard zone protecting the macro user and the tilt angle that maximize the EE of the network

    A PARADIGM SHIFTING APPROACH IN SON FOR FUTURE CELLULAR NETWORKS

    Get PDF
    The race to next generation cellular networks is on with a general consensus in academia and industry that massive densification orchestrated by self-organizing networks (SONs) is the cost-effective solution to the impending mobile capacity crunch. While the research on SON commenced a decade ago and is still ongoing, the current form (i.e., the reactive mode of operation, conflict-prone design, limited degree of freedom and lack of intelligence) hinders the current SON paradigm from meeting the requirements of 5G. The ambitious quality of experience (QoE) requirements and the emerging multifarious vision of 5G, along with the associated scale of complexity and cost, demand a significantly different, if not totally new, approach to SONs in order to make 5G technically as well as financially feasible. This dissertation addresses these limitations of state-of-the-art SONs. It first presents a generic low-complexity optimization framework to allow for the agile, on-line, multi-objective optimization of future mobile cellular networks (MCNs) through only top-level policy input that prioritizes otherwise conflicting key performance indicators (KPIs) such as capacity, QoE, and power consumption. The hybrid, semi-analytical approach can be used for a wide range of cellular optimization scenarios with low complexity. The dissertation then presents two novel, user-mobility, prediction-based, proactive self-optimization frameworks (AURORA and OPERA) to transform mobility from a challenge into an advantage. The proposed frameworks leverage mobility to overcome the inherent reactiveness of state-of-the-art self-optimization schemes to meet the extremely low latency and high QoE expected from future cellular networks vis-à-vis 5G and beyond. The proactiveness stems from the proposed frameworks’ novel capability of utilizing past hand-over (HO) traces to determine future cell loads instead of observing changes in cell loads passively and then reacting to them. A semi-Markov renewal process is leveraged to build a model that can predict the cell of the next HO and the time of the HO for the users. A low-complexity algorithm has been developed to transform the predicted mobility attributes to a user-coordinate level resolution. The learned knowledge base is used to predict the user distribution among cells. This prediction is then used to formulate a novel (i) proactive energy saving (ES) optimization problem (AURORA) that proactively schedules cell sleep cycles and (ii) proactive load balancing (LB) optimization problem (OPERA). The proposed frameworks also incorporate the effect of cell individual offset (CIO) for balancing the load among cells, and they thus exploit an additional ultra-dense network (UDN)-specific mechanism to ensure QoE while maximizing ES and/or LB. The frameworks also incorporates capacity and coverage constraints and a load-aware association strategy for ensuring the conflict-free operation of ES, LB, and coverage and capacity optimization (CCO) SON functions. Although the resulting optimization problems are combinatorial and NP-hard, proactive prediction of cell loads instead of reactive measurement allows ample time for combination of heuristics such as genetic programming and pattern search to find solutions with high ES and LB yields compared to the state of the art. To address the challenge of significantly higher cell outage rates in anticipated in 5G and beyond due to higher operational complexity and cell density than legacy networks, the dissertation’s fourth key contribution is a stochastic analytical model to analyze the effects of the arrival of faults on the reliability behavior of a cellular network. Assuming exponential distributions for failures and recovery, a reliability model is developed using the continuous-time Markov chains (CTMC) process. Unlike previous studies on network reliability, the proposed model is not limited to structural aspects of base stations (BSs), and it takes into account diverse potential fault scenarios; it is also capable of predicting the expected time of the first occurrence of the fault and the long-term reliability behavior of the BS. The contributions of this dissertation mark a paradigm shift from the reactive, semi-manual, sub-optimal SON towards a conflict-free, agile, proactive SON. By paving the way for future MCN’s commercial and technical viability, the new SON paradigm presented in this dissertation can act as a key enabler for next-generation MCNs

    Load Aware Self-Organising User-Centric Dynamic CoMP Clustering for 5G Networks

    Get PDF
    Coordinated multi-point (CoMP) is a key feature for mitigating inter-cell interference, improve system throughput and cell edge performance. However, CoMP implementation requires complex beamforming/scheduling design, increased backhaul bandwidth, additional pilot overhead and precise synchronisa-tion. Cooperation needs to be limited to a few cells only due to this imposed overhead and complexity. Hence, small CoMP clusters will need to be formed in the network. In this paper, we first present a self organising, user-centric CoMP clustering algorithm in a control/data plane separation architecture (CDSA), proposed for 5G to maximise spectral efficiency (SE) for a given maximum cluster size. We further utilise this clustering algorithm and introduce a novel two-stage re-clustering algorithm to reduce high load on cells in hotspot areas and improve user satisfaction. Stage-1 of the algorithm utilises maximum cluster size metric to introduce additional capacity in the system. A novel re-clustering algorithm is introduced in stage-2 to distribute load from highly loaded cells to neighbouring cells with less load for multi-user (MU) joint transmission (JT) CoMP case. We show that unsatisfied users due to high load can be significantly reduced with minimal impact on SE

    Stochastic geometric analysis of energy efficiency in two-tier heterogeneous networks

    Get PDF
    The exponential growth in the number of users of cellular mobile networks (and their requirements) has created a massive challenge for network operators to cope with demands for coverage and data rates. Among the possible solutions for the ever increasing user needs, the deployment of Heterogeneous Networks (HetNets) constitutes both a practical and an economical solution. Moreover, while the typical approach for network operators has been to consider the coverage and data rates as design parameters in a network, a major concern for next generation networks is the efficiency in the power usage of the network. Therefore, in recent years the energy efficiency parameter has gathered a great deal of attention in the design of next generation networks. In the context of HetNets, while the densification of the network in terms of the number of base stations deployed can potentially increase the coverage and boost the data rates, it can also lead to a huge power consumption as the energy used escalates with the number of base stations deployed. To this end, the purpose of this thesis is to investigate the energy efficiency performance of different deployment strategies in a HetNet consisting of macro- and femtocells. We make use of well established tools from stochastic geometry to model the different strategies, as it provides a theoretical framework from which the scalability of the network in terms of the design parameters can be taken into account. Those strategies consisted first, on the analysis of the effect of using multiple antennas and diversity schemes on both, the throughput and the energy efficiency of the network. The optimum diversity schemes and antenna configurations were found for an optimal energy efficiency while keeping constraints on the quality of Service of both tiers. Then, the effect of the vertical antenna tilt was analyzed for both, a traditional macrocell only network and a two-tier network. The optimum antenna tilt in terms of energy efficiency was found while keeping constraints on the Quality of Service required. Finally, an energy efficient deployment of femtocells was proposed where the smart positioning of femtocells derived into improvements of coverage probability, effective throughput and energy efficiency of the network. The proposed model also improved in general the performance of the cell edge user which in turn resulted in a more balanced network in terms of the overall performance
    corecore