52 research outputs found

    Underwater Acoustic Sensor Network Data Optimization with Enhanced Void Avoidance and Routing Protocol

    Get PDF
    Deployment of a multi-hop underwater acoustic sensor network (UASN) in a larger region presents innovative challenges in reliable data communications and survivability of network because of the limited underwater interaction range or bandwidth and the limited energy of underwater sensor nodes. UASNs are becoming very significant in ocean exploration applications, like underwater device maintenance, ocean monitoring, ocean resource management, pollution detection, and so on. To overcome those difficulties and attains the purpose of maximizing data delivery ratio and minimizing energy consumption of underwater SNs, routing becomes necessary. In UASN, as the routing protocol will guarantee effective and reliable data communication from the source node to the destination, routing protocol model was an alluring topic for researchers. There were several routing techniques devised recently. This manuscript presents an underwater acoustic sensor network data optimization with enhanced void avoidance and routing (UASN-DAEVAR) protocol. The presented UASN-DAEVAR technique aims to present an effective data transmission process using proficient routing protocols. In the presented UASN-DAEVAR technique, a red deer algorithm (RDA) is employed in this study. In addition, the UASN-DAEVAR technique computes optimal routes in the UASN. To exhibit the effectual results of the UASN-DAEVAR technique, a wide spread experimental analysis is made. The experimental outcomes represented the enhancements of the UASN-DAEVAR model

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    FANET: Smart city mobility off to a flying start with self‐organized drone‐based networks

    Get PDF
    Due to recent advancements in smart city traffic and transport monitoring industry 4.0 applications. Flying Ad-Hoc Networks (FANETs) ability to cover geographically large areas, makes it a suitable technology to address the challenges faced during remote areas traffic monitoring. The implementation of drone based FANETs have several advantages in remote traffic monitoring, including free air-to-air drone assisted communication zone and smart surveillance and security. The drone-based FANETs can be deployed within minutes without requiring physical infrastructure, making it suitable for mission critical applications in several areas of interests. Here a drone-based FANETs application for smart city remote traffic monitoring is presented while addressing several challenges including coverage of larger geographical area and data communication links between FANETs nodes. A FANET-inspired enhanced ACO algorithm that easily coped with drone assisted technology of FANETs is proposed to cover the large areas. Simulation results are presented to compare the proposed technique against different network lifetime and number of received packets. The presented results show that the proposed technique perform better compared to other state-of-the-art techniques

    Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network

    Get PDF
    In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the Ant Colony System (ACS) which is one of the ant colony optimization variants. However, ACS suffers from local optima and stagnation problems in medium and large sized environments due to an ineffective exploration mechanism. This research proposes a hybridization of Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. The EACS(TS) selects sensor nodes with high pheromone values which are calculated based on the residual energy and current pheromone value of each sensor node. Local optima is prevented by marking the node that has no potential neighbour node as a Tabu node and storing it in the Tabu list. Local pheromone update is performed to encourage exploration to other potential sensor nodes while global pheromone update is applied to encourage the exploitation of optimal sensor nodes. Experiments were performed in a simulated WSN environment supported by a Routing Modelling Application Simulation Environment (RMASE) framework to evaluate the performance of EACS(TS). A total of 6 datasets were deployed to evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) outperformed in terms of success rate, packet loss, latency, and energy efficiency when compared with single swarm intelligence routing algorithms which are Energy-Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better performances were also achieved for success rate, throughput, and latency when compared to other hybrid routing algorithms such as Fish Swarm Ant Colony Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and BeeSensor-C. The outcome of this research contributes an optimized routing algorithm for WSN. This will lead to a better quality of service and minimum energy utilization

    Wildfire Monitoring Based on Energy Efficient Clustering Approach for FANETS

    Get PDF
    Forest fires are a significant threat to the ecological system’s stability. Several attempts have been made to detect forest fires using a variety of approaches, including optical fire sensors, and satellite-based technologies, all of which have been unsuccessful. In today’s world, research on flying ad hoc networks (FANETs) is a thriving field and can be used successfully. This paper describes a unique clustering approach that identifies the presence of a fire zone in a forest and transfers all sensed data to a base station as soon as feasible via wireless communication. The fire department takes the required steps to prevent the spread of the fire. It is proposed in this study that an efficient clustering approach be used to deal with routing and energy challenges to extend the lifetime of an unmanned aerial vehicle (UAV) in case of forest fires. Due to the restricted energy and high mobility, this directly impacts the flying duration and routing of FANET nodes. As a result, it is vital to enhance the lifetime of wireless sensor networks (WSNs) to maintain high system availability. Our proposed algorithm EE-SS regulates the energy usage of nodes while taking into account the features of a disaster region and other factors. For firefighting, sensor nodes are placed throughout the forest zone to collect essential data points for identifying forest fires and dividing them into distinct clusters. All of the sensor nodes in the cluster communicate their packets to the base station continually through the cluster head. When FANET nodes communicate with one another, their transmission range is constantly adjusted to meet their operating requirements. This paper examines the existing clustering techniques for forest fire detection approaches restricted to wireless sensor networks and their limitations. Our newly designed algorithm chooses the most optimum cluster heads (CHs) based on their fitness, reducing the routing overhead and increasing the system’s efficiency. Our proposed method results from simulations are compared with the existing approaches such as LEACH, LEACH-C, PSO-HAS, and SEED. The evaluation is carried out concerning overall energy usage, residual energy, the count of live nodes, the network lifetime, and the time it takes to build a cluster compared to other approaches. As a result, our proposed EE-SS algorithm outperforms all the considered state-of-art algorithms.publishedVersio

    Internet of Things: Underwater routing based on user’s health status for smart diving

    Get PDF
    Technological advancements affect everyday life; they benefited our daily routines, habits, and activities. Underwater diving is one of the most interesting and attractive activities for tourists worldwide but could be risky and challenging. When paths are not clear, diving might take additional time and effort leading to some health problems. Thus, providing divers with proper direction information to surf underwater can be useful and helpful. Also, monitoring diverse health statuses and alerting them in case of any undesirable condition can increase their safety. Smart devices such as mobiles, watches, sensor devices, cellular networks along with the Internet of Things (IoT) can all provide location-based services. Such services can help in providing the best path for the divers and monitor their health status during diving. This paper proposes a new underwater routing approach, called Underwater Routing for Smart Diving “URSD”, which provides divers with routing information to visit underwater cultural or natural resources and monitors their health status during the diving period. The URSD approach was simulated and compared with the shortest path. Results showed that the URSD helped divers to route within paths that have a larger number of nodes, furthermore, it could enhance and improve divers experience and help them mitigate underwater risks

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    Bio-inspired Optimization: Algorithm, Analysis and Scope of Application

    Get PDF
    In the last few years, bio-inspired optimization techniques have been widely adopted in fields such as computer science, mathematics, and biology in order to optimize solutions. Bio inspired optimization problems are usually nonlinear and restricted to multiple nonlinear constraints to tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This work comprises state-of-art of ten recent bio-inspired algorithms, gap analysis, and its applications namely; Particle swarm optimization (PSO), Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Cuckoo Search Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions on the essence of these algorithms and their connections to self-organization and their applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)
    • 

    corecore