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Abstract: Forest fires are a significant threat to the ecological system’s stability. Several attempts
have been made to detect forest fires using a variety of approaches, including optical fire sensors,
and satellite-based technologies, all of which have been unsuccessful. In today’s world, research
on flying ad hoc networks (FANETs) is a thriving field and can be used successfully. This paper
describes a unique clustering approach that identifies the presence of a fire zone in a forest and
transfers all sensed data to a base station as soon as feasible via wireless communication. The fire
department takes the required steps to prevent the spread of the fire. It is proposed in this study
that an efficient clustering approach be used to deal with routing and energy challenges to extend
the lifetime of an unmanned aerial vehicle (UAV) in case of forest fires. Due to the restricted energy
and high mobility, this directly impacts the flying duration and routing of FANET nodes. As a
result, it is vital to enhance the lifetime of wireless sensor networks (WSNs) to maintain high system
availability. Our proposed algorithm EE-SS regulates the energy usage of nodes while taking into
account the features of a disaster region and other factors. For firefighting, sensor nodes are placed
throughout the forest zone to collect essential data points for identifying forest fires and dividing
them into distinct clusters. All of the sensor nodes in the cluster communicate their packets to the base
station continually through the cluster head. When FANET nodes communicate with one another,
their transmission range is constantly adjusted to meet their operating requirements. This paper
examines the existing clustering techniques for forest fire detection approaches restricted to wireless
sensor networks and their limitations. Our newly designed algorithm chooses the most optimum
cluster heads (CHs) based on their fitness, reducing the routing overhead and increasing the system’s
efficiency. Our proposed method results from simulations are compared with the existing approaches
such as LEACH, LEACH-C, PSO-HAS, and SEED. The evaluation is carried out concerning overall
energy usage, residual energy, the count of live nodes, the network lifetime, and the time it takes to
build a cluster compared to other approaches. As a result, our proposed EE-SS algorithm outperforms
all the considered state-of-art algorithms.
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1. Introduction

Nowadays, the deployment of WSNs is becoming increasingly popular worldwide.
Due to its tremendous potential for significant advancement in flood catastrophe moni-
toring [1]. It has its advantages in terms of disaster monitoring by WSN, some of which
are related to low cost, high tractability, and scalability [2]. In addition, the unpredictable
nature of natural disasters restricts the distribution of the appropriate information to the
corresponding sensor nodes with the smallest amount of delay. There is always a need
for clustering techniques to manage information and make it reach the final destination.
When using an energy-efficient clustering protocol, it is possible to randomly minimize
energy consumption in a network while simultaneously increasing the network lifespan.
WSN has several applications in the Internet of Things, the medical area, transportation
field, industrial field, and smart cities [1,2]. When used with a WSN, the cluster routing
protocol provides energy-efficient data transfer between the sensor node and the base sta-
tion. Cluster members (sensor nodes) are denoted by the SN and CH used in the clustering
routing protocol to designate the cluster head. UAVs are equipped with a compact lithium
battery with around 30–35 min of flying time and can be recharged quickly. A technique
for replacing UAVs has been developed to complete a lengthy operation. When an UAV is
nearing the end of its battery life, it returns to the base station re-energized and re-inducted
into the network, allowing the mission to be completed successfully [3], as seen in Figure 1.
The limited lifespan and frequent replacement of UAVs are barriers to the widespread use
of FANET in various applications.
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FANETs are a new vehicular ad hoc network (VANET) and mobile ad hoc network
(MANET) that may be installed anywhere and can communicate. Many of its character-
istics are derived from the VANET and the MANET [4]. It uses the same peer-to-peer
communication technology as the previous versions of the ad hoc network. Nodes in a
network are dependent on one another to communicate with one another properly. Due
to the high mobility of nodes, the network’s topology changes frequently. FANET also
possesses unique characteristics separate from the other ad hoc networks described below.
These characteristics are as follows [5]: The FANET network comprises mobile nodes
that are provided as unmanned aerial vehicles that can travel at speeds of about 30–60
km/h in open air space and perform a wide range of missions, including surveillance and
reconnaissance. In order to facilitate direct communication, they have relatively lengthy
inter-node distances and a clear line of sight between nodes. Node mobility patterns
differ in FANET, which is another point of differentiation. FANET can be used for many
things, from surveillance and monitoring to disaster management, environmental sensing,
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ecological damage detection, communication, and many more [1–3]. The goal of clustering
is to reduce the time spent on route discovery and maintenance. It categorizes the whole
network into several logical subgroups.

Nodes geographically close to one another are grouped to form a cluster. Cluster
heads (CH) are maintained in each cluster, and these CHs are responsible for the overall
maintenance and management of the cluster’s communication. It is in charge of communi-
cation between clusters and within clusters. When communicating with all of their cluster
members (CMs), CH always functions as the first hop node, and it is its responsibility to
deliver the message to its final destination. CHs communicate with their cluster managers
(CMs) to keep up-to-date information on the cluster. In proactive and reactive routing, the
process of clustering and election of the CH takes the place of the route request. Cluster
creation and cluster maintenance phases primarily influence cluster overhead [6,7]. A large
number of messages are sent between network nodes as a part of the cluster building
process. For example, to determine node fitness, they exchange their location and other
characteristics [5,6]. They run calculations to choose CHs based on these factors. Commu-
nication and calculations to establish clusters and elect CHs to consume network resources
like bandwidth, processing power, and battery capacity are considered energy waste.

IoT is a massive network of disseminated nodes that can detect and communicate with
each other across great distances [5]. As they enable a wireless link between constrained
devices, WSNs are regarded as the essential players in the IoT networks [4–6]. IoT-based
WSNs use a wireless channel to send collected data (environmental data) to a central
terminus known as a sink node [7]. Sensor node devices are becoming smaller and more
economical due to recent developments in hardware design, allowing them to be used in
adverse settings such as nuclear power plants and forests [7,8]. On the other hand, sensor
nodes have limited battery capacity, necessitating the creation of energy-efficient algorithms.
As sensors with low batteries might create network disconnections and, as a result, packet
losses, energy resource limits directly impact the application’s performance [6–8]. Reduced
energy use in multi-hop sensor networks necessitates the development of methodologies
and procedures that select the most energy-efficient way for data transfer [8]. There are
several types of Internet of Things applications, each with specifications and needs. Safety-
critical IoT applications must fulfil high criteria for dependability and punctuality. Apps for
disaster management are defined as behaviors and actions that help people prevent, control,
and recover from disasters (fires and earthquakes). A disaster management approach
is characterized as one that focuses on developing algorithmic and protocol solutions
to improve service quality in safety-critical applications [9]. Forest fire detection is an
example of a safety-critical application, since an unplanned fire can cause considerable
environmental and ecological devastation and jeopardize human lives [10]. Calamities such
as quakes and forest fires, regardless of their cause, put people in a situation of urgency
and have lasting implications for human society [8–11]. Academics have recently focused
on developing disaster warning and remote-control systems due to the rising frequency
and severity of disasters [11,12]. It is possible to design more energy-efficient, portable, and
scalable solutions to a wide range of catastrophic situations by utilizing IoT protocols and
algorithms. This technology opens the door to disaster-resilient intelligent environments,
such as intelligent community solutions, where calamities may be minimized. This study
leverages the Internet of Things networks to propose a potential technique for remotely
monitoring forest fires. As soon as a disaster occurs, an early warning system is anticipated
to send a signal to a central control unit, taking the appropriate precautions. Forest fires
may exhibit sudden behavioral changes in reaction to changes in climatic circumstances,
making monitoring more challenging as the fire’s position and spread fluctuate over time.
Furthermore, SNs are unlikely to consume energy consistently because of the non-uniform
distribution of events and the unpredictable behavior of fire. Forest fire management
approaches that employ clustering and routing techniques have been the subject of several
papers in the literature. These efforts have concentrated on quick-fire detection, with
network energy efficiency being one of the most critical factors [5], as seen in Figure 2.
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As a result, to successfully manage catastrophes using IoT-based WSNs, a suitable
routing channel from the cluster heads (CHs) to the sink in the disaster zone must be
established. Clustering is one of the most often used hierarchical routing algorithms, and it
is detailed in-depth below. Clustering aims to feasibly find and identify the most optimal
CH nodes [13]. Due to the difficulties of finding appropriate nodes to act as CHs and the
accompanying complexity, clustering in WSNs takes a long time. In computer science,
clustering is an NP-hard problem [14–20]. On the other hand, previous research has shown
that evolutionary algorithms are necessary to improve network efficiency when using
traditional methods to choose cluster heads [21–24].

This article proposes an energy-efficient clustering algorithm that can be used for
data transmission purposes in sensor nodes during emergency disaster supervision in
WSN [25–32]. The routing purpose in the clustering manner is done with the help of optimal
CH, which is selected by involving different concerned parameters. An image compression
method named SPIHT is employed to decrease the transmission load. Moreover, an SRCM
model is employed to find the best route towards the destination, compensating for the
node energy level and communication link quality [33–40]. All these steps are followed by
aggregation techniques using an XOR gate operation, eliminating identical information
from different nodes [41–46].

The following are some of the critical contributions made by this paper:

• In this paper, we develop a strategy to cluster WSNs in a way that is both energy-
efficient and sensitive to the characteristics of emergencies.

• We try to Improve the CH excerption method by devising a new function that takes
energy efficiency, cluster construction time, trust value and other parameters.

• Surpassing existing systems in terms of their energy consumption, the number of
live nodes, network development time, and the number of sink sites in catastrophic
scenarios, among other metrics.

The remainder of the paper is arranged in the following manner. Section 2 provides
an overview of relevant research, followed by Section 3, which presents our suggested
technique. Section 4 discusses the simulation findings and evaluations that were conducted.
In Section 5, there is a brief discussion about the result. Finally, at last, the conclusion and
potential future work has been discussed in Sections 6 and 7.

2. Literature Review

The authors of [6] presented a low-energy adaptive clustering hierarchy (LEACH), a
famous disseminated heuristic approach that uses adaptive clustering. Clustering occurs in
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this approach in a dynamic, unpredictable, probabilistic, and periodic manner, among other
ways. LEACH is responsible for determining a threshold for CH selection. It generates
a random number among [0, 1] to choose a CH throughout that period. One of the
drawbacks of the LEACH protocol is the random selection of CHs, which is necessary since
any node might be qualified to serve as a CH under certain conditions [40–42]. LEACH-
C [7] is an improved variation of the LEACH algorithm. All of the sensor nodes broadcast
information to the base station, such as position and residual energy, to maximize the
network’s efficiency. It has the added benefit of minimizing the energy consumption
of each node in the network when LEACH-C is used as a centralized method, which
is particularly advantageous. However, LEACH-C has several faults that need to be
addressed. For example, when it comes to becoming a CH in the LEACH-C network,
each node has an equal probability of becoming one. As the network’s energy supply
depletes, the nodes with the least amount of energy should be selected to serve as CHs,
which will reduce the network’s efficiency and place an unfair amount of energy demand
on the network. TEEN (threshold-sensitive energy-efficient sensor network protocol) [8]
is another hierarchical heuristic technique that uses the two-layer clustering structure
to reduce energy consumption. This approach uses both a hard (HT) and a soft (ST)
threshold. The threshold values determined by each CH are communicated to the CH’s
members. Both thresholds have been implemented to limit the number of transmissions
during routing intervals and the overall amount of energy used. Since the CH selection
is based on chance, the CH distribution [8] will be non-uniform. Regarding clustering,
TEEN surpasses LEACH in terms of stability and energy efficiency. There is a fundamental
drawback: If the requirements are not satisfied immediately, nodes will not be able to
establish communication.

Meta-heuristic methods for optimal CH selection have been developed to overcome
the limitations of heuristic algorithms, such as the wasteful exploration of the search
space [18], and obtain more outstanding performance than traditional heuristic algorithms.
A key component in improving algorithm efficiency is having access to every segment
of the whole search space during each period. Using an evolutionary PSO for energy-
aware CH selection, the authors proposed an algorithm in [10]. This method combines
the Euclidean distance between nodes and CHs, and the remaining energy from particle
energy to node energy. According to the results, the addition of energy criteria in the fitness
function significantly impacted the total energy efficiency of the exercise programming
efforts. It should be noted that the CHs in [10] were chosen based on probabilities, and the
distribution of CHs was constant throughout the group. In this method, the exploration
step was likewise given precedence over the exploitation stage in terms of importance.
Moreover, the authors in [9] created a hybrid approach for energy-efficient CH selection
based on PSO and HS algorithms. The suggested meta-heuristic algorithm covers a global
optimal in the search space (exploration) while also extending beyond the local optimal
by integrating the advantages of both techniques (exploitation). PSO–HSA [9] is a search
space optimization approach in which particles based on the PSO algorithm are allowed to
migrate from one zone to another in the search space. As PSO faces optimization constraints
at high-dimensional scales due to optimization limits, finding any viable solution in the
whole search space is challenging. As a result of its great-seeking capacity, HSA aids PSO.
The authors [11] offered an evolutionary HSA for CH selection influenced by musical
compositions. Musicians attempt to choose better notes so that their music may be heard
more clearly, and this is the primary premise behind the presentation of the harmony
fitness function. In other words, the most suited group of nodes is picked as CHs. The
authors suggested a TPSO-CR protocol [12], a two-layered PSO protocol for clustering
and routing in wireless sensor networks. While calculating the fitness function of the
clustering, three factors were considered: network coverage, residual energy of the nodes,
and link communication quality (all of which were utilized simultaneously) [37]. The two
criteria applied in the fitness function for clustering are energy efficiency and connection
communication quality. The novel method was applied for clustering, an updated HSA
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was used for multi-hop routing in WSNs in [13], and the cuckoo approach was used for
clustering and routing of nodes. One of the most critical issues in this area is uniform
energy consumption in the clustering and routing of large-scale wireless sensor networks
since nodes near the sink spend considerable energy owing to high traffic loads. This
study also contains criteria for the fitness function, including energy, node degree, cluster
intra-distance, and coverage ratio. Author [14] developed an enhanced version of LEACH,
dubbed LEACH-B (LEACH-Balanced), in which the number of CHs is kept as close to
ideal levels as possible. It is a decentralized technique for cluster creation [14] that involves
increasing election CHs to maximize the number of clusters formed while maintaining
the lowest possible energy consumption by nodes during the set-up stage. The LEACH-B
protocol comprises three primary stages: selecting the CH, the construction of clusters, and
the transmission of data. LEACH-ME (Mobile Enhanced-LEACH) is a protocol suggested
by the authors of [15] as an enhancement to the LEACH-M protocol. LEACH-ME is
intended to alleviate the shortcomings of LEACH-M. As CHs, it selects nodes with the
least mobility than their neighbors. Each node contains all the CH transitions performed
throughout the steady-state while transferring information. [15] Nodes use TDMA slots to
send several transitions to their CH [16]. The primary goal of LEACH-ME is to ensure that
the mobility of CHs is kept to a bare minimum in comparison to other nodes in the network,
with the result that when clusters move and change locations, the disruption caused by the
movement of CHs will be kept to a bare minimum to the greatest extent possible.

The authors have proposed a strategy for transmitting messages to a WSN-aided
opportunistic network (WAON) under catastrophe situations [23]. In this scenario, the
forwarding method is referred to as net spray. Disaster messaging services are provided and
support static-to-mobile, mobile-to-mobile, mobile-to-static, and static-to-static operations
and mobile-to-static operations. The message forwarding to a WSN-assisted opportunistic
network ensures that messages are delivered with the least possible delay in catastrophe
circumstances and that storage is better managed [38].

A G.9959-based IPv6 packet delivery mechanism for industrial IoT via WSN has been
proposed in [24] by the authors. G.9959 is an industrial Internet of Things (IIoT) protocol.
IPv6 retains very high Internet users, allowing for a high degree of scalability. Packet
delivery speed and energy efficiency are strong points of the IPv6 energy-efficient system.
According to the authors’ paper [25], loss of transmission reduction by inspired ant colony
optimization (ACO) with a Monte Carlo Markov chain in an underwater WSN environment
was achieved using a Monte Carlo Markov chain [39]. In this paper, they describe ACO
routing, which includes the Markov chain Monte Carlo (MCMC) technique for capturing
transmission loss on the MCMC strategy, as well as the channel status information (CSI)
forecast prediction (FP) algorithm, which is proposed in the literature. To reduce transmis-
sion loss, the implementation of inspired ACO combined with Markov chain Monte Carlo
(MCMC) in a subsea WSN environment yields a positive loss of transmission, probability
distribution function, average latency, and throughput. An additional CH selection ap-
proach was developed in [26], which uses a fuzzy logic-based energy adequate clustering
(FLEAC) method based on five descriptors to pick the best CH. We can see the comparison
of algorithms by certain metrics and network characteristics in Tables 1 and 2.
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Table 1. Compassion of various algorithms by certain parameters.

Protocol Clustering Type Energy
Efficiency

Clustering
Stability No of CH’s Cluster

STABILITY Network Type No. of Nodes
in Cluster

LEACH Random Low Low Indecisive Low Homogenous Changeable

LEACH-C Centralized Medium Low Decisive Medium Homogenous Changeable

TEEN Probability
Centralized Medium Low Indecisive Low Homogenous Changeable

PSO-HSA PSO And HSA
Centralized High Low Indecisive High Homogenous Changeable

PSO-SD Pso Centralized Moderate High Indecisive High Homogenous Changeable

HSA-N HSA-Based
Centralized Medium High Indecisive Low Homogenous Changeable

TPSO-CR PSO-Based
Centralized Moderate Low Decisive High Homogenous Changeable

iCSHS Cuckoo-Based
Distributed Moderate High Indecisive Low Homogenous Changeable

LEACH-B Distributed High Low Decisive Medium Homogenous Changeable

LEACH-ME Distributed High High Indeterminate Medium Homogenous Changeable

Table 2. Comparison on the basis of network characteristics.

Protocol Converge Routing Clustering
Category Mobility Scalability Complexity

LEACH No Single Hop Residual Energy Static Limited Low

LEACH-C No Single Hop Centralization Static Good High

TEEN No Single Hop Centralization Static Very Good High

PSO-HSA Moderate Balanced Single Hop Centralization Static Very Good High

PSO-SD Moderate Single Hop Centralization Static Good Medium

HSA-N Medium Single Hop Centralization Static Good High

TPSO-CR Moderate Balanced Single Hop Centralization Mobile Good High

iCSHS Moderate Balanced Multi-Hop Centralization Static Average High

LEACH-B No Single Hop Residual Energy Static Limited High

LEACH-ME Medium Single Hop Mobility Mobile Good High

3. Proposed Methodology

In this section, first, the metrics used by our proposed algorithm are described, and then
the proposed algorithm steps are discussed, after which the network model is explained.

3.1. Metrics Used by Our Proposed Algorithm

In our proposed algorithm, we are including certain metrics on which basis we will
select an optimal and efficient node as CH. Mostly every metric has its own importance
and concern to select the nest nodes as CH.

3.1.1. Residual Energy of the Node

Equation (1).

RES energy = Initial energy − consumed energy (1)



Drones 2022, 6, 193 8 of 19

3.1.2. Trust Level Value

The value of trust in the beginning is same as all nodes. Anomaly detection algorithms
lower this level if a node is functioning incorrectly. It is possible for an abnormal node to
be a distrusted node or a malicious node. The nodes’ trust level is set as [1,8]:

Normal_Sensor_node: 0.7 ≤ Ti ≤ 1

Distrusted_Sensor_node: 0.3 ≤ Ti ≤ 0.7

Malicious_Sensor_node: 1 ≤ Ti < 0.3

In order for a cluster head to be elected, only normal nodes are allowed to participate.
There is a possibility that the node could become malicious at any point in time, and thus
Distrusted_Sensor_node and Malicious_Sensor_node cannot participate in the election of a
cluster head. If a normal node’s residual energy is less than the average residual energy of
all nodes, then it is also considered as a malicious node [29].

3.1.3. Degree Difference

The node’s stability as a cluster head increases with its node degree. The degree of a
node is the number of connections that it has to other nodes in the network. Where Di is
node i’s practical degree and MaxD is its maximum degree, we define degree difference DD
as |Di-MaxD|. Node I will performs better as a cluster head if the value of DD is smaller.

3.1.4. Total Energy Consumed

The residual energy of a node ni as denoted by Eri after transmitting k bits to a node
nj within a distance d is given by [1] and can be calculated by Equation (2).

Eri = E − (ETx(k,d) + ERx_elec(k) (2)

where E is the current energy of the node ETx is energy for transmit a message, which is
calculated by Equation (3).

ETx(k,d) = kEelec + K Eampd2 (3)

In this equation, Eelec is energy of electrons and Eamp is required amplified energy.
ERx_elec is energy consumed to receive a message, which is calculated by Equation (4).

ERx_elec(K) = kEelec (4)

3.1.5. Distance between the Base Station and Each Sensor

Calculate the distance between the base station to each sensor nodes, where, (XBS,
YBS, ZBS) and (x1, y1, z1) are the coordinate positions of the base station and each sensor
node, respectively, [2] as computed by Equation (5).

Dist =
√
((XBS − x1)ˆ2 + (YBS − y1)ˆ2 + (ZBS − z1)ˆ2) (5)

3.1.6. Mobility of a Node

Mobility is an important factor to consider when selecting a cluster head. Consider
electing a cluster head who is more stationary; that would be more reliable [2]. Re-affiliation
may occur if the cluster head moves rapidly, causing nodes to become detached from one
another. This occurs when a node leaves an existing cluster and joins a newer one [1]. In
this scenario, only a small amount of information can be sent between the node and the
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cluster head, so in our proposed methodology, we use the mobility of a node as a dividing
factor which is being calculated by Equation (6).

Mi =
1
T ∑T

t=1

√
(Xt − Xt − 1)2 + (Yt − Yt − 1) + (Zt − Zt − 1)

(6)

Calculate the weight of the node Wi using Equation (7) as follows for each node
participating in the cluster head election:

Wi = (w1 × Ti + w2 × Resi + w3 × Di + w4 × Total Eng i + w5 × Disti)/Mobility of a node (Mi) (7)

where w1, w2, w3, w4 and w5 are coefficients to system criteria with certain values.

3.2. Our Proposed Algorithm

A node’s degree, transmission power, mobility, starting out energy of each sensor
node, trust value node and distance from the base station to each sensor node are all taken
into account when determining how fit a node is to be a cluster head. Our clustering
technique takes into account the following factors:

• Elections for cluster heads take place in a parodic nature.
• Ideally, only M nodes may be supported by each cluster head. The maximum node

degree is M.
• It is more stable as a cluster head if the node’s degree is greater. Degree difference DD

as |di-M|, where di is the practical degree of node i and M is the maximum degree.
The better node I is as a cluster head, the smaller the i.

• Trust level value: value assigned to an anode to anticipate its behavior.
• Mobility: In choosing who will be the cluster head, mobility is a key consideration.

Choosing a cluster leader who is less mobile is a good idea.

• If two nodes are within a particular transmission range of one other, it requires less
power to communicate with each other, i.e., the initial energy can be efficiently used
within a certain transmission range. Due to the additional obligations that cluster
heads have to perform for their members, they consume more battery power than an
ordinary node would do.

• It is also vital to note that the distance between the base station and each sensor node
is a key factor in the cluster head section process.

3.3. Network Model

Consider a sensor field, which is made up of a collection of sensors that are randomly
distributed throughout a specific area. The sensing activities and data reporting in this
network are done on a regular basis [30,31]. The method is predicated on the following
characteristics of the model of a sensor network:

• Sensor nodes are densely distributed and homogeneous in their distribution.
• Sensor nodes are mostly similar in terms of their sensing, processing, and communica-

tion capabilities.
• Each sensor node has a unique ID.

Using the hello ER paradigm, sensor nodes broadcast data to the cluster head that is
immediately adjacent to them.

• The base station (BS) is stationary and situated a long distance away from the sensors.
• Each node can communicate with the BS on a one-to-one basis

Initially, all nodes have the same amount of energy, and the network is homogenous
in its energy distribution.

The sink is in charge of clustering and routing operations. As a result, the technique
that has been presented is centralized.

• All nodes are energy restricted and execute tasks that are comparable to one another.
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The details of the EE-SS algorithm for homogenous sensor networks are stated below
in Algorithm 1 and the flow of the approach can be seen in Figure 3.
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Algorithm 1. Our proposed clustering approach EE-SS

Input:A set of sensor nodes, each with the Residual energy RES, degree difference Di,
mobility speed Mi, its individual residual energy, total energy as Eri, Distance between Base station to each
sensor node Dist, and Ti as the trust value for a node are the five coefficients for the weighted function
(fitness function).
Step 1: Find and compute Residual energy, Trust value, degree difference, total energy
consumption and the distance between the nodes
Step 2: Computer the mobility speed of every node
Step 3: Calculate the combined weight with the help of Equation(7) by adding weight from W1 to
W5
W1 for trust value = 0.5, w2 for residual energy = 0.3, w3 for degree difference = 0.1, w4 total
energy consumption = 0.2, w5 coefficient for distance between SNs and BS = 0.4
Step 4: The node with the lowest Wi should be chosen to serve as the cluster head node
Step 5: Consider the nodes that are within the transmission range to be member nodes of the
cluster for investigation.
Step 6: First cluster formation takes place as seen in Figure 4.
Step 7: Remove the cluster head and its neighbor from the original set of sensor nodes after
cluster formulation.
Step 8 Repeat the process Step 1 to Step 7 util all nodes are assigned to a cluster
Sep 9: if the left-over energy of CH is less the 25 % of its total energy, the CH selection process is
again called.
Step 11: Before sending data to base state an compression techniques is being used by CH known
as SPIHT.
Step 10: for sending data to the destination Semi Random Circular Movement model is being
implemented for better getting probability of success.
Step 11: On the Base Station a basic XOR operation is operated to remove the redundant data
received by different CHs

Drones 2022, 6, x FOR PEER REVIEW 12 of 20 
 

 
Figure 4. Clustering of SNs. 

4. Results and Experimentation 
This section explains the experimental setup and evaluates the recommended 

model’s performance involving parameters shown in Table 3. LEACH, LEACH-C, PSO-
NSA, and SEED are compared with our proposed algorithm EE-SS. Cluster lifetime, build-
ing time, and energy consumption are all taken into account when evaluating the perfor-
mance of this clustering order to arrive at an average value, and we ran a total of ten 
simulations for each possible scenario. Initial nodes are planted in a three-dimensional 
free space, and their positions and directions are randomly determined. Nodes are as-
signed a transmission power based on their proximity to other nodes. When the new CHs 
are chosen, the CM works with the new CHs to plan their moment and communicate with 
them. Since they must rely on the messages of their constituents, CHs use more energy 
than CMs. In order to describe the clustering (re-clustering) criteria, we use the term pend-
ing (un-clustered) nodes. Clustering is required for pending nodes only. In Figure 5, we 
can see the virtual node’s distribution in the concerned area. 

 
Figure 5. Deployment of nodes. 

  

Figure 4. Clustering of SNs.

When it comes to power-constrained WSNs, implementing SPIHT [16] is an excellent
choice since it delivers a better compression ratio while requiring less computing com-
plexity, less power consumption, and a more straightforward implementation than other
well-known compression algorithms [32–34]. Therefore, in our proposed algorithm, we
implement SPIHT before sending data to a base station by al CHs. By avoiding the need
for an entropy encoder, SPIHT generates a highly compact output bitstream, allowing for
greater efficiency in terms of computing complexity and a reduction in the quantity of data
that must be transmitted [20,47,48].
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4. Results and Experimentation

This section explains the experimental setup and evaluates the recommended model’s
performance involving parameters shown in Table 3. LEACH, LEACH-C, PSO-NSA, and
SEED are compared with our proposed algorithm EE-SS. Cluster lifetime, building time,
and energy consumption are all taken into account when evaluating the performance of
this clustering order to arrive at an average value, and we ran a total of ten simulations
for each possible scenario. Initial nodes are planted in a three-dimensional free space, and
their positions and directions are randomly determined. Nodes are assigned a transmission
power based on their proximity to other nodes. When the new CHs are chosen, the CM
works with the new CHs to plan their moment and communicate with them. Since they
must rely on the messages of their constituents, CHs use more energy than CMs. In order
to describe the clustering (re-clustering) criteria, we use the term pending (un-clustered)
nodes. Clustering is required for pending nodes only. In Figure 5, we can see the virtual
node’s distribution in the concerned area.

Table 3. Simulation parameter.

Parameter Default Value

Monitoring field 100 × 100

Count of nodes 100

Minimal distance among nodes 2 m

Simulation runs 10

Simulation time 120 s

Base station position (50, 50)

Initial energy 0.5 J

Transmission range 40 m

Probability of turning a node as CH 0.1

Energy for transmitting of each bit energy consumed for receiving 50 × 0.000000001

Tx/Rx electronics constant [2] 50 nJ/bit

Amplifier constant [1,2] 10 pJ/bit/m2

CH energy threshold [2] 10–4 J

Size of packet [2] 30 bytes

Packet rate [2] 1 packet/s

Sensing range [2] 10 m

Cluster radius [2] 25 m
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All nodes are pending nodes in the first iteration of the round; however, in following
iterations, two conditions must be met to declare a node as pending: (i) the node must be
pending, and (ii) the node must be pending. Furthermore, when CH’s energy falls below
25% of the energy of the cluster member with the highest energy in the cluster, all nodes
in that cluster will be labeled as pending nodes. When two clusters come close enough to
merge into a single cluster while moving through the operational area, nodes from both
clusters will be labeled as pending nodes. If the total number of pending nodes in the
network surpasses 25% of the nodes, clustering will be re-enabled. The CHs will maintain
the cluster structure if the number of pending nodes in the network is less than 20% of the
total nodes, and nodes will communicate with the elected CHs.

4.1. Clusters Building Time

Cluster construction time refers to the time necessary to construct the clustering. The
suggested method takes into account the various input values. Following these input
values, the CH is picked, their cluster members are also produced, and the CH is selected.
In this case, the time required between receiving the input and creating the output is called
cluster formation or building time. This is also referred to as the algorithm’s computational
complexity or algorithmic complexity. As unmanned aerial vehicles (UAVs) have limited
memory and power, long cluster formation times negatively influence their performance.
It will also shorten the lifespan of UAVs since they would consume more energy. The
suggested technique is evaluated compared to the current methods, including LEACH,
LEACH-C, PSO-NSA, and SEED. The PSO-based approach requires less time throughout
the construction phase than leach. This is because LEACH and LEACH-C are based on
randomization and repeatedly converge, so they are used. As seen in Figure 6, an increase
in the number of nodes will increase the time required for clusters to form. On the other
hand, the suggested model employs clustering, which creates just one solution and updates
it sequentially to progress towards a globally optimal solution. It is well-known for its lack
of temporal complexity. The time required for route discovery is reduced due to the low
complexity of the services and provisioning. It also helps to keep nodes’ energy usage low.
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4.2. Cluster Lifetime

Cluster lifespan is defined as the time that has transpired between the establishment of
a cluster and the point at which the cluster formation has ended. Several factors influence
this, including the relative mobility of nodes, the pace at which nodes use energy, and
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the overall number of clusters in the network. When the level of mobility is high, nodes
may be able to alter their cluster assignments more quickly than usual. Similarly, when
high energy consumption rates, a chosen CH may quickly become invalid, necessitating
a re-clustering effort. Due to the shorter lifetime of the cluster, it is necessary to recall
the clustering factor regularly. Therefore, there is a rise in the need for computational
power. Figure 7 depicts the cluster lifetimes between the proposed model and the LEACH,
LEACH-C, PSO-NSA, and SEED models. The suggested model outperforms all other
models by a wide margin in this metric. When considering the size of the cluster, it is too
large to incorporate all of the clusters inside the transmission coverage of the CHs. The
results demonstrate that increasing the number of nodes in cluster results in a decrease in
the cluster’s lifetime. Due to the mobility nature of UAVs, which causes topology to alter
regularly, this might be the case.
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4.3. Alive Node Analysis

The number of active nodes in the network may be gleaned by examining the active
nodes per transmission round. Nodes that are still alive can be used to estimate the
network’s lifespan. Alive node analysis is shown in Figure 8 and Table 4, where the first
6000 cycles of the network are analyzed. An initial node density of 60 is used for this. This
shows that PSO-HSA is more efficient than LEACH and LEACH-C node life expectancy.
Comparison findings are presented in tabular form in Table 4.
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Table 4. ANA for all algorithms.

Number of Rounds LEACH LEACH-C PSO-HSA SEED EE-SS

First node dead 457 515 1267 1542 2456
Half node dead 549 567 2555 3601 4498
Last node dead 634 754 3145 4242 5164
Average 548 612 2322 3128 4039.3

4.4. Overall Residual Energy

Due to the limited battery capacity of the UAVs, it is vital that regulated energy
drain is implemented as soon as possible. The energy consumption is measured for a
predetermined number of transmissions (transmissions). UAVs rely on energy as their
primary source of propulsion. The limited availability of energy resources places significant
restrictions on the extensive range of uses for unmanned aerial vehicles (UAVs). Energy
is dissipated by three main mechanisms in unmanned aerial vehicles (UAVs): the energy
required to operate the UAV, the energy consumed by the various sensors mounted on
the UAV, and the energy consumed by the UAV for communication with other unmanned
aerial vehicles (which is the primary source of energy consumption). With the help of
LEACH, LEACH-C, PSO-HAS, and SEED, we could compute the total energy consumed
by the FANET during the 120 s. Figure 9 illustrates how the energy consumption of UAVs
in a FANET grows as the number of UAVs in the FANET increases. The lower energy
usage of our proposed system is due to the application of energy—conscious CH selection
and cluster management techniques. It is undeniable that EE-SS outperforms the other
method, which translates into lower energy consumption and a more extended network
lifetime. With increasing node distance, energy consumption increases linearly, with the
suggested technique growing slower than the previous competing models, indicating more
excellent performance.
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4.5. Probability of Delivery Success

The possibility of a packet being successfully delivered to the BS while going through
intermediate nodes is defined as the probability of success. The success of sending data is
primarily dependent on the average number of hops taken by each packet throughout the
delivery process. According to Figure 10, an increase in the number of UAVs also improves
the density of the network and the likelihood of success. The probability of delivery success
improves as the number of unmanned aerial vehicles (UAVs) grows, but the packet loss
ratio decreases.
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5. Discussion

As a result of the research presented in this paper, a new approach for early detection
and warning of wildfires has been developed. This research shows that wireless sensor
networks (WSNs) are a viable environmentally friendly technology for spotting forest fires.
Secondly, based on experimentation tests on simulators, we summarize the findings of
Section 4. The computational study covered energy usage, cluster construction time, and
alive node determination. While observing the findings, the superiority of the offered
strategy was proven concerning the examined parameters. Energy consumption wise,
EE-SS was the most efficient, followed by the PSO-HSA, SEED, and LEACH-C, whereas
LEACH absorbed the most energy. Usually, PSO-HSA performance was better than others,
but below our proposed algorithm with all evaluated parameters, but in alive node analysis,
SEED works better than PSO-HSA. From the above figures and explanations for comparing
different algorithms with our proposed algorithm, as seen in Figure 11, none of the related
WSNs are considered unsuitable for disaster application. Moreover, these techniques can be
beneficial as many people are killed each year in forest fires, and their property is destroyed.
At the same time, the discharge of dangerous greenhouse gases and smoke particles
contributes to air pollution and global warming through the removal of green cover.
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6. Conclusions

In our proposed algorithms, it has been seen that it is an energy-efficient clustering
approach that supports an optimized way to elect CH for safety-critical WSN applications,
with a particular emphasis on a forest fire. Energy efficiency has been identified as a critical
concern for IoT networks. It was proposed to address this difficulty by using an enhanced
CH exercise approach with a unique fitness function that included factors for energy effi-
ciency, cluster building, and other parameters. We tested the effectiveness of the suggested
strategy in a forest fire scenario, comparing it to previous studies and taking into account
varied sink node locations. The results were promising. Various performance parameters,
such as overall residuary energy, the count of live nodes, and network building, were
considered in simulation evaluations. These are the following conclusions that we reached:
(1) our proposed EE-SS performs significantly better in a disaster area than the current best
practices; (2) the sink node’s location (the distance between the nodes) affects the execution
of the algorithm. (3) In a catastrophic scenario, probabilistic algorithms such as LEACH
and LEACH-C do not function as expected. Compared with the conventional algorithms,
the simulation results proved the effectiveness of the proposed EE-SS clustering algorithm.

7. Future Scope

In the future, we want to use this approach to design efficient medium-range commu-
nication (MAC) protocols, especially for heterogeneous networks, to prevent lengthy delays
and broaden simulation scenarios. In the future, we will focus on establishing a routing
protocol to make the network more cost-effective while also minimizing the end-to-end
delay, which we plan to deploy shortly. Furthermore, integrating encryption, decryption,
and blockchain models to give high-security levels to WSN encourages the development
of security algorithms. The energy efficiency of the EE-SS methodology can be improved
even more in the future by including more optimized data aggregation methods in its
development. Additionally, techniques for allocating resources based on metaheuristic
algorithms could be made to make sure that the resources are used as well as possible.
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