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Abstrak 

Di dalam rangkaian sensor tanpa wayar (WSN), peningkatan masa penghantaran 
berlaku apabila agen pencarian memfokus pada nod sensor yang sama, manakala 
masalah optima setempat berlaku apabila agen terperangkap di dalam gelintaran 
buta-tuli ketika pencarian. Algoritma kawanan pintar telah digunakan untuk 
menyelesaikan masalah ini termasuklah sistem koloni semut (ACS) iaitu salah satu 
variasi pengoptimuman koloni semut. Walau bagaimanapun, ACS menghadapi 
masalah optima setempat dan stagnasi di dalam persekitaran sederhana dan besar 
disebabkan mekanisme penjelajahan yang tidak berkesan. Kajian ini mencadangkan 
penghibridan antara algoritma ACS Tertingkat dan Gelintaran Tabu ((EACS(TS)) 
untuk penghalaan paket di dalam WSN. EACS(TS) memilih nod sensor yang 
mempunyai nilai feromon yang tinggi dikira berdasarkan nilai feromon semasa dan 
tenaga yang tersisa di setiap nod sensor. Masalah optima setempat dapat dielakkan 
dengan menanda nod yang tidak mempunyai nod jiran yang berpotensi sebagai nod 
Tabu dan menyimpannya di dalam senarai Tabu. Pengemaskinian feromon setempat 
dilakukan untuk menggalakan penjelajahan ke nod sensor lain yang berpotensi 
manakala pengemaskinian feromon global dilaksanakan untuk menggalakan 
pengeksploitasian nod sensor yang optimum. Eksperimen telah dijalankan di dalam 
persekitaran simulasi WSN yang disokong oleh rangka kerja RMASE untuk menilai 
prestasi EACS(TS). Sejumlah 6 set data telah dijalankan untuk menilai keberkesanan 
algoritma yang di cadangkan. Keputusan menunjukkan EACS(TS) mengatasi dari 
segi kadar kejayaan, kadar kehilangan paket, latensi, dan kecekapan tenaga apabila 
dibandingkan dengan algoritma penghalaan kecerdasan kawanan tunggal seperti 
EEABR, BeeSensor, dan Termite-hill. Pencapaian yang baik juga telah dicapai untuk 
kadar kejayaan, kadar penghantaran, dan latensi apabila dibandingkan dengan 
algoritma hibrid yang lain seperti FSACO, ICSCA, dan BeeSensor-C. Hasil daripada 
kajian ini menyumbang kepada algoritma penghalaan yang optimum di dalam WSN. 
Ini boleh menghasilkan kualiti servis yang baik dan meminimumkan penggunaan 
tenaga.   
 
Kata Kunci: Sistem koloni semut, Gelintaran tabu, Rangkaian sensor tanpa wayar, 
Penghalaan paket 
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Abstract 

In Wireless Sensor Network (WSN), high transmission time occurs when search 
agent focuses on the same sensor nodes, while local optima problem happens when 
agent gets trapped in a blind alley during searching. Swarm intelligence algorithms 
have been applied in solving these problems including the Ant Colony System (ACS) 
which is one of the ant colony optimization variants. However, ACS suffers from 
local optima and stagnation problems in medium and large sized environments due to 
an ineffective exploration mechanism. This research proposes a hybridization of 
Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. 
The EACS(TS) selects sensor nodes with high pheromone values which are 
calculated based on the residual energy and current pheromone value of each sensor 
node. Local optima is prevented by marking the node that has no potential neighbour 
node as a Tabu node and storing it in the Tabu list. Local pheromone update is 
performed to encourage exploration to other potential sensor nodes while global 
pheromone update is applied to encourage the exploitation of optimal sensor nodes. 
Experiments were performed in a simulated WSN environment supported by a 
Routing Modelling Application Simulation Environment (RMASE) framework to 
evaluate the performance of EACS(TS). A total of 6 datasets were deployed to 
evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) 
outperformed in terms of success rate, packet loss, latency, and energy efficiency 
when compared with single swarm intelligence routing algorithms which are Energy-
Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better 
performances were also achieved for success rate, throughput, and latency when 
compared to other hybrid routing algorithms such as Fish Swarm Ant Colony 
Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and 
BeeSensor-C. The outcome of this research contributes an optimized routing 
algorithm for WSN. This will lead to a better quality of service and minimum energy 
utilization. 
 
Keywords: Ant colony system, Tabu search, Wireless sensor network, Packet 
routing 
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CHAPTER 1 

INTRODUCTION 

 

The Wireless Sensor Network (WSN) has become an important information 

revolution and research area in computer networking. A computer network allows 

users to communicate and share data with high connection speed and bandwidth. 

Several types of hardware and software in wired networks are combined by a series 

of cables to establish a computer network. In wired networks, applications are 

inflexible in variation because they are limited to a fixed area that leads to high 

installation cost and limited connections. Due to these disadvantages, a wireless 

network has been proposed as a solution. A wireless network is developed through 

combinations of various resources that connect and communicate through the 

internet from different geographic locations. Wireless networks can also support 

internet and mobility services and, at the same time, can reduce installation cost 

compared to wired networks. In order to further improve wireless networks, a WSN 

is introduced to reduce the deployment and maintenance costs while, at the same 

time, improving the security and network lifetime. The WSN is based on a large-

scale networking area that consists of sensor nodes with limited power, to gather 

useful information from the surrounding network (Okdem & Karaboga, 2009; Mittal 

& Kumar, 2015; Parenreng & Kitagawa, 2017). However, the WSN has different 

constraints and requirements compared to traditional wireless networks. This 

includes using broadcast communication method that is prone to packet loss, 

constant changes of topology caused by dead nodes, and reliance on non-

rechargeable or irreplaceable battery that has limited lifetime.  
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Wireless sensor network technology was first applied in the military and heavy 

industrial area. In the 1950s, the first WSN application, a sound surveillance system, 

was introduced by the United States Military, based on acoustic sensors on the ocean 

bottom to detect and track Soviet submarines (Desai, Jain, & Merchant, 2007). This 

application is still being used nowadays by National Oceanographic and 

Atmospheric Administration to monitor conditions in the ocean. At the same time, 

the network of air defence radar was also developed by the United States in an effort 

to defend its territory. In 1980, a distributed sensor network program was initiated by 

the Defence Advanced Research Projects Agency to study the implementation of 

distributed/wireless sensor networks (Wang & Balasingham, 2010).  With the 

collaboration of Carnegie Mellon University and Massachusetts Institute of 

Technology Lincoln Labs, a large amount of research and applications on WSN were 

produced by academia and scientific researchers (Chong & Kumar, 2003). Some 

commercial applications developed using the architecture of the WSN include 

natural disaster prevention, forest fire detection, air quality monitoring and weather 

stations (Ali, Ming, Chakraborty, & Iram, 2017). WSNs were also implemented to 

support heavy industrial applications such as waste-water treatment (Derbew & 

Libsie, 2014; Zakaria & Michael, 2017), power distribution (Suryadevara, 

Mukhopadhyay, Kelly, & Gill, 2015; Katyara, Izykowsk, Chowdhry, Musavi, & 

Hussain, 2018) and specialized factory automation (Shin, Chin, Yoon, & Kwon, 

2011; Frotzscher, Wetzker, Bauer, Rentschler, Beyer, Elspass, & Klessig, 2014; 

Aijaz, 2018).  

 

Management of sensor nodes in a WSN is the main component that needs to be 

considered in controlling the network’s lifetime. There are various issues in WSN 
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such as packet routing, energy efficiency, node localization, time synchronization, 

load balancing, and security (Hu & Cao, 2010; Derr & Manic, 2015; Yildiz, Bicakci, 

Tavli, Gultekin, & Incebacak, 2016; Lu et al., 2018). Other issues in WSNs that can 

be considered as main issues and are often discussed by many researchers are routing 

packets to destination nodes (Luo & Li, 2012; Zeng & Dong, 2016; Wang, Zhang, 

Gao, Wang, & Li, 2017) and energy efficiency of all available sensor nodes (Okafor 

& Fagbohunmi, 2013; Wang, Chen, Wu, & Shu, 2016; Biswas, Das, & Chatterjee, 

2018). 

 

Robustness and scalability are two main aspects that have been considered in 

implementing any routing algorithm in the WSN system (Aliouat & Aliouat, 2013; 

Loganathan, Sabapathy, Ghazali, Ahmad, & Osman, 2017). Due to their unlimited 

transmission range, sensor nodes act as an intermediate medium in WSNs to forward 

packets from source to destination (Frey, Rührup, & Stojmenović, 2009; Arafath, 

Khan, & Sunitha, 2018). Sensor nodes will communicate with each other through 

radio signal broadcast to send or receive information. Routing packets in WSNs aim 

to maximize throughput, minimize latency, avoid overload and minimize energy 

consumption of each sensor node in order to increase the network’s lifetime. At the 

same time, a good routing algorithm influences the balancing of forwarding packets 

on each sensor node.  

 

Sensor nodes are geographically distributed in large scale areas in the WSN. The 

main functions of sensor nodes are to sense any changes in the WSN and 

communicate between available sensor nodes to forward packets from the source 

node to destination node (Sutar & Bodhe, 2010; Kumar, Jain, & Barwal, 2014; 
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Mittal, Gupta, & Choudhury, 2018). However, available sensor nodes in the WSN 

have very limited capabilities in terms of energy, memory, computational power and 

communication capacity (Khan, Gansterer, & Haring, 2013; Tubiello, Poehls, 

Webber, Marcon, & Vargas, 2018). The routing algorithm in the WSN should 

consider this limitation in order to select optimal sensor nodes to forward packets to 

destination nodes to ensure that all packets arrive in the minimum time. In addition, 

packet loss problems may occur due to depletion of energy of sensor nodes and it 

could affect the energy consumption of each sensor node which will eventually 

reduce network lifetime.  

 

Load balancing is also critical in the WSN system because an effective load 

balancing algorithm can reduce the energy consumption of each sensor node and, at 

the same time, extend the network lifetime of the WSN system (Wajgi & Thakur, 

2012; Javaid et al., 2015; Qiu, Shen, & Chen, 2017). In order to solve this problem, 

all forwarding packets need to be equally spread among sensor nodes in the WSN 

system. A good load balancing algorithm must be capable of balancing entire sensor 

nodes through fair distribution of entire packets across available sensor nodes by 

considering packet characteristics and sensor node capacity in order to obtain optimal 

node utilization.   

 

Routing and load balancing are categorized as a Nondeterministic Polynomial (NP)-

complete problem (Liu, Xu, & Sun, 2012; Karthikeyan & Subramani, 2014). The 

NP-Complete problem is a problem that cannot be solved by an exact algorithm in a 

polynomial time (Blum & Roli, 2003). Figure 1.1 shows the example of NP-

complete problems which are grouped by the type of problem such as routing, 
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scheduling, assignment, subset problems and others. One of the most effective ways 

to solve these problems is to use metaheuristics algorithms such as Simulated 

Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), and Ant Colony 

Optimization (ACO) that combined higher level strategies and local improvement 

procedure in performing a robust search of a solution space and at the same time 

escaping from the local optima (Glover & Kochenberger, 2006).  

 

Simulated annealing (Azami, Ranjbar, Rostami, & Amiri, 2013; Xenakis, Foukalas, 

& Stamoulis, 2016), GA (Chakraborty, Mitra, & Naskar, 2011; Elhoseny, Yuan, Yu, 

Mao, El-Minir, & Riad, 2015), TS (El Rhazi & Pierre, 2009; Varsha, Singh, & Bala, 

2017) and ACO (Fathima & Sindhanaiselvan, 2013; Bouarafa, Saadane, & Rahmani, 

2018) are several of the metaheuristic algorithms that move from one solution to 

another in the process to construct the best solution to solve routing and energy 

efficiency problems in the WSN system. By using these methods, a feasible solution 

can be produced even though it will not be close to the optimal solution.  

 

Ant colony optimization is one of the applications of swarm intelligence that is 

inspired by the foraging behaviour of ants that work together to find the shortest path 

between nest and food source (Blum, 2005; Singh, Singh, & Kumar, 2010). Swarm 

intelligence is a sub-category of artificial intelligence that is motivated by the 

intelligent behaviour of groups such as natural systems of social insects like bees, 

ants, wasps, and termite (Jangra, Awasthi, & Bhatia, 2013). Other examples of 

swarm intelligence include artificial bee colony algorithms that study the foraging 

behaviour of honey bees and particle swarm intelligence that studies the behaviour of 

bird flocking and fish schooling (Zhao et al, 2010).  
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Figure 1.1. Examples of NP-complete problem 

 

NP-Complete Problem 

Routing Scheduling Assignment Subset Others 

Network 

Routing 
 Dehghan et al. 

(2015) 
 Bhaskar et al. 

(2016) 
 Cheng et al. 

(2018) 

Travelling 

Salesman 

Problem 
 Ouaarab et al. 

(2014) 
 Tuani et al. 

(2017) 
 Maity et al. 

(2018) 
  

Vehicle 

Routing 
 Goksal et al. 

(2013) 
 Lalla-Ruiz et 

al. (2016) 
 Uchoa et al. 

(2017) 
 

Sequential 

Ordering 
 Ezzat et al. 

(2014) 
 Shobaki & 

Jamal (2015) 
 Skinderowicz 

(2017) 

Query 

Routing 
 Chatzimilioudis 

et al. (2013) 
 Shah et al. 

(2016) 
 Amagata et al. 

(2017) 

Job 

Scheduling 
 Shojafar et al. 

(2015) 
 Cheng et al. 

(2015) 
 Li et al. (2017) 

 

Project 

Scheduling 
 Beşikci et al. 

(2015) 
 Tritschler et al. 

(2017) 
 Muñoz et al. 

(2018) 

  
Flow Shop 

 Marichelvam et 
al. (2014) 

 Fu et al. (2017) 
 Abdel-Basset et 

al. (2018) 
 

Total 

Weighted 

Tardiness 
 Suppiah & Shen 

(2015) 
 Kuhpfahl & 

Bierwirth (2016) 
 Bierwirth & 

Kuhpfahl (2017) 
 

Course 

Timetabling 
  Soria-Alcaraz et 

al. (2014) 
 Phillips et al. 

(2017) 
 Akkan & Gülcü 

(2018) 
 

Quadratic 

Assignment 
 Benlic & Hao 

(2013) 
 Dokeroglu (2015) 
 Bougleux et al. 

(2017) 

 
Graph 

Coloring 
 Zhu et al. (2015) 
 Chung et al. 

(2017) 
 Bosek et al. 

(2018) 

 

Multiple 

Knapsack 
 Rahim et al. 

(2015) 
 Chen et al. 

(2016) 
 Khan et al. 

(2018) 

Set 

Covering 
 Crawford et al. 

(2015) 
 Owais et al. 

(2016) 
 Crawford al. 

(2018) 

 

Load 

Balancing 
 Alizadeh et al. 

(2014) 
 Khan & 

Portmann (2017) 
 Dam et al. 

(2018) 

Bus Stop 
 Wang & Qu 

(2015) 
 Takakura & 

Tanaka (2015) 
 Lewis et al. 

(2017) 

 

Protein 

Folding 
 Piana et al. 

(2014) 
 Yang et al. 

(2017) 
 Wang (2018) 

 

Constraint 

Satisfaction 
 Barto & Kozik 

(2014) 
 Cui et al. (2017) 
 Bodirsky et al. 

(2018) 

 
Digital 

Image 

Habitats 
 Hladik et al. 

(2013) 
 Santana et al. 

(2014) 
 Turley et al. 

(2017) 

Bin 

Packing 

and 

Cutting 

Stocks 
 Gonçalves & 

Resende (2013) 
 Delorme et al. 

(2016) 
 Delorme et al. 

(2018) 

 



  7 
  

Experiments to investigate the behaviour of real ants like foraging and nest 

construction have been undertaken by many researchers. A double bridge experiment 

was conducted by Goss, Aron, Deneuborg and Pasteels (1989) to investigate the 

foraging behaviour of ants. Figure 1.2 (a) shows that ants move in a continuous path 

from nest to food source. However, ants will randomly choose whether to turn left or 

right when an obstacle appears in the way because they have no idea which is the 

best path or the shortest path to move to the destination, as shown in Figure 1.2 (b). 

At this point, there is no pheromone on either path, so half the ants will choose the 

short path and the other half will choose the long path. Then, ants will deposit a 

certain amount of pheromone while moving from nest to food source on both paths. 

By assuming that all ants move at the same speed, ants that choose the short path will 

reach the food source and return to the nest faster. This will increase the amount of 

pheromone in the short path and influence more ants to travel on the short path rather 

than a long path, as shown in Figure 1.2 (c). Figure 1.2 (d) shows that all ants will 

choose the short path after a transitory phase due to the large amount of pheromone 

accumulated on that path.  

 

 

Figure 1.2. Ant behaviour in foraging process (Perretto & Lopes, 2005) 
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There are many variations of the ACO algorithm such as Ant System (AS), Ant 

Colony System (ACS), Max-Min Ant System (MMAS), Rank-based Ant System 

(RAS) and Elitist Ant System (EAS) (Dorigo & Stützle, 2004). Ant colony 

optimization has been successfully applied to solve many routing problems such as 

the network routing problem (Ye & Mohamadian, 2014; Yang, Ping, Aijaz, & 

Aghvami, 2018), travelling salesman problem (Holzinger et al.; 2016; Gülcü, Mahi, 

Baykan, & Kodaz, 2018), vehicle routing problem (Tan, Lee, Majid, & Seow, 2012; 

Kuo & Zulvia, 2017), sequential ordering routing problem (Gambardella, 

Montemanni, & Weyland, 2012; Ezzat, 2013; Skinderowicz, 2017) and query routing 

problem (Gómez Santillán et al., 2010; Hanane & Fouzia, 2014).  Additionally, ACO 

has been used to solve routing problems between forwarding packets and available 

sensor nodes in WSN systems (Anjali & Kaur, 2013; Sundaran, Ganapathy, & 

Sudhakara, 2017; Zou & Qian, 2018). On the other hand, load balancing problems in 

the WSN have also been successfully solved by using the ACO algorithm by equally 

distributing all forwarding packets to available sensor nodes (Yang, Xu, Zhao, & Xu, 

2010; Laouid et al., 2017).  

 

Ant colony system is considered as one of the best ACO variants for solving NP-

complete problems (Schyns, 2015; Bukhari, Ku-Mahamud, & Morino, 2017; Liu et 

al., 2018). In ACS, exploitation and exploration mechanisms are introduced during 

the path construction process to balance the probability between random selection 

and fixed selection based on certain parameters in state transition rule. Ant colony 

system applies local pheromone updates to evaporate the pheromone intensity at each 

traversed path and global pheromone update to increase the attractiveness of the best 

solution so far to be used for the next iteration. Therefore, a systematic and 
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deterministic exploration and pheromone update mechanism can enhance the 

performance of the ACS algorithm. 

 

The ACO algorithm is applied in WSNs because it is easily adapted to solve both 

static (Singh & Behal, 2013; Mavrovouniotis, 2013) and dynamic (Lissovoi & Witt, 

2015; Mavrovouniotis & Yang, 2018) combinatorial optimization problems. 

However, the performance of ACO algorithms to solve routing and load balancing 

problems in WSNs can be further extended in order to gain maximum throughput, 

minimum latency, minimum energy consumption of sensor nodes, minimum 

stagnation problems, to balance entire sensor nodes and, at the same time, to extend 

the network lifetime of the WSN network. Stagnation in the WSN may also occur 

when all packets are assigned to the same sensor nodes which lead to the nodes 

having high workload. The stagnation problem in a WSN network can potentially be 

solved when all sensor nodes are well utilized. The local optima problem will also 

occur when the path searching process by the agent is trapped in a blind alley where 

further movement will result in a loop (Czubak, 2013). To solve this problem, it is 

crucial to detect the potential occurrence of local optima and mitigate it using 

effective methods such as backward movement and known bad path marking. 

 

Hybridizing an ACS with local search algorithms such as TS, GA, and SA will 

improve the solutions produced during the path construction phase (Gambardella, 

2015). Tabu search is a good candidate to be hybridized with ACS as both algorithms 

complement each other. Ant colony system works based on a constructive approach 

(Angelo, Bernardino, & Barbosa, 2015) while TS works based on local search 

(Paquete & Stützle, 2018). Tabu search is also based on a systematic search that can 



  10 
  

prevent the algorithm from random solutions. Research by Yoshikawa and Otani 

(2010) proposed a hybrid routing algorithm for Travelling Salesman Problem (TSP) 

that combined ACS and TS in preventing the ant agent from getting trapped in the 

blind alley during routing process. On the other hand, Alobaedy (2015) proposed 

hybrid ACS and TS in improving the scheduling process in grid computing in terms 

of makespan. Hybrid ACS and TS is also suitable to be applied in solving packet 

routing in WSN which is one of the NP-complete problems.  

 

Glover (1986) proposes the TS algorithm which is one of the metaheuristics 

algorithms based on guided local search to solve mathematical optimization. Like 

ACO, TS has also successfully solved many optimization problems such as the 

Travelling Salesman Problem, job scheduling, network routing and vehicle routing 

problem (Gendreau & Potvin, 2014). Tabu search that is based on local search can 

avoid local minimum by using many mechanisms such as diversification and 

memory (Rothlauf, 2011). The TS algorithm is flexible when implemented in the 

WSN because it uses the concept of responsive exploration and adaptive memory 

(Orojloo & Haghighat, 2016). There are four types of memory: frequency (long-

term); recency (short-term); influence; and, quality (Glover & Laguna, 1997). Many 

research works that are based on hybrid TS use only one or two of these memories 

(Dhivya & Sundarambal, 2012; Sahni, Bala, & Sharma, 2016). However, the 

performance of hybrid TS algorithms to solve the routing problem in WSNs can be 

further extended to gain minimum latency and energy consumption.   

 

This research aims to solve the routing problems in WSNs including packet loss, 

energy efficiency, latency and local optima. The proposed routing algorithm using 
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ACS and TS and focuses on balancing the load to all sensor nodes by encouraging 

exploitation and exploration during the sensor node selection mechanism while 

preventing becoming trapped in a blind alley. Even though the hybridization concept 

of ACS and TS has never been applied in WSN, but it has been successfully applied 

in solving problems in other research domains (Yoshikawa & Otani, 2010; Alobaedy, 

2015). However, the proposed algorithm differs from these hybrid algorithms where 

it considers the energy efficiency of each sensor nodes and the whole system during 

searching process in preventing the dead node problem that will affect the network 

lifetime.  

 

1.1 Problem Statement 

In WSN, most algorithms including several ACO variants have been designed to 

efficiently transmit packets to available sensor nodes.  However, these available 

algorithms are far from being ideal. Latency and packet loss still occurs when the 

number of packets is increased, and available sensor nodes are insufficient to cater 

for all packets (Yan, Gao, & Yang, 2011; Tall & Chalhoub, 2017) which will 

eventually lead to stagnation in the WSN environment. Tabu Search-based Routing 

Algorithm (TSRA) was proposed by Orojloo and Haghighat (2016) in balancing 

packet transmission taking into considerations of remaining energy of each sensor 

nodes. Sensor nodes with low energy level will be marked as “taboo” and not been 

used to forward packets. Sun, Dong, and Chen (2017) tried to solve the energy 

consumption problem in WSNs by proposing a new ant-based routing algorithm that 

considers communication transmission distance and heuristics function during the 

path construction process. However, neither algorithm considered the throughput and 

latency which may increase the transmission time of packets. 
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Sensor node selection strategy is an important part of the WSN as it can ensure the 

selected sensor nodes have high possibility to route packets successfully. Exploration 

and exploitation of available sensor nodes must be considered in order to control the 

energy level of sensor nodes. The lack of an effective method to control the energy 

level may lead to dead nodes where certain sensor nodes are under heavy traffic load 

which drastically depletes their energy. Energy-Efficient Ant-Based Routing 

(EEABR) and Improved Energy-Efficient Ant-Based Routing (IEEABR) proposed 

by Camilo, Carreto, Silva, and Boavida (2006) and Zungeru, Ang, and Seng (2012a) 

respectively are among ACO variants that focused on energy efficiency of sensor 

nodes in WSN. However, both algorithms only considered the exploitation of 

optimal path without taking into consideration exploration to the other potential path. 

This will lead to the hotspot problem where the energy level at certain sensor nodes 

will drain drastically. The modifications on state transition rule to select the next 

nodes may give the opportunity to the searching ants to explore and exploit the 

potential sensor nodes. Elhabyan and Yagoub (2014) propose a hybrid routing 

algorithm that combines the PSO and clustering technique called PSO-C that focuses 

on packet delivery ratio and energy consumption of sensor nodes. The cluster head is 

responsible for collecting and delivering data from all cluster members to the 

destination node on each simulation round. However, the hotspot problem may occur 

on cluster head since it uses a lot of energy during the packet submission process that 

will affect the energy efficiency of the cluster and the whole system.  

 

Many routing algorithms in the WSN do not always consider the load balancing 

problem that will affect the energy efficiency of sensor nodes. A good routing 

algorithm should distribute load to all available sensor nodes efficiently in order to 
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reduce the energy consumption and hotspot problem. Singh and Behal (2013) 

combine a mobile sink technique with an ACO algorithm to solve routing problems 

in WSNs. However, the pheromone update technique that reduces the pheromone 

value of sensor nodes was not applied and the lack of this technique may lead to 

unbalanced selection of sensor nodes. Termite-hill algorithm (Zungeru, Ang, & 

Seng, 2012b) limits the pheromone update and pheromone evaporation rate within 

certain range to control the pheromone value on sensor nodes. This approach only 

encourages the ant in the next iteration to reselect the optimal sensor nodes without 

exploring other potential sensor nodes which eventually leads to reduction in nodes 

utilization during routing process. A Bee Sensor-C, based on an Artificial Bee 

Colony (ABC), and cluster technique was proposed by Cai, Duan, He, Yang, and Li 

(2015) to encourage the multipath construction method and improve energy 

efficiency in the WSN routing environment. Nodes are selected based on the 

remaining energy and number of hops during the searching process. However, there 

is no control element in exploitation of the sensor node that will lead to unbalanced 

distribution of load among sensor nodes. 

 

Searching agent in WSN routing algorithms often get trapped in the local optima 

where there is no potential routing path to move during routing process (Li et al., 

2010). Wang, Zhan, and Zhang (2018) proposed Distributed Genetic Algorithm 

(DGA) to tackle the local optima problem in WSN by maximizing the number of 

disjoin set. However, DGA only considers the number of disjoin set and 

computational time without considering throughput and balancing factor. The 

stagnation nature of pheromone also occurs in ACS when applied in large size 

networks due to the high exploitation process (Mathiyalagan, Suriya, & Sivanandam, 
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2010). This will lead to local optima problems where ants get trapped in blind alleys 

during the node searching process; ants cannot reach the destination node and all 

available sensor nodes are previously visited nodes. This problem can lead to the ant 

becoming stuck where the exploration process cannot progress further within the 

network. Therefore, the ACS algorithm needs to be improved in terms of its 

exploration mechanism and ability to correct the construction phase after each cycle. 

In order to solve the local optima problem in ACS, Yoshikawa and Otani (2010) 

proposed a hybrid algorithm that combined the ACS and Tabu search algorithm. 

Even though this research was applied in TSP, the concept of hybridizing these two 

metaheuristics algorithms can also be used in WSN with some modification. WSN 

differ from TSP where energy efficiency of each sensor nodes and the whole system 

must be considered in order to prevent the dead node that will affect the network 

lifetime of the whole system.  

 

This leads to several research questions that must be answered as follows: 

1. How does an extended state transition rule increase the accuracy of the selected 

optimal path? 

2. How to integrate TS technique in solving local optima problem in ACS?  

3. Can the improved local pheromone update lead to fair distribution of packets to 

available sensor nodes? 

4. Can the extended global pheromone update technique reduce the latency during 

the routing process?  

5. How efficient is the proposed algorithm in solving the routing problem in the 

wireless sensor network? 
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1.2 Research Objectives 

The main objective of this research is to develop an enhanced ACS and TS based 

routing algorithm in the WSN that can route packets to suitable sensor nodes, 

minimize the forwarding time of packets to the destination node, minimize energy 

consumption of sensor nodes, balance the workload of entire sensor nodes, prevent 

the local optima problem during the routing process, and improve network lifetime of 

the WSN.  

 

Specific objectives of the research are: 

i. To formulate a state transition rule that considers the energy efficiency and 

energy consumption aspects in sensor node selection strategy to find optimal 

sensor nodes that can prolong the network lifetime. 

ii. To design an enhanced ACS and TS algorithm in preventing local optima 

problems in the WSN while at the same time increasing the throughput value.  

iii. To develop an extended local pheromone update technique that can balance 

the load on each sensor node and encourage exploration in the searching 

process to prevent the hotspot problem. 

iv. To develop an extended global pheromone update to encourage the 

exploitation of the selected optimal path in reducing latency during the 

routing process.  

v. To develop a simulation model that can be used to evaluate the performance 

of the proposed algorithm. 
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1.3 Significance of the Research 

The WSN is an efficient computer paradigm that can be used as a solution to several 

challenging applications in science, engineering and economics such as traffic 

monitoring, habitat monitoring, healthcare and military surveillance (Camilo et al., 

2006; Yan et. al., 2011). Wireless sensor network optimization involves efficient 

management of available sensor nodes to forward available packets to the destination 

by considering throughput, latency and energy consumption of sensor nodes (Ennaji 

& Boulmalf, 2009; Yan et al.; 2011). Therefore, managing sensor nodes is crucial in 

the WSN environment.  

 

The outcome of this research will contribute to a new routing algorithm that 

combines ACS and TS techniques that could improve the performance of available 

ACO algorithms in WSN environments. The new proposed ACS algorithm could 

also enhance the classical approach of the ACO algorithm by dynamically routing 

packets to available sensor nodes while preventing the local optima problem in order 

to minimize the forwarding time of each packet and energy consumption of each 

node. At the same time, it tries to balance packets allocation in the entire sensor 

nodes by encouraging exploration and exploitation during the searching process. 

Thus, this research output is a new member of the ACO family that offers a new 

alternative to enhance the performance of available ACO algorithms in WSNs 

concerning the routing aspect. The proposed hybrid algorithm also has great potential 

in solving the routing problem in other research domains such as TSP, sequential 

ordering problem, and vehicle routing problem. 
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1.4 Scope and Limitation of the Research 

This research focuses on developing a routing algorithm to solve the packet loss 

problem, energy efficiency, and load balancing problems in WSNs. The proposed 

algorithm combines the technique from ACS and TS algorithms where the main 

focus is on improving the way ants search the best nodes in terms of minimizing the 

forwarding time of each packet from source node to destination node, minimizing the 

energy consumption of each sensor node, preventing the local optima problem and, 

at the same time, trying to balance all loads on available sensor nodes. The ACS and 

TS algorithm is selected where a new technique is proposed for sensor nodes 

selection strategies and pheromone update techniques. However, this research does 

not cater for sensor node localization and fault tolerance in the WSN. Throughout all 

the improvements, the proposed algorithm can potentially reduce the local optima 

problem and maximize the network lifetime in WSN environments.   

 

1.5 Structure of the Thesis 

The structure of this thesis is as follows. In Chapter 2, an overview of the WSN, 

ACO and TS algorithm concepts are introduced. Then, ant-based approaches for 

managing resources in WSNs and current hybrid approaches to optimize routing 

packets in WSNs is discussed.  

  

Chapter 3 covers the Enhanced Ant Colony System and Tabu Search (EACS(TS)) 

framework for routing packets in WSNs. Research methods that have been used to 

fulfil the research objectives are elaborated.  
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Chapter 4 presents the proposed enhanced ant-based routing algorithm which focuses 

on energy efficiency and submission time factors. The routing packets scenario and 

details of the proposed algorithm are discussed in this chapter. The design and 

implementation of the EACS(TS) are also described.  

 

Experimental results and analysis of applying EACS(TS) in WSNs are presented in 

Chapter 5. The performance of the proposed algorithm is compared to existing 

algorithms, i.e., EEABR, Termite Hill, BeeSensor, and AODV algorithms in terms of 

success rate, energy consumption, energy efficiency, latency, throughput and lifetime 

of the system. 

 

Chapter 6 discusses the contribution of the research and highlights the future 

research directions.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents the review of previous studies that have been conducted in the 

area of WSN, metaheuristic algorithms including swarm intelligence and local search 

approaches, performance evaluation criteria applied by previous studies, and existing 

single and hybrid routing algorithms in WSN. Challenges, issues, and limitations of 

previous routing algorithms are also discussed with the aim to determine the gap that 

has been addressed by this work. 

 

The overview of wireless sensor network is discussed in Section 2.1, design and 

routing challenges in Section 2.1.1, followed by issues and limitations of the routing 

algorithms in Section 2.1.2. Metaheuristics algorithms that consist of swarm 

intelligence and local search are discussed in Section 2.2. Previous works on ACO 

algorithms are presented in Section 2.3 followed by discussion of TS algorithm in 

Section 2.4. Section 2.5 discussed the routing algorithms in WSN which covers the 

performance evaluation criteria in Section 2.5.1, single swarm intelligence approach 

in Section 2.5.1 and hybrid swarm intelligence approach in Section 2.5.2. Lastly, the 

summary of the chapter is presented in Section 2.6. 

 

2.1 Overview of Wireless Sensor Network 

Wireless sensor network is a large-scale distributed network that consists of many 

small sensor nodes that are interconnected to perform various network operations. 

Sensor nodes are typically small, portable, and lightweight (Engmann, Katsriku, 

Abdulai, Adu-Manu, & Banaseka, 2018) with the capabilities to sense events, real 
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time monitoring, perform light computation and calculation, transmit data, temporary 

data storage, and communicate between each other during data transmission 

(Ketshabetswe, Zungeru, Mangwala, Chuma, & Sigweni, 2019). Sensor nodes act as 

an intermediate medium to sense and transmit data from source node to destination 

node by using multi hop technique. Sensor nodes can gather and forward raw data to 

destination node or use their processing abilities to carry out simple computation 

operation and submit only the partially and required processed data. However, sensor 

nodes have limited capabilities in terms of memory, storage, computation power, and 

communication capabilities (Mohindru & Singh, 2018).  

 

There are many types of WSN such as terrestrial WSN, underwater WSN, 

underground WSN, mobile WSN and multimedia WSN that have successfully been 

applied in many critical applications such as healthcare, military, industrial, 

environment, and habitat (Nasir & Ku-Mahamud, 2016). Due to dynamic nature of 

distributed system, there a many aspects that needs to be considered such as in packet 

routing, sensor node localization, load balancing, time synchronization, and security 

issues. Among all, packet routing is one of the main issues that is often discussed by 

many researchers (Luo & Li, 2012; Zeng & Dong, 2016; Mostafaei, 2018, Sarkar & 

Murugan, 2019). There are many issues and limitations that need to be overcome in 

packet routing to prolong the network lifetime of the WSN system.    

 

2.1.1 Design  and Routing Challenges in Wireless Sensor Network 

One of the challenges in WSN is to design, develop and implement the routing 

environment using the energy efficient software and hardware with the aim to 

minimize the energy usage in the system (Gupta & Sikka, 2015). Sensor nodes that 
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have limited battery power are responsible in sensing, collection, data 

communication, data processing, and data transmission need to save their powers to 

prevent the occurrence of dead node (Loganathan et al., 2017). Sensor nodes are also 

able to work without human interventions in managing the network configurations, 

maintenance, adaptation and repair by itself especially when distributed in the large 

scale of networks. In the real environments, sensor nodes are also prone to the 

physical attacks when exposed to adversaries and bad weather (Rathod & Mehta, 

2011). A good WSN design must consider the robustness of each sensor nodes and 

also the whole system. To achieve this objective, the system must be constructed to 

adapt and tolerate with individual node failure without affecting the whole system.  

 

In WSNs, packet routing is one of the main issues that need extra focus in order to 

maximize throughput, minimize delay, minimize energy consumption of sensor 

nodes and avoid overload on certain sensor nodes (Dai, 2009; Li, Lim, & Liu, 2010). 

In order to achieve these objectives, the optimal routing path that can ensure packets 

submission to the destination node must be discovered by the routing algorithm to 

reduce the possibility of packet loss. A good routing algorithm can discover several 

alternatives of routing path and fairly distribute packets to all potential sensor nodes 

to balance the load in the system while reducing the congestion and energy 

consumption of each sensor node. 

 

Local optima is another routing challenge in WSN systems which happens when the 

path discovery is stuck in a dead loop during packet submission (Li et al., 2010). 

This problem needs to be considered in order to reduce the submission time of 

packets, reduce packet loss rate, and improve the global optimal solution. 
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Metaheuristic algorithms such as swarm intelligence and local search are among the 

algorithms proven in solving the routing problem in WSNs (Vijayalakshmi & 

Anandan, 2018; Zou & Qian, 2018). 

 

2.1.2 Issues and Limitations of the Routing Algorithms in Wireless Sensor 

Network 

In real environments such as earthquake early warning system or fire detection, 

sensed data need to be delivered within time constraints with the purpose of 

observation or immediate reactive action (Wang & Ni, 2012; Lule & Bulega, 2015). 

Data needs to be sensed and reached at the destination node as fast as possible. Many 

routing algorithms in WSN try to transmit data in minimal time and at the same time 

prevent data loss, congestion, and noise. Priority approach has also been applied by 

routing algorithms where real time data are put in high priority list and non-real time 

data in the low priority list (Karim, Nasser, Taleb, & Alqallaf, 2012). 

 

Management of sensor nodes is another issue faced by routing algorithms in WSN. 

Nature characters of sensor nodes that have limited battery power and storage 

capacity give huge impacts to the packet routing process. In certain cases, packet loss 

problem happens when sensor nodes that carry that data suddenly died due to 

depletion of energy. Packet loss also happens when the storage of sensor nodes are 

full that leads to corrupted or missing routing records (Ez-Zaidi & Rakrak, 2017). 

 

2.2 Overview of Metaheuristic Algorithms 

The word metaheuristic, that comes from the Greek verb, is the combination of the 

word meta meaning “upper level” and heuristic meaning “to find”. Heuristic is the 
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basic algorithm that searches the solution space to find a good solution and can be 

categorized as local search algorithms and constructive algorithms (Bianchi, Dorigo, 

Gambardella, & Gutjahr, 2009). Local search algorithms work by improving the pre-

existent solution by modifying its components while constructive algorithms develop 

the solution by combining the components of the solution one by one until the 

solution is completely discovered.   

 

As stated by Blum and Roli (2003), metaheuristics is the concept of exploring the 

search space by implementing different strategies. These strategies are used to 

balance between exploration of the new search space (diversification) and 

exploitation of the previously accumulated search experience (intensification). It is 

important to balance the diversification and intensification in order to identify a high 

quality solution in a short time within the regions in the search space.  Figure 2.1 

shows that the metaheuristic consists of two main categories, local search and 

population-based where evolutionary computing and swarm intelligence are under 

the population-based category.  
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Figure 2.1. Metaheuristics algorithms 

 

2.2.1 Swarm Intelligence Algorithm 

Swarm intelligence consists of nature-inspired algorithms such as Artificial Bee 

Colony (ABC), Ant Colony Optimization (ACO), Termite Hill (Termite-hill), firefly 

algorithm, cuckoo search, and Particle Swarm Optimization (PSO) (Yang, 2014b). 

These algorithms are inspired by the biological behaviour of natural systems such as 

colonies of bees or ants, schools of fish, and flocks of birds that can be related to the 

optimization problem which is part of the computing field (Pintea, 2014). The 
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concepts of swarm intelligence which include quality, proximity, diverse response, 

adaptability and stability (Lim & Jain, 2009) are suitable for solving distributed 

optimization problems such as WSN packet routing, grid scheduling and sensor 

nodes allocation. There are several swarm intelligence algorithms that are commonly 

used to improve the performance in WSNs such as ACO, PSO, ABC, Termite- Hill 

and Cuckoo Search.  

 

The ACO algorithm is inspired by the foraging behaviour of real ant colonies that 

can help users to design metaheuristic algorithms and solve optimization problems 

(Dorigo & Stützle, 2004). This algorithm simulates the behaviour of real ants in 

finding the shortest path between the nest and food sources. Several ants work 

together to construct a good solution where a decision is built step by step by a single 

ant until a complete solution is found. The ant colony uses stigmergy, which is an 

indirect communication between them, by depositing a certain amount of a chemical 

substance called pheromone that can be detected by all ants in the environment 

(Dorigo & Stützle, 2004). Every ant will deposit pheromone along the trail as they 

move from the nest to the food source and vice versa. The strength of the pheromone 

will attract ants to follow a chosen path that is considered as a good or optimal 

solution. Therefore, they will choose the shortest or optimal path based on the 

pheromone value. According to the concept, the path with high pheromone value is 

shorter than the path with low pheromone value. This behaviour is the basis for 

cooperative communication in ACO. Details about ACO are further explained in 

Section 2.3. 
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The ABC algorithm that is inspired from the foraging behaviour of honeybee swarms 

was proposed by Karaboga (2005). Three categories of bees in the ABC algorithm, 

employed bees, scouts and onlookers, are responsible for finding the food source 

around the hive. The number of employed bees is equivalent to the number of food 

sources in the colony. In the ABC algorithm, the food source corresponds with the 

possible solution of the optimization problem while nectar amount is represented as 

the quality or fitness to that solution. On the other hand, the number of employed 

bees is represented as the number of solutions in the population. Employed bees will 

determine and move to the food source based on the information in their memory to 

check the nectar amount of the food source. Employed bees will return to the hive to 

share the information obtained from the food source with onlookers. The information 

is presented by using the waggle dance by the employed bees in the dance area. 

Onlookers in the hive will determine the best food source based on the dance 

presented by the employed bees. After a few times, the food source will be 

abandoned and employed bees will be transformed into scouts. The scout is 

responsible for moving randomly in the colony to find a new food source to be 

explored. Like the other swarm intelligence algorithms, exploitation and exploration 

must be carried out together. In ABC algorithms, scouts perform the exploration 

process while employed bees and onlookers control the exploitation process. 

 

The termite-hill algorithm that is based on the termite behaviour in building the hill, 

is one of the intelligence entities that can perform self-organization to achieve 

complex tasks (Zungeru, Ang, and Seng, 2012b). There are five (5) concepts of 

swarm intelligence in the termite-hill algorithm: stigmergy, multiple interactions, 

randomness, positive feedback, and negative feedback. The movement of termites in 
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the colony is based on the randomness concept where it can continue the current 

solution that fits to the environment or encourage a new solution to the system. 

Termites build a termite hill by dumping collected pebbles in one place. A termite 

moves randomly by carrying only one pebble at a time with the objective of finding a 

suitable place to drop the pebble. There is no direct communication between termites 

during the construction process and the only way to communicate is by using the 

pheromone value like that used by the ACO. This indirect communication is called 

stigmergy where termites move toward the largest pile based on the pheromone 

value. Termites will sense the pheromone value and move toward it to drop pebbles. 

This positive feedback concept will increase the pheromone value on the pile to 

attract other termites to drop more pebbles and to arrive faster. In the early stage, 

several small piles are quickly developed due to random dumps by termites. In order 

to reduce the number of piles, the negative feedback concept is applied where the 

pheromone value is decreased by the evaporation process. Negative feedback can 

encourage a large pile to grow and prevent small piles from continuing to attract 

termites. This concept is important to remove poor or old solutions in the system. If 

the number of termites is insufficient, the pheromone will evaporate before more 

pebbles are dropped onto the pile. In maintaining the pheromone value on the pile, 

multiple interactions are applied in the development process of the termite hill. 

 

The PSO algorithm, proposed by Eberhart and Kennedy (1995), is inspired by the 

social behaviour of some animals such as fish, birds, herds and insects. Particle 

swarm optimization is established by having candidate solutions which are particles 

that work in a population called a swarm.  One of the social behaviours applied by 

PSO is to cooperate among particles in finding food by changing the search pattern 
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among swarm members. Particles will move randomly in the search space by using 

the combined information from the best solution based on their learning experience 

and the best solution found by the other neighbourhood particles. When the new best 

position is discovered by particles, it will become a guide to the movement of the 

whole swarm. This process is repeated until the optimal solution is obtained in the 

system. Particle swarm optimization also considers the exploration of particles to a 

new best solution and exploitation to the previous best solution. It is important for 

PSO to balance both criteria in order to prevent the premature convergence problem 

in local optima.  

 

The Cuckoo Search (CS) algorithm, proposed by Yang and Deb (2009), is based on 

brood parasitism where some cuckoo species lay their eggs in the nests of other host 

birds. This approach is utilized by the female parasitic cuckoo, who can mimic the 

pattern and colours of the other host species egg, in order to increase productivity 

and reduce the possibility of eggs being thrown away by the host. In certain 

situations, when the host birds realize the unfamiliar egg in their nest, they will throw 

away the egg or leave their nest and build a new one. When the cuckoo egg hatches 

earlier than the host eggs, the cuckoo chick will remove the host eggs from the nest. 

This action ensures the cuckoo chick gets enough food from the host bird. The 

cuckoo chick can also mimic the behaviour of the host chick in getting more food 

from the host. There are three rules in developing the CS algorithm where each 

cuckoo lays only one egg at a time and puts it in a random nest, the nest with high 

quality eggs will be carried forward to the next generation, and the host bird has a 

probability to identify an unfamiliar egg and decide to throw away the egg or move 

to a new location to build a new nest. The CS algorithm is suitable to be adopted in 
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solving the optimization problem where the host eggs in the nest act as the current 

solution and the cuckoo egg represents a new solution. This approach aims to replace 

the old solution with a new, better solution in the system.  

 

2.2.2 Local Search Algorithm 

Local search algorithm, which is also known as neighbourhood solution, applies 

local movement to improve the solution locally (Vob, 2001). Several techniques have 

been developed to establish the local search such as iteration, greed, random, steepest 

descent algorithm and variable neighbourhood search (Aarts & Lenstra, 2003; 

Gendreau & Potvin, 2010; Zapfel, Braune, & Bogl, 2010). Local search that is 

applied in metaheuristics algorithms such as Tabu search and SA are proved to 

perform better in WSN systems (Shekofteh, Yaghmaee, Khalkhali, & Deldari, 2010; 

Kaur & Gangwar, 2015; Keskin, Altınel, & Aras, 2015). 

 

Tabu Search (TS), developed by Glover (1986), is a metaheuristics algorithm based 

on local search. The TS algorithm has the ability to prevent the local optima problem 

by applying various mechanisms such as diversification and memory (Rothlauf, 

2011). Tabu search is flexible when applying the concept of adaptive memory and 

responsive exploration. There are four types of memory that operate in TS: frequency 

(long-term memory), recency (short-term memory), influence, and quality (Glover & 

Laguna, 1997). However, only one or two types of memory are used at one time by 

many applications to complete standard operations. Many optimization problems 

such as network routing, job scheduling, and the TSP have been successfully 

resolved by the TS algorithm. A detailed explanation about TS is further covered in 

Section 2.4.  
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Simulated Annealing (SA), which is another optimization algorithm, was developed 

by Kirkpatrick, Gelatt, and Vecchi (1983). SA is inspired from the physical process 

of metal cooling and freezing in a crystalline state in the annealing of materials 

(Yang, 2014a) and has been implemented to overcome many combinatorial 

optimization problems (Moschakis & Karatza, 2015; Wei, Zhang, Zhang, & Leung, 

2018). Local optima problems can be prevented by using SA where hill-climbing 

movements are applied in finding the global optimum solution. SA will also control 

the maximum allowed decrease in solution quality (Zapfel et al., 2010). The SA 

algorithm has also been successfully applied to improve packet routing in WSNs 

(Zhang, Zhang, & Bu, 2014; Mohammadi & Noghabi, 2016). 

 

2.3 Ant Colony Optimization 

A combination of priori information (heuristics) and posteriori information 

(pheromone) is a key success of ACO algorithms. Priori information (called greedy 

strategy) is the quality of candidate solution while posteriori information (called 

autocatalytic process or positive feedback) is the goodness of the previously obtained 

solution. The ACO algorithm combines heuristics to create a solution from a list of 

candidate solutions with the accumulated experience from the previous iterations in 

getting good solutions.  

 

The Ant System (AS) is the first member of ACO algorithms that was proposed by 

Colorni, Dorigo, and Maniezzo (1991) and Dorigo (1992). The main objective of AS 

is to simulate the foraging behaviour of real ants to find an optimal path from nest to 

food sources. The AS is also the first ACO algorithm introduced to solve the TSP 

(Dorigo, Maniezzo, & Colorni, 1996) where an ant which is responsible for finding 
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the shortest route visits all the cities exactly once in a given set (Dorigo & 

Gambardella, 1997a). Three versions of AS were proposed by Dorigo, Maniezzo, 

and Colorni (1991a, 1991b, 1996): ant-density, ant quantity and ant-cycle. The 

difference between these three versions is the pheromone updating techniques which 

affect the quantity and time. In ant-density and ant-quantity, the ants update the 

pheromone directly after moving from one city to another. However, the pheromone 

update in the ant-cycle will only be done after all the ants have constructed the tours 

and each tour quality is based on the amount of pheromone deposited by each ant. 

Ant solution construction and pheromone update are two main phases in AS. 

Nevertheless, when the size of the test-instances increases, the performance of AS 

tends to decrease compared to the later variants of ant algorithms.  

 

Dorigo and Gambardella (1997a, 1997b) propose an Ant Colony System (ACS) 

which is an upgraded version of AS to improve the performance of TSP and some 

other problems. Ant colony system differs from AS in three main aspects. First, 

action choice rule in ACS is more aggressive than AS where it exploits the search 

experience accumulated by the ants more strongly than AS. Second, pheromone 

deposit and pheromone evaporation take place only on the global best solution. 

Third, when an ant moves from city r to city s, some pheromone will be removed 

from the arc to increase the exploration of new paths.  A pseudo-random proportional 

rule is used by ants in ACS to select the next city that has not yet been visited. This 

rule is a transaction between exploitation and exploration. Exploitation uses the 

information from the previous iteration with the maximum combination of heuristics 

value and pheromone trails while exploration refers to the possibility to add a new 

edge to the solution. The pseudo-random proportional rule is calculated based on 
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either the a random variable ranging from 0 to 1 and a parameter to control the 

possibility of exploration or exploitation for the case of exploitation or a random 

variable based on the probabilistic decision rule for the case of exploration (Dorigo 

& Stützle, 2004). After each iteration, only the global best solution will be allowed to 

deposit pheromones in the ACS. In contrast to AS, trail update only applies to the arc 

of the global best solution. Apart from that, a global update rule with a combination 

of local update rules is applied to ACS. Evaporation rate and length of global best 

tour are elements to calculate the global pheromone update. After having crossed an 

arc, a local update rule will be used immediately during the tour construction. This is 

to prevent an already chosen arc from being selected by the following ant and the 

exploration of an unvisited arc being increased. Local pheromone update is 

calculated based coefficient value and the initial value of pheromone trail (Dorigo & 

Gambardella, 1997b).   

 

The MMAS is another improvement of the AS-based algorithm, proposed by Stützle 

and Hoos (2000). The MMAS shows a better performance compared to other ACO 

algorithms for Quadratic Assignment Problems (QAP) and TSP. The MMAS differs 

from AS in four main aspects. First, a greedier search mechanism is used by the 

MMAS to allow better exploitation of the best solution. Second, the pheromone trail 

is controlled by the MMAS in order to prevent premature stagnation during the 

search process (ants converge early to one sub-optimal solution) by limiting the 

pheromone trail to the interval [Tmin,Tmax]. Third, the MMAS allows higher 

exploration at the start of the algorithm by initializing the pheromone trail to the 

upper trails limit. Finally, pheromone trails are reinitialized by the MMAS when no 

better tour has been generated for a certain number of iterations or when the system 
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reaches stagnation. In the MMAS, only the best ant or the global best solution is 

allowed to add a certain amount of pheromone. Therefore, the arc that will always be 

the best solution will get a large amount of pheromone. The upper and lower 

pheromone trail limits are used in the MMAS to avoid stagnation. The pheromone 

trail limit has the effect of indirectly limiting the probability Tij of selecting a city j 

when an ant is in city i to an interval [Tmin, Tmax] with 0< Tmin ≤ Tij≤ Tmax≤1.   

 

The Local Best Tour Ant System (LBTAS) that uses local information to guide the 

ants’ search process was proposed by Kaegi and White (2003) as a new version of 

AS. The main modification of the LBTAS is that each ant updates pheromone values 

according to its own best tour from the start of the algorithm. This prevents the use of 

global best solution observed by all ants like in the ACS and MMAS. Each ant works 

individually in the LBTAS and, at the same time, indirectly cooperates with other 

ants. The LBTAS showed better performance compared to the AS and ASelitist when 

applied to TSP. This proves that the local search procedure on LBTAS gives a high 

change to a better version of AS.  

 

Energy-Efficient Ant-Based Routing (EEABR) proposed by Camilo et al. (2006) is 

the version of AS that is applied in WSN. EEABR used forward ant to explore the 

potential path and backward ant to update the pheromone value. EEABR used 

probabilistic decision rule during searching process and global pheromone update to 

control the pheromone value of selected node. Energy level and travelled distance are 

two important keys that are used by EEABR in calculating both the probabilistic 

decision and global pheromone with the aim to optimize the routing process and at 

the same time to increase the network lifetime of the system.  
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Hybrid ACO algorithms also have been applied in WSN in improving the 

performance of single algorithms. Cui, Liu, and Zhao (2015) proposed ACO-GA that 

combined ACO and GA in solving the routing problem in WSN. ACO that is based 

on global parallel and distribute search capabilities is an excellent algorithm for route 

discovery process. ACO accumulates the pheromone to find the optimal path in 

transmitting packets in WSN. On the other hand, GA that has a global search 

capability is applied to improve the convergence speed and prevent the local optima 

problem that ACO does not cater by using crossover and mutation approach. The 

combination of both algorithms showed good results when compared to the single 

algorithms such as ACO and GA.    

 

Fish Swarm Ant Colony Optimization (FSACO) proposed by Li, Keegan, and 

Mtenzi (2018) combined two swarm intelligence algorithms which are ACO and 

Artificial Fish Swarm Algorithm (AFSA) in improving the performance of packet 

routing in WSN. FSACO used state transition rule and global pheromone update 

from ACO for route discovery process where the path length and energy level of 

sensor nodes are considered for both formulas. At the same time, FSACO also used 

crowd factor and heuristics information from AFSA to prevent the congestion during 

routing process. Experimental results showed that FSACO performed better than 

single ACO variants such as EEABR and Sensor Ant. 

 

2.4 Tabu Search 

The TS algorithm is one of the metaheuristic algorithms that explore the solution 

space beyond local optimality based on the local heuristic search procedure. There 

are two types of memory in TS algorithms: attributive memory that records the 
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information of some attribute solutions that change when moving from one solution 

to another; and, explicit memory that records the complete solution (Glover & 

Laguna, 1997). For example, in the packet routing scenario in a WSN, a new solution 

vector will be created when moving a packet p from sensor node Na to sensor node 

Nb. Therefore, the TS memory can record the whole complete solution or record only 

the attributes that change the solution which is the part when packet p assigned to 

sensor node Nb. In this situation, attribute memory will prevent the TS algorithm in 

using the old solution for k number of iterations with the same sensor node. 

Nevertheless, this Tabu attribute can be overridden if the move will produce a better 

solution than the best so-far-solution. The duration parameter for the move, which is 

called Tabu tenures, is effective based on the size of the problem instance.  

 

The TS algorithm is initiated by the initial solution either by random discovery or by 

using any ad-hoc algorithms such as the ACS, MMAS, and ABC algorithms (Xhafa, 

Alba, Dorronsoro, Duran, & Abraham, 2008). The searching process will be 

continued by the TS algorithm to find the local optima. At this stage, the neighbour 

solution is saved as a current solution if it is not a Tabu. On the other hand, if the 

neighbour solution is better than the best-so-far solution, it will be marked as a 

current best-so-far solution. In the scenario that the neighbour solution is Tabu, the 

inspire level will check the status to override if this solution is better than best-so-far 

solution.  If the termination condition is not met, the TS algorithm will update the 

memory and start a new iteration after movement to the neighbour solution. This 

searching process is repeated in the neighbourhood as a guide to explore interesting 

areas in the search space efficiently (Costa, 1994). There are several issues in 

implementing TS algorithms such as the size of the Tabu list, the information 
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needing to be saved in the memory, how to perform diversification, and the method 

to be used to move to the neighbourhood (Thesen, 1998). 

 

 

Figure 2.2. Process of TS algorithm (Zapfel et al., 2010) 

 

2.5 Routing Algorithms in Wireless Sensor Networks 

Routing packets from the source node to the destination node is crucial due to the 

limitations of sensor nodes in terms of battery power, storage, and memory to sense, 

collect, and transmit data from various locations in WSN. Section 2.5.1 discusses the 

performance evaluation criteria that are used by researchers in evaluating the 

performance of their proposed algorithms in routing packets in WSN,    
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New or improvement of existing algorithms is commonly achieved using two 

approaches such as single algorithm or hybrid algorithm. While a single algorithm is 

commonly proposed, several researchers have proposed a hybrid algorithm by 

adopting good components and/or functions from more than one algorithm to 

improve specific criteria or tackle specific problems. Section 2.5.2 discusses in detail 

about the single swarm intelligence algorithms implemented in WSNs such as 

EEABR, BeeSensor, and Termite-hill while hybrid swarm intelligence algorithms 

such as PSOABC and Bee-Sensor-C are elaborated in Section 2.5.3. 

 

2.5.1 Performance Evaluation Criteria of Routing Algorithms in Wireless 

Sensor Network 

Performance evaluation criteria that commonly used by researchers in evaluating the 

performance of their proposed algorithms are energy consumption, energy efficient, 

success rate, packet loss rate, latency, throughput, number of alive node, number of 

dead node, and residual energy (Oldewurtel & Mahonen, 2010; Nasir, Ku-Mahamud, 

& Kamioka, 2017). Good routing algorithms supposedly can fulfil at least one of 

these criteria during experiments. In order to achieve this objective, sensor nodes in 

WSN should be organized to sense and transmit packets optimally without affecting 

the network lifetime of the system. Packets need to be distributed fairly to all 

potential sensor nodes in balancing the energy usage with the aim to prevent the 

sensor nodes from drastically drain their energy that can cause the dead node 

(Levendovszky, Tornai, Treplan, & Olah, 2011). Energy efficiency is one of the 

criteria to measure the energy usage during packet routing process where it measures 

based on the number of successfully arrived packets and the energy consumed 

(Zungeru et al, 2012a). Most of the routing algorithms used energy consumption and 
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energy efficiency as a performance metrics during experiments (Singh & Behal, 

2013; Zungeru et al., 2012a; Li et al., 2018; Gupta, 2018).  

  

Success rate and packet loss rate are two important keys in measuring the ability of 

routing algorithms in submitting packets from source node to destination node. 

Success rate is measured by the total number of packets that successfully arrived at 

the destination node per all submitted packets while the packet loss rate is contradict 

to it where it measures the number of packets that failed to arrive at the destination 

node per all submitted packets. IEEABR which is one of the ACO variants uses 

success rate along with latency, energy consumption and energy efficiency to 

evaluate its performance.  Variants of ABC such as BeeSensor and Bee-Sensor-C 

that have been applied in WSN also used success rate and packet loss rate to measure 

their performances. 

 

Many researchers have also used throughput as one of the criteria to evaluate the 

ability of routing algorithms in transmitting packets. Throughput is measured by the 

number of successful packets arrived from source node to the destination node per 

second (Alazzawi & Elkateeb, 2009). Throughput is applied as performance metric 

during experiments to see the relationship between the number of packets received 

and time where the large number of packets arrived in the short time indicates the 

high throughput value and high quality of transmission path. Zungeru et al. (2012b), 

Singh and Behal (2013), and Li et al. (2018) used throughput along with energy 

consumption and energy efficiency as a performance metrics in ensuring the quality 

of packets transmission in terms of time, energy and quantity of successful packets 

received.   



  39 
  

Latency is another important performance evaluation criterion that is commonly used 

in the performance evaluation where it measures the time taken to submit packets 

from source node to destination node. Many ACO variants applied in WSN such as 

Yan et al. (2011), Luo and Li (2012), Zungeru et la. (2012a), and Cui et al. (2015) 

that aimed to reduce the transmission time of packets used latency as one of the 

performance metrics. These algorithms minimized the packets transmission time by 

discovering the optimal path with the combination of state transition rule and 

pheromone update. 

   

2.5.2 Single Swarm Intelligence Approaches in WSN Packet Routing 

This section discusses in details of single swarm intelligence algorithms that are 

applied in WSN in terms of their contributions, research methodologies, performance 

evaluation criteria and also the drawbacks and gaps that can be studied. At the end of 

this section, all these algorithms are summarized based on their performance 

evaluation criteria.     

 

Camilo et al. (2006) propose Energy-Efficient Ant-Based Routing (EEABR) with the 

aim of reducing the communication load and energy consumption in WSNs. EEABR 

is the fundamental ACO algorithm in WSN that is used as a benchmark study by 

many ACO algorithm in validating their performance. Two types of ants have been 

used in EEABR, the forward ant that explores the system in finding the optimal 

sensor nodes, and the backward ant that updates the pheromone value of traversed 

sensor nodes. A probabilistic decision rule is applied by the forward ant in evaluating 

the capacity of the neighbour nodes during the node selection phase while the global 

pheromone update is applied by the backward ant to encourage the optimal sensor 
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nodes to be selected by the following ant in the next iteration. Experiments have been 

done in evaluating the energy efficiency of EEABR in three different conditions: 

mesh network, mobile network, and static network. Experimental results show that 

the energy efficiency of EEABR is better than the Improved Ant-Based Routing 

(IABR) Algorithm and Basic Ant-Based Routing Algorithm (BABR). However, the 

EEABR algorithm did not explore alternative paths that may lead to hotspot 

problems on certain sensor nodes which will affect the load balancing and network 

lifetime of the system. The performance of EEABR was only compared and 

evaluated with the other variants of ACO but not with the other swarm intelligence 

algorithms.  

 

The study by Yan et al. (2011) proposes an improved AS called ASW to solve the 

routing problems in static wireless sensor networks. The objectives of this research 

are to minimize delay and energy consumption of sensor nodes during submission of 

packets from source node to destination node. The proposed algorithm is similar to 

AS on the node selection process but with a different pheromone update mechanism. 

In ASW, different amounts of pheromone are assigned to every ant during the 

pheromone update process depending on the minimum energy consumed by each 

ant. Comparison has been made between AS, ACS and ASW on the average delay 

and average energy consumption. Experimental results show that ACS achieves the 

lowest energy consumption followed by ASW and AS. On the other hand, AS 

achieves the lowest average delay value followed by ASW and ACS when routing 

packets using 50, 100, 150, 200, 250, and 300 sensor nodes. As can be concluded 

from the experimental results, ASW performed average for both performance 

metrics. However, similar to EEABR, the performance of the proposed ASW 
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algorithm was only compared with the other family of ACO but not with the other 

swam intelligence algorithms.  

 

Luo and Li (2012) propose an MMAS-based routing algorithm for reducing the 

packet loss, delay and energy consumption of sensor nodes during the routing 

process in WSNs. The search angle has been proposed in this algorithm to limit the 

ant’s search area during nodes selection activities. By using the search angle 

approach, nodes only broadcast their information to their neighbours within the 

search angle area to reduce the energy consumption of each sensor node and to 

increase the search speed of ants. The quantities of pheromones are different from 

each path where the good path discovered by ants gets more pheromone compared to 

others. However, the quantity of pheromone remains limited to the maximum and 

minimum range, as in MMAS approach, to control stagnation in the WSN 

environment. Experimental results show that the proposed algorithm performs better 

than the MMAS basic algorithm in terms of delay, packet loss, and dead nodes 

aspects. Regardless of the performance, there was no pheromone evaporation rate 

that reduces the pheromone value of the optimal sensor nodes in this proposed 

algorithm. This problem leads to the hotspot problem where the energy at certain 

sensor nodes is quickly depleted due to the heavy load that will affect the network 

lifetime of the system.  

 

Almshreqi, Ali, Rasid, Ismail, and Varahram (2012) propose a SensorAnt algorithm 

in balancing the energy consumption during packets routing by utilizing and 

optimizing all sensor nodes in WSNs. SensorAnt is based on an ACO algorithm 

where the quality of paths and hops are measured in selecting the optimal path to 
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forward the data from the source node to destination node. The quality is measured 

by considering the number of hops, minimum residual battery power of sensor nodes, 

and average energy of route and network. Two types of ant are used in SensorAnt, 

ant-forward to find an optimal route to the destination node and ant-backward to put 

the pheromone value on the visited sensor nodes. The pheromone value is stored in 

the sensor node’s memory and will be updated in order to prevent the hotspot 

problem on certain sensor nodes. The performance of SensorAnt was compared with 

EEABR in terms of energy consumption and energy efficiency. Experimental results 

show that the SensorAnt performs better for both performance metrics. However, the 

performance of SensorAnt was only compared with the ant-based algorithm and the 

other performance metrics such as delay, throughput and packet loss were not 

considered.   

 

Improved Energy Efficient Ant Based Routing (IEEABR) was proposed by Zungeru 

et al. (2012a) in improving EEABR routing algorithms. IEEABR uses the same 

concept as EEABR where the forward ant is used to explore the potential path and 

backward ant is responsible to update the pheromone value of selected sensor nodes. 

IEEABR also applies the same formula as EEABR for the probabilistic decision rule 

and pheromone update technique. However, IEEABR differs from EEABR in terms 

of memory usage where the routing table is intelligently initialized in the early stage 

to give priority to potential neighbour nodes. A routing table in IEEABR can also 

intelligently update in case of link or node failure to reduce the congestion problem 

in WSNs. In order to balance the energy consumption of each node, the number of 

neighbour nodes is considered by IEEABR in calculating the probability distribution 

of nodes. Performances of IEEABR were compared with BABR, SC, FF, FP, and 
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EEABR in terms of latency, success rate, energy consumption, and energy 

efficiency. In both static and dynamic scenarios, IEEABR shows good performances 

in energy consumption and energy efficiency aspects. Notwithstanding the results, 

experiments were only done to compare the performance of IEEABR with the ant-

based routing algorithms but not with relevant swarm intelligence algorithms. 

 

Saleem, Ullah, and Farooq (2012) proposed the BeeSensor routing algorithm that is 

based on the foraging behaviour of honey bees. Three types of agents operate in 

BeeSensor: scouts, packers and foragers. Packers reside in the hive which is the 

software module in the sensor node that processes sensed data from other sensor 

nodes. Packers in the source node broadcast to scouts that are responsible for finding 

the optimal path to the destination node. Scouts will evaluate the quality of paths and 

return to the source node once the destination node is found.  Foragers are launched 

once scouts have returned to the source node. Foragers are responsible for evaluating 

the quality of visited paths and to transmit data packets from source node to 

destination node. The remaining energy of sensor nodes and path length are the two 

elements in evaluating the quality of the path and expressed through the number of 

waggle dances by bees. The performance of the BeeSensor algorithm was compared 

with EEABR, FF-Ant, FP-Ant, SC-Ant and AODV in terms of packet delivery ratio, 

latency, energy efficiency, control overhead, lifetime, and energy consumption. 

BeeSensor achieved the best performance for energy efficiency, control-overhead 

and lifetime value. On the other hand, FP-Ant was the best algorithm for packet 

delivery ratio and EEABR was the best for latency. However, BeeSensor did not 

consider the local optima problem during the searching process by scouts that may 

affect the latency and packet delivery ratio.  
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The termite-hill routing algorithm was proposed by Zungeru et al. (2012b) with the 

aim of solving routing problems in static, dynamic and mobile WSN environments. 

Autocatalytic behaviour that is used in finding a solution in a reasonable time is 

applied by termites in the Termite-hill algorithm. Termite-hill uses the same concept 

as EEABR which has a forward soldier and backward soldier in finding the optimal 

path between source node and destination node. Termite-hill also applies a 

pheromone value to communicate between termites in the system. There are 3 types 

of pheromone: initial, lower and upper. Initial pheromone is calculated in the early 

stage to find the probability distribution of packets in the system. Pheromone update 

and pheromone evaporation are guided by the range between lower pheromone and 

upper pheromone to the selected sensor nodes.  This limitation is essential in 

encouraging termites in the next iteration to reselect the optimal sensor nodes. 

Experiments were done to compare the performance of Termite-hill with SC, FF, and 

AODV in static, dynamic, and mobile environments. Termite-hill attained better 

performance in terms of throughput, energy consumption, and energy efficiency. 

However, the performance of Termite-hill in a large sized network was not validated 

because the experiments only covered small numbers of sensor nodes. 

 

A study by Okafor and Fagbohunmi (2013) proposes an ant-based routing algorithm 

that aims to reduce the energy consumption among sensor nodes in WSNs. In this 

proposed algorithm, pheromone values are stored in the node’s memory instead of 

the ant’s memory as in the traditional ACO algorithm. This approach reduces the 

energy and size of data that must be carried by the searching ant. The selection of the 

next nodes depends on the neighbour nodes’ energy levels where the nodes with high 

energy levels will be selected by ants in forwarding packets to destination nodes. A 
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pheromone evaporation technique is applied in order to reduce the attraction to the 

optimal path and to encourage exploration to the other potential path. The number of 

visited sensor nodes by the ant during the searching process will be used as an 

element to calculate the pheromone value. However, experiments were only done to 

see how the sensor nodes communicate within the range and how the ant moves in 

the WSN to find the optimal path. Important performance metrics that are always 

used in evaluating the routing performance such as energy efficiency, latency, and 

throughput were not considered by the proposed algorithm.  

 

Mobile sink with a combination of ACO was proposed by Singh and Behal (2013) to 

improve the network lifetime in dynamic WSN environments. The ant is responsible 

for calculating the energy of sensor nodes and deciding the next best location for the 

mobile sink node. The location with high energy level of sensor nodes will be 

selected to move the mobile sink node. Thus, it will save the energy of available 

sensor nodes and balance the entire WSN environment. The performance of the 

proposed algorithm was compared with the other routing algorithms such as Termite-

hill, FF and AODV in terms of throughput, energy consumption, energy efficiency 

and network lifetime aspects. In both static and dynamic sink environments, the 

proposed algorithm performed best in terms of throughput and energy consumption 

aspects. The proposed algorithm also achieved the highest energy efficiency and 

lifetime value when routing packets in the dynamic sink environment. Meanwhile, 

Termite-hill performed better in the static sink environment for energy efficiency and 

lifetime aspects. Even though the proposed algorithm showed a good performance, 

there was no pheromone update function that may lead to an unbalanced selection of 

nodes to forward packets. 
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Orojloo and Haghighat (2016) propose a packet routing algorithm in WSNs called 

TSRA that is based on the TS approach. The main objectives of this research are to 

balance the packet transmission among sensor nodes to reduce energy consumption 

and prolong the network lifetime of the system. The remaining energy of sensor 

nodes and required transmission energy are two important factors considered by 

TSRA as link cost. Tabu tenures and Tabu list, which are beneficial features of TS 

algorithm, are used in avoiding the selection of low energy sensor nodes. The size of 

the Tabu list is calculated based on the number of nodes, wireless communication 

coverage, and network size. The movement in the neighbourhood search space by the 

TSRA also considers the hop counts and energy consumption value in reducing the 

average cost of routing. The performance of TSRA was validated against traditional 

Ant Colony Algorithm (ACA), Ant Colony based Location-aware Routing algorithm 

(ACLR), and Energy and Path aware ACO algorithm for routing of Wireless Sensor 

Networks (EPWSN) in terms of energy consumption, network lifetime and routing 

cost. Experimental results showed that TSRA performed better than the other 

algorithms in all performance metrics. Unfortunately, TSRA did not consider the 

local optima problem that may affect delay and throughput of the whole system.        

 

An enhanced version of the AS algorithm, called Smart Routing Algorithm (SRA), 

was proposed by Bouarafa et al. (2018) to improve the routing performance in 

WSNs. During the packets submission from the source node to destination node, the 

predecessor node will broadcast a request message to its successors which are known 

as neighbour nodes. Neighbour nodes that receive the message will store the 

predecessor ID in the neighbour list and, at the same time, broadcast their ID, 

residual energy, and location to the predecessor node. From this point, sender node 
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and receiver node are connected to each other for communication. By using the 

acknowledgement obtained from the successors nodes, the SRA will calculate the 

probability of each node by considering the sensor node’s remaining energy and 

distance between the two nodes. After the packet has successfully arrived at the 

destination node, the SRA will perform a pheromone update to the traversed sensor 

nodes. Evaporation rate and path length are the two elements considered in updating 

the pheromone value. The performance of the SRA was evaluated in terms of path 

length and energy consumption. From the experiments that were executed in 50 

iterations, the SRA was proven to preserve the network lifetime of the WSN because 

there are no dead nodes during experiments due to the energy balance among sensor 

nodes. Despite the good performance, the other important performance metrics such 

as delay and throughput were not considered by the SRA and the performance was 

not compared with other routing algorithms. 

 

Table 2.1 summarizes all single swam intelligence algorithms covered in Section 

2.5.1 in terms of performance metrics used in evaluating their performance. Energy 

consumption is the most selected performance metric followed by energy efficiency 

and latency. Thus, it can be concluded that energy consumption and energy 

efficiency are important elements in ensuring the lifetime of a WSN. At the same 

time, latency that measures the submission time of packets from source node to 

destination node is also important in increasing the throughput value of routing 

algorithm. The EEABR proposed by Camilo et al. (2006) has been selected by many 

researchers as a benchmark to evaluate their algorithm like Almshreqi et al. (2012), 

Zungeru et al. (2012a), Saleem et al. (2012) and Zungeru et al. (2012b). Zungeru et 

al. (2012a, 2012b), who proposed IEEABR and Termite-hill, also adopted and 
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adapted the routing concept from EEABR. Despite many new ACO based algorithms 

that have been proposed in WSN, EEABR is still relevant to be used as a benchmark 

study due to it concepts that mimic the traditional ACO approach proposed by 

Dorigo (1992). Method and experiment set up used by EEABR are also suitable and 

easy to be adopted and adapted by the other routing algorithms. Based on this table, 

EEABR (Camilo et al., 2006) IEEABR (Zungeru et al., 2012a), Termite-hill 

(Zungeru et al., 2012b), and BeeSensor (Saleem et al., 2012) are used as benchmark 

algorithms to be compared with the proposed algorithm in the experiments due to the 

concept and performance metrics used that are similar and comparable to the 

proposed algorithm. Even though research done by Bouarafa et al. (2018) is the 

recent ACO-based algorithm in WSN, it is not used as a benchmark algorithm 

because it was not validated and compared with the other research work.   
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Table 2.1 

Summary of single swarm intelligence routing algorithms in WSN 

Authors 

Performance Evaluation Criteria 
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Camilo et al. (2006)  √        √   

Yan et al. (2011) √  √          

Luo and Li (2012)   √   √  √     

Almshreqi et al. (2012) √ √           

Zungeru et al. (2012a) √ √ √  √        

Saleem et al. (2012)  √ √  √  √    √  

Zungeru et al. (2012b) √ √  √         
Okafor & Fagbohunmi 
(2013)             

Singh & Behal (2013) √ √  √   √      
Orojloo & Haghighat 
(2016) √      √     √ 

Bouarafa et al. (2018) √        √    
 

2.5.3 Hybrid Swarm Intelligence Approaches in WSN Packet Routing 

Hybridization occurs when two or more algorithms are combined with the objective 

of improving a specific performance metric that is not achievable using a stand-alone 

algorithm (Masrom, Abidin, & Omar, 2012; Fister & Fister, 2015). Algorithms could 

be combined partially or fully to be able to obtain the best features of the 

hybridization algorithm. Hybridization between algorithms can be categorized into 

low level and high level based on the degree of connection between algorithms.  
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The degree of inner exchange procedure among algorithms reflects the level of 

hybridization. Low level hybridization is known as strongly coupled hybridization 

while high level hybridization is called loosely coupled hybridization (Masrom, 

Abidin, Omar, & Nasir, 2014). One of the algorithms is the main algorithm in low 

level hybridization while part of the other algorithm is called during the execution 

time. Low level hybridization can be represented as Algorithm1(Algorithm2) (Xhafa, 

Gonzalez, Dahal, & Abraham, 2009) where Algorithm1 is the main algorithm and 

Algorithm2 is the subordinated algorithm (Jourdan, Basseur, & Talbi, 2009; Xhafa, 

Kolodziej, Barolli, & Fundo, 2011). On the other hand, each algorithm operates fully 

in high level hybridization while preserving its own identity. There is a chain of 

algorithm operations in high level hybridization type where the flow can be 

illustrated as (𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1→ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 → 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3 →⋯ → 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛).  

Based on this flow, the output from the Algorithm1 is passed to Algorithm2 and so 

on.  High level hybridization can be represented as Algorithm1 + Algorithm2.   

 

This section discusses in detail the hybrid routing algorithms that are applied in 

WSN. The contributions, research methodologies, experimental results, gaps and 

drawbacks of these algorithms are highlighted. Summarization of these algorithms 

based on the performance evaluation criteria are also provided at the end of this 

section. The study by Xiu-li, Hong-wei, and Yu (2008) proposes a multipath routing 

algorithm called MACS which combines the ACS and MMAS in WSN routing 

packets. The multipath routing method is applied in MACS where more than one ant 

is used in each iteration with the aim of minimizing the transmission delay of data, to 

reduce energy consumption of nodes and to balance the energy of each sensor node 

in the WSN. Two types of ant used in searching process: forward ant and backward 
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ant.  The forward ant is responsible for searching optimal nodes and performing local 

pheromone updates while the global pheromone update is performed by the 

backward ant. The pheromone value of each node is indicated by the pheromone trail 

based on the MMAS algorithm in order to prevent premature stagnation during the 

searching process and, at the same time, to influence the exploration of new nodes. 

The performance of the MACS algorithm was compared with directed diffusion, 

ACS and the MMAS algorithm in terms of total energy consumption and average 

transmission delay. Experimental results show that MACS performs better than the 

other algorithms in both aspects. However, residual energy of each node was not 

considered during the searching process that may lead to the hotspot and dead node 

problems.  

 

The study by Li and Shi (2013) proposes an energy-effective Quality of Service 

(QoS) routing algorithm based on ACO and Stateless Non-deterministic Geographic 

Forwarding (SNGF) to solve the routing problem and to balance the energy 

consumption of nodes in WSNs. The SNGF algorithm is used to speed up the 

convergence of ants in order to find an optimal routing path. Nodes are divided into 

two groups by the SNGF algorithm in which the first group contains nodes that are 

closer to the destination node and another group which contains nodes that are 

further from the destination node. In the routing process, none of the further nodes 

are selected by the ant as the next hop because they are stored in a forbidden table. 

This will speed up the convergence of the ACO algorithm.  The load of the sensor 

node is calculated based on its queue length and residual energy while the 

pheromone value is calculated by the forward ant based on bandwidth and load of 

node. Pheromone update value is applied by the backward ant by considering the 
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delay of the path. Experimental results show that the proposed algorithm performs 

better than a basic ACO algorithm and AODV algorithm in terms of average time 

end-to-end delay and network lifetime. Nevertheless, the division of sensor nodes 

based on the location will abandon the sensor nodes with high energy levels that are 

further from the destination node. This situation will lead unbalanced energy 

consumption among sensor nodes.  

 

Tewari and Vaisla (2014) propose a hybrid ACO and greedy algorithm with main 

objectives to influence the energy conservation and balance all loads to available 

clusters. Based on the energy value, all sensor nodes in the system are divided into 

small groups called clusters. The greedy algorithm is responsible for evaluating the 

energy level of each cluster in order to balance the energy of all clusters in the 

system. The ACO in this hybrid algorithm is responsible for balancing the 

distribution of all packets to available clusters. Experimental results show that the 

proposed hybrid algorithm performs better than the traditional cluster method, which 

is LEACH, in terms of throughput and network lifetime. However, the performance 

of the proposed algorithm was not compared with the other routing algorithms such 

as traditional ACO and greedy algorithm. The other important performance metrics 

such as energy consumption, energy efficiency and latency were also not considered 

in the proposed algorithm.  

 

Karthikeyan and Subramani (2014) propose a hybrid algorithm called PSOABC, 

which combines particle swarm optimization (PSO) and artificial bee colony (ABC) 

to improve the QoS-based routing in WSNs. In the proposed algorithm, the bee 

colony is applied as an agent to discover the optimal path between the source node to 
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destination node. Multiple forward agents that are sent to the destination node will 

communicate with available sensor nodes along the path. As soon as the forward 

agent arrives at the destination node, it will become a reverse agent. The reverse 

agent will return to the source node and update the routing table which consists of 

routing information. The PSO agent will be responsible to forward packet from the 

source node to destination node by referring to the routing table. In order to improve 

the QoS of WSN routing, several performance metrics are used to evaluate the 

performance of the proposed algorithm. Experimental results show that PSOABC 

performs better than traditional PSO algorithm in terms of delay, throughput, and 

packet loss aspects. However, the proposed algorithm only focuses on optimizing the 

path in WSN without considering the load balancing and energy efficiency aspects. 

This could potentially lead to stagnation and may downgrade the performance of the 

WSN system as the load distribution is not performed effectively. 

 

Bee-Sensor-C proposed, by Cai et al. (2015), is inspired by BeeSensor (Saleem et al., 

2012) that combined the bee algorithm and cluster technique to establish the 

multipath routing protocol while focusing upon the energy-aware aspect. There are 

three phases in developing Bee-Sensor-C: cluster formation, multipath construction, 

and data transmission. Sensor nodes are divided into several clusters during the 

cluster formation phase and the most powerful sensor node in each cluster will be 

selected as a cluster head. The information of each sensor node such as ID, source 

node ID, waiting time and remaining energy are carried by HiveHeader which is an 

agent that is used in Bee-Sensor-C to evaluate the condition of sensor nodes in each 

cluster. The multipath construction phase is done by using the technique from the 

BeeSensor algorithm to connect all cluster heads to the destination node by using a 
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multi hop technique and, at the same time, to balance the energy consumption in the 

system. In the data transmission phase, all data in the cluster are submitted by each 

cluster member to the cluster head to be forwarded to destination nodes. The 

performance of Bee-Sensor-C was compared with BeeSensor, IEEABR, and FF-Ant. 

Bee-Sensor-C performs best in terms of energy efficiency, control overhead, energy 

standard deviation, latency, packet delivery rate, and routing building time. Despite 

the best performance, these experiments were done using small packet size and the 

performance of Bee-Sensor-C was not compared with other hybrid algorithms.  

 

Rao and Rani (2015) have proposed an algorithm that focuses on maximizing 

network lifetime and increasing energy efficiency of sensor nodes in WSNs by 

combining the cluster technique and ACO algorithm in solving WSN routing 

problems. At first, each cluster will select the best sensor node to become the cluster 

head by considering the residual energy and distance from sensor node to destination 

node. Ant colony optimization is used in finding optimal paths between each cluster 

head to neighbour nodes and the pheromone update technique is applied on visited 

paths to overcome stagnation in the system. The performance of the proposed 

algorithm was evaluated in terms of energy consumption and number of survival 

nodes when compared to the LEACH and PARA algorithm. Experimental results 

show that the proposed algorithm performs better for both performance metrics when 

compared with the other two (2) algorithms. However, the load balancing aspect was 

not considered in the proposed algorithm that could diminish the energy of certain 

sensor nodes at a quicker rate and affect the lifetime of the whole system.  
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Cui et al. (2015) have proposed a hybrid algorithm called ACO-GA that combines 

ACO and GA in solving the routing problem in WSNs. This algorithm adopts the 

behaviour of a traditional ACO where the memory behaviour prevents the ant from 

visiting the visited path and communication behaviour uses pheromones to 

communicate with each other. Pheromone value is exploited as an indicator to select 

the optimal path. Routes with high pheromone value will be selected to forward 

packets to the destination node. However, ACO always leads to local optima 

problems and has low convergence speed (Song, Sun & Cao, 2010; Yoshikawa & 

Otani, 2010) that influences the packet loss problem. ACO-GA applies GA to solve 

these problems by inserting the mutation that can prevent premature convergence and 

crossover that replaces the old solution in the previous iteration by the new solution 

of the current iteration. The performance of ACO-GA was compared with the 

traditional ACO and GA in terms of fitness value. Experimental results show that 

ACO-GA can route packets in small simulation time and low energy consumption. 

However, this hybrid algorithm did not consider the throughput, packet loss and 

energy efficiency factor and, at the same time, did not compare its performance with 

other hybrid algorithms.  

 

The Hierarchical Cuckoo Search (HCS) algorithm, proposed by Boucetta, Idoudi, 

and Saidane (2016), aims to maximize the residual energy of sensor nodes and 

network lifetime. Sensor nodes are divided into cell-based clusters on geographic 

location. The sensor node with the highest energy in each cell will be selected as the 

cluster head that is responsible as an agent to transmit the data from cell members to 

the destination node. Sensor nodes in the cell will exchange their residual energy 

through a Hello message. After comparing their energy with the other cell members, 
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sensor nodes with the highest residual energy will send a Ch_request and 

Ch_electing message to declare leadership. If there are multiple announcements at 

any one time, the fastest sensor node will be selected as the cluster head. Data that 

are received from cell members will be forwarded by the cluster head using the CS 

algorithm. The aim of the cluster head is to determine the potential neighbour cluster 

head to forward data by using a multi hop technique. The quality of the neighbour 

cell is calculated by using a fitness function that considers the residual energy of the 

cluster head and the number of cell members. The neighbour cell that has the highest 

fitness will be selected to forward data to the destination node. The performance of 

the HCS was compared with LEACH and M-GEAR in terms of dead nodes and 

residual energy. Even though HCS performs better on both performance metrics, it 

remains insufficient to validate its performance. The other important performance 

metrics, such as latency and throughput, need to be considered by the HCS during 

experimentation in measuring the time taken to submit packets and the number of 

packets received by the destination node.  

 

Mohammadi and Noghabi (2016) propose a hybrid SA and TS algorithm called SAT 

in reducing the energy consumption and average length distance to submit packets 

from the source node to destination node. In the initial stage, the primary route is 

constructed by using a typical algorithm that considers the route with the lowest 

estimated energy consumption. In this stage, the primary route may or may not be the 

optimal path but will be used as a benchmark to accept or reject new candidates 

generated by the TS and SA algorithms. Before the first phase starts, by referencing 

the primary route, the source node is set as the current node and the next node is set 

as the Tabu node which will not be considered in the routing optimization process. 
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Then, in the first phase, the TS algorithm is applied to find the best neighbour node 

by selecting the node with the highest ratio of initial energy and distance to the 

destination node. The current node is marked as the source node and the next node is 

marked as the Tabu node. After moving to the Tabu node, the second phase will start 

where the SA algorithm is used to optimize the subsequent nodes by selecting the 

nodes with the highest ratio of energy and distance to the destination node, but the 

next node will not be marked as a Tabu node after it is selected. This phase will 

repeat until the destination node is discovered. If the estimated energy for the new 

routing path is less than the primary route, it will overwrite the primary route and 

will be the new benchmark. The second phase will continue to run until the 

termination criteria is satisfied which is either all the possible routes are measured or 

until the initial energy became zero. The routing optimization is performed to each 

neighbour route to find the most optimal route from source to destination. The 

experimental results show that SAT performs better in terms of average length 

distance and energy consumption when compared with a traditional TS algorithm 

called a TSRA. However, the function of the SA algorithm remains unclear in terms 

of avoiding local optima in the second phase. Furthermore, the proposed algorithm 

only focused on the minimal distance and estimated energy consumption between the 

source and the destination but not on nodes utilization to avoid hotspot problems. 

 

Li et al. (2018) propose FSACO algorithm which combines AFSA and ACO to 

enhance the routing process in WSN. This hybrid algorithm consists of 

pseudorandom proportional route selection model in ACO and crowd factor in AFSA 

in the initial route discovery to find the global optimum solution. Heuristic 

information from AFSA is used as the initial pheromone value in the probabilistic 



  58 
  

route discovery scheme to determine the exploration and exploitation of sensor nodes 

during neighbours searching process. Due to the drawback of ACO where sensor 

nodes with high pheromone value are always selected by the ant that will lead to the 

hotspot problem, the crowd factor from AFSA is integrated to represent the 

congestion degree within sensor nodes radius. This mechanism is used to prevent 

stagnation during packet submission and at the same time to reduce the local optima 

problem. The global pheromone update applied by FSACO considers the path length 

and residual energy of selected sensor nodes. The performance of FSACO was 

compared with improved routing algorithm based on ACO (IACO), EEABR, and 

SensorAnt in terms of route setup time, convergence time, energy consumption, 

energy standard deviation, network lifetime and throughput. Experimental results 

show that FSACO outperform the other algorithms in all performance metrics. 

However, the proposed algorithm did not specify the mitigation process when the 

ants get trapped in local optima and the comparison was only done with single ACO 

variants. 

 

Gupta (2018) has proposed an Improved Cuckoo Search-based Clustering Algorithm 

(ICSCA) with the objective of balancing energy consumption among cluster heads in 

WSNs. This hybrid algorithm combines the CS algorithm with the clustering 

technique. The fitness value of all available sensor nodes will be calculated and 20% 

of the highest fitness value will be selected as a cluster head (CH). Subsequently, the 

host nest and egg which is the cluster head will be initialized. The cost function of 

each host nest will be evaluated based on the total energy and distance among host 

nest members. The best nest with the highest cost function will be selected as the 

best host nest (Fbest). After this stage, the iterative process will be done in order to 
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select the high-quality nest with the best set of CHs. The new host nest (Fnew) will be 

initialized and evaluated in the iterative process where the Fbest will be replaced by 

Fnew if the value of Fnew is higher than Fbest. The iterative process will be continued 

until the stopping condition is met which is Max_Generation. The performance of 

ICSCA was compared with LEACH, E_OEERP, and PSO-ECHS in terms of energy 

consumption and residual energy. From the experimental results, ICSCA performs 

best in both performance metrics. However, ICSCA only takes into consideration the 

energy aspect without considering the other important performance metrics such as 

throughput and latency that may affect the submission time of packets from source 

node to destination node.  

 

Table 2.2 summarizes all performance evaluation criteria used by hybrid swarm 

intelligence routing algorithms discussed in Section 2.5.2. Energy consumption and 

latency are the most chosen performance metrics by researchers in evaluating the 

performance of their routing algorithms. Thus, it can be concluded that latency, 

which measures the submission time of packets from source node to destination 

node, is important in increasing the throughput value during the routing process. At 

the same time, energy consumption that measures the energy used by sensor nodes 

during the routing process is also important in preventing the dead node problem that 

will affect the network lifetime of WSN systems. Energy consumption and latency 

also are used as benchmark to evaluate the load balancing factor of routing algorithm 

(Zhou, Trajcevski, Tamassia, Avci, Khokhar, & Scheuermann, 2017; Yousif, 

Badlishah, Yaakob & Amir, 2018) where a good load balancing algorithm leads to a 

lower latency and energy consumption.  
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Table 2.2 

Summary of hybrid swarm intelligence routing algorithms in WSN 

Authors 

Performance Evaluation Criteria 
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Xiu-li et al. 
(2008) √   √           

Li & Shi 
(2013)    √    √       

Tewari & 
Vaisla (2014)     √   √       

Karthikeyan 
& Subramani 
(2014) 

   √ √  √        

Cai et al. 
(2015)  √  √  √      √ √ √ 

Rao & Rani 
(2015) √        √      

Kamaei et al. 
(2015)   √     √       

Cui et al. 
(2015) √   √           

Boutekkouk 
et al. (2015)         √ √     

Boucetta et 
al. (2016)   √       √     

Mohammadi 
& Noghabi 
(2016) 

√          √    

Li et al. 
(2018) √    √   √    √  √ 

Gupta (2018) √  √            
 

Most of the research works discussed above include a combination of metaheuristics 

algorithms which consist of evolutionary computing, swarm intelligence, and local 

search categories. Research by Li et al. (2018), Karthikeyan and Subramani (2014), 
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and Xiu-li et al. (2008) combine two swarm intelligence approaches while research 

by Cui et al. (2015) combines swarm intelligence and evolutionary computing 

approaches. There are also algorithms that combine swarm intelligence with the 

clustering technique such as BeeSensor-C as proposed by Cai et al. (2015), HCS as 

proposed by Boucetta et al. (2016), and ICSCA as proposed by Gupta (2018). Swarm 

intelligence has also been combined with the local search as proposed by Tewari and 

Vaisla (2014) while Mohammadi and Noghabi (2016) proposed a hybrid routing 

algorithm that combines two local search algorithms.   

 

2.6 Summary 

Based on all the research works covered in this chapter, it can be summarized that 

packet routing is an NP-complete problem because there are no exact algorithms to 

completely solve the routing problem, either by using a standalone algorithm or 

hybrid/combined algorithms. Improvements to the routing algorithm are essential to 

handle all submitted packets from source node to destination node by maximizing the 

packet delivery rate and optimal sensor nodes utilization. For that reason, 

metaheuristics algorithms that try to achieve near optimal solutions within reasonable 

sensor nodes and time are applied. Ant colony system is one of the metaheuristics 

algorithms that has been solving many optimization problems such as packet routing, 

scheduling, node localization, and the TSP. Local pheromone update and global 

pheromone update that are applied in ACS to balance between exploitation and 

exploration during the searching process are suitable for application in WSNs. These 

approaches can balance the energy among sensor nodes in order to prolong the 

network lifetime while increasing the packet delivery success rate and reducing 

latency. However, in a huge instances problem where the search space is very big, 
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ACS always has insufficient resources to produce a quality solution with minimal 

computational time. In such a case, the number of ants in the ACS needs to be 

increased in order to move and explore many arcs and nodes in the system. It is also 

noted that increasing the number of ants will lead the search process to be slow as 

each ant will develop its own solution. Thus, it is crucial to control the number of 

ants so that there are enough to produce good solutions without causing overhead to 

the WSN system. 

 

The exploration and exploitation concepts that are applied by ACS also have a 

significant impact on the whole system. As ants in many ant-based algorithms move 

randomly, any wrong selection will affect the quality of the solution in terms of cost 

and time. Therefore, the best exploration rate should be determined in order to 

control the exploration to the new potential solution or exploitation of the optimal 

solution. This study proposed enhanced ACS and TS algorithms to solve the packet 

routing problem in WSNs. The TS algorithm that can achieve faster convergence in a 

reasonable time is suitable to be combined with the ACS algorithm in solving the 

huge instances problem. Ant colony system in this proposed routing algorithm is also 

not based on random selection but has optimal balance between exploration and 

exploitation to achieve the highest result. 
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CHAPTER 3 

RESEARCH FRAMEWORK AND METHODOLOGY 

 

This chapter presents the research framework and methodology that have been used 

for this research work. Section 3.1 elaborates all the activities in the research 

framework that were implemented in the research methodology while the 

comparative measure that indicates the experimental design is presented in the 

Section 3.2. Lastly, the summary of the chapter is presented in Section 3.3.   

 

Available algorithms that were applied in the WSN were analysed to determine the 

potential problems and gaps. Deficiencies of available ACO approaches are studied, 

for example where the ACO algorithm only considers the throughput and energy 

consumption of each sensor node without considering the load balancing problem. 

This may lead to hotspot problems in WSN systems which will occur when sensor 

nodes in such areas are under heavy traffic load. The main reason for this heavy 

traffic load is when the same sensor node is heavily assigned to forward the majority 

of the packets to a destination node. Therefore, the energy of these sensor nodes will 

quickly deplete and the network lifetime of the system will be reduced. The local 

optima problem also makes an impact on network lifetime when the ant is trapped in 

a blind alley and cannot continue the searching process. The problems and potential 

solutions were determined throughout this research work. For example, when the 

hotspot and local optima problem are clearly identified from previous algorithms, 

several potential approaches are also identified to overcome these problems. The 

hybrid approach between ACO and other algorithms such as TS was proposed as a 

potential solution to reduce the local optima problem.  
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The way EACS(TS) improve the routing technique in WSNs is discussed in detail in 

the research framework presented in Section 3.1. The modification of the ACO 

approach in terms of the nodes selection phase, local search phase, exploration 

control phase, and exploitation control phase were determined as subjects to be 

researched to reduce the attraction to a single solution. These four phases provide 

significant impact to an ant’s decision-making process to organize the attraction of 

ants towards exploration of a new routing path or exploitation to the previously 

constructed solution.  

 

3.1 Research Framework 

The proposed research framework consists of four phases: node selection, local 

search, exploration control, and exploitation control. The research framework that 

depicts the relationship between the framework, method and outcome is presented in 

Figure 3.1. The research method or scientific method in computer science can be 

divided into three categories: theoretical, experimental and simulation (Dodig-

Crnkovic, 2002). However, one research work may be categorized into one or more 

of these methodological areas (Moret & Shapio, 2001). The research method used to 

establish the research framework, also presented in Figure 3.1, focuses on the 

simulation and experimental categories which aim to improve the existing routing 

algorithms. Several methods are applied in order to support the research framework 

to improve the EACS(TS) algorithm. Details of methods used in this research are 

elaborated in the following subsection.  
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Figure 3.1. Research framework 

 

3.1.1 Node Selection Phase 

The node selection phase is an important part in selecting the optimal sensor nodes to 

forward packets to destination nodes. In this phase, ants will choose either to exploit 

the previously used sensor node or explore the new sensor node to be used in 

forwarding packets. The state transition rules, proposed by Dorigo and Gambardella 
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(1997a), were adopted and adapted in this phase in order to help ants identify the 

optimal sensor nodes to forward packets to the destination node. The modification 

has been done by EACS(TS) in terms of heuristics value where the remaining energy 

of sensor nodes is considered during node selection phase. Ants will decide to exploit 

the previously used nodes or explore new sensor nodes based on the state transition 

rule. Ants will move randomly in the WSN environment and the capability of each 

neighbour node will be evaluated using state transition rules based on their 

pheromone and heuristics value. Pheromone information is obtained from the routing 

table of the ants’ previous experience while heuristics information is a priori 

information of the goodness of a solution. This modification ensures that the energy 

efficiency of sensor nodes can be increased during routing process where sensor 

nodes with higher remaining energy have higher possibilities to be selected as 

compared to the nodes with lower remaining energy. In this research, the state 

transition rule is equivalent to the fitness function of the proposed algorithm in 

selecting optimal nodes to ensure the packet routing process is efficient and with 

high possibility of success. The sensor node selection strategy was produced at the 

end of this phase. 

 

3.1.2 Local Search Phase 

The objective of the local search phase is to prevent the local optima problem during 

the packet routing process. Local optima problems occur when the forward ant is 

trapped in a blind alley. The ant has no possibility to reach the destination node when 

trapped in a blind alley during the searching process. This is because the only 

available nodes are visited nodes and the ant cannot continue the searching process to 

the destination node. The EACS(TS) algorithm was developed at this phase where 
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the TS algorithm, which is the local search algorithm, was adopted and adapted from 

Orojloo and Haghighat (2016) to support EACS(TS) in preventing local optima 

problems. By using a TS approach, the forward ant must check the status of the next 

sensor node from the routing table. If the next node is already visited, this node will 

be captured in the Tabu List and excluded from selection by the next ant. In this 

situation, the forward ant will return to the previous sensor node and select other 

potential sensor nodes. And if no other potential sensor nodes are available, the 

forward ant will continue with further backward movement and repeat the process of 

identifying other potential sensor nodes that are not visited or not in the Tabu List. 

The previous TS algorithms store the best known solution and better solutions will 

overwrite previous best known solutions in the Tabu list whereas in EACS(TS), the 

known bad solutions will be captured in the Tabu list so that they will not be re-

selected. 

 

3.1.3 Exploration Control Phase 

The exploration control phase is an important part in balancing load on all sensor 

nodes. A local pheromone update is applied by the forward ant to control the 

pheromone value on each visited node. This phase is important in encouraging ants 

to explore new sensor nodes to prevent hotspot problems in WSNs. Hotspot 

problems occur where the energy at certain sensor nodes is quickly depleted due to 

the heavy load.  Such problems can be prevented by applying local pheromone 

updates on each visited node to reduce the pheromone value while encouraging the 

exploration of other potential sensor nodes. This approach can balance the energy 

consumption and energy depletion of each sensor node so that they operate at almost 

similar rates. EACS(TS) modified the traditional local pheromone update formula by 
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considering the initial energy value and remaining energy value of each sensor 

nodes. By considering both values, the energy level of sensor nodes in the system 

can be balanced, and is one of the key components in preserving the network lifetime 

of the whole system. The exploration of new sensor nodes is important to increase 

the network lifetime and to prevent some sensor nodes from being over utilized and 

drastically drained of their energy compared to other unutilized sensor nodes.  

 

3.1.4 Exploitation Control Phase  

The exploitation control phase is an important part in encouraging the ant in the next 

iteration to exploit the optimal selected sensor nodes. The global pheromone update 

is applied on the optimal sensor nodes by the backward ant to increase the 

pheromone intensity on sensor nodes to be selected by the ant in the next iteration. A 

forward ant will be transformed into a backward ant once it reaches the destination 

node and all information from the forward ant will be transferred to the backward 

ant. The backward ant will move back to the source node by using the same sensor 

nodes used by the forward ant by referring to the ant memory. During the journey 

back to the source node, a global pheromone update will be applied by the backward 

ant in encouraging the ant in the next iteration to exploit the optimal path. EACS(TS) 

improved the existing global pheromone update by considering the current 

pheromone value of nodes and number of visited nodes. This modification can 

increase the exploitation of optimal sensor nodes that leads to reduction of searching 

time and increases the possibility of successful submission of packets to the 

destination node. This approach can also reduce the latency and packet loss rate 

during packet submission. 
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3.1.5 Validation Phase  

A computer simulation was developed to simulate the EACS(TS) algorithm in 

simulated WSN environments. Experiments were carried out by the EACS(TS) 

algorithm and the other comparison algorithms by using a Routing Modelling 

Application Simulation Environment (RMASE) applied as an application in the 

Probabilistic Wireless Network Simulator (Prowler). This simulator was selected 

because it is easily embedded into optimization algorithms and simulation 

parameters are easily adjusted with the input file to simulate real WSN environments. 

The simulation parameters such as network topology, packet characteristics, sensor 

node capacity which include source node and destination node were determined at 

this stage. Details about experimental set up are discussed in Section 3.2.  

 

3.2 Simulation Design and Implementation 

The proposed EACS(TS) algorithm was implemented in the RMASE which is 

applied as an application in Prowler. Prowler is a complete framework that is written 

and run by using Matlab for simulating WSN environments. The Prowler simulator 

has been chosen by many researchers (Camilo et al., 2006; Zungeru et al., 2012a; 

Zungeru et al., 2012b; Despaux, 2015) to simulate and evaluate their research 

because it offers a simple and fast way to prototype applications with nice 

visualization capabilities for experimental and comparison purposes. This simulator 

is also selected because it was designed to be easily embedded into an optimization 

algorithm where it can incorporate an arbitrary number of nodes on arbitrary 

dynamic topologies.  
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Prowler is an event-driven network simulator that consists of a MAC layer model 

and radio propagation model. The radio propagation model takes into account the 

strength of transmitted signal from all transmitters at a particular point. A 

combination of deterministic propagation function and random disturbances will 

determine the strength of the signal sent from a transmitter to a receiver. From this 

information, collisions can be detected based on the strength of the signal. Different 

types of actions and events that queue during simulation processes will be redirected 

between application layer and MAC layer. Figure 3.2 shows the connection between 

application layer and MAC layer in the Prowler simulator. Based on the figure, b_t 

and w_t refers to back-off time and waiting time, respectively, which is associated 

with random time delays while packet_length stands for transmission time given as 

bit time units. Details of EACS(TS) implementation using Prowler are discussed in 

Section 4.4.  

 

Prowler also consists of a topology model and application model that give a chance 

to the user to set up the simulation environment. Network topology is built according 

to standard specifications in order to simulate a real WSN environment. The 

topology model in the Prowler simulator allows a user to specify the topology’s 

components in order to arrange along parallel lines, triangular grids and random 

networks environment. The specifications to build a network topology such as the 

size of the system, position of each sensor node, and distance between sensor nodes 

can be controlled by the topology model.  
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Figure 3.2. Events between application layer and MAC layer 

 

The basic components of a topology model include grid size, grid distance, grid shift, 

grid density, grid offset, holes and alive rate (failure rate). Distance, density and 

number of grid points in x and y directions are important parts that need to be 

considered during topology development to make a submission of packets easily.   

 

The application model is the main part in organizing the characteristics of each 

sensor node in a WSN system.  Routing application scenarios which are peer-to-peer 

(one-to-one), multicast (one-to-many), and converge cast (many-to-many) can be 

specified by the application model. Peer-to-peer is a static communication scenario 
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the simulation process. In the multicast scenario, there are multiple destination nodes 

with a unique source node that contrast with the converge cast scenario that has 

multiple source nodes with a unique destination node.  

 

The type of source node and destination node can be specified to be static, dynamic 

or mobile with the configurations of their types, centre, radius, percentage, 

uniqueness and velocity. Source rate is the measurement of frequencies of events 

which is the number of packets sent from the source node per second while the 

destination rate is the measurement of frequencies of queries which is the number of 

packets requested per second by the destination node. In addition, the number of 

source packets is defined as total number of packets sent from each sensor node in 

the WSN system. Details of topology model and application model applied by 

EACS(TS) are discussed in Section 5.2.  

 

3.3 Comparative Measures 

Experiments were conducted to determine how different parametric measurements 

such as β, ρ, α and qo will affect the performance of the EACS(TS) algorithm. The 

best values of these parametric measurements were selected and used in the rest of 

the experimental process. β is used as a heuristic value in state transition rule while 

qo is the value that determines the exploration and exploitation of sensor nodes. 

Meanwhile, ρ is the coefficient value that controls the pheromone range in the local 

pheromone update and α is the evaporation rate to be used in global pheromone 

update. 
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Experiments were also conducted to test the performance of the EACS(TS) algorithm 

in routing packets from source node to destination node in WSNs. The purposes of 

the experiments are to evaluate and compare the performance of EACS(TS) 

algorithm with the other single and hybrid algorithms in terms of success rate, packet 

loss rate, throughput, latency, energy consumption and energy efficiency. High 

success rate and low latency value indicate a good throughput value where a large 

number of packets can be submitted within the period. At the same time, a good load 

balancing routing algorithm can be measured by a low latency and energy 

consumption (Zhou et al., 2017; Yousif et al., 2018). 

 

Most researchers only compared and evaluated their proposed algorithms in one 

simulation environment (as mentioned in Section 2.5.1 and Section 2.5.2) such as 

Zungeru (2013) that performed the experiment using 9 sensor nodes and Gupta 

(2018) that only considered the energy aspects when using energy consumption and 

residual energy as a performance metrics. At the same time, many hybrid algorithms 

only compared and evaluated their performances with single algorithm. These 

situations limit the evaluation of the overall performance of the routing algorithms. 

In order to solve these problems, several set of experiments have been done to 

evaluate the performance of EACS(TS) in various simulation environments such as 

different number of sensor nodes, different size of packets, different simulation time, 

and different energy level of sensor nodes. The performance of EACS(TS)  has also 

been compared with  other single and hybrid swarm intelligence algorithms.  

 

Two sets of experiments were performed to compare the performance of EACS(TS) 

with the single swarm intelligence approach in WSN. In the first set of experiments, 
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EACS(TS) was compared with traditional swarm intelligence algorithms which are 

EEABR, BeeSensor and Termite-hill where packets are submitted to the destination 

node by using different number of sensor nodes in 300 seconds. Meanwhile, the 

effect of simulation time to the performance of routing algorithms was investigated 

in the second set of experiments where the performance of each algorithm is captured 

at 20, 40, 60, 80 and 100 seconds. In this set, the performance of EACS(TS) was 

compared with IEEABR, EEABR, BeeSensor and Termite-hill.  

 

Four set of experiments were also conducted to compare the performance of 

EACS(TS) with the hybrid swarm intelligence algorithms in WSN. Various 

simulation parameters were used in all experiments to observe the effect on the 

whole system such as the number of sensor nodes, simulation time, energy level and 

size of submitted packets. The performance of EACS(TS) was compared with other 

hybrid swarm intelligence approaches such as FSACO, ICSCA, BeeSensor-C, and 

PSO-C.   

 

The routing process was repeated until all packets were successfully submitted to the 

destination node or until all sensor nodes had died. The main aim is to show the 

strength and weakness of the proposed routing algorithm. The results of the other 

algorithms were taken from the experiments and reliable, published literature for 

validation purposes. The performance of all tested algorithms was recorded and 

analysed in order to observe the strengths and weaknesses among algorithms. The 

experimental results were recorded and transformed into graph form for better 

understanding and readability. 
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3.4 Summary 

The main objective of this research is to develop an efficient WSN routing algorithm 

that combines enhanced ACS and TS algorithms. The proposed framework 

developed contains four main phases, namely, node selection phase, local search 

phase, exploration control phase, and exploitation control phase that are used to 

establish the proposed EACS(TS) algorithm.  

 

The node selection phase that aims to produce the sensor node selection strategy is 

the element in the framework that helps ants to decide either to explore new sensor 

nodes or exploit previously used sensor nodes in forwarding packets to the 

destination node. This decision is based on the capabilities of sensor nodes that are 

calculated by a state transition rule. 

 

The exploration control phase in the research framework helps EACS(TS) in 

preventing hotspot problems during the routing process. Hotspot problems occur 

when the load on the system is not equally distributed, leading to certain sensor 

nodes being under heavy traffic load. This phase is controlled by the local 

pheromone update that is applied by the forward ant to reduce the pheromone 

intensity of the visited sensor nodes to encourage exploration to other potential 

sensor nodes.  

 

The exploitation control phase can increase the exploitation of previously used 

sensor nodes. This phase is implemented by a backward ant by increasing the 

pheromone intensity of optimal sensor nodes by applying a global pheromone 
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update. This approach can reduce the searching time of ants in the next iteration 

while reducing the packet loss rate and delay.  
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CHAPTER 4 

ENHANCED ANT COLONY SYSTEM AND TABU SEARCH 

ALGORITHM 

 

This chapter presents the proposed enhanced ACS with TS algorithm, which is called 

EACS(TS). The optimal routing path that uses less time and energy is the main 

consideration of EACS(TS) during packet submission. Balancing the distribution of 

sensor nodes is also considered in the proposed algorithm to prevent hotspot 

problems during the routing process. Section 4.1 discusses in detail the enhancement 

of ACS called EACS in terms of node selection strategy and pheromone update 

technique. The objectives of EACS are to increase the throughput and energy 

efficiency of sensor nodes. Tabu search implementation and how TS works in 

preventing the forward ant from getting trapped in a blind alley during the node 

selection strategy and, at the same time, reducing the delay and packet loss problem 

is discussed in Section 4.2. Section 4.3 describes the details of the proposed 

EACS(TS) approach that combines EACS as the main algorithm and the TS 

algorithm as the subordinated algorithm in searching the optimal path in WSNs. The 

design and implementation of EACS(TS) are discussed in Section 4.4 while the 

summary of this chapter is presented in Section 4.5. 

 

4.1 Ant Colony System Implementation  

In this section, the enhancement of ACS algorithm in WSNs, namely EACS, is 

discussed. EACS is based on the ACS proposed by Dorigo and Gambardella (1997a, 

1997b) as the first variation of AS to improve the performance of ant routing in TSP 

and some other problems. EACS uses the concept of ACS in node selection strategy 
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which includes exploration and exploitation based on state transition rules. The 

calculation to update the pheromone value of the selected path in the proposed 

algorithm is based on the combination of local pheromone update and global 

pheromone update techniques. At the same time, EACS also adopted and adapted the 

concept used by the EEABR algorithm, proposed by Camilo et al. (2006), in terms of 

node selection strategy to submit packets from the source node to the destination 

node in WSNs. EEABR that is based on the AS algorithm uses the concept of the 

forward ant to find the destination node and backward ant to go back to the source 

node before submitting packets.  

 

 Figure 4.1 depicts an overview of a network used by ants in a WSN system. Sensor 

nodes are represented by a circle and ants that carry packet information move from 

one sensor node to another in finding the destination node. At this moment, local 

optima problem may happen when searching ant gets trapped in a blind alley during 

node searching process. The proposed algorithm is expected to reduce the local 

optima problem by preventing ants from visiting previously visited nodes and nodes 

that do not have active neighbours. Further discussion about local optima is 

presented in Section 4.2 and illustrated in Figure 4.2, Figure 4.3, and Figure 4.4.  
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Figure 4.1. Ants in a WSN system 

 

The forward ant is launched from the source node to find an optimal path to the 

destination node. The information of visited sensor nodes is stored in a memory 

carried by the ant. The state transition rule adopted and adapted from the ACS 

algorithm proposed by Dorigo and Gambardella (1997a, 1997b), is used in selecting 

the next sensor nodes. The modification has been done in terms of heuristics value 

where EACS(TS) considered the remaining energy of sensor nodes during node 

selection phase to increase the energy efficiency. Sensor nodes with higher 

remaining energy have high possibilities to be selected as compared to the nodes 

with lower remaining energy. State transition rule is calculated using the following 

equation: 

 

𝑃𝑘
(𝑟,𝑠) = {

𝑎𝑟𝑔𝑚𝑎𝑥 {[𝜏(𝑟,𝑠)][𝐸𝑣]𝛽}           𝑖𝑓 𝑞 ≤ 𝑞0      (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)
        (4.1)
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where 𝑃𝑘
(𝑟,𝑠) is the probability value of ant k that chooses to move from node r to 

node s. 𝜏(𝑟,𝑠) is the pheromone trail of the edge between node r and node s. 𝐸𝑣 is the 

heuristics value given by 1

𝐸𝑟
, where 𝐸𝑟 is the remaining energy of node s. β is an 

important parameter in controlling the heuristics information in the state transition 

rule. On the other hand, q is a random variable ranging from 0 to 1, qo (0≤qo≤1) is a 

parameter to control the possibility of exploration or exploitation and S is a random 

variable based on the probabilistic decision rule using the following equation:   

 

𝑆𝑘
(𝑟,𝑠) =

[𝜏(𝑟,𝑠)][𝐸𝑣]𝛽

∑[𝜏(𝑟,𝑠)][𝐸𝑣]𝛽                                                  (4.2) 

 

The local pheromone update is applied by the forward ant on each visited node 

before the destination node to reduce the pheromone intensity on this node while 

encouraging the use of alternative nodes to the destination node. This approach 

would reduce the hotspot problem by encouraging exploration of other sensor nodes 

so that the energy depletion happens at an almost similar rate which will eventually 

increase the network lifetime. If the exploration is not encouraged, some sensor 

nodes will be over-utilized and drastically drain their energy as compared to other 

un-utilized sensor nodes. The proposed local pheromone update is defined by:  

 

𝜏(𝑟,𝑠) = (1 − 𝜌) ∗ (𝜏(𝑟,𝑠)) + 𝜌(𝐸𝑖−𝐸𝑟)                        (4.3) 

 

where ρ is the coefficient value (0≤ρ≤1) that can control the range of pheromone 

values, 𝐸𝑖  is the initial energy of sensor node, and 𝐸𝑟 is the remaining energy of 

sensor node. The previous local pheromone update formula as stated in Section 2.3 
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only considers the pheromone value whereas in EACS(TS), the pheromone value and 

energy level of sensor nodes become the important part in calculating the local 

pheromone update. Both parameters are used to identify and reduce the pheromone 

value on over-utilized sensor nodes so that the packets can be distributed fairly 

throughout the system.  

 

The forward ant will be transformed into a backward ant once it reaches the 

destination node. The backward ant is responsible for performing a global 

pheromone update to the optimal path which consists of nodes that it traversed from 

source node to destination node. This update is done through backward movement to 

increase the pheromone value so that the path becomes more attractive to following 

ants. The number of visited nodes and pheromone value are considered in calculating 

the global pheromone update formula. The global pheromone update is adopted and 

adapted from Dorigo and Stűtzle (2004) and defined by: 

 

𝜏(𝑟,𝑠) = (1 − 𝛼) ∗ 𝜏(𝑟,𝑠) + 𝛼(∆𝜏(𝑟,𝑠))                                   (4.4) 

 

where α (0<α<1) is the evaporation rate value and ∆𝜏(𝑟,𝑠) is defined by the following 

formula: 

∆𝜏(𝑟,𝑠) =
1

𝑁𝑟
                                                           (4.5) 

 

where Nr is the number of visited nodes from node r until the destination node. As 

compared to the global pheromone update formula stated in Section 2.3 which only 

considers the length of the shortest path, EACS(TS) calculates the pheromone based 
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on the number of visited nodes from the destination node to the current node. This 

approach can update the pheromone value based on the position of each sensor nodes 

where the nodes near the destination node receive more pheromone value compared 

to the nodes that are far from the destination node. This will reduce the dead node 

problem of over-utilized node near the destination node and at the same time 

encourage the optimal sensor nodes to be selected again in the next iteration.    

 

4.2 Tabu Search Implementation 

The concept of the TS algorithm in this proposed algorithm is adopted and adapted 

from the research by Orojloo and Haghighat (2016) where it is used to store the best 

known solution and better solutions will overwrite previous best known solutions in 

the Tabu list whereas in EACS(TS), the known bad solutions will be captured in the 

Tabu list so that they will not be re-selected. The implementation of the TS algorithm 

consists of four parts: 

  

a) Initial Solution 

In this research, the initial solution in the TS is passed from the bad solution found 

by the ant in the EACS algorithm to improve the ant routing scheme by avoiding 

known bad solutions which will eventually improve the performance of this hybrid 

approach. 

 

b) Objective Function  

The objective function of this TS approach is to prevent the ant from getting trapped 

in a bind alley. There are situations where the forward ant is not able to reach the 

destination node and the remaining neighbour nodes are already visited (Yoshikawa 
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& Otani, 2010). To achieve this objective, the ant will put the node with mentioned 

conditions in the Tabu list and return to the previous node to find the potential 

neighbour node.  

 

c) Move 

Searching the neighbour of the current sensor node in order to identify the potential 

neighbour node and Tabu node is a critical part in the TS algorithm. This research 

work applied two techniques to find the next neighbours which are move-backward-

insert and move-forward. The move-backward-insert technique is invoked when the 

current node will lead to local optima, either no potential neighbour nodes or the only 

available neighbour node is already visited. After detecting these criteria, the ant will 

perform a backward movement to its previous node and the current node will be 

inserted into the Tabu list. The expiration function is based on the position where the 

current Tabu list will be moved adjacently to free up the first position and the last 

position will be overwritten with the second last position before insertion is 

performed. On the other hand, the move-forward technique is performed when the 

current node is not recorded in the Tabu list and has potentially unvisited neighbour 

nodes. The ant will deposit its pheromone and make a move to the next node. By 

using these techniques, the path that will not lead to local optima will likely be 

constructed by the ant and could become the optimal path to the destination node. 

 

d) Neighbourhood Search 

The neighbourhood search is performed by the forward ant checking the routing 

table at the current node to find active and non-visited neighbour nodes. As shown in 
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Figure 4.2, when the ant reaches Node F, it will check if there are other unvisited 

neighbour nodes to move forward and only visited Node B is available. 

 

 

Figure 4.2. Situation where forward ant is trapped in the blind alley 

 

The ant will check if Node B has been visited and when the condition is true, Node F 

is inserted into the Tabu List and the forward ant will initiate a backward movement 

to the previous node as shown in Figure 4.3. 

 

 

Figure 4.3. Situation where node F is excluded by forward ant from moving 
destination candidate 
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As depicted in Figure 4.4, the same process will be repeated by the ant at Node E and 

when the same condition as Node F is true, Node E is inserted into the Tabu List and 

backward movement is initiated until the ant can find other unvisited nodes.  

 

 

Figure 4.4. Situation where forward ant returns to the previous node 

 

e) Aspiration Criteria 

There are two criteria that control the Tabu movement in this proposed algorithm. 

First, if the movement of the forward ant to the previous sensor node can find the 

potential neighbour node, then accept the movement. Otherwise, if the previous 

sensor node has no moving candidate, the neighbour node as well as the previous 

solution, the ant will put the previous sensor node into the Tabu list and move further 

to the previous sensor node. These processes will be repeated until the potential 

neighbour node appears and the destination node is found.   

 

f) Termination Rule 

In this study, fixed simulation time is used as the stopping criteria. To make a fair 

comparison with other algorithms, the simulation parameters are standardized among 

algorithms.    
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4.3 Enhanced Ant Colony System and Tabu Search Algorithm 

The concept of hybridizing swarm intelligence with local search has been inspired 

from the research done by Stützle and Hoos (1999) that combined MMAS with local 

search to improve the performance of traditional MMAS. Although there is no hybrid 

algorithm that combines ACS and Tabu search in WSN, the concept in hybridizing 

these two metaheuristics algorithms have been successfully applied in the other 

research domain such as TSP (Yoshikawa & Otani, 2010), grid computing 

(Alobaedy, 2015), and cloud computing (Liu, Zhang, Cui, & Li, 2017). In 

EACS(TS), low level hybridization is applied which combines ACS with TS in 

constructing the optimal path to submit packets from the source node to the 

destination node. Tabu search that is based on a systematic process (Suzuki & 

Cortes, 2016) is suitable to be combined with ACS in enhancing the exploration 

mechanism.  

 

In this approach, both algorithms will interchange their inner procedures where ACS 

is the main algorithm and TS is the subordinated algorithm. At first, ACS will 

perform exploration or exploitation to construct the path, followed by the local 

pheromone update on each visited node. During the routing process, ACS will 

initiate the TS where the bad solution produced by ACS is captured in the Tabu list 

which will be used by TS to reduce the possibility of ACS to explore the known bad 

solutions. By doing this, the energy will be well utilized by giving opportunity for 

the next ants to explore potential good solutions rather than trying to leverage known 

bad solutions. In this case, good solutions from ACS will be complemented with 

avoidance of known bad solutions captured by TS to preserve the energy as well as 

ensure the next ant exploration has higher possibility of constructing a good or better 
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solution. Once the good solution is constructed, ACS will perform the global 

pheromone update using backward movement to every node within the path until the 

source node. The updated pheromone in each node will be referenced by the next 

ants. Figure 4.5 represents the flow chart while Figure 4.6 represents the pseudocode 

of the proposed EACS(TS) algorithm.  

 

In Figure 4.5, the forward ant is created at the source node and forwarded as an agent 

to find an optimal path from source node to destination node. The task for the 

forward ant is to move from one sensor node to another with the aim of discovering 

the best sensor node to be assigned to forward the packet with minimal possibility of 

packet loss. The information of every visited node is saved in the ant’s memory 

throughout the journey. Before the forward ant moves from the source node, the 

routing table will be initialized, and the Tabu List updated by the previous ant will be 

loaded into the ant’s memory. The condition of each neighbour node will be 

evaluated by the ant using information in the routing table.  

 

The ant will choose the next best node based on the pheromone and heuristics value 

using the state transition rule (refer to Equation (4.1) and Equation (4.2)) with 

reference to the routing table in each sensor node. The neighbour node with the 

highest probability value will be selected in the exploitation rule while random 

neighbour nodes will be selected in the exploration rule. When the node is selected, 

the ant will check if the node has been visited or exists in the Tabu List. If any such 

condition is true, the ant will repeat the node selection step using the state transition 

rule until the best node is found. If the current node is not a destination node, the ant 

will check if the node has an active neighbour in the routing table. If no active 
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neighbour is found, the node will be inserted into the Tabu list and the ant will 

initiate a backward movement to the previous node to repeat the node selection step. 

Then, the ant will make a move to the selected node and perform local pheromone 

update using Equation (4.3) to the node. The purpose of the local pheromone update 

is to make the visited sensor node less attractive to the following ants as well as 

encourage the exploration of other sensor nodes. This approach can prevent the 

hotspot problem on certain sensor nodes and increase the network’s lifetime. 

 

As the ant tries to construct the path to the destination, each visited node will be 

saved in its memory until the destination node is found. Once found, the forward ant 

will be transformed into the backward ant which will back trace the path constructed 

by the forward ant until the source node. The backward ant is responsible to update 

the pheromone of each node visited by the forward ant. Global pheromone update is 

performed using Equation (4.4) to all previously traversed nodes in the optimal path 

to increase pheromone value so that the path becomes attractive to following ants. 

The backward ant will carry the Tabu list and routing path which will be stored at the 

source node before being terminated. In this last stage, the path from source node to 

destination node should have been constructed and the data packet can be forwarded 

via the optimal path constructed. At regular intervals, the next initiated ant will refer 

to the Tabu list and routing table updated by the previous ant to either exploit the 

current optimal path or explore alternative paths if the current optimal path is no 

longer active due to a dead node or low remaining energy.  
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Figure 4.5. Flowchart of EACS(TS) algorithm 
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Figure 4.6. Pseudocode of EACS(TS) algorithm 

 

 

Initialize forward ant; 

Initialize routing table; 

Get list of neighbour nodes and Tabu list; 

Apply state transition rule; 

IF (q ≤ q0) 

THEN Select the neighbour node with highest probability; 

ELSE Random node selection among neighbour nodes; 

ENDIF; 

IF (Node previously visited) 

THEN Find another node;  

ELSE 

IF (Node exists in Tabu list) 

THEN Find another node; 

ELSE Move to selected node; 

ENDIF; 

ENDIF; 

IF (Node = Destination) 

THEN Transform forward ant into backward ant; 

ELSE 

IF (Node has active neighbors) 

THEN Perform local pheromone update on selected node; 

ELSE Insert node into Tabu list; 

Initiate backward movement; 

ENDIF; 

ENDIF;  

Check routing list in ant memory; 

Move to selected node; 

IF (Node = source) 

THEN Update routing table for data packet transfer and Tabu list in source node; 

Terminate ant; 

ELSE Perform global pheromone update on selected node;  

ENDIF; 
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EACS(TS) differs from other hybridization algorithms (Yoshikawa & Otani, 2010; 

Liu et al., 2017) that only used Tabu list during node searching process where 

EACS(TS) used the Tabu list to store bad sensor nodes and routing table to store the 

pheromone value. Both elements are important as reference to the ant in the next 

iteration to prevent the local optima problem and to reduce the latency during node 

selection phase. EACS(TS) also proposed the expiration function to update the Tabu 

list by freeing up the oldest sensor nodes where the newest sensor nodes are added to 

the Tabu list. In addition to that, the parameters to calculate the state transition rule 

and pheromone update formula are also different. Research by Yoshikawa and Otani 

(2010) used pheromone value and distance while Alobaedy (2015) used pheromone 

value, number of task and number of machines to calculate these elements. On the 

other hand, EACS(TS) considered the pheromone value, energy level and path length 

of visited sensor nodes with the objective to improve the network lifetime by 

reducing the latency and energy consumption.  

 

4.4 EACS(TS) Evaluation Design and Implementation 

In this study, the EACS(TS) algorithm was integrated in the Prowler to simulate and 

validate the performance of the algorithm in WSN environments. Figure 4.7 

illustrates the high-level sequence of the simulation process which shows how the 

EACS(TS) routing algorithm works. At first, a forward ant is generated at the source 

node and it will find the list of neighbour nodes at the current node regardless of 

whether the node is a source node or not. The returned list contains basic information 

such as distance, unique node identifier, pheromone value, and remaining energy. 

Based on these information and verification of node existence in Tabu list, the best 

node will be selected. Once confirmed, local pheromone update will be applied and 
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ant will move to the confirmed node. Once moved, the ant will check whether the 

new node is a destination node or normal node. However, in the event where the 

current node does not have active neighbours or the only active neighbour is already 

visited, backward movement will be initiated as illustrated in Figure 4.7. Each 

movement will be recorded in ant’s memory to guide the backward movement. If it is 

a normal node, the next node selection process will be repeated. On the other hand, if 

the node is a destination node, the forward ant will be transformed into backward ant 

to move back to the source node using the path constructed by the forward ant. 

During this movement, global pheromone update will be applied to increase the 

pheromone intensity of nodes along current optimal path. Once the backward ant 

reaches at the source node, it will save its memory that contains the Tabu list. 

Finally, data packet will be forwarded from the source to the destination node using 

optimal path as depicted in Figure 4.8. 
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Figure 4.7. High-level workflow of EACS(TS) algorithm in constructing routing 

path 

 

As illustrated in Figure 4.7, the backward movement by the forward ant is performed 

only when the current node does not have active neighbours or the only active 

neighbour is already visited. This process is crucial to avoid the ant from getting 

trapped in a dead loop. In addition to typical node selection process, the node that 

meets these criteria will be marked as Tabu node and stored in Tabu list carried by 

the ant before backward movement is performed. Tabu nodes will not be selected 

permanently or temporarily during node selection process. 
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Figure 4.8. High-level workflow of EACS(TS) algorithm in performing backward 
movement 
 

Data packet will be forwarded as soon as the backward ant reaches at the source 

node. As shown in Figure 4.8, the source node will refer to its routing table to 

identify the neighbour node with the highest pheromone updated by the backward 

ant. Once identified, data packet will be forwarded to the next node and the same 

process to identify the next optimal node from the routing table will be repeated until 

data packet reaches at the destination node. Each individual node has its own routing 

table which is updated by the ant through global and local pheromone update. It is 

possible that multiple data packets may be forwarded simultaneously in which each 

individual data packet will follow the same process.  
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 Figure 4.9. High-level workflow of EACS(TS) algorithm in submitting data packet 

 

The detailed steps of the simulation process are as follows: 

1. Prowler is responsible to trigger events that consist of simulation parameters and 

routing layer to the WSN system which will invoke the EACS(TS) layer.  

2. EACS(TS) will create a forward ant to explore and find the best sensor nodes in 

making an optimal routing path in the WSN system.    

3. Ants will read a routing table and calculate the state transition rule of sensor node 

based on the pheromone value and heuristic value. 

4. Based on the state transition rule, the next sensor node to be adopted by the ant 

will be selected either by exploitation or exploration.  

5. The sensor node will be selected if it is not captured in the Tabu list and not yet 

been visited. Otherwise, the forward ant will find another potential sensor node.  
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6. If the sensor node is not a destination node and has active neighbour nodes, a 

local pheromone update will be performed to improve the load balancing among 

potential sensor nodes. Otherwise, this sensor node will be put into the Tabu list 

and backward movement will be initiated.  

7. When the ant has found the destination node, the forward ant will be transformed 

into a backward ant. 

8. The backward ant will move back to the source node by referring to the routing 

list in the ant’s memory and, at the same time, the pheromone value of previously 

visited sensor nodes in the optimal path will be updated by the global pheromone 

update. 

9. After the backward ant reached at the source node, the routing table and Tabu list 

at the source node will be updated. 

10. EACS(TS) will initiate the packet based on the path constructed and saved by the 

backward ant in the routing table at the source node. 

11. Routing results will be sent back to the Prowler for compilation and output. 

 

EACS(TS) performed based on the low hybridization approach between EACS and 

TS is a new variation of the ant-based routing algorithm in WSNs. EACS acts as the 

main algorithm while TS is the subordinated algorithm in this hybrid proposed 

algorithm. The aims of EACS(TS) are to reduce the energy consumption of sensor 

nodes, minimize the submission time of packets to destination nodes, increase the 

packet delivery success rate and, at the same time, avoid local optima during the 

routing process.   

 



  97 
  

4.5 Summary 

Routing packets in WSNs are complicated due to the heterogeneous nature and 

distribution of sensor nodes. An EACS(TS), that is a hybridization of the ACS and 

TS algorithm, is proposed to improve the routing path construction by increasing the 

possibility of the optimal sensor nodes to be used in transmitting the packets from the 

source node to the destination node with the aim of reducing packet loss rate, 

latency, and energy consumption. There are two types of ant in EACS(TS), the 

forward ant that is responsible to find the path from the source node to the 

destination node, and the backward ant that performs backward movement from the 

destination node to the source node while increasing the pheromone intensity of the 

path. EACS(TS) applies a state transition rule in the node selection strategy which 

includes exploration (randomly explore potential neighbour nodes) and exploitation 

(leverage neighbour node with the highest probability influenced by the pheromone 

and visibility). Pheromone and visibility of neighbour nodes are stored in the routing 

table at each node which is updated by the ant based on information broadcasted by 

the neighbour nodes. 

 

TS is applied to prevent local optima problems during the path construction process. 

Nodes with no potential neighbour node will be put into the Tabu list which is used 

by the ant to avoid becoming trapped in a blind alley. Local pheromone update is 

applied by the forward ant to each visited node to reduce the pheromone intensity on 

the node to encourage the exploration of other potential sensor nodes. The forward 

ant will then be transformed into a backward ant once it reaches the destination node. 

The backward ant will move back to the source node by referring to the list of 

traversed nodes in the ant’s memory. Global pheromone update is applied by the 
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backward ant to all previously traversed nodes within the optimal path to increase the 

pheromone intensity so that the path becomes attractive to the following ants in the 

next iteration. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

This chapter presents the experimental results of the proposed EACS(TS) algorithm 

with various controlled parameters on a WSN environment. Section 5.1 discusses the 

performance evaluation criteria that are used to evaluate the performance of the 

proposed algorithm and other benchmark algorithms while the experimental design is 

presented in Section 5.2.  Section 5.3 covers the parameter tuning experiment to 

identify the optimal values for β, ρ, α and qo to be used by EACS(TS). Experimental 

results and analysis are presented in Section 5.4 that consists of the swarm 

intelligence approaches and hybrid approaches in WSNs. Finally, the summary of the 

chapter is concluded in Section 5.5.  

 

5.1 Performance Evaluation Criteria 

The performance evaluation criteria are the main elements in evaluating the 

performance of the proposed algorithm. Minimizing the utilization of energy on each 

sensor node and reducing the time taken to submit packets from source node to 

destination node are the main objectives of WSN routing algorithms. A good routing 

algorithm also considers the packet loss and throughput value of submitted packets. 

Performance evaluation criteria used for the whole experiments comprise of success 

rate, packet loss rate, throughput, latency, energy consumption, and energy 

efficiency. The purposes of applying different measures in the different experiments 

are to evaluate the stability of EACS(TS) in  various conditions and at the same time 

compare its performance with  other swarm intelligence algorithms.   
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Success rate is measured by the number of successful data packets received by 

destination node per number of packets sent from the source node. Success rate is 

measured based on equation 5.1.  

 

Success Rate =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
                              (5.1) 

 

Packet loss rate is calculated based on the number of unsuccessful received packets 

per number of submitted packets by source node as shown in Equation 5.2.    

 

Packet Loss Rate =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
                         (5.2) 

 

Throughput measures the number of data packets or messages that successfully pass 

through from the source node to the destination node at a specific unit of time. It is 

an important performance metric to show how fast the packets can flow in the WSN 

system. In the experiments, the throughput is measured by the number of packets 

successfully passed to the destination node per second of simulation time. 

 

Latency is the time taken to send a message from source node to destination node 

where it can be measured per each individual destination node or per the whole WSN 

system. Length of transmission queues, number of hops and random delays at the 

MAC layer are considered in measuring the latency value. A good load balancing 

routing algorithm can be measured by a low latency and low energy consumption 

during packet transmission (Zhou et al., 2017; Yousif et al., 2018). 
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Energy consumption is measured by the total used energy of all sensor nodes while 

transmitting and processing submitted packets from the source node to the 

destination node (Duarte-Melo and Liu, 2002). The energy used for communication 

which includes idling, transmitting and receiving packets is used in measuring the 

energy consumption. Low level energy consumption during packets transmission can 

prolong the network lifetime of the whole system.  

 

According to the research done by Zungeru et al. (2012a), energy efficiency is the 

ratio of total number of successful packets received at the destination node per total 

energy used in the whole system. In this formula, the higher the value of energy 

efficiency, the longer the network lifetime of the system and vice versa.  Energy 

efficiency is measured based on Equation 5.3. 

 

Energy Efficiency =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒𝑑
                           (5.3) 

 

There is also a different formula to calculate energy efficiency as applied by Saleem 

et al. (2012) and Cai et al. (2015) where energy efficiency is measured by the energy 

consumed in submitting 1000 bits data packets to a destination node. By applying 

this formula, the lower the energy efficiency, the longer network lifetime of the 

system and vice versa. Since both equations use the same information but differ in 

terms of the position of numerator and denominator, it can be concluded that the 

objective of energy efficiency measurement is the same. Both of the energy 

efficiency formulas were applied in this research work.     
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5.2 Experimental Design 

Experiments were conducted to evaluate the parameters that result in the optimal 

performance of the proposed EACS(TS) algorithm. The effects of different values of 

EACS parameter were investigated in Section 5.3 to obtain the best value for β, ρ, α 

and qo to be used in the subsequent experiments.  

 

The performance of the EACS(TS) algorithm was compared with the other bio-

inspired algorithms comprised of EEABR (Camilo et al., 2006), Termite-hill 

(Zungeru et al., 2012a) and Tabu Search (Orojloo & Haghighat, 2016).  The 

performance evaluation criteria, as explained in Section 5.1, include success rate, 

packet loss rate, throughput, latency, energy consumption, and energy efficiency. 

The basic simulation parameters used in all the experiments are highlighted in Table 

5.1.  

 

Table 5.1  

Simulation Parameters 

Data traffic Constant bit rate 

Data rate 250Kbps 

Maximum hops Infinity 

Nodes energy 50J 

Packet length 512 bits 

 

The characteristics of the source node and destination node are shown in Table 5.2 

and Table 5.3.  
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Table 5.2 

Source node characteristics 

Source type Static 

Centre type Random 

Radius 1 

Rate 4 

Random rate 0 

 

Table 5.3 

Destination node characteristics 

Destination type Static 

Centre type Random 

Radius 1 

Rate 0.5 

Random rate 0 

 

Table 5.4 shows the parameter values for the TS algorithm that were applied in this 

research work.  

 

Table 5.4 

TS parameter values 

Parameters Value 

Search method Move-backward-insert, move-forward 

Tabu size 5 
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5.3 EACS(TS) Parameter Tuning 

A set of experiments was conducted to discover the effects of parameters on the 

EACS(TS) algorithm. The objective of these experiments is to find the best value for 

β, ρ, α, and qo used in the EACS(TS) algorithm before it can be compared with other 

algorithms. Experiments have been done iteratively by investigating one parameter 

for each set of experiments. First, the best value for β to be used in the state transition 

rule is obtained followed by the qo value that determines the probability of 

exploration and exploitation of sensor nodes. Then, the best value for ρ to be applied 

in local pheromone update is investigated followed by the best value for α to be used 

in global pheromone update. The success rate, throughput, latency, energy 

consumption, and energy efficiency are evaluated for each controlled parameter. In 

this section, the Zungeru et al. (2012a) formula was applied in measuring the energy 

efficiency of sensor nodes in the system.    

 

5.3.1 Effect of β value  

The β value is an important element that can influence the heuristics information in 

the state transition rule. Based on Dorigo and Gambardella (1996), the ideal value of 

β must be more than 1. Experiments were completed to evaluate the best value of β 

ranging from 1 to 10 that will give the best success rate, throughput, latency, energy 

consumption and energy efficiency in EACS(TS). The results of the experiments are 

shown in Table 5.5 which shows that the best value for β for all performance metrics 

is 4. 
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Table 5.5 

Effect of β value to the EACS(TS) algorithm 

  β value 

  1 2 3 4 5 6 7 8 9 10 

Packet Received 311 303 312 333 285 300 278 298 272 271 

Success Rate 0.79 0.77 0.79 0.84 0.72 0.76 0.70 0.75 0.69 0.68 

Packet Loss Rate 0.21 0.23 0.21 0.16 0.28 0.24 0.30 0.25 0.31 0.32 

Latency 0.06 0.08 0.06 0.03 0.12 0.06 0.09 0.06 0.11 0.06 

Throughput 3.14 3.06 3.15 3.37 2.88 3.03 2.81 3.01 2.75 2.74 

Energy Consumption 22.3 26.10 22.15 17.73 34.35 21.13 28.22 20.52 30.61 20.97 

Energy Efficiency 13.95 11.61 14.08 18.78 8.30 14.20 9.85 14.52 8.89 12.92 

 

The detailed results of Table 5.5 are provided in Appendix I for success rate, 

Appendix II for throughput, Appendix III for latency, Appendix IV for energy 

consumption, and Appendix V for energy efficiency. The optimal β produced the 

highest number of packets received with low energy consumed which will eventually 

lead to higher energy efficiency to the whole network.  

 

5.3.2 Effect of qo value  

The state transition rule, also known as pseudo-random proportional rule, is the key 

element in deciding the next sensor node to be selected by the moving ant. The best 

sensor node with high pheromone value and high energy level can be obtained by the 

state transition rule. Exploitation of the previous best sensor node occurs when q ≤ 

qo, otherwise the ant will randomly explore the new possible sensor node. q is a 

random number distributed within 0 and 1, and qo is a parameter (0 ≤ qo ≤ 1).       
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The value of qo ranging from 0 to 1 was investigated by a set of experiments. Based 

on Table 5.6, the best value of qo to be used by EACS(TS) is 0.5. The results in 

Table 5.6 are also displayed for all performance metrics which comprise success rate, 

throughput, latency, energy consumption and energy efficiency in Appendix VI, 

Appendix VII, Appendix VIII, Appendix IX, and Appendix X, respectively. There is 

a huge different in value in terms of energy efficiency when qo is 0.5. 

 

Table 5.6 

Effect of qo value to the EACS(TS) algorithm 

  qo value 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Packet Received 260 306 283 305 302 345 302 296 318 301 310 

Success Rate 0.66 0.77 0.71 0.77 0.76 0.87 0.76 0.75 0.80 0.76 0.78 

Packet Loss Rate 0.34 0.23 0.29 0.23 0.24 0.13 0.24 0.25 0.20 0.24 0.22 

Latency 0.12 0.06 0.09 0.06 0.06 0.03 0.06 0.09 0.06 0.09 0.06 

Throughput 2.63 3.09 2.86 3.08 3.05 3.49 3.06 2.99 3.22 3.04 3.14 

Energy Consumption 32.26 21.92 27.78 21.30 20.74 14.79 20.97 28.76 20.89 26.84 21.83 

Energy Efficiency 8.06 13.96 10.19 14.32 14.56 23.32 14.40 10.29 15.22 11.22 14.20 

 

5.3.3 Effect of ρ value  

The aim of local pheromone update that is applied during solution construction is to 

reduce the attractiveness of the visited sensor nodes to the following ants. This will 

encourage the exploration of the unvisited nodes to improve the load balancing 

among sensor nodes. Based on Stützle et al. (2011), the ρ value in the local 

pheromone update formula is an important element in reducing the pheromone value 



  107 
  

of sensor nodes where 0 ≤ ρ ≤ 1. A set of experiments was undertaken to investigate 

the best ρ value to be used by EACS(TS) in the local pheromone update formula.  

 

Based on Table 5.7, the best value for ρ is 0.3 where the results are displayed in 

Appendix XI for success rate, Appendix XII for throughput, Appendix XIII for 

latency, Appendix XIV for energy consumption, and Appendix XV for energy 

efficiency. These results indicate that the best ρ value gives significant improvement 

in terms of energy efficiency and packet delivery ratio compared to the other ρ 

values. 

 

Table 5.7 

Effect of ρ value to the EACS(TS) algorithm 

 

ρ value 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Packet Received 303 307 287 326 312 314 308 287 313 310 301 

Success Rate 0.77 0.78 0.72 0.82 0.79 0.79 0.78 0.72 0.79 0.78 0.76 

Packet Loss Rate 0.23 0.22 0.28 0.18 0.21 0.21 0.22 0.28 0.21 0.22 0.24 

Latency 0.06 0.06 0.09 0.03 0.06 0.06 0.06 0.11 0.06 0.09 0.06 

Throughput 3.07 3.10 2.90 3.29 3.16 3.17 3.11 2.90 3.16 3.13 3.04 

Energy Consumption 21.92 21.61 27.29 16.19 21.00 21.08 22.39 30.71 20.81 27.13 22.63 

Energy Efficiency 13.83 14.21 10.52 20.13 14.86 14.90 13.75 9.35 15.04 11.42 13.30 

 

5.3.4 Effect of α value  

The aim of the global pheromone update applied by the backward ant is to make 

sensor nodes within the optimal path more desirable to the following ants. The 

function of the α value in the global pheromone update is to avoid unlimited 



  108 
  

accumulation of the pheromone trails on certain areas where 0 < α < 1. Experiments 

were completed to investigate the best value of α to be used by EACS(TS) in the 

following experiments. Table 5.8 indicates that 0.2 is the best value of α in all tested 

performance metrics. The results in Table 5.8 are presented in Appendix XVI 

(success rate), Appendix XVII (throughput), Appendix XVIII (latency), Appendix 

XIX (energy consumption), and Appendix XX (energy efficiency).   

 

Table 5.8 

Effect of α value to the EACS(TS) algorithm 

 
α value 

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Packet Received 299 345 317 312 286 252 299 312 286 

Success Rate 0.755 0.871 0.801 0.788 0.722 0.636 0.755 0.788 0.722 

Packet Loss Rate 0.245 0.129 0.199 0.212 0.278 0.364 0.245 0.212 0.278 

Latency 0.061 0.031 0.07 0.062 0.094 0.149 0.067 0.061 0.092 

Throughput 3.022 3.487 3.203 3.152 2.893 2.552 3.021 3.153 2.89 

Energy Consumption 20.41 14.79 24.68 22.56 28.03 36.76 24.87 20.64 28.23 

Energy Efficiency 14.65 23.32 12.84 13.83 10.2 6.855 12.02 15.11 10.13 

 

5.4 Experimental Results of EACS(TS) 

This section discusses the performance of EACS(TS) when compared with the other 

algorithm in terms of success rate, packet loss rate, throughput, latency, energy 

consumption, and energy efficiency.  Experiments consist of several subsections that 

include manipulation of number of sensor nodes and simulation time. Section 5.4.1 

covers detailed comparison among single swarm intelligence algorithms and hybrid 

algorithms are covered in Section 5.4.2. Even though EACS(TS) is a hybrid 
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algorithm, the comparison has been made with the most significant single swarm 

intelligence algorithms in WSN such as EEABR, BeeSensor, and Termite-hill. These 

algorithms has been adopted and adapted by many single and hybrid routing 

algorithm as a fundamental algorithm to improve the routing process in WSN 

(Zungeru, 2013; Cai et al., 2015). 

  

5.4.1 Experimental Results on Single Swarm Intelligence Algorithms 

In this first set of experiments, the performance of EACS(TS) with different numbers 

of sensor nodes are compared with EACS (Nasir, Ku-Mahamud, & Kamioka, 2018), 

EEABR, BeeSensor and Termite-hill based on the parameter specifications described 

in Table 5.9 which were adopted from Saleem et al. (2012). In this experiment, 

packets are submitted to the destination node by 49, 64, 81, and 100 sensor nodes in 

300 seconds. The objective of this experiment is to determine the effect of the 

number of sensor nodes in terms of success rate, packet loss rate, latency, and energy 

efficiency when routing packets in the same simulation time. 

 

Table 5.9 

Scheduling parameters to investigate the performance of the algorithms for different 
numbers of sensor nodes 
 
Parameters Values 

Routing algorithm EACS(TS), EACS, EEABR, BeeSensor, Termite-hill 

Number of nodes 49, 64, 81, 100 

Nodes energy 50 J 

Simulation Time 300 seconds 

Performance Metric Success rate, packet loss rate, latency, energy efficiency 
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The ultimate objective of most optimization algorithms is to achieve the highest 

success rate when submitting packets from the source nodes to the destination node. 

Figure 5.1 shows that EACS(TS) achieved the highest success rate when using 100 

sensor nodes and slightly lower than BeeSensor and Termite-hill when using 49, 64, 

and 81 sensor nodes in submitting packets. EACS which is another ACS variant also 

achieved good results during experiments. The combination of local pheromone 

update and global pheromone update in EACS encourages the exploration and 

exploitation of optimal routing path as compared to EEABR that only applied global 

pheromone update to increase the exploitation of the previous optimal path. At the 

same time, EACS does not consider the local optima problem which has a lower 

success rate as compared to EACS(TS) when routing packets in large size of 

network. This proved that the absence of Tabu search approach in EACS gives a 

significant impact to the number of packets received when routing packet in large 

area. EEABR only considered the attraction to the optimal sensor nodes without 

taking into consideration the hotspot and local optima problem that has the lowest 

success rate value compared to the other algorithms. The absence of local pheromone 

update in EEABR that could balance the packet distribution among sensor nodes 

gives a huge impact to the success rate value. In addition to representing the 

performance in the form of success rate, representation using loss rate is also 

possible, as shown in Figure 5.2.  
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Figure 5.1. Success rate of different algorithms by using different numbers of sensor 
nodes in 300 seconds 
 

Figure 5.2 shows the packet loss rate that contradicts the results in Figure 5.1 in 

which EACS(TS) has the lowest packet loss rate as compared to the others when 

using large numbers of sensor nodes. These results prove that EACS(TS) is suitable 

to be used in a large sized network. This is expected because in the large network, 

EACS(TS), that combines techniques in ACS and TS, is meant to avoid the local 

optima problem. This approach can prevent the ant from getting trapped in a blind 

alley by storing the node that has no potential neighbour node in the Tabu list. All the 

nodes stored in the Tabu list are marked as Tabu and cannot be used again in the 

future routing process. EACS(TS) takes high consideration of other potential 

neighbour nodes that can increase the possibility of packets’ arrival at the destination 

node while reducing packet loss. On the other hand, EEABR and Termite-hill do not 

effectively tackle the local optima problem in large sized network. 
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Figure 5.2. Packet loss rate of different algorithms by using different numbers of 
sensor nodes in 300 seconds 
 

Latency, which is the difference between the packet submission time and arrival 

time, is one of the key criteria to measure how well the algorithm can reduce 

stagnation problems. Figure 5.3 shows the comparison of latency between 

EACS(TS), BeeSensor, Termite-hill, and EEABR. As can be seen in the figure, 

EACS(TS) has the lowest latency value while Termite-hill has the highest latency for 

all numbers of sensor nodes. This is anticipated because EACS(TS) reduces the 

search and submission time by referring to the information stored in the routing table 
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in the Tabu list. The selection of node is ultimately controlled by the Tabu list 

regardless of the value of pheromone and residual energy. From these experiments, it 

can be concluded that even though BeeSensor achieved the second highest success 

rate, it still needs improvement in terms of time taken to submit the packets. This is 

because BeeSensor has the second highest latency value, which indicates the 

submission time of packets to destination node is not as effective as EACS(TS) and 

EEABR. On the other hand, since Termite-hill does not consider exploration to other 

potential sensor nodes during routing process, it has the highest latency value in all 

experiments. The termite in the next iteration will choose previous optimal sensor 

nodes without exploring to other potential sensor nodes. This will lead to the 

congestion problem during packet submission. Furthermore, it will consume more 

time to submit packets from source node to destination node during congestion. 

 

 

Figure 5.3. Latency of different algorithms by using different numbers of sensor 
nodes in 300 seconds 
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Energy efficiency is crucial to measure as it shows which algorithms can achieve the 

highest network lifetime. Figure 5.4 shows a comparison of energy efficiency 

between EACS(TS), EEABR, Termite-hill, and BeeSensor calculated based on the 

formula by Cai et al. (2015). This formula calculates energy efficiency based on the 

total energy consumed to submit 1000 bits of data to destination node where lower 

energy efficiency is better than higher energy efficiency. Based on the figure, it 

clearly shows that EACS(TS) has the lowest energy efficiency while Termite-hill has 

the highest energy efficiency in all scenarios. These results are expected because 

EACS(TS) can reduce the energy consumption of each sensor node by fairly 

distributing packets among potential sensor nodes. Exploitation of optimal sensor 

nodes from previously constructed routing paths and exploration of new potential 

sensor nodes is balanced effectively to better preserve the energy consumption in the 

system. In contrast, Termite-hill, which consumes the most energy during packet 

submission and has low packet received value, achieved the highest energy 

efficiency among others, that clearly indicating the least network lifetime. 
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Figure 5.4. Energy efficiency of different algorithms by using different numbers of 
sensor nodes in 300 seconds 
 

The effect of simulation time to the performance of routing algorithms was 

investigated in this second set of experiments by adopting the simulation parameters 

from Zungeru (2013). These experiments were done to study the pattern of each 

routing algorithms throughout the time when submitting packets using the same 

number of sensor nodes. The performance of EACS(TS) was compared with 

IEEABR, EEABR, BeeSensor, and Termite-hill in terms of success rate, throughput, 

latency, and energy efficiency based on the parameter specifications in Table 5.10. In 

this experiment, nine sensor nodes are distributed in the system and the performance 

of each algorithm is captured at 20, 40, 60, 80, and 100 seconds.  
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Table 5.10 

Scheduling parameters to investigate the performance of the algorithms for different 
simulation time 
 
Parameters Values 

Routing algorithm EACS(TS), IEEABR, EEABR, BeeSensor, Termite-hill 

Number of nodes 9 

Nodes energy 30 J 

Simulation Time 20, 40, 60, 80, 100 (seconds) 

Performance Metric Success rate, throughput, energy efficiency, latency 

 

Figure 5.5 shows that the increase of simulation time does not give significant affect 

to the success rate value of all algorithms. Despite the insignificancy, EACS(TS) 

achieved the highest and almost constant success rate from 20 seconds until the end 

of simulation at 100 seconds, followed by EEABR. This is expected as EACS(TS) 

applies a state transition rule and probabilistic decision rule that can balance the 

exploitation and exploration during the node searching process. These approaches 

guarantee that node selection is undertaken fairly and effectively to ensure the packet 

can reach the destination node successfully and eventually increase the throughput 

value. In addition to that, BeeSensor and Termite-hill suffer from performance 

degradation beyond 80 seconds due to some heavy loaded nodes starting to die and 

being incapable of routing the packet any longer. Another significant finding is that 

EEABR, which is also based on the ant algorithm, have the lowest success rate in the 

beginning but it increased from 40 seconds until the end of simulation. Since 

EEABR only applies probabilistic decision rule in selecting sensor nodes without 

avoiding potential bad nodes, it suffers from higher possibility of packet loss when 

constructing optimal path in the beginning of execution. 
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Figure 5.5. Success rate of different algorithms by using nine sensor nodes in 100 
seconds 
 

Throughput measures the number of packets successfully transmitted to the 

destination node per second. As presented in Figure 5.6, the pattern of results is 

almost identical to the success rate in Figure 5.5 since the denominator in the 

formulation is the same for both. Thus, it can be concluded that the higher the 

success rate, the higher the throughput of the system. 
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Figure 5.6: Throughput of different algorithms by using nine sensor nodes in 100 
seconds 
 

Figure 5.7 depicts the energy efficiency of all algorithms that is calculated by the 

number of packets received per total energy used (Zungeru et al., 2012a) where the 

higher energy efficiency is better than the lower energy efficiency. This formula 

contradicts the formula used by Cai et al. (2015) but both formulas are acceptable to 

be used to calculate the energy efficiency. EACS(TS), EEABR, and IEEABR have 

slightly lower energy efficiency in the beginning but become stable after the 20 

seconds mark. In contrast, the energy efficiency for Termite-hill and BeeSensor has a 

significant spike in the beginning but decreases along with time, with some 

instability. However, these results are not sufficient to prove which algorithm will 

achieve the highest energy efficiency but can be used to show which algorithm will 

achieve more stable energy efficiency. As can be seen in Figure 5.5 and Figure 5.6, 
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throughout the whole time, it still has the highest success rate and throughput value 

during experiments. This can be related to the energy used by EACS(TS) in 

submitting a large number of packets throughout the time. 

 

 

Figure 5.7. Energy efficiency of different algorithms by using nine sensor nodes in 
100 seconds 
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the visited and optimal path to be used by ants in the next iteration can save 

significant amounts of time to perform node searching and optimal path construction. 

 

 

Figure 5.8. Latency of different algorithms by using nine sensor nodes in 100 

seconds 
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Table 5.11 

Scheduling parameters to investigate the performance of ACO variant algorithms for 
different simulation time 
 
Parameters Values 

Routing algorithm EACS(TS), FSACO, EEABR, IACO, SensorAnt 

Number of nodes 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 

Nodes energy 1000 J 

Simulation time 300 seconds 

Performance metric Throughput, energy consumption, energy efficiency 

 

Figure 5.9 depicts the throughput value of all algorithms when routing packets by 

using 100 sensor nodes in 300 seconds. Throughout the simulation process, 

EACS(TS) and FSACO which are hybrid based ant routing algorithms achieved 

higher throughput than  EEABR, IACO, and SensorAnt which are single ant based 

routing algorithms. These results prove that by avoiding local optima, higher 

throughput can be achieved because data packets can be transferred more quickly 

with lesser possibility of packet loss. 

 



  122 
  

 

Figure 5.9. Throughput of different ACO variant algorithms by using 100 sensor 
nodes in 300 seconds 
 

Statistical test was performed to calculate the average and standard deviation of 

throughput value as presented in Table 5.12. As shown in the table, the average 

throughput of EACS(TS) is the highest among all algorithms and the standard 

deviation of EACS(TS) is comparable to EEABR. These results showed that 

EACS(TS) is stable and consistent during experiments as compared to FSACO that 

has the second highest throughput but the lowest standard deviation.  
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Table 5.12 

Statistical test for the throughput values of the third experiment 
 
 EACS(TS) FSACO EEABR IACO SensorAnt 

Average 3.464 1.308 0.310 0.670 0.569 

Standard 

Deviation 
0.134 0.264 0.133 0.147 0.138 

 

Figure 5.10 shows the energy consumption of EACS(TS), FSACO, EEABR, IACO, 

and SensorAnt in routing packets in 300 seconds. As illustrated, the energy 

consumption of all algorithms show a linear growth in response to the increasing of 

simulation time. However, EACS(TS) and FSACO have slightly lower energy 

consumption as compared to the other algorithms. Even though the differences are 

not very significant, these results are in alignment with the throughput as shown in 

Figure 5.9. In addition to that, by balancing the load using local and global 

pheromone update, the algorithm 
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Figure 5.10. Energy consumption of different ACO variant algorithms by using 100 
sensor nodes in 300 seconds 
 

Energy efficiency of all algorithms in routing packets by using 100 sensor nodes is 

depicted in Figure 5.11. These results obtained by using the same formula of results 

presented in Figure 5.7 where the energy efficiency is measured by the number of 

packets received per total energy used (Zungeru et al., 2012a). Despite EACS(TS) 

and FSACO having almost similar energy consumption throughout the simulation, 

EACS(TS) outperformed FSACO in terms of energy efficiency. This fact is driven 

by the high throughput value and low energy consumption achieved by EACS(TS) 

during experiments. Nevertheless, EACS(TS) achieved the highest energy efficiency 

because in addition to having a mechanism to avoid local optima just like FSACO, it 

also has a mitigation process where the backward movement will be performed when 

the ant is trapped in local optima. This also ensures that less energy will go to waste 

when the ant or data packet are dropped during transmission. 
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Figure 5.11. Energy efficiency of different ACO variant algorithms by using 100 
sensor nodes in 300 seconds 
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used during the experiments to submit packets in 5000 seconds. 
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Table 5.13 

Scheduling parameters to investigate the performance of hybrid algorithms for 
different numbers of sensor nodes 
 
Parameters Values 

Routing algorithm EACS(TS), PSO-HC, PSO-C, LEACH-C, LEACH 

Number of nodes 20, 40, 60, 80,100 

Nodes energy 18720 J 

Simulation time 5000 seconds 

Performance metric Success rate, no. of packets received, energy consumption 

 

Figure 5.12 and Figure 5.13 depict how the high energy sensor nodes and large 

simulation time will affect the success rate and packet delivery value of all 

algorithms, respectively. The overall results show that all algorithms successfully 

delivered packets in the long simulation time with significantly high success rates 

and packet delivery value. It is important to ensure that each sensor node is assigned 

a high energy value to avoid dead nodes before the end of long simulation times. It is 

also shown in both figures that EACS(TS) achieved the most consistent success rate 

and packet delivery value in all numbers of sensor nodes. It is proven that by 

applying a TS technique whereby nodes that have no potential neighbour node stored 

in the Tabu list will be avoided during path construction which eventually reduces 

the possibility of packet loss and local optima. PSO-HC, which is a hybrid algorithm, 

that combines the PSO and clustering technique, is the improved version of 

traditional LEACH, LEACH-C, and PSO-C that maximizes the network coverage 

and cluster link quality. These approaches can reduce the un-clustered sensor nodes 

to ensure packets can successfully arrive at the destination node. However, PSO-HC, 

PSO-C, and LEACH only consider the development of cluster but not the local 
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optima problem during the routing process. This will lead to the searching agent 

getting trapped in local optima when submitting packets from the cluster head to the 

destination node.  

 

 

Figure 5.12. Success rate of EACS(TS), PSO-HC, PSO-C, LEACH-C, and LEACH 
by using high energy sensor nodes in 5000 seconds 
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Figure 5.13. Number of packet received of EACS(TS), PSO-HC, PSO-C, LEACH-
C, and LEACH by using high energy sensor nodes in 5000 seconds 
 

Figure 5.14 shows the energy consumption of EACS(TS), PSO-HC, PSO-C, 

LEACH-C and LEACH when submitting packets in 5000 seconds. Even though 

EACS(TS) has a significantly high success rate and packet delivery value, it 

consumes a lot of energy. LEACH, LEACH-C, PSO-HC, and PSO-C that are based 

on the clustering technique can reduce energy consumption when using the cluster 

head as an agent to submit the packets to the destination node. All sensor nodes that 

are divided into several clusters will submit their packets to the cluster head that has 

high energy to be forwarded to the destination node. This approach can minimize the 

energy usage of all cluster members in each cluster. However, even though 

EACS(TS) used a lot of energy when compared to the other hybrid algorithms, its 

performance in term of success rate and throughput are still superior. Thus, it is 

important to ensure that in the actual WSN implementation, the battery or energy 

0

1000

2000

3000

4000

5000

6000

20 40 60 80 100

N
u

m
b

e
r 

o
f 

P
ac

ke
t 

R
e

ce
iv

e
d

 

Number of sensor nodes 

EACS(TS)

PSO - HC

PSO-C

LEACH-C

LEACH



  129 
  

source of each sensor node provides energy that can last longer than the sensor 

node’s expected operating period. 

 

 

Figure 5.14. Energy consumption of EACS(TS), PSO-HC, PSO-C, LEACH-C, and 
LEACH by using high energy of sensor nodes in 5000 seconds 
 

The fifth set of experiments was carried out to evaluate the performance of 

EACS(TS) with IEEABR, BeeSensor and BeeSensor-C in large sized networks. In 

this experiment, packets were submitted by using 100, 200, 300, and 400 sensor 

nodes in 200 seconds. The specifications and parameter settings are listed in Table 

5.14, which was adopted from Cai et al. (2015) to ensure that the experiments are 

done against the results that are officially validated and published by previous 

research work.    
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Table 5.14 

Scheduling parameters to investigate the performance of hybrid algorithms for large 
numbers of sensor nodes 
 
Parameters Values 

Routing algorithm EACS(TS), IEEABR, BeeSensor-C, BeeSensor 

Number of nodes 100, 200, 300, 400 

Nodes energy 50 J 

Simulation time 200 seconds 

Performance metric Latency, energy efficiency 

 

Figure 5.15 depicts the latency value of EACS(TS), IEEABR, BeeSensor and 

BeeSensor-C when submitting packets using 100, 200, 300, and 400 sensor nodes. 

The figure shows that BeeSensor has the highest latency which is not favourable in 

terms of performance. However, the enhanced version of BeeSensor, which is 

BeeSensor-C proposed by Cai et al. (2015), shows a huge improvement in the 

latency aspect. BeeSensor-C is a hybrid algorithm that combines the traditional 

BeeSensor and clustering technique with the aim to reduce collision that affects the 

submission time of packets to the destination node. The larger the size of network 

and simulation time, the higher the possibility of collision in the system, which leads 

to higher latency. EACS(TS) that applies the TS algorithm in preventing local optima 

can minimize the time taken to submit packets to the destination node. The forward 

ant in EACS(TS) can select the most potential sensor nodes that can guarantee the 

submission packets to the destination node by referring to the routing table and Tabu 

list. Both tables can help ants to select the sensor nodes with the highest pheromone 

value and have the lowest possibility of leading to local optima. 
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Figure 5.15. Latency of EACS(TS), IEEABR, BeeSensor-C and BeeSensor by using 
large numbers of sensor nodes in 200 seconds 
 

Figure 5.16 shows the energy efficiency of algorithms in submitting packets by using 

100, 200, 300, and 400 sensor nodes in 200 seconds that was calculated based on the 

formula by Cai et al. (2015) where lower energy efficiency is better than higher 

energy efficiency. BeeSensor-C has the lowest energy efficiency when the number of 

nodes is 100 and 200 respectively. However, as the number of nodes increases to 300 

and 400, EACS(TS) overtakes the lowest energy efficiency from BeeSensor-C. 

These results suggest that the clustering technique is one of the best techniques to 

preserve the energy since packet routing to the destination node is done by the cluster 

head, the node with the highest residual energy, and the rest of the sensor nodes can 

utilize their energy simply to forward the packets within the cluster. However, in 

large size of network, cluster head uses a high amount of energy to consolidate 

packets from the cluster node and forward the collected packets to the destination 
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node that affects the energy efficiency during routing process. On the other hand, 

EACS(TS) that is based on hybrid technique is also favourable in minimizing the 

energy efficiency in the large network by overcoming the local optima problem. The 

rest of non-hybrid algorithms have significantly large energy efficiency as they are 

prone to local optima and unbalanced distribution of packets. 

 

 

Figure 5.16. Energy efficiency of EACS(TS), IEEABR, BeeSensor-C and BeeSensor 
by using large numbers of sensor nodes in 200 seconds 
 

The effect of packets size and number of sensor nodes to the performance of routing 

algorithms was investigated in this sixth set of experiments by adopting the 
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packets was submitted in network qwhich consists of 100, 150, 200, and 250 sensor 

nodes in 100 seconds.  

 

Table 5.15 

Parameters to investigate the performance of the algorithms in submitting large size 
of packets 

Parameters Values 

Routing algorithm EACS(TS), ICSCA, PSO-ECHs, LEACH 

Number of nodes 100, 150, 200, 250 

Nodes energy 200 J 

Simulation Time 100 seconds 

Packet size 4000 bits 

Performance metric Energy consumption 

 

Figure 5.17 shows the energy consumption of EACS(TS), ICSCA, PSO-ECHs, and 

LEACH while submitting large sized packets in 100 seconds. In this experiment, 

packets with 4000 bits were submitted using 100, 150, 200, and 250 sensor nodes. 

The results show that EACS(TS) attained the least energy consumption as compared 

to the other algorithms in all numbers of sensor nodes. This is due to the state 

transition rules applied during node selection that can balance the exploration and 

exploitation of sensor nodes. ICSCA, that balances the energy level of each cluster 

head and the best host nest during the iterative process, achieved the second-best 

algorithm after EACS(TS). In contrast, PSO-ECHs and LEACH have the most 

energy consumption because both algorithms only focus on selecting the best cluster 

head with high energy but not the energy of the whole system. 
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Figure 5.17. Energy consumption of EACS(TS), ICSCA, PSO-ECHs, and LEACH 
by using different numbers of sensor nodes in submitting large size of packets 
 

5.5 Summary 

In this chapter, experiments were undertaken to determine the best parameters to be 

used by EACS(TS) to route packets in a WSN. The best value for β, ρ, α and qo were 

investigated in terms of success rate, throughput, latency, energy consumption, and 

energy efficiency. From the experimental results, the best value for β to be used in 

probabilistic decision rule is 4 while the best value for qo as a parameter to control 

the exploration and exploitation in the state transition rule is 0.5. The best value for ρ 

which is an element to calculate the local pheromone update is 0.3 and 0.2 is the best 

value for α in global pheromone update calculation.  

 

The next experiments were undertaken to evaluate the performance of EACS(TS) by 
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number to the routing algorithm were investigated where the performance of 

EACS(TS) in terms of success rate, packet loss rate, latency, and energy efficiency 

was compared with EEABR, BeeSensor, and Termite-hill. Experimental results show 

that EACS(TS) performed better in all performance metrics when compared with 

selected single swarm intelligence approaches.  

 

The effect of time to the routing algorithms has also been investigated where packets 

were routed with the same number of sensor nodes in all experiments but with 

different simulation time.  Results from experiments were captured at every 20 

seconds which were set at 20, 40, 60, 80, and 100 seconds and evaluated in terms of 

success rate, throughput, latency, and energy efficiency. The experiment results show 

that EACS(TS) and IEEABR based on improved EEABR performed better than 

EEABR, BeeSensor, and Termite-hill in all tested performance metrics. 

 

EACS(TS) which is the hybrid algorithm has also been compared with the other 

hybrid routing algorithms. The effect of simulation time and energy level of sensor 

nodes on EACS(TS) was compared with PSO-HC, PSO-C, LEACH-C, and LEACH 

in terms of success rate, energy consumption, and number of packets received by the 

destination node. Packets were routed by 20, 40, 60, 80, and 100 high energy sensor 

nodes in 5000 seconds. EACS(TS) performed better than the other algorithms in 

terms of numbers of packets received and success rate. Even though EACS(TS) can 

reduce the packet loss problem, it consumes more energy to route packets to the 

destination node as compared to others.  
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The effect of the large number of sensor nodes to the routing process has also been 

investigated. Packets were submitted to the destination node by using 100, 200, 300, 

and 400 sensor nodes within 200 seconds. The experiment results show that 

EACS(TS) achieved the lowest latency value by becoming the best after BeeSensor-

C in terms of energy efficiency.  

 

Experiments were also completed to examine the effects of packet size to the 

performance of routing algorithms. Large sized packets were routed using 100, 150, 

200, and 250 sensor nodes in 100 seconds. The experiment results show that 

EACS(TS) used less energy when compared with ICSCA, PSO-ECHs, and LEACH.  

 

From all the experiments undertaken, it can be concluded that the proposed hybrid 

EACS(TS) has achieved the best performance when compared with single swarm 

intelligence routing algorithms. EACS(TS) can overcome the problems that occur by 

a single routing algorithm and improve the performance in terms of success rate, 

packet loss rate, latency, energy consumption, and energy efficiency. When 

compared with hybrid swarm intelligence routing algorithms, EACS(TS) showed a 

good performance in several performance metrics. Even though EACS(TS) 

consumed more energy when compared to the other hybrid routing algorithms, it 

achieved better performance in other performance metrics such as success rate, 

throughput, and latency when routing packets using different simulation parameters. 

These advantages can ensure EACS(TS) in reducing the packet loss problem and, at 

the same time, can minimize the submission time of packets to the destination node. 

EACS(TS) also used less energy when compared with other hybrid swarm 
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intelligence algorithms in submitting large sized packets using high energy sensor 

nodes, thus maximizing the network lifetime of the WSN.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

EACS(TS), as an improvement of the ACO algorithm, offers the opportunity to 

improve the results of ACO algorithms reported in the literature. The idea of 

improving the performance of ACO algorithms has been a great success. The results 

of EACS(TS) show that this approach can be superior to the best known ACO 

algorithms in WSNs like AS and MMAS.   

 

Five (5) research questions were considered in Section 1.1 and five (5) corresponding 

research objectives that answered these questions are included in Section 1.2. The 

main objective of the research was to develop an enhanced ACS and TS algorithm in 

WSNs which can route packets to the suitable sensor nodes, minimize the forwarding 

time of packets to the destination node, minimize the energy consumption of sensor 

nodes, balance the workload of entire sensor nodes, prevent local optima problems 

during the routing process, and improve the network lifetime of the WSN. 

 

The first objective was to formulate a state transition rule that could be used to 

evaluate the neighbour nodes’ capabilities during the node selection phase. The state 

transition rule is calculated based on the pheromone value and heuristics value of 

each sensor node. This formula can be used as a benchmark in deciding whether to 

explore the new potential sensor nodes or exploit the previously used sensor nodes as 

a medium to transfer the packets from source node to destination node.  

Applying a TS algorithm during the node selection phase to prevent the local optima 

problem was the second objective of the research. Ants always become trapped in a 
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blind alley during the searching phase where the only available neighbour nodes are 

the visited nodes. In order to solve this problem, the visited sensor nodes will be put 

in the Tabu list and the ant will move backwards to find other potential sensor nodes. 

A detailed explanation of how the TS algorithm works with the ACS algorithm in 

preventing local optima problem was presented in Section 4.3. EACS(TS) that 

considers the local optima problem successfully increased the throughput and energy 

efficiency value by reducing the packet loss during routing process. Searching ant in 

EACS(TS) was able to discover the optimal routing path to submit large number of 

packets in short time and less energy usage.   

 

The third objective was to develop an extended local pheromone update that can 

balance the load on all available sensor nodes and encourage the exploration of new 

potential nodes in the searching process. Local pheromone update is calculated based 

on the formula in Section 4.3 in order to support the exploration control phase 

discussed in Section 3.1.2. This formula can decrease the pheromone intensity of the 

visited sensor nodes in order to encourage the ant in the next iteration to explore the 

new potential sensor nodes in balancing loads in the WSN system. Experimental 

results showed that EACS(TS) performed better than traditional ant approach which 

is IEEABR in terms of energy efficiency. EACS(TS) that combined local pheromone 

update and global pheromone update will encourage exploration and exploitation 

during routing process compared to IEEABR that only applied global pheromone 

update to exploit optimal sensor nodes. By considering the exploration to the other 

potential sensor nodes, EACS(TS) can balance the energy usage of the whole system.    
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Developing an extended global pheromone update to establish the exploitation 

control phase in Section 3.1.3 was the fourth objective of the research. This formula 

was calculated based on the formula in Section 4.4 with the objective of encouraging 

the exploitation of selected optimal paths while reducing delays and packet loss 

problems in the WSN. Global pheromone update will increase the pheromone value 

on the selected sensor nodes, so that the ant in the next iteration will save searching 

time by simply referring to the previously optimal path in the routing table.  

 

The last objective of the research is to develop a simulation model that can be used to 

evaluate the performance of the proposed algorithm. The performance of EACS(TS) 

was evaluated using RMASE which is applied as an application in Prowler. Based on 

the discussion in Section 3.2 and Section 4.4, Prowler was selected because it offers 

a simple and fast way to prototype applications with a good visualization capability 

for experimental and comparison purposes. This simulator was also selected because 

it is designed to be easily embedded into optimization algorithms. Finally, the results 

obtained in Chapter 5 support the idea that EACS(TS) performs better in terms of 

success rate, packet loss rate, delay, throughput, energy consumption, and energy 

efficiency when compared with other swarm intelligence algorithms such as Termite-

hill, BeeSensor, PSO, EEABR algorithm.  

 

6.1 Contribution of the research 

The main contribution of the research is the way in which an ant tries to find the 

optimal path in submitting packets from source node to destination node. In order to 

achieve this objective, the state transition rule is adopted and adapted to choose the 

best neighbour node with high pheromone value and energy level. The ant will 
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decide either to explore unvisited sensor nodes or exploit previously visited sensor 

nodes by using the state transition rule. This ensures packets arrive safely at the 

destination node and increases the throughput of the whole system. 

 

The proposed EACS(TS) algorithm that combines ACS and TS algorithm has been 

proven to reduce local optima problem during path construction process. The ant 

may become trapped in a blind alley where it fails to reach the destination node and 

the only available nodes are visited nodes. This problem can lead to high energy 

consumption of the ant which will affect the network’s lifetime. The TS algorithm 

was applied in this proposed routing algorithm to solve this problem by determining 

the visited sensor nodes and putting them on the Tabu list. If there is no available 

unvisited sensor node, the ant will move backward to the previous sensor node and 

continue the searching process. This technique will speed up the searching time 

while increasing the energy efficiency of the whole system.  

 

EACS(TS) aims to reduce the hotspot problem and increase the load balancing 

among sensor nodes in the WSN. This problem is controlled by applying a local 

pheromone update during the node searching process to reduce the pheromone 

intensity of the visited sensor nodes. The effect of this approach is to make an 

already chosen sensor node less desirable for the following ant and encourage the 

exploration of unvisited sensor nodes to increase the load balancing of the whole 

system.  

 

EACS(TS) also aims to reduce delay and packet loss rate during the packet 

submission process by enhancing the global pheromone update to increase the 
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pheromone intensity of the optimal sensor nodes. The pheromone value that is 

updated by the backward ant will be stored in the routing table to be used by the ant 

in the next iteration. This information can help ants in the next iteration to save the 

searching time that will reduce the delay and packet loss problem.  

 

The proposed EACS(TS) algorithm also has a great potential in solving the routing 

problem in other NP-complete problems such as TSP, vehicle routing problem, and 

sequential ordering problem. EACS(TS) that combines both metaheuristic algorithms 

which are EACS and Tabu search is suitable to solve the routing problem in other 

research domains in terms of success rate, packet loss rate, delay, throughput, energy 

consumption, and energy efficiency.  

 

6.2 Future Work 

In WSN environments, packets that are submitting from source node to destination 

node have different size and priority. Packets will be submitted by a multi-hop 

technique where the ant moves from one sensor node to another until it reaches the 

destination node. Future works can enhance the proposed EACS(TS) to consider the 

multiple path routing technique in order to consider the packet priority during packet 

submission. There will be two different paths, the priority path and normal path, to 

submit packets in a specified time. Therefore, this approach will ensure that high 

priority packets arrive on time without the need to queue for a long time to be 

submitted into the system. 

 

The second future study will enhance the EACS(TS) algorithm in solving the fault 

tolerance problem. Sensor nodes in WSNs have limited capabilities in terms of 
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power, storage and memory that will lead to dead nodes during packet submission. 

Submitted packets always drop during packet submission due to the dead node 

problem. Therefore, by applying a fault tolerance mechanism, the packet loss 

problem will be reduced while optimizing the lifetime of the network system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  144 
  

REFERENCES 

Aarts, E., & Lenstra, J. K. (2003). Local Search in Combinatorial Optimization. 

Princetonn: Princeton University Press. 

Abdel-Basset, M., Manogaran, G., El-Shahat, D., & Mirjalili, S. (2018). A hybrid 

whale optimization algorithm based on local search strategy for the 

permutation flow shop scheduling problem. Future Generation Computer 

Systems, 85, 129-145. 

Aijaz, A. (2018). ENCLOSE: An enhanced wireless interface for communication in 

factory automation networks. IEEE Transactions on Industrial Informatics, 

1-13.  

Akkan, C., & Gülcü, A. (2018). A bi-criteria hybrid genetic algorithm with 

robustness objective for the course timetabling problem. Computers & 

Operations Research, 90, 22-32. 

Alazzawi, L., & Elkateeb, A. (2009). Performance evaluation of the WSN routing 

protocols scalability. Journal of Computer Systems, Networks, and 

Communications, 2008, 1-9. 

Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on 

real-time applications of WSN. Future Internet, 9(4), 1-22.  

Aliouat, Z., & Aliouat, M. (2013). Improving wireless sensor networks robustness 

through multi-level fault tolerant routing protocol. In Modeling Approaches 

and Algorithms for Advanced Computer Applications (pp. 115-124). 

Switzerland:  Springer. 

Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut, 

A., ... & Varghese, G. (2014). CONGA: Distributed congestion-aware load 



  145 
  

balancing for datacenters. In ACM SIGCOMM Computer Communication 

Review (Vol. 44, No. 4, pp. 503-514). New York: ACM. 

Almshreqi, A. M. S., Ali, B. M., Rasid, M. F. A., Ismail, A., & Varahram, P. (2012). 

An improved routing mechanism using bio-inspired for energy balancing in 

wireless sensor networks. In 2012 International Conference on Information 

Networking (pp. 150-153). Bali: IEEE.doi: 10.1109/ICOIN.2012.6164367. 

Amagata, D., Hara, T., Sasaki, Y., & Nishio, S. (2017). Efficient cluster-based top-k 

query routing with data replication in MANETs. Soft Computing, 21(15), 

4161-4178. 

Angelo, J. S., Bernardino, H. S., & Barbosa, H. J. (2015). Ant colony approaches for 

multiobjective structural optimization problems with a cardinality 

constraint. Advances in Engineering Software, 80, 101-115. 

Anjali & Kaur, N. (2013). Routing based ant colony optimization in wireless sensor 

networks. Global Journal of Computer Science and Technology Network, 

Web & Security, 13(4), 34-40. 

Arafath, M. S., Khan, K. U. R., & Sunitha, K. V. N. (2018). Pithy review on routing 

protocols in wireless sensor networks and least routing time opportunistic 

technique in WSN. In Journal of Physics: Conference Series, 933, 1-8.   

Azami, M., Ranjbar, M., Rostami, A. S., & Amiri, A. J. (2013). Increasing the 

network life time by simulated annealing algorithm in WSN with point 

coverage. International Journal of Ad Hoc, Sensor and Ubiquitous 

Computing, 4(2), 1-8.  

Barto, L., & Kozik, M. (2014). Constraint satisfaction problems solvable by local 

consistency methods. Journal of the ACM, 61(1), 3:1-3:19. 

http://dx.doi.org/10.1109/ICOIN.2012.6164367


  146 
  

Benlic, U., & Hao, J. K. (2013). Breakout local search for the quadratic assignment 

problem. Applied Mathematics and Computation, 219(9), 4800-4815. 

Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-

project scheduling and resource portfolio problem. European Journal of 

Operational Research, 240(1), 22-31. 

Bhaskar, U., Cheng, Y., Ko, Y. K., & Swamy, C. (2016). Hardness results for 

signaling in Bayesian zero-sum and network routing games. In Proceedings 

of the 2016 ACM Conference on Economics and Computation (pp. 479-496). 

ACM. 

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on 

metaheuristics for stochastic combinatorial optimization. Natural 

Computing, 8(2), 239-287. 

Bierwirth, C., & Kuhpfahl, J. (2017). Extended GRASP for the job shop scheduling 

problem with total weighted tardiness objective. European Journal of 

Operational Research, 261(3), 835-848. 

Biswas, S., Das, R., & Chatterjee, P. (2018). Energy-efficient connected target 

coverage in multi-hop wireless sensor networks. In Industry Interactive 

Innovations in Science, Engineering and Technology (pp. 411-421). 

Singapore: Springer. 

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of 

Life reviews, 2(4), 353-373. 

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: 

Overview and conceptual comparison. Journal of ACM Computing Surveys, 

35(3), 268-308. 



  147 
  

Bodirsky, M., Martin, B., & Mottet, A. (2018). Discrete temporal constraint 

satisfaction problems. Journal of the ACM, 65(2), 1-41. 

Bosek, B., Dębski, M., Grytczuk, J., Sokół, J., Śleszyńska-Nowak, M., & Żelazny, 

W. (2018). Graph coloring and Graham’s greatest common divisor 

problem. Discrete Mathematics, 341(3), 781-785. 

Bouarafa, S., Saadane, R., & Rahmani, M. D. (2018). Inspired from ants colony: 

Smart routing algorithm of wireless sensor network. Information, 9(1), 1-11. 

Boucetta, C., Idoudi, H., & Saidane, L. A. (2016). Hierarchical cuckoo search-based 

routing in wireless sensor networks. In 2016 IEEE Symposium on Computers 

and Communication, (pp. 996-998). Messina: IEEE. doi: 

10.1109/ISCC.2016.7543866 

Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., & Vento, M. (2017). 

Graph edit distance as a quadratic assignment problem. Pattern Recognition 

Letters, 87, 38-46. 

Bukhari, S., Ku-Mahamud, K. R., & Morino, H. (2017). Fault tolerance grid 

scheduling with checkpoint based on ant colony system. Journal of Computer 

Science, 13(8), 363-370. 

Cai, X., Duan, Y., He, Y., Yang, J., & Li, C. (2015). Bee-sensor-C: an energy-

efficient and scalable multipath routing protocol for wireless sensor 

networks. International Journal of Distributed Sensor Networks, 11(3), 1-14. 

Camilo, T., Carreto, C., Silva, J. S., & Boavida, F. (2006). An energy-efficient ant-

based routing algorithm for wireless sensor networks. In Ant Colony 

Optimization and Swarm Intelligence (pp. 49-59). Springer Berlin 

Heidelberg.  

https://doi.org/10.1109/ISCC.2016.7543866


  148 
  

Chakraborty, A., Mitra, S. K., & Naskar, M. K. (2011). A genetic algorithm inspired 

routing protocol for wireless sensor networks. International Journal of 

Computational Intelligence Theory and Practice, 6(1), 1-10. 

Chatzimilioudis, G., Cuzzocrea, A., Gunopulos, D., & Mamoulis, N. (2013). A novel 

distributed framework for optimizing query routing trees in wireless sensor 

networks via optimal operator placement. Journal of Computer and System 

Sciences, 79(3), 349-368. 

Chen, Y., Hao, J. K., & Glover, F. (2016). An evolutionary path relinking approach 

for the quadratic multiple knapsack problem. Knowledge-Based Systems, 92, 

23-34. 

Cheng, D., Rao, J., Jiang, C., & Zhou, X. (2015). Resource and deadline-aware job 

scheduling in dynamic hadoop clusters. In 2015 IEEE International Parallel 

and Distributed Processing Symposium, (pp. 956-965). Hyderabad: IEEE. 

Cheng, L., Niu, J., Luo, C., Shu, L., Kong, L., Zhao, Z., & Gu, Y. (2018). Towards 

minimum-delay and energy-efficient flooding in low-duty-cycle wireless 

sensor networks. Computer Networks, 134, 66-77. 

Chong, C. Y., & Kumar, S. P. (2003). Sensor networks: evolution, opportunities, and 

challenges. In Proceedings of the IEEE (Vol. 91, No. 8, pp. 1247-1256). 

IEEE. doi: 10.1109/JPROC.2003.814918 

Chung, K. M., Pettie, S., & Su, H. H. (2017). Distributed algorithms for the Lovász 

local lemma and graph coloring. Distributed Computing, 30(4), 261-280. 

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant 

colonies. In Proceedings of European Conference on Artificial Life (Vol.142, 

pp. 134-142). Paris: Elsevier Publishing.  

http://doi.org/
https://doi.org/10.1109/JPROC.2003.814918


  149 
  

Costa, D. (1994). An evolutionary tabu search algorithm and the NHL scheduling 

problem. Journal of INFOR: Information Systems and Operational Research, 

33(1), 161–178. 

Crawford, B., Soto, R., Astorga, G., & García, J. (2018). Constructive metaheuristics 

for the set covering problem. In International Conference on Bioinspired 

Methods and Their Applications (pp. 88-99). Springer, Cham.  

Crawford, B., Soto, R., Riquelme-Leiva, M., Peña, C., Torres-Rojas, C., Johnson, F., 

& Paredes, F. (2015). Modified binary firefly algorithms with different 

transfer functions for solving set covering problems. In Software Engineering 

in Intelligent Systems (pp. 307-315). Switzerland: Springer. 

Cui, Y., Liu, W., & Zhao, Z. (2015). Wireless sensor network route optimization 

based on improved ant colony-genetic algorithm. International Journal of 

Online Engineering, 11(9), 4-8. 

Cui, Y., Médard, M., Yeh, E., Leith, D., Lai, F., & Duffy, K. R. (2017). A linear 

network code construction for general integer connections based on the 

constraint satisfaction problem. IEEE/ACM Transactions on 

Networking, 25(6), 3441-3454. 

Czubak, A. (2013). A note on the local minimum problem in wireless sensor 

networks. In International Conference on Computer Networks (pp. 64-75). 

Springer. 

Dai, H. N. (2009). Throughput and delay in wireless sensor networks using 

directional antennas. In 2009 5th International Conference on Intelligent 

Sensors, Sensor Networks and Information Processing (pp. 421-426). 

Melbourne: IEEE.doi: 10.1109/ISSNIP.2009.5416826 

http://dx.doi.org/10.1109/ISSNIP.2009.5416826


  150 
  

Dam, S., Mandal, G., Dasgupta, K., & Dutta, P. (2018). An ant-colony-based meta-

heuristic approach for load balancing in cloud computing. In Applied 

Computational Intelligence and Soft Computing in Engineering (pp. 204-

232). IGI Global. 

Dehghan, M., Seetharam, A., Jiang, B., He, T., Salonidis, T., Kurose, J., ... & 

Sitaraman, R. (2015). On the complexity of optimal routing and content 

caching in heterogeneous networks. In 2015 IEEE Conference on Computer 

Communications (pp. 936-944). Kowloon: IEEE. 

Delorme, M., Iori, M., & Martello, S. (2016). Bin packing and cutting stock 

problems: Mathematical models and exact algorithms. European Journal of 

Operational Research, 255(1), 1-20. 

Delorme, M., Iori, M., & Martello, S. (2018). BPPLIB: a library for bin packing and 

cutting stock problems. Optimization Letters, 12(2), 235-250. 

Derbew, Y., & Libsie, M. (2014). A wireless sensor network framework for large-

scale industrial water pollution monitoring. In 2014 IST-Africa Conference 

Proceedings, (pp. 1-8). Mauritius: 

IEEE.doi:10.1109/ISTAFRICA.2014.6880619 

Derr, K., & Manic, M. (2015). Wireless sensor networks—Node localization for 

various industry problems. IEEE Transactions on Industrial 

Informatics, 11(3), 752-762. 

Desai, U. B., Jain, B. N., & Merchant, S. N. (2007). Wireless sensor networks: 

Technology roadmap. In Workshop on Wireless Sensor Networks (Vol. 20, 

pp. 1-121).  Bombay.  

Despaux, F. (2015). Modeling and evaluation of the end-to-end delay in wireless 

sensor networks (Doctoral dissertation). Université de Lorraine, France.  

https://doi.org/10.1109/ISTAFRICA.2014.6880619
https://welcome.univ-lorraine.fr/


  151 
  

Dhivya, M., & Sundarambal, M. (2012). Lifetime maximization in wireless sensor 

networks using tabu swarm optimization. Procedia Engineering, 38, 511-516. 

Dodig-Crnkovic, G. (2002). Scientific methods in computer science. In Proceedings 

of the Conference for the Promotion of Research in IT at New Universities 

and at University Colleges in Sweden, Skövde, Suecia (pp. 126-130). 

Dokeroglu, T. (2015). Hybrid teaching–learning-based optimization algorithms for 

the quadratic assignment problem. Computers & Industrial Engineering, 85, 

86-101. 

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms (Ph.D Thesis). 

Politecnico di Milano, Italy.  

Dorigo, M., & Gambardella, L. (1997a). Ant colonies for the travelling salesman 

problem. BioSystems, 43(2), 73-81. 

Dorigo, M., & Gambardella, L. (1997b). Ant colony system: A cooperative learning 

approach to the travelling salesman problem. IEEE Transactions on 

Evolutionary Computation, 1(1), 53–66. 

Dorigo, M., & Gambardella, L. M. (1996). A study of some properties of Ant-Q. 

In International Conference on Parallel Problem Solving from Nature (pp. 

656-665). Springer. 

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Cambridge, 

Massachusetts, London, England: MIT Press. 

Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). Positive Feedback as a Search 

Strategy (Technical Report No. 91-016), Politecnico di Milano, Italy. 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a 

colony of cooperating agents. IEEE Transactions on Systems, Man, and 

Cybernetics– Part B, 26(1), 29–41. 



  152 
  

Dorigo, M., V. Maniezzo & A. Colorni (1991b). The Ant System: An Autocatalytic 

Optimizing Process. (Technical Report No. 91-016 Revised), Politecnico di 

Milano, Italy. 

Duarte-Melo, E. J., & Liu, M. (2002). Analysis of energy consumption and lifetime 

of heterogeneous wireless sensor networks. In Global Telecommunications 

Conference (Vol. 1, pp. 21-25). Taipei: IEEE. 

Eberhart, R. C., & Kennedy, J. (1995). Particle swarm optimization. In Proceeding of 

IEEE International Conference on Neural Network (pp. 1942-1948). Perth: 

IEEE. doi: 10.1109/ICNN.1995.488968. 

El Rhazi, A., & Pierre, S. (2009). A Tabu search algorithm for cluster building in 

wireless sensor networks, IEEE Transactions on Mobile Computing, 8(4), 

433-444. 

Elhabyan, R. S., & Yagoub, M. C. (2014). Particle swarm optimization protocol for 

clustering in wireless sensor networks: A realistic approach. In Proceedings 

of 2014 IEEE 15th International Conference on Information Reuse and 

Integration (pp. 345-350). Redwood City: IEEE. 

Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H. K., & Riad, A. M. (2015). 

Balancing energy consumption in heterogeneous wireless sensor networks 

using genetic algorithm. IEEE Communications Letters, 19(12), 2194-2197. 

Engmann, F., Katsriku, F. A., Abdulai, J. D., Adu-Manu, K. S., & Banaseka, F. K. 

(2018). Prolonging the lifetime of wireless sensor networks: A review of 

current techniques. Wireless Communications and Mobile Computing, 2018, 

1-23. 

https://doi.org/10.1109/ICNN.1995.488968


  153 
  

Ennaji, R., & Boulmalf, M. (2009). Routing in wireless sensor networks. In 

International Conference on Multimedia Computing and Systems (pp. 495-

500). Ouarzazate: IEEE. doi:10.1109/MMCS.2009.5256646 

Ez-Zaidi, A., & Rakrak, S. (2017). A new approach for storage balancing in wireless 

sensor networks. In 2017 International Conference on Electrical and 

Information Technologies (pp. 1-6). Rabat, Morocco: IEEE. 

Ezzat, A. (2013). Ant colony optimization approaches for the sequential ordering 

problem (Master dissertation). American University in Cairo, Egypt.  

Ezzat, A., Abdelbar, A. M., & Wunsch, D. C. (2014). A bare-bones ant colony 

optimization algorithm that performs competitively on the sequential ordering 

problem. Memetic Computing, 6(1), 19-29. 

Fathima, K. S. A., & Sindhanaiselvan, K. (2013). Ant colony optimization based 

routing in wireless sensor networks. International Journal Advanced 

Networking and Applications, 4(4), 1686-1689. 

Fister, I., & Fister Jr, I. (Eds.). (2015). Adaptation and Hybridization in 

Computational Intelligence (Vol. 18). Switzerland: Springer International 

Publishing. 

Frey, H., Rührup, S., & Stojmenović, I. (2009). Routing in wireless sensor networks. 

Guide to Wireless Sensor Networks (pp. 81-111). London: Springer. 

Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., & 

Klessig, H. (2014). Requirements and current solutions of wireless 

communication in industrial automation. In 2014 IEEE International 

Conference on Communications Workshops, (pp. 67-72). Sydney: IEEE. doi: 

10.1109/ICCW.2014.6881174 

http://dx.doi.org/10.1109/MMCS.2009.5256646
https://doi.org/10.1109/ICCW.2014.6881174


  154 
  

Fu, Y., Ding, J., Wang, H., & Wang, J. (2017). Two-objective stochastic flow-shop 

scheduling with deteriorating and learning effect in Industry 4.0-based 

manufacturing system. Applied Soft Computing, 68, 847-855. 

Gambardella, L. M., Montemanni, R., & Weyland, D. (2012). An enhanced ant 

colony system for the sequential ordering problem. In Operations Research 

Proceedings (pp. 355-360). Springer Berlin Heidelberg. 

Gendreau, M., & Potvin, J. (2010). Handbook of Metaheuristics. New York: 

Springer. 

Gendreau, M., & Potvin, J. (2014). Tabu search. In E. K. Burke & G. Kendall (Eds.), 

Search Methodologies: Introductory Tutorials in Optimization and Decision 

Support Techniques (pp. 243–263). Boston: Springer. 

Glover, F. (1986). Future paths for integer programming and links to artificial 

intelligence. Journal of Computers and Operations Research, 13(5), 533 – 

549. 

Glover, F. W., & Kochenberger, G. A. (Eds.). (2006). Handbook of 

metaheuristics (Vol. 57). Springer US. 

Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic. 

Goksal, F. P., Karaoglan, I., & Altiparmak, F. (2013). A hybrid discrete particle 

swarm optimization for vehicle routing problem with simultaneous pickup 

and delivery. Computers & Industrial Engineering, 65(1), 39-53. 

Gómez Santillán, C., Cruz Reyes, L., Meza Conde, E., Schaeffer, E., & Castilla 

Valdez, G. (2010). A self-adaptive ant colony system for semantic query 

routing problem in P2P networks. Computación y Sistemas, 13(4), 433-448. 



  155 
  

Gonçalves, J. F., & Resende, M. G. (2013). A biased random key genetic algorithm 

for 2D and 3D bin packing problems. International Journal of Production 

Economics, 145(2), 500-510. 

Goss, S., Aron, S., Deneubourg, J., & Pasteels, J. (1989). Self-organized shortcuts in 

the Argentine ant. Journal of Naturwissenschaften, 76(12), 579-581. 

Gülcü, Ş., Mahi, M., Baykan, Ö. K., & Kodaz, H. (2018). A parallel cooperative 

hybrid method based on ant colony optimization and 3-Opt algorithm for 

solving traveling salesman problem. Soft Computing, 22(5), 1669-1685. 

Gupta, G. P. (2018). Improved cuckoo search-based clustering protocol for wireless 

sensor networks. Procedia Computer Science, 125, 234-240. 

Gupta, K., & Sikka, V. (2015). Design issues and challenges in wireless sensor 

networks. International Journal of Computer Applications, 112(4), 26-32. 

Hanane, H., & Fouzia, B. (2014). Improving resource discovery and query routing in 

peer-to-peer data sharing systems using gossip style and ACO algorithm. In 

The Ninth International Conference on Systems and Networks 

Communications (pp. 99-106).   

Hladik, C., Schalles, J., & Alber, M. (2013). Salt marsh elevation and habitat 

mapping using hyperspectral and LIDAR data. Remote Sensing of 

Environment, 139, 318-330. 

Holzinger, A., Plass, M., Holzinger, K., Crişan, G. C., Pintea, C. M., & Palade, V. 

(2016). Towards interactive machine learning (iML): Applying ant colony 

algorithms to solve the traveling salesman problem with the human-in-the-

loop approach. In International Conference on Availability, Reliability, and 

Security (pp. 81-95). Springer International Publishing. 



  156 
  

Hu, F., & Cao, X. (2010). Wireless sensor networks: principles and practice. CRC 

Press. 

Jangra, A., Awasthi, A., & Bhatia, V. (2013). A study on swarm artificial 

intelligence. International Journal of Advanced Research in Computer 

Science and Software Engineering, 3(8), 259-263. 

Javaid, N., Rasheed, M. B., Imran, M., Guizani, M., Khan, Z. A., Alghamdi, T. A., & 

Ilahi, M. (2015). An energy-efficient distributed clustering algorithm for 

heterogeneous WSNs. EURASIP Journal on Wireless Communications and 

Networking, 2015(151), 1-11. 

Jourdan, L., Basseur, M., & Talbi, E. G. (2009). Hybridizing exact methods and 

metaheuristics: A taxonomy. European Journal of Operational Research, 

199(3), 620–629. doi:10.1016/j.ejor.2007.07.035. 

Kaegi, S., & White, T. (2003). Using local information to guide ant based search. In 

Proceedings of the 16th International Conference on Industrial & 

Engineering Applications of Artificial Intelligence and Expert Systems (pp. 

692-701).  

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical 

Optimization (Technical report-tr06). Erciyes university.  

Karim, L., Nasser, N., Taleb, T., & Alqallaf, A. (2012). An efficient priority packet 

scheduling algorithm for wireless sensor network. In 2012 IEEE 

International Conference on Communications (pp. 334-338). Ottawa, 

Canada: IEEE. 

Karthikeyan, T., & Subramani, B. (2014). QoS based optimal routing in WSN using 

hybrid intelligent bee colony agent. International Journal of Computer 

Science and Information Technologies, 5(4), 5785-5792.  



  157 
  

Katyara, S., Izykowsk, J., Chowdhry, B. S., Musavi, H. A., & Hussain, R. (2018). 

WSN-based monitoring and fault detection over a medium-voltage power line 

using two-end synchronized method. Electrical Engineering, 100(1), 83-90. 

Kaur, J., & Gangwar, R. C. (2015). Improved tabu search based energy efficient 

routing protocols for wireless sensor networks. In 2015 International 

Conference on Green Computing and Internet of Things, (pp. 637-642). 

Noida: IEEE. 

Keskin, M. E., Altınel, İ. K., & Aras, N. (2015). Combining simulated annealing 

with Lagrangian relaxation and weighted Dantzig–Wolfe decomposition for 

integrated design decisions in wireless sensor networks. Computers & 

Operations Research, 59, 132-143. 

Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. 

(2019). Communication protocols for wireless sensor networks: A survey and 

comparison. Heliyon, 5(5), 1-43. 

Khan, A., Javaid, N., Ahmad, A., Akbar, M., Khan, Z. A., & Ilahi, M. (2018). A 

priority-induced demand side management system to mitigate rebound peaks 

using multiple knapsack. Journal of Ambient Intelligence and Humanized 

Computing, 1-24. 

Khan, F., & Portmann, M. (2017). Backhaul, QoS, and channel-aware load balancing 

optimization in SDN-based LTE networks. In 2017 11th International 

Conference on Signal Processing and Communication Systems, (pp. 1-10). 

Gold Coast: IEEE. doi: 10.1109/ICSPCS.2017.8270500 

Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The 

influence of basic parameters on energy efficiency in wireless sensor 

networks. Computer Communications, 36(9), 965-978. 

https://doi.org/10.1109/ICSPCS.2017.8270500


  158 
  

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated 

annealing. Science, 220(4598), 671-680. 

Kuhpfahl, J., & Bierwirth, C. (2016). A study on local search neighborhoods for the 

job shop scheduling problem with total weighted tardiness 

objective. Computers & Operations Research, 66, 44-57. 

Kumar, V., Jain, A., & Barwal, P. N. (2014). Wireless sensor networks: Security 

issues, challenges and solutions. International Journal of Information and 

Computation Technology, 4(8), 859-868. 

Kuo, R. J., & Zulvia, F. E. (2017). Hybrid genetic ant colony optimization algorithm 

for capacitated vehicle routing problem with fuzzy demand—A case study on 

garbage collection system. In 2017 4th International Conference on 

Industrial Engineering and Applications, (pp. 244-248). Nagoya: IEEE. 

Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S., & Voß, S. (2016). An 

improved formulation for the multi-depot open vehicle routing problem. OR 

Spectrum, 38(1), 175-187. 

Laouid, A., Dahmani, A., Bounceur, A., Euler, R., Lalem, F., & Tari, A. (2017). A 

distributed multi-path routing algorithm to balance energy consumption in 

wireless sensor networks. Ad Hoc Networks, 64, 53-64. 

Levendovszky, J., Tornai, K., Treplan, G., & Olah, A. (2011). Novel load balancing 

algorithms ensuring uniform packet loss probabilities for WSN. In 2011 IEEE 

73rd Vehicular Technology Conference (pp. 1-5). Yokohama, Japan: IEEE. 

Li, S., Lim, A., & Liu, C. (2010). Improving QoS-based routing by limiting 

interference in lossy wireless sensor networks. International Journal of 

Wireless & Mobile Networks, 2(4), 44-58.  



  159 
  

Li, X., Keegan, B., & Mtenzi, F. (2018). Energy efficient hybrid routing protocol 

based on the artificial fish swarm algorithm and ant colony optimisation for 

WSNs. Sensors, 18(10), 1-18. 

Li, Z., & Shi, Q. (2013). An QoS algorithm based on ACO for wireless sensor 

network. In 2013 IEEE 10th International Conference on High Performance 

Computing and Communications & 2013 IEEE International Conference on 

Embedded and Ubiquitous Computing (pp. 1671-1674). Zhangjiajie: IEEE. 

doi: 10.1109/HPCC.and.EUC.2013.236. 

Li, Z., Chen, B., Liu, X., Ning, D., Duan, W., Qiu, X., & Xu, C. (2017). QoS-aware 

parallel job scheduling framework for simulation execution as a service. 

In 2017 IEEE/ACM 21st International Symposium on Distributed Simulation 

and Real Time Applications (pp. 208-211). Rome: IEEE. 

Lim, C. P., & Jain, L. C. (2009). Advances in swarm intelligence. In Innovations in 

Swarm Intelligence (pp. 1-7). Springer Berlin Heidelberg. 

Lissovoi, A., & Witt, C. (2015). Runtime analysis of ant colony optimization on 

dynamic shortest path problems. Theoretical Computer Science, 561, 73-85. 

Liu, M., Xu, S., & Sun, S. (2012). An agent-assisted QoS-based routing algorithm 

for wireless sensor networks. Journal of Network and Computer 

Applications, 35(1), 29-36. 

Liu, X. F., Zhan, Z. H., Deng, J. D., Li, Y., Gu, T., & Zhang, J. (2018). An energy 

efficient ant colony system for virtual machine placement in cloud 

computing. IEEE Transactions on Evolutionary Computation, 22(1), 113-

128. 

Liu, X., Zhang, X., Cui, Q., & Li, W. (2017). Implementation of ant colony 

optimization combined with tabu search for multi-resource fair allocation in 

http://dx.doi.org/10.1109/HPCC.and.EUC.2013.236


  160 
  

heterogeneous cloud computing. In 2017 IEEE 3rd International Conference 

on Big Data Security on Cloud, IEEE International Conference on High 

Performance and Smart Computing, and IEEE International Conference on 

Intelligent Data and Security (pp. 196-201). Beijing, China: IEEE. 

Loganathan, M., Sabapathy, T., Ghazali, N. H., Ahmad, R. B., & Osman, M. N. 

(2017). Energy efficient routing protocols for wireless sensor networks: 

Comparison and future directions. In MATEC Web of Conferences (Vol. 140, 

pp. 1-7). EDP Sciences. 

Lu, S., Zhou, P., Wang, X., Liu, Y., Liu, F., & Zhao, J. (2018). Condition monitoring 

and fault diagnosis of motor bearings using undersampled vibration signals 

from a wireless sensor network. Journal of Sound and Vibration, 414, 81-96. 

Lule, E., & Bulega, T. E. (2015). A scalable wireless sensor network (WSN) based 

architecture for fire disaster monitoring in the developing 

world. International Journal of Computer Network and Information 

Security, 2015(2), 40-49. 

Luo, L., & Li, L. (2012). An ant colony system based routing algorithm for wireless 

sensor network. In 2012 International Conference on Computer Science and 

Electronics Engineering (Vol. 2, pp. 376-379). Hangzhou: IEEE. doi: 

10.1109/ICCSEE.2012.145 

Maity, S., Roy, A., & Maiti, M. (2018). A rough multi-objective genetic algorithm 

for uncertain constrained multi-objective solid travelling salesman 

problem. Granular Computing, 1-18. 

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search 

algorithm for hybrid flow shop scheduling problems to minimize 

makespan. Applied Soft Computing, 19, 93-101. 

http://dx.doi.org/10.1109/ICCSEE.2012.145


  161 
  

Masrom, S., Abidin, S. Z., & Omar, N. (2012). A taxonomy of low-level 

hybridization in metaheuristics algorithms. In 2012 IEEE Fifth International 

Conference on Advanced Computational Intelligence (pp. 441-446). Nanjing: 

IEEE. 

Masrom, S., Abidin, S. Z., Omar, N., & Nasir, K. (2014). Taxonomy of low-level 

hybridization (LLH) for PSO-GA. In Proceedings of the International 

MultiConference of Engineers and Computer Scientists (Vol. 1). 

Mathiyalagan, P., Suriya, S., & Sivanandam, S. N. (2010). Modified ant colony 

algorithm for grid scheduling. International Journal on Computer Science 

And Engineering, 2(02), 132-139. 

Mavrovouniotis, M. & Yang, S. (2018) Ant colony optimization for dynamic 

combinatorial optimization problems. In Tan, Y. (Ed.), Swarm Intelligence - 

From Concepts to Applications (pp. 1-26). IET. 

Mavrovouniotis, M. (2013). Ant colony optimization in stationary and dynamic 

environments (Doctoral dissertation). University of Leicester, England.  

Mittal, M., & Kumar, K. (2015). Energy efficient homogeneous wireless sensor 

network using self-organizing map (SOM) neural networks. African Journal 

of Computing & ICT, 8(1), 179-184. 

Mittal, V., Gupta, S., & Choudhury, T. (2018). Comparative analysis of 

authentication and access control protocols against malicious attacks in 

wireless sensor networks. In Smart Computing and Informatics (pp. 255-

262). Singapore: Springer. 

Mohammadi, R., & Noghabi, H. B. (2016). SAT: Simulated annealing and tabu 

search based routing algorithm for wireless sensor networks. International 



  162 
  

Journal of Computer Networks and Communications Security, 4(10), 286-

293. 

Mohindru, V., & Singh, Y. (2018). Node authentication algorithm for securing static 

wireless sensor networks from node clone attack. International Journal of 

Information and Computer Security, 10(2-3), 129-148. 

Moret, B. M. E., & Shapiro, H. D. (2001). Algorithms and experiments: The new 

(and old) methodology. Journal of Universal Computer Science, 7(5), 434-

446. 

Moschakis, I. A., & Karatza, H. D. (2015). Multi-criteria scheduling of Bag-of-Tasks 

applications on heterogeneous interlinked clouds with simulated 

annealing. Journal of Systems and Software, 101, 1-14. 

Mostafaei, H. (2018). Energy-efficient algorithm for reliable routing of wireless 

sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-

5575. 

Muñoz, G., Espinoza, D., Goycoolea, M., Moreno, E., Queyranne, M., & Letelier, O. 

R. (2018). A study of the Bienstock–Zuckerberg algorithm: applications in 

mining and resource constrained project scheduling. Computational 

Optimization and Applications, 69(2), 501-534. 

Nasir, H. J. A., & Ku-Mahamud, K. R. (2016). Wireless sensor network: A 

bibliographical survey. Indian Journal of Science and Technology, 9(38), 1-

21. 

Nasir, H. J. A., Ku-Mahamud, K. R., & Kamioka, E. (2017). Ant colony optimization 

approaches in wireless sensor network: Performance evaluation. Journal of 

Computer Science, 13(6), 153-164. 



  163 
  

Nasir, H. J. A., Ku-Mahamud, K. R., & Kamioka, E. (2018). Enhanced ant colony 

system for reducing packet loss in wireless sensor network. International 

Journal of Grid and Distributed Computing, 11(1), 81-88. 

Okafor, F. O., & Fagbohunmi, G. S. (2013). Energy efficient routing in wireless 

sensor networks based on ant colony optimization. West African Journal of 

Industrial and Academic Research, 8(1), 102-109. 

Okdem, S., & Karaboga, D. (2009). Routing in wireless sensor networks using an ant 

colony optimization (ACO) router chip. Sensors, 9(2), 909-921. 

Oldewurtel, F., & Mahonen, P. (2010). Metrics for performance prediction of 

wireless sensor networks. In 2010 IEEE 72nd Vehicular Technology 

Conference-Fall (pp. 1-5). Ottawa, Canada: IEEE. 

Orojloo, H., & Haghighat, A. T. (2016). A tabu search based routing algorithm for 

wireless sensor networks. Wireless Networks, 22(5), 1711-1724. 

Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for 

the travelling salesman problem. Neural Computing and Applications, 24(7-

8), 1659-1669. 

Owais, M., Osman, M. K., & Moussa, G. (2016). Multi-objective transit route 

network design as set covering problem. IEEE Transactions on Intelligent 

Transportation Systems, 17(3), 670-679. 

Paquete, L., & Stützle, T. (2018). Stochastic local search algorithms for 

multiobjective combinatorial optimization: A. review. In T. F. Gonzalez 

(Ed.), Handbook of Approximation Algorithms and Metaheuristics: 

Methodologies and Traditional Applications (Vol. 1). CRC Press.  



  164 
  

Parenreng, J. M., & Kitagawa, A. (2017). A model of security adaptation for limited 

resources in wireless sensor network. Journal of Computer and 

Communications, 5(03), 10-23. 

Perretto, M., & Lopes, H. S. (2005). Reconstruction of phylogenetic trees using the 

ant colony optimization paradigm. Genetics and Molecular Research, 4(3), 

581-589. 

Phillips, A. E., Walker, C. G., Ehrgott, M., & Ryan, D. M. (2017). Integer 

programming for minimal perturbation problems in university course 

timetabling. Annals of Operations Research, 252(2), 283-304. 

Piana, S., Klepeis, J. L., & Shaw, D. E. (2014). Assessing the accuracy of physical 

models used in protein-folding simulations: quantitative evidence from long 

molecular dynamics simulations. Current Opinion in Structural Biology, 24, 

98-105. 

Pintea, C. M. (2014). Advances in Bio-Inspired Computing for Combinatorial 

Optimization Problems. Springer Berlin Heidelberg. 

Qiu, C., Shen, H., & Chen, K. (2017). An energy-efficient and distributed 

cooperation mechanism for k-coverage hole detection and healing in 

WSNs. IEEE Transactions on Mobile Computing, 17(6), 1247-1259.  

Rahim, S., Khan, S. A., Javaid, N., Shaheen, N., Iqbal, Z., & Rehman, G. (2015). 

Towards multiple knapsack problem approach for home energy management 

in smart grid. In 2015 18th International Conference on Network-Based 

Information Systems (pp. 48-52). Taipei: IEEE. 

Rao Y. C., & Rani, S. (2015). Energy efficiency and maximizing network lifetime 

for WSNs using ACO algorithm. International Journal of Innovative 

Technology and Exploring Engineering, 5(2), 15-20.   



  165 
  

Rathod, V., & Mehta, M. (2011). Security in wireless sensor network: A 

survey. Ganpat University Journal of Engineering and Technology, 1(1), 35-

44. 

Rothlauf, F. (2011). Design of Modern Heuristics Principles and Application. 

Heidelberg: Springer. 

Sahni, V., Bala, M., & Sharma, R. (2016). Tabu search based cluster head selection 

in stable election protocol. International Journal on Recent and Innovation 

Trends in Computing and Communication, 4(8), 90-94. 

Saleem, M., Ullah, I., & Farooq, M. (2012). BeeSensor: An energy-efficient and 

scalable routing protocol for wireless sensor networks. Information 

Sciences, 200, 38-56. 

Santana, F. S., Costa, A. H. R., Truzzi, F. S., Silva, F. L., Santos, S. L., Francoy, T. 

M., & Saraiva, A. M. (2014). A reference process for automating bee species 

identification based on wing images and digital image processing. Ecological 

Informatics, 24, 248-260. 

Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and 

delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303-

320. 

Schyns, M. (2015). An ant colony system for responsive dynamic vehicle 

routing. European Journal of Operational Research, 245(3), 704-718. 

Shah, B., Iqbal, F., & Khattak, A. M. (2016). Fuzzy query routing in unstructured 

mobile peer-to-peer networks. In 2016 IEEE Tenth International Conference 

on Semantic Computing (pp. 154-161). Laguna Hills: IEEE. 

Shekofteh, S. K., Yaghmaee, M. H., Khalkhali, M. B., & Deldari, H. (2010). 

Localization in wireless sensor networks using tabu search and simulated 



  166 
  

annealing. In 2010 The 2nd International Conference on Computer and 

Automation Engineering, (Vol. 2, pp. 752-757). Singapore: IEEE. doi: 

10.1109/ICCAE.2010.5451779 

Shin, T. H., Chin, S., Yoon, S. W., & Kwon, S. W. (2011). A service-oriented 

integrated information framework for RFID/WSN-based intelligent 

construction supply chain management. Automation in Construction, 20(6), 

706-715. 

Shobaki, G., & Jamal, J. (2015). An exact algorithm for the sequential ordering 

problem and its application to switching energy minimization in 

compilers. Computational Optimization and Applications, 61(2), 343-372. 

Shojafar, M., Javanmardi, S., Abolfazli, S., & Cordeschi, N. (2015). FUGE: A joint 

meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory 

and a genetic method. Cluster Computing, 18(2), 829-844. 

Singh A., & Behal S. (2013). Ant colony optimization for improving network 

lifetime in wireless sensor networks. International Journal of Engineering 

Sciences, June 2013(8), 1-12.  

Singh, R., Singh, D. K., & Kumar, L. (2010). Swarm intelligence based approach for 

routing in mobile ad hoc networks. International Journal of Science and 

Technology Education Research, 1(7), 147-153. 

Skinderowicz, R. (2017). An improved ant colony system for the sequential ordering 

problem. Computers & Operations Research, 86, 1-17. 

Song, X., Sun, L., & Cao, Y. (2010). Study on the convergence of converse ant 

colony algorithm for job shop scheduling problem. In 2010 Sixth 

International Conference on Natural Computation (Vol. 5, pp. 2710-2714). 

IEEE. 

https://doi.org/10.1109/ICCAE.2010.5451779


  167 
  

Soria-Alcaraz, J. A., Ochoa, G., Swan, J., Carpio, M., Puga, H., & Burke, E. K. 

(2014). Effective learning hyper-heuristics for the course timetabling 

problem. European Journal of Operational Research, 238(1), 77-86. 

Stützle, T., & Hoos, H. (1999). The max-min ant system and local search for 

combinatorial optimization problems. In S. Voß, S. Martello, I. H. Osman, & 

C. Roucairol (Eds.), Meta-heuristics (pp. 313-329). Boston: Springer. 

Stützle, T., & Hoos, H. (2000). MAX-MIN ant system. Future Generation Computer 

Systems, 16(9), 889-914. 

Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., De Oca, M. M., Birattari, M., 

& Dorigo, M. (2011). Parameter adaptation in ant colony optimization. 

In Autonomous Search (pp. 191-215). Springer. 

Sun, Y., Dong, W., & Chen, Y. (2017). An improved routing algorithm based on ant 

colony optimization in wireless sensor networks. IEEE Communications 

Letters, 21(6), 1317-1320. 

Sundaran, K., Ganapathy, V., & Sudhakara, P. (2017). Energy efficient multi-event 

based data transmission using ant colony optimization in wireless sensor 

networks. In 2017 International Conference on Intelligent Computing, 

Instrumentation and Control Technologies (pp. 998-1004). Kannur: IEEE. 

doi: 10.1109/ICICICT1.2017.8342703 

Suppiah, Y., & Shen, K. P. (2015). Minimizing total weighted tardiness on single 

machine. International Journal of Research in Science Engineering and 

Technology, 2(5), 12-18. 

Suryadevara, N. K., Mukhopadhyay, S. C., Kelly, S. D. T., & Gill, S. P. S. (2015). 

WSN-based smart sensors and actuator for power management in intelligent 

buildings. IEEE/ASME Transactions on Mechatronics, 20(2), 564-571. 

https://doi.org/10.1109/ICICICT1.2017.8342703


  168 
  

 Sutar, U. S., & Bodhe, S. K. (2010). Energy efficient topology control algorithm for 

multi-hop ad-hoc wireless sensor network. In 3rd IEEE International 

Conference on Computer Science and Information Technology (Vol. 3, pp. 

418-421). Chengdu: IEEE. doi: 10.1109/ICCSIT.2010.5564137  

Suzuki, Y., & Cortes, J. D. (2016). A tabu search with gradual evolution 

process. Computers & Industrial Engineering, 100, 52-57. 

Tall, H., & Chalhoub, G. (2017). ABORt: Acknowledgement-based opportunistic 

routing protocol for high data rate multichannel WSNs. Journal of Sensor 

and Actuator Networks, 6(4), 1-15. 

Tan, W. F., Lee, L. S., Majid, Z. A., & Seow, H. V. (2012). Ant colony optimization 

for capacitated vehicle routing problem. Journal of Computer Science, 8(6), 

846-852. 

Tewari, M., & Vaisla, K. S. (2014). Optimized hybrid ant colony and greedy 

algorithm technique based load balancing for energy conservation in WSN. 

International Journal of Computer Applications, 104(17), 14-18.  

Thesen, A. (1998). Design and evaluation of tabu search algorithms for 

multiprocessor scheduling. Journal of Heuristics, 4(2), 141–160. 

Tritschler, M., Naber, A., & Kolisch, R. (2017). A hybrid metaheuristic for resource-

constrained project scheduling with flexible resource profiles. European 

Journal of Operational Research, 262(1), 262-273. 

Tuani, A. F., Keedwell, E., & Collett, M. (2017). H-ACO: A heterogeneous ant 

colony optimisation approach with application to the travelling salesman 

problem. In Artificial Evolution: International Conference on Artificial 

Evolution (pp. 144-161). Springer International Publishing. 

http://dx.doi.org/10.1109/ICCSIT.2010.5564137
https://www.springerprofessional.de/en/artificial-evolution/15554256
http://www.springer.com/


  169 
  

Tubiello, F., Poehls, L., Webber, T., Marcon, C., & Vargas, F. (2018). A path energy 

control technique for energy efficiency on wireless sensor networks. In 2018 

IEEE 9th Latin American Symposium on Circuits & Systems (pp. 1-4). Puerto 

Vallarta: IEEE. 

Turley, M. D., Bilotta, G. S., Arbociute, G., Chadd, R. P., Extence, C. A., & Brazier, 

R. E. (2017). Quantifying submerged deposited fine sediments in rivers and 

streams using digital image analysis. River Research and 

Applications, 33(10), 1585-1595. 

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017). 

New benchmark instances for the capacitated vehicle routing 

problem. European Journal of Operational Research, 257(3), 845-858. 

Varsha, V., Singh, J., & Bala, M. (2017). Tabu search based energy efficient 

clustering protocol for wireless sensor networks. Global Journal of 

Computers & Technology, 5(2), 302-309. 

Vijayalakshmi, K., & Anandan, P. (2018). A multi objective tabu particle swarm 

optimization for effective cluster head selection in WSN. Cluster Computing, 

1-8. 

Vob, S. (2001). Meta-heuristics: The state of the art. In Proceedings of the Workshop 

on Local Search for Planning and Scheduling (pp. 1–23). Heidelberg: 

Springer.  

Wajgi, D., & Thakur, N. V. (2012). Load balancing algorithms in wireless sensor 

network: A survey. International Journal of Computer Networks and 

Wireless Communications, 2(4), 456-460. 

Wang, D., & Ni, Y. (2012). Wireless sensor networks for earthquake early warning 

systems of railway lines. In   Proceedings of the 1st International Workshop 



  170 
  

on High-Speed and Intercity Railways (pp. 417-426). Springer, Berlin, 

Heidelberg. 

Wang, Q., & Balasingham, I. (2010). Wireless sensor networks - An introduction. 

Wireless Sensor Networks: Application-Centric Design (pp. 1-13). InTech 

Open Access Publisher. 

Wang, S. (2018). Improved swarm intelligence algorithm for protein folding 

prediction. Cluster Computing, 1-10. 

Wang, Y., Chen, H., Wu, X., & Shu, L. (2016). An energy-efficient SDN based sleep 

scheduling algorithm for WSNs. Journal of Network and Computer 

Applications, 59, 39-45. 

Wang, Z. X., Zhang, M., Gao, X., Wang, W., & Li, X. (2017). A clustering WSN 

routing protocol based on node energy and multipath. Cluster Computing, 1-

13. 

Wei, L., Zhang, Z., Zhang, D., & Leung, S. C. (2018). A simulated annealing 

algorithm for the capacitated vehicle routing problem with two-dimensional 

loading constraints. European Journal of Operational Research, 265(3), 843-

859. 

Xenakis, A., Foukalas, F., & Stamoulis, G. (2016). Cross-layer energy-aware 

topology control through simulated annealing for WSNs. Computers & 

Electrical Engineering, 56, 576-590. 

Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., & Abraham, A. (2008). Efficient 

batch job scheduling in grids using cellular memetic algorithms. Journal of 

Mathematical Modelling and Algorithms, 7(2), 217–236. 

Xhafa, F., Gonzalez, J. A., Dahal, K. P., & Abraham, A. (2009). A GA(TS) hybrid 

algorithm for scheduling in computational grids. In Proceedings of the 4th 



  171 
  

International Conference on Hybrid Artificial Intelligence Systems (pp. 285–

292). Salamanca. doi:10.1007/978-3-642-02319-4_34. 

Xhafa, F., Kolodziej, J., Barolli, L., & Fundo, A. (2011). A GA+TS hybrid algorithm 

for independent batch scheduling in computational grids. In Proceedings of 

the 14th International Conference on Network-Based Information Systems 

(pp. 229–235). Tirana. doi:10.1109/NBiS.2011.41. 

Xiu-li, R., Hong-wei, L., & Yu, W. (2008). Multipath routing based on ant colony 

system in wireless sensor networks. In 2008 International Conference on 

Computer Science and Software Engineering, (Vol. 3, pp. 202-205). Wuhan: 

IEEE. doi: 10.1109/CSSE.2008.1140 

Yan, J. F., Gao, Y., & Yang, L. (2011). Ant colony optimization for wireless sensor 

networks routing. In 2011 International Conference on Machine Learning 

and Cybernetics (Vol. 1, pp. 400-403). Guilin: IEEE. doi: 

10.1109/ICMLC.2011.6016670 

Yang, C. H., Lin, Y. S., Chuang, L. Y., & Chang, H. W. (2017). A particle swarm 

optimization-based approach with local search for predicting protein 

folding. Journal of Computational Biology, 24(10), 981-994. 

Yang, J., Xu, M., Zhao, W., & Xu, B. (2010). A multipath routing protocol based on 

clustering and ant colony optimization for wireless sensor 

networks. Sensors, 10(5), 4521-4540. 

Yang, X. S. (2014a). Nature-Inspired Optimization Algorithms. Amsterdam: 

Elsevier. 

Yang, X. S. (2014b). Swarm intelligence based algorithms: A critical 

analysis. Evolutionary Intelligence, 7(1), 17-28. 

http://dx.doi.org/10.1109/CSSE.2008.1140
http://dx.doi.org/10.1109/ICMLC.2011.6016670


  172 
  

Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In 2009 World 

Congress on Nature & Biologically Inspired Computing (pp. 210-214). IEEE. 

Yang, Z., Ping, S., Aijaz, A., & Aghvami, A. H. (2018). A global optimization-based 

routing protocol for cognitive-radio-enabled smart grid AMI networks. IEEE 

Systems Journal, 12(1), 1015-1023. 

Ye, Z., & Mohamadian, H. (2014). Adaptive clustering based dynamic routing of 

wireless sensor networks via generalized ant colony optimization. In G. Lee 

(Ed.), IERI Procedia (Vol. 10, pp. 2-10). Elsevier. 

doi:10.1016/j.ieri.2014.09.063 

Yildiz, H. U., Bicakci, K., Tavli, B., Gultekin, H., & Incebacak, D. (2016). 

Maximizing wireless sensor network lifetime by communication/computation 

energy optimization of non-repudiation security service: Node level versus 

network level strategies. Ad Hoc Networks, 37(2), 301-323. 

Yoshikawa, M., & Otani, K. (2010). Ant colony optimization routing algorithm with 

tabu search. In Proceedings of the International Multiconference of Engineers 

and Computer Scientists (Vol. 3, pp. 17-19). 

Yousif, Y. K., Badlishah, R., Yaakob, N., & Amir, A. (2018). An energy efficient 

and load balancing clustering scheme for wireless sensor network (WSN) 

based on distributed approach. Journal of Physics: Conference Series, 1019, 

1-8. 

Zakaria, Y., & Michael, K. (2017). An integrated cloud-based wireless sensor 

network for monitoring industrial waste water discharged into water sources. 

Wireless Sensor Network, 9, 290- 301. 

Zapfel, G., Braune, R., & Bogl, M. (2010). Metaheuristic Search Concepts a Tutorial 

with Applications to Production and Logistics. Heidelberg: Springer. 



  173 
  

Zeng, B., & Dong, Y. (2016). An improved harmony search based energy-efficient 

routing algorithm for wireless sensor networks. Applied Soft Computing, 41, 

135-147. 

Zhang, H., Zhang, S., & Bu, W. (2014). A clustering routing protocol for energy 

balance of wireless sensor network based on simulated annealing and genetic 

algorithm. International Journal of Hybrid Information Technology, 7(2), 71-

82. 

Zhao, H., Pei, Z., Jiang, J., Guan, R., Wang, C., & Shi, X. (2010). A hybrid swarm 

intelligent method based on genetic algorithm and artificial bee colony. 

Advances in Swarm Intelligence (pp. 558-565). Springer Berlin Heidelberg. 

Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. 

(2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad 

Hoc Networks, 61, 16-32. 

Zhu, X., Dai, L., & Wang, Z. (2015). Graph coloring based pilot allocation to 

mitigate pilot contamination for multi-cell massive MIMO systems. IEEE 

Communications Letters, 19(10), 1842-1845. 

Zou, Z., & Qian, Y. (2018). Wireless sensor network routing method based on 

improved ant colony algorithm. Journal of Ambient Intelligence and 

Humanized Computing, 1-8. 

Zungeru, A. M. (2013). Energy-Efficient Routing Algorithms Based on Swarm 

Intelligence for Wireless Sensor Networks (Doctoral dissertation). University 

of Nottingham, England. 

Zungeru, A. M., Ang, L. M., & Seng, K. P. (2012a). Performance evaluation of ant-

based routing protocols for wireless sensor networks. International Journal of 

Computer Science Issues, 9(3), 388-397. 



  174 
  

Zungeru, A. M., Ang, L. M., & Seng, K. P. (2012b). Termite-hill: Performance 

optimized swarm intelligence based routing algorithm for wireless sensor 

networks. Journal of Network and Computer Applications, 35(6), 1901-1917. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  175 
  

APPENDICES 

 

 

Appendix I: Effect of β value to the success rate of EACS(TS) algorithm 

 

 

Appendix II: Effect of β value to the throughput of EACS(TS) algorithm 
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Appendix III: Effect of β value to the latency of EACS(TS) algorithm 

 

Appendix IV: Effect of β value to the energy consumption of EACS(TS) algorithm 
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Appendix V: Effect of β value to the energy efficiency of EACS(TS) algorithm 

 

Appendix VI: Effect of qo value to the success rate of EACS(TS) algorithm 
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Appendix VII: Effect of qo value to the throughput of EACS(TS) algorithm 

 

Appendix VIII: Effect of qo value to the latency of EACS(TS) algorithm 
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Appendix IX: Effect of qo value to the energy consumption of EACS(TS) algorithm 

 

Appendix X: Effect of qo value to the energy efficiency of EACS(TS) algorithm 
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Appendix XI: Effect of ρ value to the success rate of EACS(TS) algorithm 

 

Appendix XII: Effect of ρ value to the throughput of EACS(TS) algorithm 
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Appendix XIII: Effect of ρ value to the latency of EACS(TS) algorithm 

 

Appendix XIV: Effect of ρ value to the energy consumption of EACS(TS) algorithm 
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Appendix XV: Effect of ρ value to the energy efficiency of EACS(TS) algorithm 

 

Appendix XVI: Effect of α value to the success rate of EACS(TS) algorithm 
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Appendix XVII: Effect of α value to the throughput of EACS(TS) algorithm 

 

Appendix XVIII: Effect of α value to the latency of EACS(TS) algorithm 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ro

u
gh

p
u

t 

α value 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

La
te

n
cy

 

α  value 



  184 
  

 

Appendix XIX: Effect of α value to the energy consumption of EACS(TS) algorithm 

 

Appendix XX: Effect of α value to the energy efficiency of EACS(TS) algorithm 
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