4,867 research outputs found

    SuperCam, a 64-pixel heterodyne imaging array for the 870 micron atmospheric window

    Get PDF
    We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1x8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ~2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.Comment: 12 pages, 14 figures, to be published in the Proceedings of SPIE Vol. 6275, "Astronomical Telescopes and Instrumentation, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III

    Stellar population and kinematics of NGC404

    Get PDF
    NGC404 is a nearly face-on nearby low-luminosity lenticular galaxy. Probing its characteristics provides a wealth of information on the details of possible evolution processes of dS0 galaxies which may not be possible in other, more distant objects. In order to study its kinematics and star formation history, we obtained long slit spectroscopy at the OHP 1m93 telescope along the major and minor axes of NGC404. The spectra have a resolution R = 3600 covering a wavelength range from 4600 to 5500 A. The data are fitted against the Pegase.HR stellar population models to derive simultaneously the internal stellar kinematics, ages and metallicities. Firstly, the global properties of the galaxy are analyzed by fitting a single model and to the data and looking at the kinematic variations and SSP equivalent age and metallicities as a function of radius. Afterwards, the stellar populations are decomposed into 4 components that are individually analyzed. NGC404 clearly shows two radial velocity inversions along its major axis. The kinematically decoupled core rotates in the same direction as the neutral hydrogen shell that surrounds the galaxy. We resolved the star formation history in the core of the galaxy ino 4 events: A very young (< 150 Myr, and [Fe/H] = 0.4) component with constant on-going star formation, a second young (430 Myr) component with [Fe/H] = 0.1, an intermediate population (1.7 Gyr) which has [Fe/H] = -0.05 and, finally, an old (12 Gyr) component with [Fe/H] = -1.26. The two young components fade very quickly with radius, leaving only the intermediate and old population at a radius of 25" (370 pc) from the centre. We conclude that NGC404 had a spiral morphology about 1 Gyr ago and that one or many merger events has triggered a morphological transition.Comment: 8 pages, 8 figures, accepted for publication in A&

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., RaJR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min{Ja(RaJ+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallMJa(1J1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio
    corecore