10 research outputs found

    Distributed Relay Selection for Heterogeneous UAV Communication Networks Using A Many-to-Many Matching Game Without Substitutability

    Full text link
    This paper proposes a distributed multiple relay selection scheme to maximize the satisfaction experiences of unmanned aerial vehicles (UAV) communication networks. The multi-radio and multi-channel (MRMC) UAV communication system is considered in this paper. One source UAV can select one or more relay radios, and each relay radio can be shared by multiple source UAVs equally. Without the center controller, source UAVs with heterogeneous requirements compete for channels dominated by relay radios. In order to optimize the global satisfaction performance, we model the UAV communication network as a many-to-many matching market without substitutability. We design a potential matching approach to address the optimization problem, in which the optimizing of local matching process will lead to the improvement of global matching results. Simulation results show that the proposed distributed matching approach yields good matching performance of satisfaction, which is close to the global optimum result. Moreover, the many-to-many potential matching approach outperforms existing schemes sufficiently in terms of global satisfaction within a reasonable convergence time.Comment: 6 pages, 4 figures, conferenc

    Joint energy and throughput optimization for MEC-enabled multi-UAV IoRT networks

    Get PDF
    In this paper, we study an Unmanned Aerial Vehicle (UAV) enabled Mobile Edge Computing (MEC) service provisioning to the Internet of Remote Things (IoRT) devices spread randomly on the ground in a remote area. The data generated by the IoRT devices is collected by the UAVs, which immediately relay the data collected to an MEC device installed on the ground at a nearby location. The MEC device receives the data from the UAVs, and sends the results back to the UAVs, which in turn relay them to IoRT devices. We aim to minimize the energy consumption by the IoRT devices and the UAVs, while maximizing the system throughput subject to bandwidth, power, information-causality, and UAVs’ trajectory constraints. We formulate the problem as a Mixed Integer Non Linear Programming problem, which is a complex and non-convex optimization problem. To make the problem tractable, we use variable relaxation. We further develop an iterative algorithm based on Block Coordinate Descent method, to jointly optimize the connection scheduling, power control, bit transmission scheduling, bandwidth allocation, and trajectories of the UAVs. Numerical results demonstrate the convergence of the algorithm and superiority of the proposed model with respect to conventional methods. Our proposed system model of placing MEC at ground shows 9% improvement in energy consumption when compared to carrying out computations at MEC carried by UAV and a 99% improvement when compared to placing MEC at the satellite. The proposed system model shows a 0.2% lower system throughput on average, compared to placing MEC at UAV, which is tolerable considering gains in terms of energy consumption

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    Variation of Soil Structure in the Foot and Toe Slopes of Mt. Vukan, East-central Serbia

    Get PDF
    This paper presents the variation of soil structure along the foot and toe slopes of Mt. Vukan, East-Central Serbia. The analysis of aggregate size distribution and structure indices were conducted by means of soil units, characteristic soil horizons and elevation differences along the study area. Soils of Great Field located at different elevations were found to have significant variation in ASD and soil structure indices. Topsoil horizon of Eutric Cambisols have higher MWD after dry sieving, but at the same time it has the highest variation in MWD after wet sieving, indicating low water stability, which is opposite to the coefficient of aggregability. We share an opinion that change in MWD better depicts soils structure stability to water. The results of correlation analysis indicated that clay content is correlated more to structure indices compared with SOM content. SOM is significantly correlated with ASD and soil structure indices only in Calcomelansols, whereas the significant correlation of clay content and soil structure is more evident in Eutric Cambisols and Non-calcaric Chernozems, compared with other soil units. Soil structure variation along the lowest chain of Catena might be strong, and that it has to be analyzed from the point of view of soil unit and their corresponding soil horizons

    IMPACT OF GRAZING ON SOIL ORGANIC MATTER AND PHYSICAL PROPERTIES OF A FLUVISOL IN NORTWEST SERBIA

    Get PDF
    The effects of long-term (>20 yr) grazing on the selected physical properties of a non carbonated silty-clay Fluvisols were studied in the region of the Kolubara Valley, Northwest Serbia. Two adjacent land-use types (native deciduous forest and natural pasture soils converted from forests for more than 20 years) were chosen for the study. Disturbed and undisturbed soil samples were collected from three sites at each of the two different land-use types from the depths of 0–15, 15–30 and 30–45 cm. In relation to the soil under native forest, soil organic matter content, total porosity and air-filled porosity were significantly reduced after long-term of grazing. The bulk density (0.99–1.48 g cm–3) and the saturated hydraulic conductivity (6.9.10–2–3.2.10–4 cm s–1) were significantly lower in forest compared to the adjacent pasture (ex-forest) soil (1.49–1.55 g cm–3 and 3.4.10–4–5.5.10–4 cm s–1, respectively). In addition, forest had significantly lower dry mean weight diameter (7.0–9.2 mm) and greater wet mean weight diameter (2.0–2.6 mm) for 0–45 cm depth compared with the pasture (8.8–9.4 mm and 1.8–2.3 mm, respectively). The decrease of soil organic matter content and reduction in aggregate stability under long-term grazing rendered the soil more susceptible to compaction. In conclusion, the results of this study indicate that removal of permanent vegetation in the conversion process from forest areas to pasture land may lead to loss of soil productivity and serious soil degradation. Obviously, there is a need for greater attention to developing sustainable land use practices in management of these ecosystems to prevent further degradation of pasture soils in the region
    corecore