23,385 research outputs found

    Distributed Information Retrieval using Keyword Auctions

    Get PDF
    This report motivates the need for large-scale distributed approaches to information retrieval, and proposes solutions based on keyword auctions

    Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation

    Full text link
    The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank rr reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank rr of a large n×mn\times m matrix from C(r)rnmC(r)r\sqrt{nm} entries, where C(r)C(r) is a constant close to 11. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches.Comment: NIPS Conference 201

    Dreaming neural networks: forgetting spurious memories and reinforcing pure ones

    Full text link
    The standard Hopfield model for associative neural networks accounts for biological Hebbian learning and acts as the harmonic oscillator for pattern recognition, however its maximal storage capacity is α∌0.14\alpha \sim 0.14, far from the theoretical bound for symmetric networks, i.e. α=1\alpha =1. Inspired by sleeping and dreaming mechanisms in mammal brains, we propose an extension of this model displaying the standard on-line (awake) learning mechanism (that allows the storage of external information in terms of patterns) and an off-line (sleep) unlearning&\&consolidating mechanism (that allows spurious-pattern removal and pure-pattern reinforcement): this obtained daily prescription is able to saturate the theoretical bound α=1\alpha=1, remaining also extremely robust against thermal noise. Both neural and synaptic features are analyzed both analytically and numerically. In particular, beyond obtaining a phase diagram for neural dynamics, we focus on synaptic plasticity and we give explicit prescriptions on the temporal evolution of the synaptic matrix. We analytically prove that our algorithm makes the Hebbian kernel converge with high probability to the projection matrix built over the pure stored patterns. Furthermore, we obtain a sharp and explicit estimate for the "sleep rate" in order to ensure such a convergence. Finally, we run extensive numerical simulations (mainly Monte Carlo sampling) to check the approximations underlying the analytical investigations (e.g., we developed the whole theory at the so called replica-symmetric level, as standard in the Amit-Gutfreund-Sompolinsky reference framework) and possible finite-size effects, finding overall full agreement with the theory.Comment: 31 pages, 12 figure

    Convex Optimization Approaches for Blind Sensor Calibration using Sparsity

    Get PDF
    We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the joint recovery of the gains and the sparse signals as a convex optimization problem. We divide this problem in 3 subproblems with different conditions on the gains, specifially (i) gains with different amplitude and the same phase, (ii) gains with the same amplitude and different phase and (iii) gains with different amplitude and phase. In order to solve the first case, we propose an extension to the basis pursuit optimization which can estimate the unknown gains along with the unknown sparse signals. For the second case, we formulate a quadratic approach that eliminates the unknown phase shifts and retrieves the unknown sparse signals. An alternative form of this approach is also formulated to reduce complexity and memory requirements and provide scalability with respect to the number of input signals. Finally for the third case, we propose a formulation that combines the earlier two approaches to solve the problem. The performance of the proposed algorithms is investigated extensively through numerical simulations, which demonstrates that simultaneous signal recovery and calibration is possible with convex methods when sufficiently many (unknown, but sparse) calibrating signals are provided
    • 

    corecore