99 research outputs found

    Distributed Model-to-Model Transformation with ATL on MapReduce

    Get PDF
    International audienceEfficient processing of very large models is a key requirement for the adoption of Model-Driven Engineering (MDE) in some industrial contexts. One of the central operations in MDE is rule-based model transformation (MT). It is used to specify manipulation operations over structured data coming in the form of model graphs. However, being based on com-putationally expensive operations like subgraph isomorphism, MT tools are facing issues on both memory occupancy and execution time while dealing with the increasing model size and complexity. One way to overcome these issues is to exploit the wide availability of distributed clusters in the Cloud for the distributed execution of MT. In this paper, we propose an approach to automatically distribute the execution of model transformations written in a popular MT language, ATL, on top of a well-known distributed programming model, MapReduce. We show how the execution semantics of ATL can be aligned with the MapReduce computation model. We describe the extensions to the ATL transformation engine to enable distribution, and we experimentally demonstrate the scalability of this solution in a reverse-engineering scenario

    ATL-MR: Model Transformation on MapReduce

    Get PDF
    International audienceThe Model-Driven Engineering (MDE) paradigm has been successfully embraced for manufacturing maintainable software in several domains while decreasing costs and efforts. One of its principal concepts is rule-based Model Transformation (MT) that enables an automated processing of models for different intentions. The user-friendly syntax of MT languages is designed for allowing users to specify and execute these operations in an effortless manner. Existing MT engines, however, are incapable of accomplishing transformation operations in an acceptable time while facing complex transformations. Worse, against large amount of data, these tools crash throwing an out of memory exception. In this paper, we introduce ATL-MR, a tool to automatically distribute the execution of model transformations written in a popular MT language, ATL, on top of a well-known distributed programming model, MapReduce. We briefly present an overview of our approach, we describe the changes with respect to the standard ATL transformation engine, finally , we experimentally show the scalability of this solution

    Transforming Very Large Models in the Cloud: a Research Roadmap

    Get PDF
    International audienceModel transformations are widely used by Model-Driven Engineering (MDE) platforms to apply different kinds of operations over models, such as model translation, evolution or composition. However, existing solutions are not designed to handle very large models (VLMs), thus facing scalability issues. Coupling MDE with cloud-based platforms may help solving these issues. Since cloud-based platforms are relatively new, researchers still need to investigate if/how/when MDE solutions can benefit from them. In this paper, we investigate the problem of transforming VLMs in the Cloud by addressing the two phases of 1) model storage and 2) model transformation execution in the Cloud. For both aspects we identify a set of research questions, possible solutions and probable challenges researchers may face

    Parallel Execution of ATL Transformation Rules

    Get PDF
    International audienceIndustrial environments that make use of Model-Driven Engineering (MDE) are starting to see the appearance of very large models, made by millions of elements. Such models are produced automatically (e.g., by reverse engineering complex systems) or manually by a large number of users (e.g., from social networks). The success of MDE in these application scenarios strongly depends on the scalability of model manipulation tools. While parallelization is one of the traditional ways of making computation systems scalable, developing parallel model transformations in a general-purpose language is a complex and error-prone task. In this paper we show that rule-based languages like ATL have strong parallelization properties. Transformations can be developed without taking into account concurrency concerns, and a transformation engine can automatically parallelize execution. We describe the implementation of a parallel transformation engine for the current version of the ATL language and experimentally evaluate the consequent gain in scalability

    Towards Distributed Model Transformations with LinTra

    Get PDF
    Performance and scalability of model transformations are becoming prominent topics in Model-Driven Engineering. In previous works we introduced LinTra, a platform for executing model transformations in parallel. LinTra is based on the Linda model of a coordination language and is intended to be used as a middleware where high-level model transformation languages are compiled. In this paper we present the initial results of our analyses on the scalability of out-place model-to-model transformation executions in LinTra when the models and the processing elements are distributed over a set of machines.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Motor de transformações baseado em Mapreduce

    Get PDF
    Resumo: A busca por agilidade no processo de desenvolvimento de software tem impulsionado a crescente adoção de tecnologias, paradigmas e abordagens baseada em modelos (Model- Driven Engineering). Essas soluções mudam o foco de codificação para modelagem, onde modelos são utilizados para descrever diferentes aspectos de um sistema em diferentes níves de abstração. Uma série de linguagens, padrões e ferramentas surgiram para automatizar a construção e modificação de modelos e assim apoiar a principal operação executada neste cenário que são as transformações de modelos. A inserção de grandes modelos neste contexto evidenciou uma limitação dessa metodologia, a capacidade de tratar modelos com esta característica. Problemas de escalabilidade surgem quando modelos da ordem de milhares de elementos são utilizados em processos de desenvolvimento de software. Trabalhos recentes, visando desenvolver soluções para o problema de escalabilidade, tem explorado e focado em diferentes abordagens como armazenamento, fragmentação e persistência de modelos, porém pouco se tem visto em relação a ferramentas de transformação de modelos. Com base em trabalhos feitos em outros domínios, desenvolvemos um mecanismo de transformação de modelos executando de forma distribuída em uma nuvem. A solução consiste na adaptação de uma ferramenta de transformação de modelos para execução distribuída, através da integração com MapReduce. Duas implementações distintas arquiteturalmente são apresentadas, uma baseada em regras de transformação e outra baseada em operações de transformação de modelos. Os resultados obtidos são promissores especialmente para transformação de modelos grandes e complexos

    Efficient Model Partitioning for Distributed Model Transformations

    Get PDF
    International audienceAs the models that need to be handled in model-driven engineering grow in scale, scalable algorithms for model transformation (MT) are becoming necessary. Programming models such as MapReduce or Pregel may simplify the development of distributed model transformations. However, because of the dense inter-connectivity of models and the complexity of transformation logics, scalability in distributed model processing is challenging. In this paper, we adapt existing formalization of uniform graph partitioning to the case of distributed MTs by means of binary linear programming. Moreover, we propose a data distribution algorithm for declarative model transformation based on static analysis of relational transformation rules. We first extract footprints from transformation rules. Then we propose a fast data distribution algorithm, driven by the extracted footprints, and based on recent results on balanced partitioning of streaming graphs. To validate our approach, we apply it to an existing distributed MT engine for the ATL language, built on top of MapReduce. We implement our heuristic as a custom split algorithm for ATL on MapReduce and we evaluate its impact on remote access to the underlying backend

    Towards Transparent Combination of Model Management Execution Strategies for Low-Code Development Platforms

    Get PDF
    International audienceLow-code development platforms are taking an important place in the model-driven engineering ecosystem, raising new challenges, among which transparent efficiency or scalability. Indeed, the increasing size of models leads to difficulties in interacting with them efficiently. To tackle this scalability issue, some tools are built upon specific computational strategies exploiting reactivity, or parallelism. However, their performances may vary depending on the specific nature of their usage. Choosing the most suitable computational strategy for a given usage is a difficult task which should be automated. Besides, the most efficient solutions may be obtained by the use of several strategies at the same time. is paper motivates the need for a transparent multi-strategy execution mode for model-management operations. We present an overview of the different computational strategies used in the model-driven engineering ecosystem, and use a running example to introduce the benefits of mixing strategies for performing a single computation. is example helps us present our design ideas for a multi-strategy model-management system. e code-related and DevOps challenges that emerged from this analysis are also presented

    DC4MT : uma abordagem orientada a dados para transformação de modelos

    Get PDF
    Orientador: Marcos Didonet Del FabroTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 25/08/2020Inclui referências: p. 95-106Área de concentração: Ciência da ComputaçãoResumo: Transformações de Modelos são operações que recebem um conjunto de modelos como entrada e produzem um conjunto de modelos como saída, seguindo uma especificação. Há uma coleção diversificada de abordagens e ferramentas utilizadas para a especificação de diferentes tipos de transformações de modelos. A maioria dessas abordagens adota como estratégia a execução local e sequencial. No entanto, essas abordagens não estão totalmente aptas para processar modelos com grandes quantidades de elementos. VLMs (Very Large Models) são modelos que possuem milhões de elementos. Esses modelos estão presentes em domínios de aplicações como na indústria automotiva, modernização de sistemas legados, internet das coisas, redes sociais, entre outros domínios. Essas abordagens possuem lacunas para suportar o processamento desses VLMs. Por exemplo, para possibilitar a execução das transformações de modelos, considerando a escala do problema ou para melhoria de desempenho. Nesta tese é proposta a Dc4MT, uma abordagem para suportar transformações de VLMs com a aplicação e adaptação de técnicas relacionadas à distribuição de dados. A Dc4MT é uma abordagem Orientada a Dados (Dc - Data-centric) para ser aplicada no domínio da Engenharia Dirigida por Modelos (MDE - Model Driven Engineering). A abordagem é especificada, utilizando um framework de processamento distribuído, e define um conjunto de operações para a fragmentação, extração e transformação de modelos. A fragmentação é uma operação que divide os modelos de entrada (em formatos XMI ou JSON) em fragmentos, de modo que esses fragmentos possam ser distribuídos e processados de maneira paralela/distribuída. A extração é uma operação que processa os fragmentos do modelo de entrada e os traduz em um grafo acíclico, atribuindo um novo domínio de modelagem a esses fragmentos. A transformação de modelos na abordagem Dc4MT é uma operação que transforma modelos de entrada em modelos de saída (M2M) a partir do resultado da extração. As execuções de transformação podem ser em modo paralelo ou distribuído, com ou sem a intervenção no método de particionamento do framework disponível para melhorar o desempenho. Um conjunto de modelos de entrada (datasets) e os ambientes local (transformações paralelas) e distribuído (transformações distribuídas) são utilizados nos experimentos para validar a abordagem Dc4MT, sob os aspectos de factibilidade, desempenho e de escalabilidade. Os resultados desses experimentos, mostram que as operações de fragmentação e extração de modelos favorecem a transformação escalável de VLMs, reconstruindo a estrutura dos fragmentos em um grafo. A operação de extração é executada em modo paralelo/distribuído. Além disso, os aspectos como a imutabilidade, lazy-evaluate e o paralelismo implícito presentes na Dc4MT, permitem o processamento paralelo/distribuído de regras de transformação em uma plataforma escalável. Palavras-chave: Abordagem Orientada a Dados. Engenharia Dirigida por Modelos. Transformação Paralela de Modelos. Transformação Distribuída de Modelos.Abstract: Model Transformations are operations that receive a set of source models as input and produce a set of target models as output, following a specification. There is a variety of approaches and tools used for the specification of different types of model transformation. Most of these approaches adopt for model transformation the local and sequential execution strategy. However, these approaches not fully adapted for processing models with large amounts of elements. VLMs (Very Large Models) are models with millions of elements. These models are present in application domains such as the automotive industry, modernization of legacy systems, internet of things, social networks, among others. These approaches have gaps to support the processing of these increasingly larger models. For example, to enable model transformations, considering the scale of the problem or to improve performance. In this thesis, the Dc4MT is proposed such as an approach to support transformation of VLMs, applying and adapting distribution techniques of data. The Dc4MT is a Data-centric (Dc) approach for applying in Model Driven Engineering (MDE). The approach will be specified using a distributed processing framework, and defines a set of operations for fragmentation, extraction, and transformation of models. The fragmentation is an operation that splits the input models (in the XMI or JSON formats) in a way that the fragments can be processed in parallel/distributed. The extraction is an operation that processes the fragments of the input model in parallel and translates them to an acyclic graph, assigning a new modeling domain to these fragments. The model transformation in Dc4MT is an operation that transforms input models in output models (M2M) from the results of the extraction. The transformation executions can be parallel or distributed with ou without the intervention in the framework partitioning method to improve the performance. A set of input models (datasets) and the local (parallel transformations) and distributed (distributed transformations) environments are used in the experiments to validate the Dc4MT approach, in terms of feasibility, performance, and scalability. The results of the experiments show that the model fragmentation and extraction operations favor the scalable transformation of models, reconstructing the structure of the fragments in a graph. The extraction operation is executed on parallel/distributed way. Moreover, aspects such as immutability, lazy-evaluation, and implicit parallelism present in Dc4MT, allowing the parallel/distributed processing of transformation rules on a scalable platform. Keywords: Data-centric Approach. Model Driven Engineering. Parallel Model Transformation. Distributed Model Transformation

    Efficient execution of ATL model transformations using static analysis and parallelism

    Get PDF
    Although model transformations are considered to be the heart and soul of Model Driven Engineering (MDE), there are still several challenges that need to be addressed to unleash their full potential in industrial settings. Among other shortcomings, their performance and scalability remain unsatisfactory for dealing with large models, making their wide adoption difficult in practice. This paper presents A2L, a compiler for the parallel execution of ATL model transformations, which produces efficient code that can use existing multicore computer architectures, and applies effective optimizations at the transformation level using static analysis. We have evaluated its performance in both sequential and multi-threaded modes obtaining significant speedups with respect to current ATL implementations. In particular, we obtain speedups between 2.32x and 38.28x for the A2L sequential version, and between 2.40x and 245.83x when A2L is executed in parallel, with expected average speedups of 8.59x and 22.42x, respectively.Spanish Research Projects PGC2018-094905-B-I00, TIN2015-73968-JIN (AEI/FEDER/UE), Ramón y Cajal 2017 research grant, TIN2016-75944-R. Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development, and by the FWF under the Grant Numbers P28519-N31 and P30525-N31
    corecore