9,255 research outputs found

    Distributed control design for underwater vehicles

    Get PDF
    The vast majority of control applications are based on non-interacting decentralized control designs. Because of their single-loop structure, these controllers cannot suppress interactions of the system. It would be useful to tackle the undesirable effects of the interactions at the design stage. A novel model predictive control scheme based on Nash optimality is presented to achieve this goal. In this algorithm, the control problem is decomposed into that of several small-coupled mixed integer optimisation problems. The relevant computational convergence, closed-loop performance and the effect of communication failures on the closed-loop behaviour are analysed. Simulation results are presented to illustrate the effectiveness and practicality of the proposed control algorithm

    Analytical results for the multi-objective design of model-predictive control

    Full text link
    In model-predictive control (MPC), achieving the best closed-loop performance under a given computational resource is the underlying design consideration. This paper analyzes the MPC design problem with control performance and required computational resource as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational resource separately -- often with the latter as a fixed constraint -- which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient solver are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the design approach and importance of the developed conditions for an effective solver of the MOD-MPC problem

    Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons

    Get PDF
    Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive investigation across diverse simulated and experimental systems, encompassing star and complex networks of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks. We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship may be lost or even inverted. In systems with a strong stochastic component, the generation of more temporally-organized activity could be induced. These observations have many potential implications across diverse fields of basic and applied science, for example, in the design of distributed sensing systems based on wireless coupled oscillators, in network identification and control, as well as in the interpretation of neuroscientific and other dynamical data

    Sisyphus Effect in Pulse Coupled Excitatory Neural Networks with Spike-Timing Dependent Plasticity

    Full text link
    The collective dynamics of excitatory pulse coupled neural networks with spike timing dependent plasticity (STDP) is studied. Depending on the model parameters stationary states characterized by High or Low Synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low frequency oscillations between strongly and weakly synchronized states are observable, which can be identified as infraslow oscillations with frequencies 0.02 - 0.03 Hz. Their emergence can be explained in terms of the Sisyphus Effect, a mechanism caused by a continuous feedback between the evolution of the coherent population activity and of the average synaptic weight. Due to this effect, the synaptic weights have oscillating equilibrium values, which prevents the neuronal population from relaxing into a stationary macroscopic state.Comment: 18 pages, 24 figures, submitted to Physical Review

    A distributed command governor strategy for the operational control of drinking water networks

    Get PDF
    Trabajo presentado a la IEEE Conference on Control Applications (CCA) celebrada en Juan-les-Pins, Antibes (Francia) del 8 al 10 de octubre de 2014.This paper proposes the application of a distributed command governor (DCG) strategy for the operational control of drinking water networks (DWN). This approach is very suitable to this kind of management problems given the large-scale and complex nature of DWNs, the relevant effect of persistent disturbances (water demands) over the network evolutions and their marginal stability feature. The performance improvement offered by DCG is compared with the consideration of two non-centralized model predictive control (MPC) approaches already proposed for the same management purposes and within the same context. The paper also discusses the effectiveness of all strategies and highlights the advantages of each approach. The Barcelona DWN is considered as the case study for the assessment analysis.This work has been partially supported by the European Commission (FP7-ICT-2011-8-318556), the European Social Fund and the Calabria Region.Peer Reviewe

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Numerical Methods for Nonlinear Optimal Control Problems and Their Applications in Indoor Climate Control

    Get PDF
    Efficiency, comfort, and convenience are three major aspects in the design of control systems for residential Heating, Ventilation, and Air Conditioning (HVAC) units. In this dissertation, we study optimization-based algorithms for HVAC control that minimizes energy consumption while maintaining a desired temperature, or even human comfort in a room. Our algorithm uses a Computer Fluid Dynamics (CFD) model, mathematically formulated using Partial Differential Equations (PDEs), to describe the interactions between temperature, pressure, and air flow. Our model allows us to naturally formulate problems such as controlling the temperature of a small region of interest within a room, or to control the speed of the air flow at the vents, which are hard to describe using finite-dimensional Ordinary Partial Differential (ODE) models. Our results show that our HVAC control algorithms produce significant energy savings without a decrease in comfort. Also, we formulate a gradient-based estimation algorithm capable of reconstructing the states of doors in a building, as well as its temperature distribution, based on a floor plan and a set of thermostats. The estimation algorithm solves in real time a convection-diffusion CFD model for the air flow in the building as a function of its geometric configuration. We formulate the estimation algorithm as an optimization problem, and we solve it by computing the adjoint equations of our CFD model, which we then use to obtain the gradients of the cost function with respect to the flow’s temperature and door states. We evaluate the performance of our method using simulations of a real apartment in the St. Louis area. Our results show that the estimation method is both efficient and accurate, establishing its potential for the design of smarter control schemes in the operation of high-performance buildings. The optimization problems we generate for HVAC system\u27s control and estimation are large-scale optimal control problem. While some optimal control problems can be efficiently solved using algebraic or convex methods, most general forms of optimal control must be solved using memory-expensive numerical methods. In this dissertation we present theoretical formulations and corresponding numerical algorithms that can find optimal inputs for general dynamical systems by using direct methods. The results show these algorithms\u27 performance and potentials to be applied to solve large-scale nonlinear optimal control problem in real time
    • …
    corecore