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ABSTRACT OF THE DISSERTATION

Numerical Methods for Nonlinear Optimal Control Problems and Their Applications in

Indoor Climate Control

by

Runxin He

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, August 2017

Research Advisor: Humberto Gonzalez

Efficiency, comfort, and convenience are three major aspects in the design of control systems

for residential Heating, Ventilation, and Air Conditioning (HVAC) units. In this disser-

tation, we study optimization-based algorithms for HVAC control that minimizes energy

consumption while main- taining a desired temperature, or even human comfort in a room.

Our algorithm uses a Computer Fluid Dynamics (CFD) model, mathematically formulated

using Partial Differential Equations (PDEs), to describe the interactions between tempera-

ture, pressure, and air flow. Our model allows us to naturally formulate problems such as

controlling the temperature of a small region of interest within a room, or to control the

speed of the air flow at the vents, which are hard to describe using finite-dimensional Ordi-

nary Partial Differential (ODE) models. Our results show that our HVAC control algorithms

produce significant energy savings without a decrease in comfort.

Also, we formulate a gradient-based estimation algorithm capable of reconstructing the states

of doors in a building, as well as its temperature distribution, based on a floor plan and a set of

x



thermostats. The estimation algorithm solves in real time a convection-diffusion CFD model

for the air flow in the building as a function of its geometric configuration. We formulate the

estimation algorithm as an optimization problem, and we solve it by computing the adjoint

equations of our CFD model, which we then use to obtain the gradients of the cost function

with respect to the flow’s temperature and door states. We evaluate the performance of our

method using simulations of a real apartment in the St. Louis area. Our results show that

the estimation method is both efficient and accurate, establishing its potential for the design

of smarter control schemes in the operation of high-performance buildings.

The optimization problems we generate for HVAC system’s control and estimation are large-

scale optimal control problem. While some optimal control problems can be efficiently solved

using algebraic or convex methods, most general forms of optimal control must be solved

using memory-expensive numerical methods. In this dissertation we present theoretical

formulations and corresponding numerical algorithms that can find optimal inputs for general

dynamical systems by using direct methods. The results show these algorithms’ performance

and potentials to be applied to solve large-scale nonlinear optimal control problem in real

time.
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Chapter 1

Introduction

Heating, Ventilation, and Air Conditioning (HVAC) systems are complex mechanical devices

that control the climate of all kinds of buildings, large and small, residential and commer-

cial. In most situations, HVAC systems are used to maintain comfortable temperatures,

while limiting both humidity and air speed away from undesirable levels, as described in

standards such as ASHRAE 55 [7]. Yet, current HVAC systems are typically controlled in

a centralized or static fashion, disregarding variations in building configuration (windows

or doors opened or closed dynamically), human activity, or even human perception of envi-

ronmental conditions [14]. While, on the other hand, buildings currently account for more

than 40% of the total energy consumption in the U.S. [120], and they cost $130 billion in

energy leakage and inefficiency [121]. For this reason many research groups are develop-

ing new control algorithms to improve the performance and efficiency of HVAC systems in

buildings [116, 50, 2, 115].

In the dissertation, we present a control and estimation framework, based on a PDE-

constrained optimal control problem, that takes into account localized conditions at the

1



room or even person scale. Also numerical methods to solve corresponding nonlinear opti-

mal control problems are studied, which show the potential to make our PDE-constrained

HVAC system control fast enough for real time applications.

1.1 Indoor computational fluid dynamic model

In the aspect of architecture engineering and computational physics, the dynamic behavior of

the air flow is mathematically complex due to turbulent dynamical responses [14]. Nonethe-

less, even if the flow is turbulent inside air ducts at reasonable ventilation rates, its response

is laminar in larger areas [117, 20], thus it can be analyzed using simpler non-turbulent

Computer Fluid Dynamics (CFD) models. Many results can be found in the literature using

different variations of CFD models to study heating and ventilation situations in buildings.

Bathe and Zhang [20] studied Navier–Stokes incompressible and compressible fluid flows

with structural interaction. Sinha, Arora and Roy [117] studied the velocity and tempera-

ture distribution inside a room heated by a warm air stream introduced at various positions

with an incompressible laminar Navier-Stokes model. Schijndel [124] worked on building a

full 3D indoor dynamic distribution of heat, air flow and moisture. Waring and Siegel [131]

used CFD model to study the air quality inside a building with various HVAC filters, heat

exchangers, and ducts.

There are quite a lot researches on CFD model with partial differential equations both

theoretically and numerically. For example, from the theoretical aspects, the existence and

smoothness of the solutions of the non-turbulent models has been proved under suitable con-

ditions [47, 57], and they can be used together with gradient-based optimization algorithms.

Ito [84] studied the theoretical optimal control of stationary Navier-Stokes equations coupled

2



with the heat transfer equation, finding necessary conditions for the existence of an optimal

argument. For numerical computation, Finite Element Method [140] (FEM) is applied to

simulate CFD models with complicated geometries. Many well-established numerical solvers

are also implemented for researchers and engineers, such as COMSOL Multiphysics [124] and

FEniCS [4]. However, most numerical solvers which are used by researchers to find solutions

of CFD models, for example COMSOL Multiphysics [124] are not suitable for integration

with gradient-based optimization algorithms, which require the explicit formulation of all

the approximating equations and their gradients. It is for this reason that we formulated our

own numerical discretization of the CFD model using the FEM method and mixed boundary

conditions.

1.2 Optimal control for HVAC system

Standard HVAC systems in market these days typically use a small number of thermostats,

together with simple temperature regularization loops [58], to follow a temperature set point

in each area of interests.

State-of-the-art results in the area of HVAC control can be categorized within two main

trends. The first corresponds to learning-based methods, such as artificial intelligence and

neural networks [56, 136, 81]. However, learning-based methods depends on their training

data and building plans too much and their after-trained models are not flexible to apply to

other environment [98]. The second corresponds to model-based predictive methods, which

describe the dynamic evolution of building climate variables using first-principle physical

models, or approximations of these models.

3



Many results exist in the control of HVAC units using optimization-based methods. Among

those model-based predictive methods, MPC stands out due to its flexible mathematical

formulation and its robust performance in real-world implementations [80, 133, 97]. Indeed,

MPC has become one of the standard methods for solving constrained multivariate control

problems in process control applications [2]. MPC has been applied to zoned temperature

control and temperature regularization in the past, showing significant improvements in en-

ergy efficiency compared to other classical control methods [106]. Goyal and Barooah [70]

studied in detail the use of RC network circuits to model the temperature within buildings.

Kalman and Borelli [89], as well as Hazyuk et al. [74, 75], used low-dimension ODE-based

models to control a HVAC unit using Model Predictive Control (MPC). Aswani et al. [12]

used a learning-based MPC algorithm [11] to account for unmodeled dynamics and distur-

bance in ODE models when controlling HVAC units. Domahidi et al. [49] and Fux et al. [59]

also used a learning-based method and MPC, the first using ADABOOST to estimate un-

certainties and the second using an Extended Kalman Filter. Ma et al. [95] used Stochastic

MPC to handle disturbances in the control of HVAC units, also using ODE models. These

results show that optimal control strategies increase the efficiency of HVAC systems, yet the

use of ODE (i.e., concentrated parameter) models means that there is no detailed control of

the air flow or of the temperature in arbitrary points in a room.

In order to get rid of the inaccurate predictions by concentrated models, previous studies

in literature focused on PDE-constrained optimal control of HVAC system. In recent years,

Burns et al. [29, 33, 34] studied the optimal control of HVAC systems with linearized Navier-

Stokes models around an arbitrary steady-state solution, and then used a Linear Quadratic

Regulator (LQR) controller to find the optimal solution. However, the papers [19] and [111]
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showed that in order to apply LQR method to Navier-Stokes Equation with Dirichlet bound-

ary control, an extra compatibility condition needs to be satisfied. Or alternatively, a pe-

nalized Neumann condition approximation control is introduced [79, 34] to approach the

optimal Dirichlet control problem, which however have no physical or mechanical meaning

in HVAC system. But their preliminary results show that PDE models, usually considered

too complex for online numerical calculations, can be effectively used for building control.

Yet the authors’ use of linearized approximations mean that the optimal solution is accu-

rate only if it is close to the original steady-state linearization point, which poses a serious

limitation in practical applications. Moreover, most simulations about PDE-constrained op-

timal control for HVAC system in literature are modeled in simple geometry, instead of real

building plans.

In my study, we use a nonlinear non-turbulent Navier-Stokes model together with a convection-

diffusion heat equation to model the climate in a building directly. We discretize this model

using a Finite Element Method (FEM), and we use it to find the optimal control for the

HVAC system in a building. Furthermore, we show via simulations that it is possible to de-

sign control objectives that are functions of the residents’ locations, which greatly increase

the efficiency of the HVAC system.

As mentioned above, many HVAC control systems in literature deal with thermal comfort

simply by controlling air temperature, such that occupants are assumed to be comfortable

as long as the room temperature was within a certain range, instead of quantifying resident’s

thermal comfort or considering other variables [101, 10, 100]. However, since thermal com-

fort has a great influence on the productivity and satisfaction of indoor building occupants,

the focus of HVAC system control is not on only the energy efficiency, but also the fulfill-

ment of resident’s comfort requirement. The thermal comfort is a complicated quantity, a

5



large number of thermal comfort quantification methods have been studied these days, and

among them the Predicted Mean Vote (PMV) index [54] is the most popular and standard

one according to ASHRAE 55 [7]. Direct incorporation of the PMV in a model predictive

control for HVAC systems could raise several challenges and the control algorithms seldom

directly optimize a PMV index (or use it in a constraint). One concern relates to the ad-

ditional computational burden due to the iterative computation of PMV [37]. Past work

tried to approximate the PMV with a neural network model [56, 136, 81] or with a linearized

parameter model [37, 55]. A second concern relates to the additional cost of sensing [36], in

most residential buildings, typically there are no extra sensors to continually measure mean

radiant temperature, humidity, or door configurations [14]. However, with help of the devel-

opment of wearable devices, it is possible to monitor every resident’s personal information

with their mobile phones or smart watches [87, 134].

In this dissertation, we develop a MPC to optimize the thermal comfort around indoor

residents based on CFD model. The thermal comfort is measured by PMV index’s approx-

imation and the optimization control pairs the heater’s power with fan’s speed, not focuses

only on temperature regularity. Also the MPC is able to identify indoor climate distribution

and an apartment’s doors configuration based only on thermostatic data. The optimization

problem is PDE-constrained, we mathematically derive a first order gradient-based method

to solve the optimization problem which has been shown to be memory-efficient [76].

1.3 Estimators for HVAC system

According to section 1.2, MPC for HVAC systems has been shown to outperform other tech-

niques on certain performance metrics, such as robustness [80], response improvement [133],
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and fluctuation reduction [97]. And, it has been widely used to control entire HVAC sys-

tems or their important subsystems. However, a real-time MPC algorithm must predict the

future state of the system and optimize the relative control strategies based on the system’s

current state information, and sometimes also on the previous state [2]. A mismatch in the

model and an inaccurate initial state will deteriorate the optimal control and may lead to

state offsets or even system instability [110] [53]. Retrieving these states from measurements

is generally referred to as state estimation [90], and one practical necessity in estimating a

process’s state variable is an accurate process model with initial conditions.

For linear and non-constraint systems, a Kalman filter [62] can powerfully handle the esti-

mation task, and often it is the standard choice. However, a HVAC system model usually

is nonlinear and has inequality state constraints [14], so a general recursive method, like

the Kalman filter, is not available [109]. Other optimization-based estimation algorithms

have been developed, such as the results by [83] in Partial Differential Equation (PDE) es-

timation. Banks et al. viewed the parameters for the inverse problem as random variables,

and used probabilistic inference methods to estimate the desired parameters [17, 18]. [73]

fully discretized a weak form of the Stokes Equations in time and space and identified the

system’s discontinuous parameters. Based on the success of receding horizon control [96],

moving horizon estimation (MHE) has been suggested as a practical strategy to incorporate

inequality constraints and nonlinear models in the estimation.

The basic idea of MHE is to reformulate the estimation problem as an optimization prob-

lem using a moving, fixed-size estimation window [96]. The fixed moving window bounds

the size of the optimization programming. From the basic strategy above, MHE can be

understood as similar to MPC, since they share the time horizon approach and the opti-

mization problem needs to be solved repeatedly. Advantages of the MHE formulation are
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its explicit consideration of state and parameter constraints and proven stability properties,

as shown in [109] [96]. Many works have considered MHE. Valdes-Gonzales, Flaus, and

Acuna [122] showed an algorithm for globally convergent MHE, and Jorgensen, Rawlings,

and Jorgensen [88] focused on the connection between linear MPC and linear MHE. More

recently, a convincing real-time algorithm based on collocation has been presented in Zavala,

Laird, and Biegler [137].

Applying the ideas of MHE and PDE-constrained estimator together, my study shows the

potential to estimate not only the in-door fluid dynamic distribution but also the building’s

in-door configurations, for example the the doors’ on-off states, in real time.

1.4 Numerical algorithm to nonlinear optimal control

As mentioned in the sections 1.2 and 1.3, the estimation and control related to HVAC sys-

tem are related to optimal control problem. Optimal control is a theoretical and practical

framework that has been widely used to analyze the behavior of controlled dynamical sys-

tems [138, 25], and to synthesize actuation actions for dynamical systems in the face of

safety, robustness, or uncertainty considerations [32, 22]. While some optimal control prob-

lems can be solved using purely analytical or algebraic tools [30], modern computers and

dynamical systems embedded in changing environments have led to a surge in numerical

methods for optimal control [108]. Numerical methods for optimal control are typically di-

vided into indirect methods, where the optimal solution is found as the solution of a set of

equations typically derived from necessary optimality conditions, and direct methods, where

the solution is found by iteratively minimizing the cost function at hand.
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It is worth noting that while most numerical optimal control methods are provably conver-

gent, they do not necessarily converge to input signals satisfying the Minimum Principle.

Indeed, as shown by Polak [103, Sec. 4.2.6] and Schwartz [114], direct numerical methods

that rely on explicit time discretization schemes converge to inputs satisfying necessary op-

timality conditions based on directional derivatives, which are strictly weaker than those

resulting from the Minimum Principle. On the other hand, direct methods that converge to

inputs satisfying the Minimum Principle can be developed, but often result in impractical

implementations that require solving sequences of nonlinear programming problems [69].

It is possible to develop indirect methods that converge to inputs satisfying the Minimum

Principle which lead to multiple-point boundary-value problems [108]. For example, a com-

mon indirect method is the shooting method [28, 27], which only converges for suitably

chosen initial guesses [26].

In this dissertation, we present a theoretical formulation and a corresponding numerical

algorithm, capable of finding optimal control inputs that satisfy the Pontryagin Minimum

Principle by using a direct method. Our result is founded on the theory of relaxed control,

as defined by J. Warga [130, 129], which we use to derive a convergent sampling-based nu-

merical method. Once a relaxed control has been numerically computed, we use a projection

operation originally devised for switched dynamical systems by Vasudevan et al. [125, 126],

originally inspired by the theoretical work of Berkovitz [24] and Bengea et al. [23], to synthe-

size arbitrarily accurate approximations of the trajectories generated by the relaxed inputs.

Our result in this dissertation bridges a significant gap between the formulation of con-

ceptual algorithms, which have excellent theoretical properties but fail to provide practical

implementations, and implementable algorithms, which converge to input signals that do

not necessarily satisfy the Minimum Principle. Moreover, our following method achieves its
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goals in a numerically efficient and scalable way, which is suitable for applications where

accuracy can be traded for computational speed.

1.5 Contributions of this work

For decades, the design of HVAC systems has been focused on minimizing energy waste

by increasing the efficiency in heaters and coolers, or improving insulation of air ducts

and exchangers [14]. A recent trend in smart homes has introduced machine learning and

Internet-of-Things sensors to the control of HVAC systems in residential homes [56, 136].

In my study we take a step beyond, focusing on efficiently utilizing existing HVAC system

technologies to maximize user comfort, rather than simply trying to maintain a constant

temperature. To achieve our goal we develop estimation and control algorithms that consider

spatio-temporal distributions of temperature and air flow, which take into account changes

in floor-plan geometry (such as doors being opened or closed), outdoor weather, and the

position of fans and portable heaters. All this information is fed into a distributed-parameter

model and a multi-dimensional human comfort index to generate, and optimize, short-term

predictions.

In general, the contribution of my study in this dissertation could be divided into following

aspects.

Improve the accuracy and efficiency of the HVAC system. We directly use a non-

linear non-turbulent Navier-Stokes model together with a convection-diffusion heat equation

to model the climate in a building. And due to the use of the distributed PDE-based CFD
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model, our HVAC system is able to design control objectives that are functions of the resi-

dents’ locations, which greatly increase the efficiency of the HVAC system.

Real-time estimation to building’s fluid and configuration changes via thermome-

ters. Based on the nonlinear PDE-based CFD model, we mathematically formulate a

gradient-based estimation method to identify real-time indoor climate distribution and the

apartment doors’ states based on only thermostatic data at the same time. Also, we show the

accuracy of our estimation method under a limited number of thermostats by simulating an

apartment in the St. Louis area. Our results show that thermostatic information, when used

together with CFD models, provide enough information to estimate most of the variables

relevant for building climate control. In other words, a handful of thermostats can provide

information, such as the configuration of doors, without the need to physically install extra

sensors in a building.

Develop a MPC algorithm for HVAC to control resident’s indoor thermal com-

fort. In the dissertation, we develop a MPC to optimize the thermal comfort around indoor

residents based on PDE-based CFD model. The thermal comfort is measured by PMV in-

dex’s approximation and the optimization control pairs the heater’s power with fan’s speed,

not focuses only on temperature regularity. Also the MPC use the same estimation algorithm

we developed in this dissertation to identify indoor climate distribution and an apartment’s

doors configuration based only on thermostatic data. We mathematically derive a first or-

der gradient-based method to solve the optimization problem which has been shown to be

memory-efficient [76].

Study and develop nonlinear optimal control algorithm to make the PDE-based

HVAC system control work in real-time. In this dissertation, we study several different

direct methods to solve nonlinear large-scale optimal control problems. Furthermore, we
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develop a numerical direct method whose optimal solution is proved to satisfy Minimum

Principle. Moreover, our method achieves its goals in a numerically efficient and salable

way, which is suitable for applications where accuracy can be traded for computational

speed and make our PDE-based HVAC control working in real-time.

1.6 Organization of the dissertation

The dissertation is organized as follows. Chapter 2 introduces our notations and the PDE-

based CFD model we use through the dissertation. Chapter 3 shows how we improve the

HVAC system’s energy efficiency via zoned control, which thanks to the accurate CFD models

that describe the dynamical and distributed behavior of the climate variables in a building.

Chapter 4 develops a gradient-based optimization method to estimate the doors’ state and

temperature distribution in the apartment. Chapter 5 describes a MPC to optimize the ther-

mal comfort around indoor residents based on PDE-based CFD model. Chapter 6 presents a

theoretical formulation and a corresponding numerical algorithm, capable of finding optimal

control inputs that satisfy the Pontryagin Minimum Principle by using a direct method.

Chapter 7 extends the theoretical works in chapter 6 to optimal control problems with state

constraints. The proofs of theoretical works in chapter 6 and 7 are in appendix D. Finally,

chapter 8 concludes the works in the dissertation and points to some possible future works.
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Chapter 2

Notations and CFD Model

In section 2.1, we are going to introduce the mathmetical notations we use through the

dissertation. In section 2.2, the CFD model and corresponding PDE equations will be shown

with the study on the existence and uniqueness of the model’s solution.

2.1 Notations

All the notations through the dissertation follows [1].

Given n ∈ N and p ≥ 1, we denote the standard finite-dimensional p-norm by ‖·‖p, and

the induced matrix p-norm by ‖·‖i,p. We will denote by M(Rn) the set of Radon measures

defined over the Borel sets of Rn. Moreover, given a µ ∈ M(Rm) for m ∈ N, we say that

a function f : Rm → Rn is L2
µ-integrable, denoted f ∈ L2

µ(Rm,Rn), if there exists p ≥ 1

such that ‖f‖µ =
(∫

Rm‖f(x)‖2
p dµ(x)

) 1
2
< ∞. To simplify, we will denote by L2(Rm,Rn)

the space of Lebesgue square-integrable functions. Furthermore, we say that µ ∈ M(Rm)

is a probability measure if µ(Rm) = 1. We denote the set of all probability measures by
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Mp(Rm). A stochastic process is a function µ : [0, T ]→Mp(Rm), and throughout the paper

we will simply write µt instead of µ(t).

Let µ1, µ2 ∈ M(Rm) be two Radon measures. Then the difference between µ1 and µ2, say

ν = µ1 − µ2, is a signed measure, and we define L2
ν(Rm,Rn) = L2

µ1
(Rm,Rn) ∩ L2

µ2
(Rm,Rn).

Given f ∈ L2
ν(Rm,Rn), its integral with respect to ν is defined by

∫
Rm

f(x) dν(x) =

∫
Rm

f(x) dµ1(x)−
∫
Rm

f(x) dµ2(x). (2.1)

Suppose Ω ⊂ R2 is connected and bounded, the Sobolev space, H1(Ω) is defined as H1(Ω) =

{f : R2 → R | f & ∂f
∂x1

& ∂f
∂x2
∈ L2(Ω)}. Let the subspace for H1(Ω) × H1(Ω) with triv-

ial boundary condition as H1
0 (Ω) = {v ∈ H1(Ω) | v(x) = 0, ∀x ∈ ∂Ω}. Define space

L2([t0, t
′
0];H1(Ω)) as {f : [t0, t

′
0]→ H1(Ω) | f is measurable w.r.t. t, f(t) ∈ H1(Ω), for t a.e.}.

In Rn, a point is defined as x = (x1, x2, · · · , xn); its norm is |x| = (
∑n

i=1 x
2
i )

1/2
, the inner

product of x and y is x · y =
∑n

i=1 xiyi. In the Hilbert space of square integrable functions

L2(S), a function is defined as f1 : S → Rn, its norm is ‖f1‖S =
(∫

s
|f1(z)|2 dz

)1/2
, the

inner product of f1 and f2 is 〈f1, f2〉S =
∫
S
f1(z) · f2(z) dz. In the Hilbert space of functions

L∞(S), a function is defined as f1 : S → Rn, its norm is ‖f1‖∞,S = ess supz∈S |f1(z)|.

2.2 PDE-based CFD model

A commonly missing key feature in many physical climate models used to control HVAC

systems is the ability to capture the real-time spatial variability of the temperature and air

flow, depending on the floor plan and configuration of the building (e.g., open or closed door
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and windows). For this reason, we use a CFD model, which explicitly considers temporal

and spacial variations, to describe the interactions between the temperature, air flow, and

pressure. We then formulate an optimal control problem where our CFD model appears

as a constraint, and whose objective function aims to minimize the energy consumption of

the HVAC system while maintaining the temperature constant at a desired reference. In

the remainder of this section we introduce the CFD model used through the dissertation in

detail.

The foundation of our model is the Navier-Stokes equation, which couples temperature with

free flow convection (as explained Section 8 in [14], among other references). As shown in the

literature, atmospheric air can be modeled as an incompressible Newtonian fluid when the

temperature is between −20 [◦C] and 100 [◦C] [13, 46]. Hence, we can use the Navier-Stokes

equation for incompressible laminar flows, together with the convection-diffusion tempera-

ture model for fluids.

Throughout the paper we make two major simplifications to the CFD model. First, we

assume that the air flow behaves as a laminar fluid which reaches a steady-state behavior

much faster than the temperature in the building. As mentioned in Section 1, both laminar

and turbulent flows are present in general in a residential building, for example, in the area

around HVAC vents [14]. However, Sun et al. [118] found only minor differences between

laminar and turbulent models in a geometry similar to ours, while turbulent models are

significantly more complex than laminar models [3, 39]. Hence, we consider a stationary

Navier-Stokes equation to describe the fluid behavior, and a time-dependent equation to

describe the temperature behavior. Second, we consider only two-dimensional air flows

moving parallel to the ground. This assumption intuitively makes sense since the air flow in

the top half of a room can be accurately estimated using a two-dimensional model, mostly
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due to the lack of obstacles (such as furniture). These assumptions reduce the accuracy of

our model to some extent, e.g., van der Poel et al. [123] compared 2D and 3D Rayleigh-

Bénard convection simulations for a cylindrical geometry and showed that differences arise

for Prandtl constants Pr < 1, while our model’s Prandtl constant is Pr = 1.2. Yet, both

assumptions allow us to significantly simplify the computational complexity of our CFD-

based control design (measured by the number of variables and number of equality constraints

of the model), which in turn allows us to compute results on the order of tens of minutes or

even in real time.

Let Ω ⊂ R2 be the area of interest, connected and bounded. We will denote the boundary of

Ω by ∂Ω. Let u : Ω→ R2 be the stationary air flow velocity, and p : Ω→ R be the stationary

air pressure in Ω. Also, given t′0 > t0, let Te : Ω × [t0, t
′
0] → R be the temperature in Ω.

Then, using the formulation found in [92], the convection-diffusion of temperature in Ω can

be described by the following PDE,

∂Te
∂t

(x, t)−∇x · (κ(x)∇xTe(x, t)) + u(x) · ∇xTe(x, t) = gTe(x, t). (2.2)

Where gTe : Ω× [t0, t
′
0]→ R represents the heat sources in the room, κ : Ω→ R is the thermal

diffusivity, ∇x· = ∂
∂x1

+ ∂
∂x2

is the divergence operator, and ∇x =
(

∂
∂x1
, ∂
∂x2

)T
is the gradient

operator. The initial condition of the temperature is:

Te(x, t0) = π0(x), for x ∈ Ω. (2.3)
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Similarly, the stationary air flow in Ω is governed by the following set of incompressible

Navier-Stokes stationary PDEs,

− 1

Re
∆xu(x) +

(
u(x) · ∇x

)
u(x) +

1

ρ
∇xp(x) + α(x)u(x) = gu(x); and, (2.4)

∇x · u(x) = 0. (2.5)

Where gu : Ω → R2 represents all the external forces applied to the air (such as fans), Re

is the Reynolds number (which is inversely proportional to the kinematic viscosity), ρ is the

density of the air, α : Ω→ R is the friction constant, u(x) · ∇x = u1(x) ∂
∂x1

+ u2(x) ∂
∂x2

is the

advection operator, and ∆x = ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplacian operator. Since we do not model the

vertical dimension of Ω, we omit the Boussinesq-approximation buoyancy term proportional

to Te, which is typically included on the right-hand side of (2.4).

We modify κ and α to model obstacles to heat and air flow in Ω, such as walls, doors, and

windows, as described in [63, 102]. In particular, when the point x corresponds to a material

that blocks air, we choose α(x) � u(x), which results in u(x) ≈ 0, and when the point x

corresponds to air then we choose α(x) = 0.

We divide the boundary of Ω to two outlets of the HVAC system, denoted by Γo, one air

return inlet, denoted by Γi, and the exterior walls, denoted by Γw. Thus Γi ∪Γo ∪Γw = ∂Ω.

We use a mix of boundary conditions to model the effect of the HVAC system in the room, as

explained below . Let n̂(x) be the inward-pointing unit vector perpendicular to the boundary

at x ∈ ∂Ω.

Hence, the air flow has the following boundary conditions:

17



• The airflow satisfies a no-transverse condition at the exterior walls, hence

u(x) ≡ 0, for x ∈ Γw. (2.6)

• If HVAC unit’s fan is set the air flow at Γo,

u(x) = uo n̂(x), for x ∈ Γo, (2.7)

where uo > 0 is the HVAC fan speed.

• The airflow at the inlet is not constrained, hence u(x) is free for each x ∈ Γi.

The boundary condition for the temperature is:

Te(x) ≡ TA, for x ∈ ∂Ω, (2.8)

where TA is the atmospheric temperature. We only apply a boundary condition for the

pressure equation at the inlet, setting p(x) ≡ pA for each x ∈ Γi, where pA is the atmospheric

pressure.

The existence and uniqueness to the CFD model’s weak solution containing equations (2.2),

(2.3), (2.4), (2.5), (2.8), (2.6) and (2.7) are given as,

Theorem 2.1 (Existence of weak solution to the CFD model). Given α, κ ∈ L2(Ω)∩L∞(Ω),

gTe ∈ L2([t0, t
′
0]× Ω) and gu ∈ L2(Ω)× L2(Ω). Let Ω ⊂ R2 be bounded and locally Lipschitz,

there exists at least one tuple (Te, u, p) ∈
(
L2([t0, t

′
0];H1

(
Ω
)
)∩C0([t0, t

′
0];L2(Ω))

)
×
(
H1(Ω)×

H1
(
Ω
))
× L2

(
Ω
)
, such that
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•
(
u, p
)

satisfies the weak formulas,

〈αu, ϕ〉Ω +
1

Re
〈∇xu,∇xϕ〉Ω+

+ 〈u · ∇xu, ϕ〉Ω − 〈p,∇xϕ〉Ω = 〈gu, ϕ〉Ω,

∀ϕ ∈ H1
0

(
Ω
)
×H1

0

(
Ω
)
, and

(2.9)

〈∇x·u, ψ〉Ω, ∀ϕ ∈ L2(Ω). (2.10)

And u satisfies the boundary condition in equations (2.6) and (2.7).

• Te satisfies the boundary and initial condition in equations (2.8) and (2.3), also Te

satisfied the following weak formula,

〈∂Te
∂t

, ξ〉Ω + 〈κ(x)∇xTe,∇xξ〉+ 〈u · ∇xTe, ξ〉Ω =

=< gTe, ξ >Ω, ∀ξ ∈ H1
0

(
Ω
)
.

(2.11)

Theorem 2.2 (The sufficient condition for unique weak solution to CFD model). Let Ω ⊂ R2

be bounded and locally Lipschitz, define the area of Ω as |Ω|. For the weak solution tuple

(Te, u, p) in the theorem 2.1, if
(∫

Ω
|∇xu|2dx

)1/2

< 1
C·Re , where C = |Ω|1/2

2
, Then (Te, u, p) is

the only weak solution to the CFD system.

The proofs to the theorem 2.1 and 2.2 are studied in the appendix A, The theorem 2.2 is a

sufficient condition we derived for our problem. For the corresponding building simulations

in chapters 3, 4 5 and 6, the value 1
ReC

≈ 10−3, while the under HVAC system’s control,

for the flow’s velocity,
(∫

Ω
|∇xu|2dx

)1/2

is in the range (1, 10). Further study about a more
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general condition for the fluid dynamic model’s unique solution in our problem is needed in

the future.
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Chapter 3

HVAC System’s Efficiency

Improvement via Zoned Control

In this chapter, we exam the energy efficiency of the HVAC control algorithm to maintain the

indoor climate in a zoned area around the residents and our nonliear PDE-based prediction

model’s accuracy. 1

3.1 Problem statement

The CFD model is given in chapter 2, which follows the dynamics in equations 2.2, (2.4)

and (2.5) with boundary and initial conditions in equations (2.3), (2.6), (2.7), and (2.8).

1This chapter is based on R. He and H. Humberto, ”Zoned HVAC Control via PDE-Constrained Opti-
mization,” in 2016 American Control Conference, Boston, USA, July. 2016, pp. 587–592. c© IEEE 2016
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Suppose Ωz ⊂ Ω is a local zone area around residents, to control the temperature in Ωz

during the time period [0, tf ], we aim to minimize the following cost function,

∫ tf

0

(∫
Ωz

(
Te(x, t)− T ∗e

)2
dx+ λ1 v

2(t)

)
dt+ λ2 u

2
o. (3.1)

Where λ1,2 > 0, T ∗e is the reference temperature set by the user, and tf is the time horizon.

The heater power v(t) and the fan speed uo are our controlled variables, the former appearing

as gTe(x, t) = v(t) for each x ∈ Θh ⊂ Ω, and the latter appearing as a boundary condition.

We formulate a PDE-constrained optimal control problem using the cost in (3.1), together

with the CFD model in (2.2)-(2.5) and its boundary conditions as constraints. We also add

inequality box constraints for all the controlled variables, so they remain within safety limits.

As explained in section 3.3, our experiments introduce variations to the cost function in (3.1)

depending on the number of available actuators. Regardless, the goal of regulating the

temperature will remain the same throughout all our experiments.

3.2 Numerical implementation

Our numerical implementation of the PDE-constrained optimal control problem described in

section 2.2 is obtained by first using FEM to transform the CFD model in (2.2)-(2.5) to a set

of ODEs as described in [43, Chapters 3 and 4], and then using the consistent approximation

technique described in [103, Chapter 4] which transforms optimal control problems (with

ODE constraints) into nonlinear programming problems. After those two transformations,

we use commercially available numerical solvers to find approximations of the desired optimal

control, as described in section 3.3.
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3.2.1 FEM Discretization

Among the many discretization techniques for PDEs, FEM stands out for being compatible

with complex geometries of the domain Ω. Intuitively speaking, FEM approximates PDEs

by dividing the domain into polygons, and then finding a set of ODEs for each vertex, and

possibly each facet, of each polygon. The resulting set of ODEs has the property that each

ODE is dependent only on its neighbors.

Before we can formally describe the FEM discretization, we need to introduce extra notation.

Let H1(Ω,Rn) be the set of functions from Ω to Rn belonging to L2(Ω,Rn), whose weak

derivative is also in L2(Ω,Rn) [139]. Note that H1(Ω,Rn), endowed with the dot product

〈f, g〉 =
∫

Ω
f(x) · g(x) dx, is a Hilbert space. Similarly, we denote 〈f, g〉S =

∫
S
f(x) · g(x) dx.

Let {Wk}Npl

k=1 be a polygonal partition of Ω, i.e.,
⋃Npl

k=1Wk = Ω, int(Wk)∩ int(Wj) = ∅ for each

k 6= j, and each Wk is a polygon. If {xk}Nv

k=1 is the set of vertices in the polygonal partition

and {yj}Nw

j=1 is the set of nodal points, then we define the test functions {ξk}Nv

k=1, {ψk}
Nv

k=1 ⊂

H1(Ω,R), and {ϕk}2Nw

k=1 ⊂ H1(Ω,R2), where Nv, Nw ∈ N and Nv ≤ Nw, with the following

properties in table 3.1 for each k ∈ {1, . . . , Nv} and each j ∈ {1, . . . , Nw}.

Table 3.1: Properties for FEM basis.

ξk, ϕk, and ψk are continuous.

ξk, ϕk, and ψk are nonzero only in the polygons containing xk.

ξk(xk) = ψk(xk) = 1, ϕ2j−1(yj) = [ 1
0 ], and ϕ2j(yj) = [ 0

1 ].
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Then, from (2.2)-(2.5), and using Green’s Formulas (see Appendix C.2 in [52]), we get the

following Galerkin identities (as described in [43, Chapter 3.6]),

〈
∂Te
∂t

(·, t), ξk
〉
−
〈
κ(x)∇xTe(·, t),∇xξk

〉
+
〈
u · ∇xTe(·, t), ξk

〉
=

〈
gTe(·, t), ξk

〉
; (3.2)

− 1

Re
〈∇xu,∇xϕj〉 +

〈(
u · ∇x

)
u, ϕj

〉
+ 〈∇xp, ϕj〉 + 〈αu, ϕj〉 = 〈gu, ϕj〉; and, (3.3)

〈∇x · u, ψk〉 = 0, (3.4)

for each k ∈ {1, . . . , Nv}, j ∈ {1, . . . , 2Nw}, and almost every t ∈ [0, tf ].

Now, given NTe , Nu, Np ∈ N, consider the linearly independent sets of basis functions{
ξ̂j
}NTe

j=1
,
{
ψ̂j
}Nu

j=1
⊂ H1(Ω,R), and

{
ϕ̂j
}Np

j=1
⊂ H1(Ω,R2). Using these basis functions we

can project the variables of our CFD model into finite-dimensional subspaces, i.e.,

Te(x, t) =

NTe∑
j=1

ηTe,j(t) ξ̂j(x),

u(x) =
Nu∑
j=1

ηu,j ϕ̂j(x),

p(x) =

Np∑
j=1

ηp,j ψ̂j(x).

(3.5)

Applying the representations in (3.5) to the Galerkin identities in (3.2) results in a set of

Nv ODEs with state variables {ηTe,j}NTe
j=1 . Similarly, applying the representations to (3.3)-

(3.4) results in a set of 2Nw nonlinear algebraic equations with parameters {ηu,j}Nu

j=1 and Nv

linear ones with parameters {ηp,j}Np

j=1. All these differential and algebraic equations are, in

practice, parametrized by constants corresponding to the inner products between basis and
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test functions, as well as their gradients. We omit the technical details of the final set of

equations due to space constraints, and we refer the interested reader to [43, Chapter 3] for

more information.

3.2.2 Optimal Control Discretization

After the FEM discretization, we effectively have an Differential Algebraic Equation (DAE)

optimal control problem where (3.2) contributes Nv ODEs, (3.3) contributes 2Nw nonlinear

equality constraints, and (3.4) contributes Nv linear constraints. Several extra equality

constraints are added due to the boundary conditions of the air flow and the pressure, as

described in section 2.2. The actual number of constraints due to boundary conditions

depends on the number of vertices in the polygonal partition {Wk}Npl

k=1 over the boundary.

The consistent approximation of this type of optimal control problem is studied in [103,

Chapter 4]. We follow the procedure described there, i.e., we first normalize the problem

using the technique described in Chapter 4.1.2 of the same book, and then we use the

Forward-Euler discretization method to transform the ODEs into a sequence of equality

constraints. Again, we omit the technical details of the final equality-constrained nonlinear

programming problem due to space constraints.

3.3 Simulations

We simulated a two-room apartment with a square area of interest Ωz (e.g., the area were a

resident is located). Our goal is to show that using zoned control over the area of interest

produces a significant improvement over controlling the temperature over the whole room.
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The HVAC system consists of two heaters and two forced-air outlets with variable-speed

fans. Moreover, in order to show the efficiency and stability of our zoned control algorithm,

we simulated 18 different scenarios with different areas of interest, distributed uniformly over

the apartment.

A diagram of the apartment is shown in Figures 3.1 and 3.2. The apartment’s dimensions are

5× 10[m2], the width of all outlets and inlet is 0.5[m], and each of the areas has dimensions

2×2[m2]. The two heaters are denoted by Θh (left) and Θ′h (right), with dimensions 1×1[m2].

The fluid mechanics are governed by the constants Re = 0.05 and Pr = 1.2, with k(x) = 10−2

and α(x) = 0 when x ∈ Ω is located in free air, while k(x) = 10−4 and α(x) = 100 when x ∈ Ω

is located on or in a wall. The atmospheric pressure is pA = 101.3[kPa], and the atmospheric

temperature is TA = 23.83[◦C]. We set the desired temperature to T ∗e = 24.83[◦C], the

time horizon to tf = 300[s], and we assume the function gu is identically zero (i.e., no

fans are inside the room). As explained in section 2.2, gTe(x, t) = v(t) for each x ∈ Θh,

gTe(x, t) = v′(t) for each x ∈ Θ′h, and g(x, t) = 0 otherwise. The parameters in the cost

function (3.1) are λ1 = 0.002 and λ2 = 0.001. The optimal control problem finds the fan

speeds uo and u′o for Γo and Γ′o, respectively, and the heater powers v(t) and v′(t) for Θh and

Θ′h, respectively. We set the fan speed box constraints to
[
0.1, 1

][
m
s

]
, and the heater power

box constraints to
[
0, 5
]
[kW].

We discretized the area into Npl = 452 elements, and the number of total nodes is Nv = 227.

We used first-order Lagrangian elements to define the test and basis functions ξk, ξ̂k, ψk,

and ψ̂k, thus NTe = Np = 227. We used second-order Lagrange elements to define the test

and basis functions ϕk and ϕ̂k, thus 2Nw = Nu = 1696. More details regarding our choice

of test and basis functions can be found in [94, Chapter 3.3.1]. The ODE discretization time

step was chosen as ∆t = 10[s].
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We calculated the total energy usage as the sum of the heater energy usage, i.e.,
∫ tf

0
v(t) +

v′(t) dt, and the fan energy usage as
∫ tf

0

∫
Γo∪Γ′

o
‖u(x)‖ p(x) dx dt. Our results were obtained

using a 16-core Xeon E5-2680 computer running at 2.7[GHz], with 128[GB] of RAM. We

wrote our code using Python, the FEM discretization was computed using tools from the

FEniCS Project [94], and the nonlinear programming problem was numerically solved using

the SNOPT library [66] interfaced using the OptWrapper library [82]. The computation

time ranged between 15[min] and 45[min] for each experiment.

3.3.1 Nonlinear Navier-Stokes Model

Using the nonlinear Navier-Stokes model described in (2.2)-(2.5) we simulated two major

scenarios, the first where the objective function in (3.1) uses Ωz = Ω, i.e., the target area

is the whole apartment, and the second where we use a zoned approach with a smaller Ωz

which moves around the apartment to 18 different locations, as explained above. Figure 3.1a

shows the temperature distribution for the first scenario, while Figures 3.1b and 3.1c show

the temperature distribution for two of the 18 zoned simulations. Also, Figure 3.2 shows the

stationary airflow for the first scenario.

In the first scenario, where Ωz = Ω, the optimal average absolute temperature error in the

apartment was 0.502[◦C] at time tf , and the ratio of energy usage over average temperature

change within Ω was 1009.2[Wh/◦C]. We calculated the same statistics for the 18 different

zones Ωz, which are summarized in Column (A) of Figures 3.3a and 3.3b. To make both sce-

narios comparable, we recalculated these statistics for the first scenario, this time considering

the average temperature changes in Ωz instead of Ω, which are summarized in Column (B)

of Figures 3.3a and 3.3b. Those figures clearly show that using zoned control is significantly
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(a) Temperature distribution at time tf with target area Ω, i.e., the
whole apartment.
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(b) Temperature distribution at time tf with target area Ωz.
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(c) Temperature distribution at time tf with target area Ωz.

Figure 3.1: Results of the experiments in section 3.3.1. Walls are shown in shaded black,
and heaters are shown in shaded blue. Values are in [◦C] with respect to TA.
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Γo Γ′o

Γi

Figure 3.2: Air flow of the experiment in section 3.3.1 with target area Ω, i.e., the whole
apartment. Average air speed in the apartment is 0.11[m/s]. Walls are shown in shaded
black. Two outlets and one inlet of the HVAC system are marked as Γo, Γ′o and Γi respec-
tively.
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(a) Average absolute temperature er-
ror, in [◦C], within Ωz at time tf
with respect to T ∗

e .
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(b) Ratio of energy usage over average
temperature change within Ωz, in
[Wh/◦C].

Figure 3.3: Results of the experiments in section 3.3.1 and 3.3.2. Columns: (A) nonlinear
model with zoned control, (B) nonlinear model without zoned control, (C) linearized model
with zoned control. Each column shows the median (red line), mean (red box), and first-to-
third quartiles (blue box).
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more accurate and more efficient than heating the whole apartment. It is worth noting that

the zoned approach requires roughly half the energy to change the average temperature by

1[◦C] in Ωz when compared to the first scenario.

The results in Figure 3.1 indicate that when the resident is near one heater, say Θh, our

algorithm automatically shut down the other heater, say Θh′ , as intuitively expected. There-

fore, if it is possible to localize a resident within an apartment, e.g., via Bluetooth beacons

or using a sensor network, then we can increase the efficiency of the HVAC unit significantly

without major modifications to the mechanical ventilation system.

3.3.2 Linearized Navier-Stokes model

We also computed the optimal control using the linearized Navier-Stokes model described

in [33, 34]. The linearized model has clear advantages over our nonlinear model, including a

larger set of theoretical results supporting it, and a faster computation time. On the other

hand, linearized models perform well only when the values produced by the model are close

to the stationary linearization point.

We ran the same experiments as in the second scenario of section 3.3.1, i.e., controlling the

temperature in 18 different zones. The statistics for average absolute temperature error in

Ωz, and ratio of energy usage over average temperature in Ωz, are shown in Column (C)

of figures 3.3a and 3.3b. Even though the energy efficiency is comparable when we use

linearized or nonlinear models, the accuracy is significantly different, with the nonlinear

model consistently performing better than the linearized model. We believe the difference

is due to the lack of accuracy of the linearized model. As exemplified in figure 3.4, there

is a large error in temperature distribution between the linearized model and an accurate
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Figure 3.4: Absolute error in temperature distribution, with respect to FEniCS simulation,
for the linearized model in section 3.3.2, at time tf with target area Ωz. Values are in [◦C].

benchmark simulation using the FEniCS solver, which is consistent with the highly nonlinear

behavior of the Navier-Stokes equation.

3.4 Chapter conclusion

Our results in this chapter open the door to a large number of exiting opportunities to

improve the energy efficiency of buildings. The results validate the idea that an accurate

distributed indoor climate model is able to improve the HVAC system’s efficiency by focusing

on local indoor target areas. Also, the comparasion results show the inaccuracy of a linearized

model and related LQR method to predict and control indoor climates.

By making small improvements to existing HVAC units it is possible to dramatically increase

the efficiency of HVAC units without a decrease in human comfort. It is worth noting that our

results do not require, in principle, the use of expensive variable-speed fans or variable-power

heaters, since those control signals can be implemented using switched strategies [125, 126].
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More importantly, our simplifications have allowed us to obtain results in tens of minutes

while still capturing the distributed behavior of the climate variables, which is much closer to

real-time applications than previous results [46], achieving a good trade-off when compared

to less accurate linearized Navier-Stokes models.
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Chapter 4

Gradient-Based Estimation of Indoor

Air Flow and Geometry

Configurations via PDE-based CFD

Model

In this chapter, we develop a gradient-based optimization method to estimate the doors’

state and temperature distribution in the apartment. First, we mathematically formulate a

gradient-based estimation method to identify real-time indoor climate distribution and the

apartment doors’ states based on only thermostatic data. Second, we show the accuracy of

our estimation method under a limited number of thermostats by simulating an apartment

in the St. Louis area. Our results show that thermostatic information, when used together

with CFD models, provide enough information to estimate most of the variables relevant for

building climate control. In other words, a handful of thermostats can provide information,

such as the configuration of doors, without the need to physically install extra sensors in a

building.

33



The chapter is organized as follows. The fluid dynamic model and finite element method are

formulated in section 4.1. We present the theoretical basis for our gradient-based estimation

algorithm in section 4.2. Finally, our simulation results are presented in Section 4.3. 2

4.1 Optimization problem statement

Let Ω ⊂ R2 be the area of interest, assumed to be bounded and connected, and let ∂Ω be its

boundary. In this chapter, we assume the fans in the HVAC system is inside the building,

thus for the indoor fluid dynamic climate in section 2.2, there is no boundary condition

related to Γo, and the dynamic system follows the equation (2.2), (2.4) and (2.5) with initial

condition in equation (2.3), temperature boundary conditions in equation (2.8) and velocity

boundary condition only in equation (2.6).

We assume that there are nt thermostats in the building. The i-th thermostat is located

at xi ∈ Ω, and samples the temperature in a neighborhood averaged using the bump weight

function Φi(x) = σ exp
(
−(r2 − ‖x− xi‖2)

−1)
for ‖x− xi‖ < r, and Φi(x) = 0 otherwise,

where σ > 0 is a normalization factor such that
∫

Ω
Φi(x) dx = 1.

We also assume that there are nd doors in the building. We define θi ∈ {0, 1} as the

configuration of the i-th door, i.e., θi = 1 when the i-th door is open, and θi = 0 when is

closed. Let Ωθi ⊂ Ω be the area occupied by the i-th door when it is closed, and let Ii be

the indicator function of Ωθi , i.e., Ii(x) = 1 for x ∈ Ωθi , and Ii(x) = 0 otherwise.

2This chapter is based on R. He and H. Humberto, ”Gradient-Based Estimation of Air Flow and Ge-
ometry Configurations in a Building Using Fluid Dynamic Adjoint Equations,” in 2016 International High
Performance Buildings Conference, pp.3446.1–3446.10, Purdue University, USA, July. 2016, c© Purdue-ePub
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As mentioned in section 2.2, in equation (2.2) κ : Ω → R is the thermal diffusivity, and in

equation (2.4) α : Ω → R is the viscous friction coefficient. When the door configuration

changes, so does the prediction generated by our CFD model in equations (2.2) and (2.4).

In particular, these two parameters α and κ change for each x ∈ Ωθi as a function of θi. We

model this relation by defining α : Ω× {0, 1}nd → R and κ : Ω× {0, 1}nd → R as follows,

α(x, θ) = α0 +

nd∑
i=0

(1− θi) (αw − α0) Ii(x), and

κ(x, θ) = κ0 +

nd∑
i=0

(1− θi) (κw − κ0) Ii(x),

(4.1)

where α0 and κ0 are the parameters for open air, while αw and κw are the parameters for

solid walls. Note that both α and κ are affine functions of θ ∈ Rnd .

Now, using binary values for each θi means that our estimation algorithm will have to use

combinatorial methods, which tend to scale poorly in both computation time and computa-

tional resources. To avoid this problem we relax the binary parameters θi ∈ {0, 1}, instead

allowing them to belong to the unit interval [0, 1]. Although for each θi only the extreme

values have meaningful physical interpretations, non-integer values can theoretically be in-

terpreted as averaged observations over the optimization horizon, as explained in [125, 126].

For example, if throughout the optimization horizon a door is open half the time, and closed

half the time, it is likely that we will observe θi ≈ 0.5. The relaxation of each θi is also

important in our numerical calculations, since it transforms the optimization program from

a mixed-integer program to a more convenient nonlinear format [64].

Now we can formulate our main estimation algorithm to compute the door configuration θ

and the initial temperature π0 using the information from the nt thermostats in the building.

Given an arbitrary estimation time horizon, say [0, T ], we write our optimal estimation
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problem as follows:

min
π0 : Ω→R, θ∈Rnd

J(π0, θ) =
nt∑
i=1

∫ T

0

(∫
Ωi

Φi Te(x, t; π0, θ) dx− T ∗e,i
)2

dt+

+ η0

nt∑
i=1

(∫
Ωi

Φi π0 dx− π∗0,i
)2

+ η1 ‖π0‖2
Ω,

subject to: partial differential equations (2.2), (2.4), and (2.5),

boundary and initial conditions (2.3), (2.8), and (2.6),

0 ≤ θi ≤ 1, ∀i ∈ {1, . . . , nd}.

(4.2)

Where, η0, η1 > 0 are weight parameters, Te(x, t; π0, θ) is the unique solution of equation (2.2)

with initial condition π0 and configuration θ, T ∗e,i(t) is the time signal obtained from the i-

th thermostat over the horizon [0, T ], and π∗0,i is just notation for the initial thermostat

temperature, i.e., π∗0,i = T ∗e,i(0).

4.2 Costate-based gradient computation

In this section we develop a numerical algorithm to solve the optimization problem defined

in equation (4.2). We use a gradient-based optimization algorithm to find local minimizers

of our optimization problem, where the gradients are computed using the adjoint equations

of the CFD model, similar to the techniques in [71] and [135]. We then discretize the adjoint

equations using the Finite Element Method (FEM), resulting in a practical algorithm which

we test in Section 4.3.
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4.2.1 Adjoint equations and Fréchet derivatives

In order to derive our CFD model’s adjoint equations, first we need to write the Lagrangian

function of the optimization problem [65, 71]. Let {λi}6
i=1 be the set of Lagrange multipliers,

or adjoint variables, each associated to one of the equations (2.2) to (2.6) and defined in its

respective dual space. Then, the Lagrangian function of our optimal estimation problem is:

L
(
Te, u, p, π0, θ, {λi}6

i=1

)
= J(π0, θ)+

+
〈
λ1,

∂Te
∂t
−∇x·(κ(x)∇xTe) + u · ∇xTe − gTe

〉
Ω×[0,T ]

+

+
〈
λ2,−

1

Re
∆xu+ (u · ∇x)u+∇xp+ αu− gu

〉
Ω

+

+ 〈λ3,∇x · u〉Ω + 〈λ4, Te〉∂Ω×[0,T ] + 〈λ5, u〉Γw
+ 〈λ6, Te(0, ·)− π0〉Ω.

(4.3)

Where 〈f1, f2〉S =
∫
S
f1(z) f2(z) dz is the inner product of the Hilbert space of square in-

tegrable functions L2(S). We write the necessary conditions for optimality using Galerkin

methods [67], i.e., by setting the inner product of the partial derivatives of L with re-

spect to all the dual directions equal to zero. That is, we look for solutions such that〈
∂L
∂Te
, w
〉

Ω×[0,T ]
= 0,

〈
∂L
∂u
, v
〉

Ω
= 0, and

〈
∂L
∂p
, q
〉

Ω
= 0 for each set of functions (w, v, q) in the

respective dual spaces, and sufficiently weakly differentiable. As detailed in appendix B, the

conditions above are satisfied when the dual variables satisfy,

− 2
nt∑
i=1

(∫
Ωi

Φi(z)Te(z, t) dz − T ∗e,i(t)
)

+
∂λ1

∂t
(x, t)+

+∇x · (κ(x)∇xλ1(x, t)) + u(x) · ∇xλ1(x, t) = 0,

(4.4)

λ6(x) = λ1(x, 0), (4.5)
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∫ T

0

λ1(x, t)∇xTe(x, t) dt+ α(x)λ2(x)− 1

Re
∆xλ2(x)+

− u(x) · ∇xλ2(x) + λ2(x) · ∇xu(x)−∇xλ3(x) = 0, and,

(4.6)

∇x · λ2(x) = 0. (4.7)

with boundary conditions λ1(x, t) = 0 and λ2(x, t) = 0 for each x ∈ ∂Ω and t ∈ [0, T ],

together with final condition λ1(x, T ) = 0 for each x ∈ Ω. The adjoint functions λ4 and

λ5 are irrelevant to our Fréchet derivative calculation, therefore we omit them from this

presentation.

Now we can compute the Fréchet derivatives of the cost function with respect to θ and π0.

Consider a parameter change from (θ, π0) to (θ + δθ, π0 + δπ0). Since both α and κ are affine

in θ, these variations will result in changes from (α, κ) to (α + δα, κ+ δκ), which will also

imply changes from (Te, u, p) to (Te + δTe, u+ δu, p+ δp). As detailed in Appendix B, these

variations allow us to compute a first-order approximation of the cost function J , which

result in,

〈
DαJ, δα

〉
Ω

= 〈λ2 · u, δα〉Ω, and〈
DκJ, δκ

〉
Ω

=

∫ T

0

〈
∇xλ1 · ∇xTe, δκ

〉
Ω

dt,
(4.8)

and using the chain rule and the formulas in equation (4.8) we get the desired directional

derivatives for J ,

〈
Dπ0J, δπ0

〉
Ω

= 〈∇π0J − λ6, δπ0〉Ω, and

DθJ · δθ =

nd∑
i=1

(〈
DαJ,

∂α

∂θi

〉
Ω

+
〈
DκJ,

∂κ

∂θ

〉)
δθi.

(4.9)
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Note that both directional derivatives are linear bounded operators, hence they are also

Fréchet derivatives as desired.

4.2.2 Gradient-Based Optimization Algorithm

Using the closed-form formulas for the Fréchet derivatives of J with respect to π0 and θ, we

build a gradient-based optimization algorithm to solve the problem in equation (4.2) using

a projected-gradient method [99, Chapter 18.6].

First, we find descent directions δπ0 and δθ as solutions of the following Quadratic Pro-

gram (QP) with value V ,

V = min
δπ0 : Ω→R, δθ∈Rnd

〈Dπ0J, δπ0〉Ω +DθJ · δθ +
γ

2
‖δπ0‖2

Ω +
γ

2
‖δθ‖2,

subject to: 0 ≤ θi + δθi ≤ 1, ∀i ∈ {1, . . . , nd}.
(4.10)

Where γ > 0 is a parameter. The QP in equation (4.10) is derived using first-order ap-

proximations for the cost function using the derivatives in equation (4.9), together with a

condition to guarantee the feasibility of the desired direction. Note that V ≤ 0, since δπ0 = 0

and δθ = 0 always belong to the feasible set. Hence, if V = 0 then our method cannot find

further descent directions, and it thus terminates.

Second, a step size is computed using the following Armijo line search method:

β = arg max
j∈N

β̄j,

subject to: J
(
π0 + β̄j δπ0, θ + β̄j δθ

)
− J(Te, π0, θ) ≤ ᾱ β̄j V.

(4.11)

Where ᾱ, β̄ ∈ (0, 1) are parameters.
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Algorithm 1 Gradient-based estimation algorithm

Require: Initial values for θ and π0.
1: loop
2: Compute Te, u, and p by solving the CFD model in equations (2.2) to (2.6).
3: Compute λ1, λ2, λ3, and λ6 by solving the adjoint equations (4.4) to (4.7).
4: Compute the gradients Dπ0 and Dθ in equation (4.9).
5: Compute the projected-gradient descent directions (δπ0, δθ) by solving the QP in

equation (4.10), with value V .
6: if V = 0 then
7: Stop.

8: Compute the step size β using the Armijo line search method in equation (4.11).
9: Update π0 ← π0 + δπ0 and θ ← θ + β δθ.

Our gradient-based optimization method is detailed in Algorithm 1. Steps 2 and 3, are

numerically solved using FEM discretizations, implemented using the FEniCS package [94].

4.3 Simulations

We applied our estimation algorithm to a simulated St. Louis area apartment with nd = 4

doors, labeled {di}4
i=1, and nt = 3 thermostats, labeled {si}3

i=1. The floor plan of the

apartment is shown in figure 4.1, with dimensions 7.6× 16.8[m2] (approx. 1375[sq ft]). The

apartment is equipped with four HVAC vents, labeled {hi}4
i=1. We assume that each vent is

endowed with a fan acting on a 1× 0.5[m2] area, and oriented in a fixed direction. The four

HVAC fan units work independently to control both the indoor temperature and air flows.

The CFD model is governed by the constants Re = 102, α0 = 0, and κ0 = 10−2 when

x ∈ Ω corresponds to free air, while αw = 103 and κw = 10−4 when x ∈ Ω corresponds to

a wall. The atmospheric pressure is pA = 101.3[kPa], and the atmospheric temperature is

TA = 23.83[◦C]. We assume that h1 and h2 work at a low output setting, producing 0.1[kW]

of heat and an air flow speed of 0.1[m/s]. On the other hand, h3 and h4 work at a normal
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setting, producing 4[kW] of heat and and an air flow speed of 0.5[m/s]. The time horizon is

300[s], sampled uniformly at 10[s] steps. The sensors’ observation radius is r = 1.0[m]. The

parameters in (4.2) are set to η0 = 1.0, η1 = 0.1. The parameter in (4.10) is set to γ = 1.0.

The parameters in (4.11) are set to ᾱ = 0.01 and β̄ = 0.7. We wrote our code in Python,

the FEM discretization was computed using tools from the FEniCS Project [94], and the

building plan was discretized into nelem = 6276 elements.

4.3.1 Probabilistic estimation method

In our simulations below we compare our estimation method with a probabilistic-based esti-

mation algorithm formulated by [17], and applied to problems involving parameter estimation

of differential equations [18]. Under Banks and Bihari’s framework, π0 and θ are random

variables with unknown probability distributions, thus the estimation problem is formulated

to find the optimal distributions that would most likely produce the acquired sensor data in

expectation. Due to space constraints we omit a detailed description of this method, and we

refer interested readers to [17].

Let π0,∆ be the FEM discretization of π0, hence π0,∆ ∈ Rnelem . We assume that θ and π0,∆

follow probability distributions P(θ) and P(π0). In the particular case of θ, since it is a vector

of independent binary variables, its distribution is P(θ) =
∏nd

i=1 p
θi
i (1 − pi)1−θi . We assume

that θ and π0,∆ are independent.

Banks and Bihari’s estimation algorithm relies on closed-form formulas of the expected values

of each of the random variables in the cost function. Using the cost function in equation (4.2),

the only nontrivial expected value is that of Te,∆(x, t; π0,∆, θ), the FEM discretization of Te.

Note that given x ∈ Ω, t ∈ [0, T ], and θ ∈ {0, 1}nd , then Te,∆(x, t; π0,∆, θ) is a linear
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Figure 4.1: Floor plan of the apartment simulated in section 4.3.

function of π0,∆; hence, as shown by [91, Chapter 3], the conditional expected value of Te,∆

is E[Te(x, t; π0,∆, θ) | θ] = Te,∆(x, t;E[π0,∆], θ) for each pair (x, t). Then, using Bayes’ rule,

E[Te,∆(x, t; π0,∆, θ)] =
∑

θ∈{0,1}nd

Te,∆(x, t;E[π0,∆], θ) P(θ),

∀x ∈ Ω, t ∈ [0, T ].

(4.12)

It is worth noting that the cardinality of {0, 1}nd is 2nd , hence each evaluation of equa-

tion (4.12) involves solving a PDE an exponentially growing number of times as a function

of nd.

42



(B) (G)
0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) Average estimation error of θ.

(B) (G)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Relative estimation error of π0.

Figure 4.2: Results of the experiments in section 4.3.2. Columns: (B) Banks and Bihari’s
method, (G) Gradient-based method, algorithm 1.

4.3.2 Estimation using three thermostats

We run both estimation algorithms, Banks and Bihari’s method and gradient-based method,

algorithm 1, under six different combinations for

θ ∈ {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 1, 1, 1)},

and two different initial temperatures π0. Since algorithm 1 converges to local minimizers,

we also run five estimations for each pair (π0, θ) initializing the algorithm with different

values.

Figure 4.2a is a bar plot of the average estimation errors of θ, calculated as

eθ =
1

nd

nd∑
i=1

∣∣∣θi − θ̂i∣∣∣,
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where θ̂ is either the estimated probability distribution from Banks and Bihari’s method, or

the estimated relaxed configuration from gradient-based method, algorithm 1.

Figure 4.2b shows a similar bar plot for the relative estimation error of π0, calculated as

eπ0 =
‖π0−π̂0‖Ω
‖π0‖Ω

, where π̂0 is either the estimated expected value of π0 from Banks and Bihari’s

method, or the estimated initial distribution from gradient-based, algorithm 1. From these

results we can observe that algorithm 1 is significantly more accurate than the probabilistic

method in estimating both doors’ states and initial temperature distribution. It is worth

noting that the average error of gradient-based method, algorithm 1, in figure 4.2a is small

enough so that one can use a constant threshold to convert from relaxed values of θ to

binary values. Also, the accuracy of our results enables further smart applications, such as

the locating the residents in a building by using thermostat data and further behavioural

assumptions.

In figures 4.3, 4.4 and 4.5 we show the actual initial temperature distribution for one config-

uration θ, and the estimation errors by both algorithms. These results show that even with

the temperature of three points, the gradient-based method, algorithm 1, can accurately re-

construct the initial temperature distribution in the building, thus enabling advanced control

methods such as MPC to significantly improve the energy efficiency of the HVAC system [77].

4.3.3 Estimation using only one thermostat

Now we only assume that only one thermostat, s1, is functional. The motivation is to show

the performance of both estimation algorithms in a realistic scenario, since most residential

buildings’ HVAC systems operate using a single thermostat. We simulated the same scenarios

as in Section 4.3.2.
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Figure 4.3: Initial temperature π0 in [◦C] with respect to TA.
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Figure 4.4: Estimation error of π0 by Banks and Bihari’s method, when all doors are closed.

45



s2

s3

s1

d1d2

d3

d4

h1

h2

h3

h4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Figure 4.5: Estimation error of π0 by gradient-based method, algorithm 1, when all doors
are closed.
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Figure 4.6: Results of the experiments in section 4.3.3. Columns: (B) Banks and Bihari’s
method, (G) Gradient-based method, algorithm 1.
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Figure 4.7: Memory usage in [GB] of the experiments in Sec. 4.3.4.

Figures 4.6a and 4.6c are analogous to those in figure 4.2, while Figure 4.6b shows the esti-

mation error just for door d1, which is located very close to thermostat s1. As shown in these

figures, both estimation algorithms do an almost equally poor job at estimating the doors’

states, and the gradient-based method, algorithm 1, is marginally better at estimating the

initial temperature distribution. Yet, both algorithms are capable of accurately estimating

the configuration of the door closest to the thermostat.

4.3.4 Memory usage comparison

A significant advantage of the gradient-based method, algorithm 1, when compared to prob-

abilistic estimation algorithms is that our method does not need to compute numerical

solutions of the set of differential equations for each possible configuration θ ∈ {0, 1}nd .

Figure 4.7 shows the maximum memory usage of both algorithm implementations as the
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number of doors to estimate increases from 1 to 4. Our results show that the probabilistic

estimation method can be used only for small values of nd, quickly outgrowing the amount of

memory in standard computers (for nd = 4 the usage was 16[GB] approx.), while algorithm 1

memory usage remains almost constant (at 2.4[GB] approx.).

4.4 Chapter conclusion

In this chapter, we introduce a gradient-based estimation method to estimate the fluid dy-

namic system’s distribution and building’s indoor congiguration at the same time. Our

gradient-based estimation method and simulation results show the potential for reconstruct-

ing indoor climate and building configuration by using only thermostat sensor data, thus

reducing the need for extra sensors to monitor a smart buildings. Also, since the method

can accurately estimate the indoor climate and configuration with acceptable memory usage,

it can be used in coordination to advanced MPC control strategies, significantly increasing

the efficiency of HVAC units without a decrease in human comfort. Our method has the

potential to enable interesting new applications. For example, since it is able to identify a

building’s configuration in real-time, it can potentially be applied to monitor an unexpected

break-in.
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Chapter 5

MPC for Indoor Thermal Comfort via

PDE-based CFD Model

In this chapter, we apply the numerical algorithm in chapter 4 to develop a Model Predicted

Control (MPC) to optimize the thermal comfort around indoor residents based on our PDE-

based CFD model. The thermal comfort is measured by PMV index’s approximation and

the optimization control pairs the heater’s power with fan’s speed, not focuses only on

temperature regularity. Optimizing the thermal comfort zoned area around indoor residents

instead of the whole apartment is potential to make the HVAC system energy efficient [77].

Also the MPC is able to identify indoor climate distribution and an apartment’s doors

configuration based only on thermostatic data.

The chapter is organized as follows: section 5.1 describes the formulation of MPC which

consists of an estimator and optimal controller; section 5.2 discusses the first order gradient-

based algorithm to solve the PDE-constrained optimization problem, the introduction to the

fluid dynamic system’s adjoint equations and the finite element discretization of the PDEs;

and section 5.3 gives the results of our simulated experiments which is based on the floor plan

of a real apartment from our university’s housing company. Our theoratical and numerical
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results validate our MPC controller which can balance energy savings and occupants’ thermal

comfort at the same time, and the accurate CFD models enables the details of the climate

variables inside apartment and the change of door’s configuration.

5.1 Problem statement

5.1.1 Framework of the MPC for indoor comfort

In the aspect of framework of the HVAC system’s control, figure 5.2 is the flow chart for our

thermal comfort control for HVAC system, compared with single temperature loop control

in figure 5.2, our thermal comfort control system has several improvements. We introduce

a distributed-parameter model which will capture the real-time spatial variability of indoor

flow’s climate according to floor plan. Secondly, in order to control the thermal comfort

directly, wearable devices are used to monitor occupant’s personal variable [87, 40, 134]

in order to make the thermal comfort’s prediction accurately. Also the control strategy is

different, we separately control each HVAC units in order to better control a local area’s

climate and make the HVAC system more energy-efficient [77].

5.1.2 CFD model and building configurations

The CFD model in this chapter follows equations (2.2), (2.4) and (2.5) in chapter (2). And we

assume the fans are inside the building, thus Γi = ∅ and the fluid follows the eqautions (2.8)

and (2.6) and the initial condition (2.3).
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Based on the control framework in figure 5.2, we assume that there are nt thermostats in

the building. The i-th thermostat is located at xi ∈ Ω, and samples the temperature in a

neighborhood averaged using the bump weight function

Φi(x) = σ exp
(
−
(
r2 − ‖x− xi‖2

)−1)
, for ‖x− xi‖ < r,

and Φi(x) = 0 otherwise, where σ > 0 is a normalization factor such that
∫

Ω
Φi(x) dx = 1.

We also assume that there are nd doors in the building. We define θi ∈ {0, 1} as the

configuration of the i-th door, i.e., θi = 1 when the i-th door is open, and θi = 0 when is

closed. Let Ωθi ⊂ Ω be the area occupied by the i-th door when it is closed, and let Ii be the

indicator function of Ωθi , i.e., Ii(x) = 1 for x ∈ Ωθi , and Ii(x) = 0 otherwise. As mentioned

in chapter 4, when the door configuration changes, so does the prediction generated by our

CFD model in equations (2.2) and (2.4). In particular, the parameters α and κ change for

each x ∈ Ωθi as a function of θi. We model this relation by defining α : Ω × {0, 1}nd → R

and κ : Ω× {0, 1}nd → R as follows,

α(x, θ) = α0 +

nd∑
i=0

(1− θi) (αw − α0) Ii(x), and

κ(x, θ) = κ0 +

nd∑
i=0

(1− θi) (κw − κ0) Ii(x),

(5.1)

where α0 and κ0 are the parameters for open air, while αw and κw are the parameters for

solid walls. Note that both α and κ are affine functions of θ ∈ Rnd .

Then we relax these binary parameters, θi ∈ {0, 1}, to the unit interval, [0, 1], because the

binary estimation variables will generate mix-integered optimization problem which perfor-

mance poorly in both computation time and computational resources [64]. Although for each
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θi only the extreme values have meaningful physical interpretations, non-integer values can

theoretically be interpreted as averaged observations over the optimization horizon [125, 126].

For example, if throughout the optimization horizon a door is open half the time, and closed

half the time, it is likely that we will observe θi ≈ 0.5.

5.1.3 Predicted Mean Vote Index and Its Approximation

The PMV index was proposed by Fanger [54] and recommended by the American Society of

Heating Refrigerating and Air Conditioning Engineers (ASHRAE) [7] in order to predict the

average vote of a large group of persons on the thermal sensation scale. It uses heat balance

equation to relate six key factors to the average response of people on the thermal comfort.

The PMV index will become inaccurate when facing high clothing insulation and high human

activity cases, however, for occupant’s daily activity levels and clothing insulation inside

apartment, the index is accurate. As figure 5.3, the closer the PMV index to zero, the more

comfortable the occupant feels. According to [7], the range of PMV index for an acceptable

thermal environment of general comfort is from −0.5 to 0.5.

The PMV index depends on six factors: metabolic rate, clothing insulation, air temperature

and humidity, air velocity, and the mean radiant temperature. Due to its iterative compu-

tation and in order to reduce the related computational burden, we approximate the PMV
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index function for the optimization problem [37], [55]. The PMV index is computed by

pmv =
(
0.303e−0.036M + 0.028

)[
(M −W )−

− 3.05 · 10−3[5733− 6.99(M −W )− pa]− 0.42[(M −W )− 58.15]− 1.7·

· 10−5M(5867− pa)− 0.0014M(34− Te)+

− 3.96 · 10−8fcl ·
[
(Tcl + 273)4 − (Tr + 273)4]− fclhc(Tcl − Te)].

(5.2)

In the Equation (5.2), M and W are the metabolic rate and external work, both in [W/m2].

According to the references [14] and [7], the external work normally is around 0, and the

average value of human’s sedentary activity and standing activity is 70[W/m2] and 93[W/m2]

respectively. The occupant’s metabolic rate can be obtained either from their wearable

devices or some posterior estimation [87, 40, 134].

pa is the partial water vapor pressure in Pascal. According to [15], [113], the specific humidity

inside house, wi with unit [kg · kg−1], can be expressed by,

wi =
ρ
∑nf

j=1Qjwo,j +mg

ρ
∑nf

i=1 Qi

. (5.3)

where wo,j is the specific humidity comes out of the j-th HVAC, the total number of indoor

HVAC units is nf , ρ is the inside air’s density. mg is the rate of moisture generation within

the building with unit [kg · s−1], Qj is the volume flow rate of air comes out of the j-th HVAC

unit with unit [m3 · s−1], and we ignore the moisture diffusion through the fabric material [14].

In our model Qj = |gu,j| = Ajvj, where Aj is the size of the j-th fan with unit [m2], vj is the

working speed for the j-th fan with unit [m · s−1]. Under ideal air condition, pa = powi/0.622,

where the mixed air’s pressure po is the standard atmosphere, 1.013× 105[Pa].
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Te and Tr are the air temperature and mean radiant temperature, both with unit [◦C].

Experiments results [128] show that their indoor distributions are close. In order to simplify

the PMV index for optimization computation and noting that most buildings typically do not

have sensors to continually measure the mean radiant temperature, we set the Tr equal to the

air temperature, Te. Moreover, since the range of temperatures in the indoor environment is

small, the difference of the fourth power terms can be adequately replaced by a lower-order

difference [14],

3.96 · 10−8fcl ·
[
(Tcl + 273)4 − (Tr + 273)4] ≈

≈ 4.6fcl(1 + 0.01Tr)(Tcl − Tr)
(5.4)

The clothing surface temperature is approximated as [14] [54],

Tcl = 35.7− 0.028(M −W )+

− 0.155Iclfcl[4.6(1 + 0.01Tr)(Tcl − Tr) + hc(Tcl − Te)].
(5.5)

Where we approximate the radiation term with equation (5.4), then we can derive an explicit

formula of Tcl and get rid of the iteration numerical solving process. hc is the convective

heat transfer coefficient [54] [41] and is approximated as the natural convective heat transfer

coefficient, hcn [37] [55]. The parameter fcl is equal to 1.0+1.29Icl when Icl ≤ 0.078, otherwise

1.05 + 0.645Icl, where Icl is the clothing insulation index, in [m2 ◦C/W].

Thus after the approximation, in our model, the PMV index is influenced by parameters Te,

gu, M and Icl, we denote it as pmv(Te, gu,M, Icl).
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Figure 5.4: The illustration of the model predicted control during [t1, t3].

5.1.4 Optimization Problem and Model Predicted Control

In this subsection, we are going to build an Model Predicted Control (MPC) in order to

control the thermal comfort inside a target area. MPC is based on iterative, finite-horizon

optimization. The illustration of the MPC process is shown in figure 5.4. At each time point,

ti, i ∈ 1, 2, · · ·, the MPC solves two optimization problems, the first is an estimation problem

for indoor temperature distribution and doors configuration, and the other is to control the

thermal comfort inside the target area.

First, we formulate the estimation algorithm to estimate the door configuration θ and the

initial temperature π0 using the information from the nt thermostats in the building. Given

the estimation time horizon as [ti−T, ti], we write our optimal estimation problem as follows,
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for π0 : Ω→ R and θ ∈ Rnd ,

min
π0, θ

Je(π0, θ) =

=
nt∑
i=1

∫ ti

ti−T

(∫
Ωi

Φi Te(x, t; π0, θ) dx− T ∗e,i
)2

dt+ η0

nt∑
i=1

(∫
Ωi

Φi π0 dx− π∗0,i
)2

+ η1 ‖π0‖2
Ω

subject to: partial differential equations (2.2), (2.4), and (2.5),

boundary and initial conditions (2.3), (2.8), and (2.6),

0 ≤ θi ≤ 1, ∀i ∈ {1, . . . , nd},

(5.6)

where, η0, η1 > 0 are weight parameters. Since during the estimation horizon, we know

the HVAC system’s outputs, gTe and gu, Te(x, t; π0, θ) is the solution of equation (2.2) with

certain initial condition π0(x) and configuration θ. T ∗e,i(t) is the time signal obtained from the

i-th thermostat over the horizon [ti − T, ti], and π∗0,i is just notation for the initial thermostat

temperature, i.e., π∗0,i = T ∗e,i(ti − T ).

For the optimal control problem, we use the previous estimation problem’s results which are

the door configuration, θ, and temperature estimation at time ti, Te(x, ti; π0, θ), to predict

and control the approximated PMV index inside the target area, Ωt ⊂ Ω. Since the door

configuration, θ, and initial temperature distribution for the optimal control problem, π0 =

Te(x, ti; π0, θ) are from the previous estimation results, the optimal control problem focuses

on the HVAC system’s outputs. Given the optimal control’s horizon as [ti, ti + T ′], where

T ′ > T , the optimal control problem is written as, for gTe : [ti, ti + T ]×Ω→ R and gu : Ω→
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R2,

min
gTe , gu

Jc(gTe , gu) =

=

∫ ti+T
′

ti

∫
Ωt

pmv2(Te(x, t; π0, θ), gu,M, Icl)

dxdt+ η′0 ‖gTe‖Ω×[ti,ti+T ′] + η′1

∫ ti+T
′

ti

‖gu‖Ω,

subject to: partial differential equations (2.2), (2.4), and (2.5),

boundary and initial conditions (2.3), (2.8), and (2.6),

gTe ≤ ‖gTe,i‖∞ ≤ gTe , ∀i ∈ {1, . . . , nf},

gu ≤ ‖gu,i‖∞ ≤ gu, ∀i ∈ {1, . . . , nf},

(5.7)

where, η′0, η
′
1 > 0 are weight parameters, nf is the number of HVAC units inside the apart-

ment, gTe and gTe are the maximum and minimum power for each heater unit respectively,

gu and gu are the maximum and minimum power for each fan unit respectively.

After the MPC solves the optimal problems in equations 5.6 and 5.7, the HVAC system will

apply the MPC’s control strategy for a T time horizon until the next time point ti+1 and

repeat the procedure.

5.2 Methods

In this section we develop a numerical algorithm to solve the optimization problems defined

in Section 5.1. We use a gradient-based optimization algorithm to find local minimizers of

our optimization problems, where the gradients are computed using the adjoint equations

of the CFD model, the method is similar to [71] and [135], then we numerically solve the

original CFD model and adjoint equations using the Finite Element Method (FEM).
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5.2.1 Adjoint Equations of CFD model

In order to derive our CFD model’s adjoint equations, first we need to write the Lagrangian

function of the optimization problems [65, 71]. Since both estimation and control problems

follow the same CFD model, we define a general cost function as J(π0, θ, gTe , gu).

Let {λi}6
i=1 be the set of Lagrange multipliers, or adjoint variables, each associated to one of

the equations (2.2) to (2.6) and defined in its respective dual space. Then, the Lagrangian

function of our optimal estimation problem is:

L
(
Te, u, p, π0, θ, {λi}6

i=1

)
=
〈
λ1,

∂Te
∂t

+

−∇x·(κ(x)∇xTe) + u · ∇xTe − gTe
〉

Ω×[t0,t′0]
+

+
〈
λ2,−

1

Re
∆xu+ (u · ∇x)u+∇xp+ αu− gu

〉
Ω

+

+ 〈λ3,∇x · u〉Ω + 〈λ4, Te〉∂Ω×[t0,t′0]
+ 〈λ5, u〉Γw

+

+ 〈λ6, Te(0, ·)− π0〉Ω + J(π0, θ, gTe , gu),

(5.8)

The necessary condition for optimality is that the inner product of the partial derivatives of L

with respect to all directions are equal to zero [71]. The adjoint equations are derived from

the optimality’s necessary condition L w.r.t. fluid dynamic model’s variables’ directions.

That is, we look for solutions such that for each set of functions (w, v, q) in the respective

dual spaces, and sufficiently weakly differentiable, we have
〈
∂L
∂Te
, w
〉

Ω×[t0,t′0]
= 0,

〈
∂L
∂u
, v
〉

Ω
= 0

and
〈
∂L
∂p
, q
〉

Ω
= 0.

Theorem 5.1. If (T ?e , u
?, p?, π?0, θ

?) is the optimal point to the problem (5.6), then there

exist Lagrange multipliers, {λi}6
i=1, which are corresponding to PDE-constraints, such that

∀(w, v, q) ∈ L2
(
[t0, t

′
0];H1(Ω)

)
×
(
H1(Ω)×H1(Ω)

)
×L2(Ω), the Lagrange function’s variation
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w.r.t. (w, v, q) is zero, and λ1,2,3,6 satisfy,

− ∂J

∂Te
+
∂λ1

∂t
(x, t) +∇x · (κ(x)∇xλ1(x, t))+

+ u(x) · ∇xλ1(x, t) = 0,

(5.9)

λ6(x) = λ1(x, 0), (5.10)∫ t′0

t0

λ1(x, t)∇xTe(x, t) dt+ α(x)λ2(x)− 1

Re
∆xλ2(x)+

− u(x) · ∇xλ2(x) + λ2(x) · ∇xu(x)−∇xλ3(x) = 0, and,

(5.11)

∇x · λ2(x) = 0, (5.12)

with boundary conditions λ1(x, t) = 0 and λ2(x) = 0 for each x ∈ ∂Ω and t ∈ [t0, t
′
0],

together with final condition λ1(x, t′0) = 0 for each x ∈ Ω. The adjoint functions λ4 and

λ5 are irrelevant to our Fréchet derivative calculation, therefore we omit them from this

presentation.

If
(
T ?e , u

?, p?, g?Te , g
?
u

)
is the optimal point to the problem (5.7), its Lagrange multipliers,

λ1,2,3,6, also satisfy the above ajoint PDE system.

The proof to theorem 5.1 is based on [86, Theorem 1.17] and shown in C.

5.2.2 Fréchet Derivatives of optimization problems

Firstly, we can compute the Fréchet derivatives of the cost function with respect to θ and

π0 for the estimation problem in the equation (5.6). Consider a parameter change from

(θ, π0) to (θ + δθ, π0 + δπ0). Since both α and κ are affine in θ, these variations will result
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in changes from (α, κ) to (α + δα, κ+ δκ), which will also imply changes from (Te, u, p) to

(Te + δTe, u+ δu, p+ δp).

Then, from equations (2.2), (2.4), and (2.5), it follows that the variations satisfy the following

differential equations:

∂δTe
∂t
−∇x · (δκ∇xTe)−∇x · (κ∇xδTe)+

+ δu · ∇xTe + u · ∇xδTe = 0,

(5.13)

δα u+ α δu− 1

Re
∆xδu+ δu · ∇xu+ u · ∇xδu+∇δp = 0, (5.14)

∇x · δu = 0, (5.15)

with the following boundary and initial conditions: δTe(x, t) = 0 for each x ∈ ∂Ω and

t ∈ [t0, t
′
0], δTe(x, t0) = δπ0(x) for each x ∈ Ω, and δu(x) = 0 for each x ∈ Γw.

Then with the help of dual variables, {λi}6
i=1, from equations (5.13), (5.14), and (5.15), the

difference between Je(θ + δθ, π0 + δπ0) and Je(θ, π0) can be written as,

Je(θ + δθ, π0 + δπ0)− Je(θ, π0) =

=
〈
∇π0Je − λ6, δπ0

〉
Ω

+
〈
∇xλ1 · ∇xTe, δκ

〉
Ω×[t0,t′0]

+
〈
λ2 · u, δα

〉
Ω
,

(5.16)

The details about how to derive equation (5.16) are in chapter 4.

Thus the first-order approximation of the cost function Je can be written as,

Theorem 5.2 (Fréchet derivatives of cost function Je in Problem 5.6). Given variables π0 ∈

H1(Ω), θ ∈ Rnd and α, κ ∈ L2(Ω) ∩ L∞(Ω). The directional derivatives in equations (5.17)
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and (5.18) are Fréchet derivatives of cost function Je to corresponding variables.

〈
DαJe, δα

〉
Ω

= 〈λ2 · u, δα〉Ω, and〈
DκJe, δκ

〉
Ω

=

∫ t′0

t0

〈
∇xλ1 · ∇xTe, δκ

〉
Ω

dt,
(5.17)

〈
Dπ0Je, δπ0

〉
Ω

= 〈∇π0Je − λ6, δπ0〉Ω, and

DθJe · δθ =

nd∑
i=1

(〈
DαJe,

∂α

∂θi

〉
Ω

+
〈
DκJe,

∂κ

∂θ

〉)
δθi.

(5.18)

For the optimal control problem in the equation (5.7), similarly, we can derive its cost

function’s derivatives w.r.t. related variables.

Theorem 5.3 (Fréchet derivatives of cost function Jc in Problem 5.7). Given variables,

gTe ∈ L2([t0, t
′
0]× Ω) and gu ∈ L2(Ω)× L2(Ω), the directional derivatives in equation (5.19)

are Fréchet derivatives of cost function Jc to corresponding variables.

〈
DgTeJc, δgTe

〉
Ω×[t0,t′0]

=
〈
∇gTe

Jc − λ1, δgTe
〉

Ω×[t0,t′0]
,

and
〈
DguJc, δgu

〉
Ω

= 〈∇guJc − λ2, δgu〉Ω.
(5.19)

The proof to theorem 5.2 and 5.3 are in the appendix C.

5.2.3 Gradient-Based Optimization Algorithm

Using the closed-form formulas for the Fréchet derivatives of Je w.r.t. π0 and θ and Jc

w.r.t. gTe and gu in subsection 5.2.2, after the discretization by FEM method, we build a
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gradient-based optimization algorithm to solve the problem in equation (5.6) and (5.7) using

a projected-gradient method [99, Chapter 18.6] respectively.

First, we find descent directions δπ0 : Ω → R and δθ ∈ Rnd as solutions of the following

Quadratic Program (QP) with value Ve(π0, θ):

Ve(π0, θ) = min
δπ0, δθ

〈Dπ0Je, δπ0〉Ω +DθJe · δθ+

+
1

2
D2
π0
Je(δπ0, δπ0) +

1

2
D2
θJe(δθ, δθ),

subject to: 0 ≤ θi + δθi ≤ 1, ∀i ∈ {1, . . . , nd},

(5.20)

where D2
π0
Je and D2

θJc are the second derivatives of Je w.r.t. π0 and θ, when we solve the

problem numerically, we use BFGS algorithm [99, Chapter 6.1] to approximate them.

Also we find descent directions δgTe : Ω × [t0, t
′
0] → R and δgu : Ω → R as solutions of the

following Quadratic Program (QP) with value Vc(gTe , gu):

Vc(gTe , gu) = min
δgTe , δgu

〈
DgTeJc, δgTe

〉
Ω×[t0,t′0]

+

+ 〈DguJu, δgu〉Ω+

+
1

2
DgTeJc(δgTe , δgTe)+

+
1

2
DguJc(δgu, δgu),

subject to: gTe ≤
∥∥gTe,i + δgTe,i

∥∥
∞ ≤ gTe ,

gu ≤ ‖gu,i + δgu,i‖∞ ≤ gu,

∀i ∈ {1, . . . , nh},

(5.21)

where D2
gTe
Jc and D2

guJc are the second derivatives of Jc w.r.t. gTe and gu, when we solve

the problem numerically, we use BFGS algorithm [99, Chapter 6.1] to approximate them.
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Require: Initial values for θ and π0.
1: loop
2: Numerically compute Te, u, and p by solving the CFD model in equations (2.2)

to (2.6).
3: Numerically compute λ1, λ2, λ3, and λ6 by solving the adjoint equations (4.4) to (4.7).
4: Compute the gradients Dπ0Je and DθJe in equation (4.9).
5: Compute the projected-gradient descent directions (δπ0, δθ) by solving the QP in

equation (5.20), with value Ve(π0, θ).
6: if Ve(π0, θ) = 0 then
7: Stop.

8: Update π0 ← π0 + βe δπ0 and θ ← θ + βe δθ.
9: Update Hessian matrix by BFGS algorithm.

Figure 5.5: Gradient-based estimation algorithm

The QP problems in equations (5.20) and (5.21) are derived using first-order approximations

for the cost functions using the derivatives in equations (4.9) and (5.19), together with

conditions to guarantee the feasibility of the desired directions.

Our gradient-based optimization method to solve the estimation problem in equation (5.20)

and optimal control problem in equation (5.21) are detailed in figure 1 and 5.6 respec-

tively. The PDE equations in the algorithms 1 and 5.6 are numerically solved using FEM

discretizations, implemented using the FEniCS package [94]. In order to speed up the op-

timization algorithm, we used fixed heuristic step sizes, βe and βc, to update varaibles in

the algorithms 1 and 5.6. If during the computation, βe or βc fail for the assumption in

Theorem 5.4, we switch to Amijo method [8] to find feasible step sizes.

Theorem 5.4. Suppose the cost functions in problem (5.6) and (5.7) are bounded from below,

and βe, βc ∈ (0, 1) in algorithm 1 and 5.6 satisfy respectively, when Ve(θ, π0), Vc(gTe , gu) < 0,
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Require: Initial values for gTe and gu.
1: loop
2: Numerically compute Te, u, and p by solving the CFD model in equations (2.2)

to (2.6).
3: Numerically compute λ1, λ2, λ3, and λ6 by solving the adjoint equations (4.4) to (4.7).
4: Compute the gradients DgTeJc and DguJc in equation (5.19).
5: Compute the projected-gradient descent directions (δgTe , δgu) by solving the QP in

equation (5.20), with value Vc(gTe , gu).
6: if Vc(gTe , gu) = 0 then
7: Stop.

8: Update gTe ← gTe + βc δgTe and gu ← gu + βc δgu.
9: Update Hessian matrix by BFGS algorithm.

Figure 5.6: Gradient-based optimal control algorithm

a ∈ (0, 1)

Je(θ + βeδθ, π0 + βeδπ0)− Je(θ, π0) ≤ a βeVe(θ, π0),

Jc(gTe + βcδgTe , gu + βcδgu)− Jc(gTe , gu) ≤

≤ a βcVc(gTe , gu).

where (δθ, δπ0) are derived from problem (5.20), (δgTe , δgu) are derived from problem (5.21).

Then for arbitrary sequence generated by the algorithm 1 or 5.6, its accumulate point satisfies

Ve(π0, θ) = 0 or Vc(gTe , gu) = 0.

The proof of theorem 5.4 is in the appendix C.
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Figure 5.7: Floor plan for simulated apartment.

5.3 Simulations

We applied our MPC controller to a simulated St. Louis area apartment, whose floor plan

is shown in figure 5.7, it has nd = 4 doors, labeled as {di}nd
i=1, and nt = 3 thermostats,

labeled as {si}3
i=1. The apartment is with dimensions 7.6 × 16.8[m2] (approx. 1375[sq ft])

and equipped with four HVAC vents, labeled {hi}4
i=1. We assume that each vent is endowed

with a fan acting on a 1× 0.5[m2] area, and oriented in a fixed direction. These HVAC fan

units work independently to control the indoor flow’s temperature, velocity and humidity.

The CFD model is governed by the constants Re = 102, α0 = 0, and κ0 = 10−2 when

x ∈ Ω corresponds to free air, while αw = 103 and κw = 10−4 when x ∈ Ω corresponds to

a wall. The atmospheric pressure is pA = 101.3[kPa]. The time horizon T = 150[s] and

T
′

= 900[s], both sampled uniformly at 10[s]. The sensors’ observation radius is r = 1.0[m].

The parameters in (5.6) are set to η0 = 1.0, η1 = 0.1, in (5.7) are set to η′0 = 0.1, η′1 = 0.15.

The parameters in (5.20) and (5.21) are set to be 1.0. The specific humidity comes out

of the HVAC system, {wo,j}4
j=1, are set to be 50% and the moisture generated inside the

building is set to be mg = 0.5[kg · h−1]. The natural convective heat transfer coefficient

is set to hcn = 12.1[W/(m2 ·◦ C)]. The programs are implemented in Python, the FEM
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discretization was computed using tools from the FEniCS Project [94], and the building

plan was discretized into nelem = 6276 elements.

5.3.1 Simulation with different door configurations and target lo-

cations

Since the performance of the estimator in our MPC has been tested in [76] with different

temperature distributions and doors configurations. In this subsection, we valid the perfor-

mance of our MPC system with controller and estimator together. We test its ability to

adapt the changes of doors configuration and its spatial resolution to control local area’s

thermal comfort. Also, we compare the performance of the MPC whose estimation of doors

configuration is always closed in order to show the importance of doors configuration’s es-

timation to thermal comfort control. 12 test cases are simulated with different locations

of target areas. The total time period we test is 900 [s] and the time horizon for MPC is

150 [s]. The atmospheric temperature is 5[◦C], the clothing insulation is 0.155 [m2 ◦C/W],

the metabolic rate is 64.0 [W/m2], and the PMV index outside is around −4.10. During the

simulation, we set all the four doors are closed at beginning, and at the time 50 [s], all the

doors are changed to open.

Figures 5.8a and 5.8b show the spatial resolution of our MPC system, if the target area is

close to one of the HVAC units, only this HVAC unit will operate to maintain the thermal

comfort. Also these two figures indicate that if we are able to localize the resident inside

an apartment, for example via wearable devices, then we can focus on the thermal comfort

around the resident and improve the efficiency of the HVAC unit without major modifications

to the mechanical ventilation system.
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Figure 5.8: Results of the experiments in Section 5.3.1.
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Figure 5.9: Statistic results of simulations in Section 5.3.1 with 12 target areas. Columns
in figure 5.9a: (M) is MPC with doors configuration estimator, (F) is MPC whose fixed
doors configurations are fixed to be closed. Each column shows the median (red line), mean
(red box), and first-to-third quartiles (blue box). The average estimation errors of θ in
figure 5.9b are calculated as eθ = 1

nd

∑nd

i=1 |θi − θ̂i|, where θ̂i are the real door’s state and θi
are the estimation from our MPC’s estimator.
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Figure 5.9a shows the range of average PMV value inside target areas under two MPC

systems at the final time. First, the data validates the performance of our MPC system,

since our system controls the average final PMV value inside the target area inside the range

[−0.5, 0.5], which is the range for thermal comfort. Also figures 5.9a and 5.8c show the

importance of door configurations to control the thermal comfort inside target locations. If

the MPC fails to track the doors configurations, for example like the comparison MPC which

ignores the doors configuration changes in Column (F) of figure 5.9a, the final time’s PMV

value inside target area is further from the comfort point and the index’s variance is also

larger than when doors configuration is accurately estimated.

The average estimation errors of θ are shown in the figure 5.9b. After t = 300 [s] the average

estimation is lower than 0.25 which means estimation of all the doors’ configuration is correct.

During the time [0, 300 [s]], the error of doors configuration is high and it is due to two

reasons. First, the doors configuration changes at t = 50 [s], which is between two time steps

when MPC’s estimator wakes up. Thus the error during [0, 150 [s]] is high. Secondly, during

the time [150 [s], 300 [s]] the doors configuration result is based on the thermostats data

from [0, 150 [s]] and an assumption that the doors’ states are fixed during this time period.

However, the doors configuration changes at time t = 50 [s], thus the doors configuration

estimation result is influenced during for the next time loop, [150 [s], 300 [s]]. The figure 5.9b

shows the MPC needs at least one time step to track the doors configuration changes, in

order to decrease the time length of inaccurate estimation to doors configuration, we can

shorten the MPC’s time horizon, which, at the same time, will also shorten the time MPC

uses to stabilize the target area’s thermal comfort based on the simulation in section 5.3.3.
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Figure 5.10: Energy usage, in [kW · h], with different combination of metabolic rates,
[W/m2], and clothing index, in [m2 ◦C/W], in Section 5.3.2. Ta = 20.0[◦C], in figure 5.10a,
Icl = 0.155 [m2 ◦C/W], in figure 5.10b, M = 81.0[w/m2].

5.3.2 Simulation with different personal variables related to PMV

In this simulation, we study the influences of metabolic rate and clothing insulation to

MPC’s energy usage in a period of 600 [s]. The outside temperature is 20 [◦C], around this

temperature point the PMV value is negative when occupant has low metabolic rate and

clothing index and becomes positive when the occupant has high metabolic rate and clothing

index. Thus in figures 5.10a and 5.10b as the occupant’s metabolic rate and clothing index

increase, the HVAC system switches from heating mode into cooling mode.

The figures 5.10a and 5.10b validates our MPC system and show its several advantages.

First, the MPC’s energy usages change with different metabolic rates and clothing index

and this change corresponds to the fact that when heating the area to make it comfortable,

the more the occupant wears and the more active the occupant is, the less energy HVAC
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units need. Second, the results show the importance of personal parameters, metabolic rate

and clothing insulation, to thermal comfort and HVAC system’s control strategy. As shown

in figures 5.10a and 5.10b, around some temperature points, the occupant’s thermal feeling,

whether hot or cold, and HVAC system’s corresponding control strategy, whether cooling or

heating mode, are dependent on the occupant’s personal variables. However, for a single-

loop temperature control HVAC system, since it lacks efficient method to receive information

from occupant, it is hard to adjust control strategy with different personal variables.

Studies about using wearable devices such as mobile phone and smart watch to monitor these

personal variables have been shown in publications [87, 40, 134]. It is possible for our HVAC

system to track the personal variables’ changes and make corresponding thermal comfort

control strategies. Finally, the results in figures 5.10a and 5.10b show the potential for our

controller to give thermal comfort strategy in a different way. Instead of only giving control

strategies to HVAC system, when the occupant has a strict energy budget limit, our MPC

thermal controller may give occupant suggestions to change his or her clothing or metabolic

habits at the same time.

5.3.3 Memory and time usage analysis

In this section, we study our algorithm’s memory and time usage with different number of

element, nelem, then we study the time response of our system with different time horizons.

The figure 5.11a shows the average memory usage with different number of elements, nelem,

and both axis are in logarithmic scale. From this log-log plot, we can see a linear relationship

between memory usage and nelem where the line’s slope is 1.14, thus the memory complexity

is around O(n1.14
elem). The figure 5.11b shows the average time usage of each iteration loop
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Figure 5.11: Results of the experiments in Section 5.3.3.
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with different number of elements, also both axes are in logarithmic scale. Similarly, and the

slope is 1.59, thus the time complexity is about O(n1.59
elem). The memory and time complexity

show the potential to apply our MPC system into bigger and more complicated buildings.

Figure 5.11c shows the time response of our MPC system to control target area’s PMV index.

In this simulation, five cases of different combinations of metabolic rate and clothing index

are tested with three different time horizons to our MPC. For all three time horizons, the

average PMV index goes to zero after two time loops, which shows that if the occupant’s PC’s

computation capacity is strong, the occupant can choose a shorter time step for the MPC

in order to make the indoor target area comfortable in a shorter period of time. However,

currently, our MPC is not able to work in real-time. The bottleneck for real-time is the

time used to solve the original and adjoint PDE systems. There are several ways to fast

our algorithm, first, we use the FEniCS [94] in Python as the numerical PDE solver, if we

implement our algorithm in a more efficient language, for example C++, and extend our

PDE solver into parallel [16]. Second, model reduction method related to FEM method

should be studied in the future.

5.4 Chapter conclusion

In this chapter, we develop a MPC system to control the thermal comfort around indoor

residents based on distributed CFD model. In order to fulfill this task, we develop a pro-

jected gradient-based optimization method to solve related PDE-constrained optimization

problems. The simulation section validate the performance of our MPC to estimate state

changes and adapt its control strategy. Also we studied the influence of personal variables

to thermal comfort and MPC system’s energy usage, which points out that in order to make
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the HVAC system energy efficient to thermal comfort control, it is necessary to use some

devices to measure occupant’s personal variable data. In the future, based on the memory

and time usage studies, in order to speed up our MPC and make it work in real-time, model

reduction method will be studied for related PDE-constraint optimization problems.
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Chapter 6

Numerical Synthesis of Pontryagin

Optimal Control Minimizers Using

Sampling-Based Method

In this chpater, we present a theoretical formulation and a corresponding numerical algo-

rithm, capable of finding optimal control inputs that satisfy the Pontryagin Minimum Prin-

ciple by using a direct method. Our paper is organized as follows. Section 6.1 introduces our

notation and the optimal control problem we aim to solve. A conceptual algorithm is pre-

sented in section 6.2, and section 6.3 describes an implementable sampling-based numerical

algorithm. Finally, simulation results are shown in section 6.4. 3

3This chapter is based on R. He and H. Humberto, ”Numerical Synthesis of Pontryagin Optimal Control
Minimizers Using Sampling-Based Methods,” in 56th IEEE Conference on Decision and Control, Melbourne,
Australia, December, 2017. c© IEEE 2017
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6.1 Problem statement

In this section, we formulate the conceptual optimal control problem we will address through-

out this paper. In my study, we are interested in solving a control-constrained optimal control

problem, formulated as follows,

min
x∈L2([0,T ],Rn)
u∈L2([0,T ],Rm)

Ψ
(
x(T )

)
,

subject to: x(0) = ξ,

ẋ(t) = f
(
t, x(t), u(t)

)
,

u(t) ∈ U, for a. e. t ∈ [0, T ],

(6.1)

where U is a connected and compact subset of Rm, ξ ∈ Rn, and the functions f and Ψ are

well-defined, each with an appropriate domain and range. We will say that f is the vector

field, and Ψ the final cost, of the problem in equation (6.1). Note that the optimal control

problem in equation (6.1) is quite general, since other standard formulations, such as those

including running cost functions or minimum-time cost functions, can be easily converted to

it (see section 4.1.2 in [103] for a thorough exposition of this topic).

First we give the following assumption to guarantee the uniqueness of the trajectories, as

well as the convergence of our numerical method, in this paper.

Assumption 6.1. The functions f and Ψ are Lipschitz continuously differentiable. That

is, there exists L > 0 such that, for each t1, t2 ∈ [0, T ], x1, x2 ∈ Rn, and u1, u2 ∈ U :

|Ψ(x1)−Ψ(x2)| ≤ L ‖x1 − x2‖2, (6.2)∥∥∥∥∂Ψ

∂x
(x1)− ∂Ψ

∂x
(x2)

∥∥∥∥
2

≤ L ‖x1 − x2‖2, (6.3)
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‖f(t1, x1, u1)− f(t2, x2, u2)‖2 ≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
, (6.4)∥∥∥∥∂f∂x (t1, x1, u1)− ∂f

∂x
(t2, x2, u2)

∥∥∥∥
i,2

≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
, (6.5)∥∥∥∥∂f∂u (t1, x1, u1)− ∂f

∂u
(t2, x2, u2)

∥∥∥∥
i,2

≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
. (6.6)

Then we relax the problem in equation (6.1) using the concept of relaxed inputs, as defined

by J. Warga [129, 130]. Consider the following relaxed optimal control problem:

min
x∈L2([0,T ],Rn)

µ : [0,T ]→Mp(Rm)

Ψ
(
x(T )

)
,

subject to: x(0) = ξ,

ẋ(t) =

∫
Rm

f
(
t, x(t), u

)
dµt(u),

supp(µt) ⊂ U, for a. e. t ∈ [0, T ],

(6.7)

where supp(µt) is the support of µt, i.e., the smallest set S such that µt(S) = 1. In other

words, instead of optimizing over the space of L2 functions, we optimize over the space of

stochastic processes defined on U .

According to [130, Theorem II.6.5], if the vector field f(t, x, u) satisfies assumption 7.1,

the relaxed system in problem (6.7) always has a solution. Given a fixed initial condition

x(0) = ξ, we will denote the unique trajectory resulting from the stochastic process µ by
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x(µ). For simplicity, we will also denote the unique trajectory resulting from an input u by

x(u).

Note that the problem in equation (6.1) is a particular case of the problem in equation (6.7).

Indeed, given an arbitrary input û ∈ L2([0, T ],Rm), the stochastic process defined by µt(S) =

1 whenever û(t) ∈ S, and µt(S) = 0 otherwise, produces exactly the same trajectory as û.

Colloquially this particular stochastic process is written using Dirac Delta functions, i.e.,

dµt(u) = 1
(
u − û(t)

)
du. This case implies that the feasible set of the relaxed problem is

strictly larger than that of the original problem, thus resulting in lower optimal values for

the relaxed problem. Yet, perhaps surprisingly, this is not the case, since both problems,

original and relaxed, result in the same optimal values. The equivalence between original

and relaxed problems follows since every point in the feasible set of the relaxed problem can

be arbitrarily approximated using points in the feasible set of the original problem.

Theorem 6.1. Let f be a vector field satisfying assumption 7.1, and let µ : [0, T ]→Mp(Rm)

be a stochastic process. Then, for each ε > 0 there exists a control signal ũ(t) such that for

each t ∈ [0, T ],
∥∥x(µ)(t)− x(ũ)(t)

∥∥
2
< ε.

This theorem is an extension of the Chattering Lemma [24, Theorem 4.1], taking advantage

of the fact that, for each time t, the relaxed trajectory defined in equation (6.7) can be

arbitrarily approximated using a finite number of vectors in U .
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6.2 Optimal conditions for optimal control

As shown by Pontryagin et al. [104] in their Minimum Principle, it is possible to find a

necessary condition for optimal points that cannot be formulated using directional deriva-

tives. On the other hand, KKT [132] necessary conditions, widely used in finite dimensional

optimization problem, can be fully described using directional derivatives. As we show be-

low, necessary conditions for the problem in equation (6.1) based on directional derivatives

are strictly weaker than those based on the Minimum Principle. On the other hand, neces-

sary conditions based on directional derivatives and the Minimum Principle are completely

equivalent for the problem in equation (6.7).

Polak et al. [103, 114] have shown that numerical methods for optimal control that rely on

common explicit time discretization methods converge to optimal points satisfying directional

derivative-based necessary conditions. Moreover, to the best of our knowledge there exists no

general direct numerical method for optimal control that is provably convergent to optimal

inputs satisfying Minimum Principle optimality conditions.

6.2.1 Optimality Functions

Definition 6.2 (Section 1.2 in [103]). Consider an optimization problem with feasible set X .

We say that θ : X → (−∞, 0] is an optimality function iff whenever x ∈ X is a minimizer,

then θ(x) = 0.

Optimality functions are useful in practice since θ(x) < 0 implies x is not a minimizer.

Hence, they can be used as numerical tests to check whether a minimizer has been reached.
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Now, consider the following optimality functions for the original problem (6.1) with input

u0 and trajectory x(u0):

θo,l
(
x(u0), u0

)
=

= min
δx∈L2([0,T ],Rn)
δu∈L2([0,T ],Rm)

∂Ψ

∂x

(
x(u0)(T )

)′
δx(T )

subject to: δx(0) = 0,

δẋ(t) =
∂f

∂x

(
t, x(u0)(t), u0(t)

)
δx(t)+

+
∂f

∂u

(
t, x(u0)(t), u0(t)

)
δu(t),

u0(t) + δu(t) ∈ U, for a. e. t ∈ [0, T ],

(6.8)

and

θo,h
(
x(u0), u0

)
=

= min
u∈L2([0,T ],Rm)

∫ T

0

p0(t)′
(
f
(
t, x(u0)(t), u(t)

)
+

− f
(
t, x(u0)(t), u0(t)

))
dt,

subject to: u(t) ∈ U, for a. e. t ∈ [0, T ],

(6.9)

where p0(t) is the costate of the problem in equation (6.1), defined by:

p0(T ) =
∂Ψ

∂x

(
x(u0)(T )

)
,

ṗ0(t) = −∂f
∂x

(
t, x(u0)(t), u0(t)

)′
p0(t).

(6.10)

Proposition 6.1. The functions θo,l
(
x(u0), u0

)
and θo,h

(
x(u0), u0

)
, defined in equations (6.8)

and (6.9), are optimality functions of the problem (6.1).
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θo,l is has been proved as an optimality function by Polak [103, Theorem 5.6.8 and 5.6.9]. For

θo,h, it can be proved by constructing a contradiction to Pontryagin’s Minimum Principle.

Proposition 6.2. For the original problem (6.1) with input u0 and trajectory x(u0), if

θo,h
(
x(u0), u0

)
in equation (6.9) equals zero, then θo,l

(
x(u0), u0

)
in equation (6.8) equals zero.

Given θo,l
(
x(u0), u0

)
= 0, we show that u0 satisfies the Pontryagin Minimum Principle. Then,

using the result in [103, Theorem 5.6.8 and 5.6.9], θo,l
(
x(u0), u0

)
= 0 as well.

Note that the other direction of proposition 6.2 is not true in general [103, Section 4.2.6].

Thus for the deterministic original problem (6.1), it is hard to connect the directional and

Pontryagin optimality functions. However, for the corresponding relaxed problem (6.7), we

are going to show the connection between its directional and Pontryagin optimality functions

and derive a related descent direction.

First we define an optimality function for the relaxed problem in equation (6.7). Given

control’s stochastic process as µ0, and its trajectory x(µ0), at time t, the Hamiltonian to the

optimal control problem (6.7) is:

H
(
t, x(µ)(t), µt, p(t)

)
= p(t)′

∫
Rm

f
(
t, x(µ)(t), u

)
dµt(u), (6.11)

where p(t) is the corresponding adjoint variable to the problem (6.7), such that

p(T ) =
∂Ψ

∂x

(
x(µ)
)
(T ),

ṗ(t) = −
∫
Rm

∂f

∂x

(
t, x(µ)(t), u

)′
dµt(u) p(t).

(6.12)
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Then, the optimality function is defined as:

θh
(
x(µ0), µ0

)
=

= min
ν : [0,T ]→Mp(Rm)

∫ T

0

H
(
t, x(µ0)(t), νt, p0(t)

)
+

−H
(
t, x(µ0)(t), µ0,t, p0(t)

)
dt

= min
δµ : [0,T ]→M(Rm)

∫ T

0

p0(t)′
∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u)dt,

subject to: supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(6.13)

Note that in the definition above, δµt is a signed measure in Rm.

Proposition 6.3. Let a stochastic process µ0, and its trajectory as x(µ0)(t) in problem (6.7).

Then, the function θh
(
x(µ0), µ0

)
, defined in equation (6.13), is an optimality function of

problem (6.7).

The result is similar to Proposition 6.1.

In the next subsection we are going to argue that this new optimality function in proposi-

tion 6.3 captures both directional derivatives and the Minimum Principle; hence, it is the

correct framework to use in numerical algorithms.

6.2.2 Gradient descent methods for relaxed problems

First, we show the directional optimality function for problem (6.7). For the original prob-

lem (6.7), given the control’s stochastic process as µ0 and the system’s trajectory as x(µ0),
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the directional optimality function is

θl
(
x(µ0), µ0

)
=

= min
δx∈L2([0,T ],Rn)
δµ : [0,T ]→M(Rm)

∂Ψ

∂x

(
x(µ0)(T )

)′
δx(T )

subject to: ˙δx(t) =

∫
Rm

∂f

∂x

(
t, x(µ0)(t), u

)
dµ0,t(u)δx(t)+

+

∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u),

δx(0) = 0,

supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(6.14)

Proposition 6.4. For the original problem (6.7), the function defined in equation (6.14) is

an optimality function.

The proof is similar to [103, Theorem 5.6.8 and 5.6.9].

Now we can show the connection between the directional and Pontryagin optimality func-

tions.

Theorem 6.3. The optimality functions for the relaxed control problem (6.7), θh
(
x(µ0), µ0

)
in equation (6.13), and θl

(
x(µ0), µ0

)
in equation (6.14), are equivalent.

The proof follows using the costate of the optimal control problem (6.7) to derive the Fréchet

derivative of the cost function. Then rewrite θl in equation (6.14) with the costate of prob-

lem (6.7).
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Since the optimality function θl
(
x(µ0), µ0

)
in equation (6.14) is also the first order Taylor

extension of problem (6.7), after relaxing the problem, we are able to find a descent direction

to the optimization problem (6.1) based on the Pontryagin principle. Before we show the

optimization algorithm and its convergence, first we show that the optimality functions

in equations (6.14) and (6.13) find a descent direction. Then we introduce a line search

algorithm here in the infinite-dimensional space which is similar to Armijo [8].

Proposition 6.5. Let µ0 be a stochastic process of the control in problem (6.7) and its

corresponding trajectory x(µ0) to the nonlinear dynamic system in problem (6.7). Suppose(
δx(δµ0), δµ0

)
is the argument to the optimality function (6.14), such that

θl
(
x(µ0), µ0

)
=
∂Ψ

∂x

(
x(µ0)(T )

)′
δx(δµ0)(T ), (6.15)

where θl
(
x(µ0), µ0

)
is the optimality function in equation (6.14), and x(µ0) is the trajectory

of the linear system under the optimal stochastic variance δµ0 in the problem (6.14). Then

there exists λ ∈ (0, 1) such that µ0 + λδµ0 is a new control’s stochastic process with its

corresponding trajectory, x(µ0+λδµ0), in the nonlinear optimization problem (6.7). Moreover,

for the cost function in problem (6.7)

Ψ
(
x(µ0+λδµ0)(T )

)
≤ Ψ

(
x(µ0)(T )

)
.

The proof is based on the linearization of problem (6.7) and the property that θl is always

negative when it is at a non-optimal point.

According to theorem 7.3, the argument of the Banach optimality function in equation (6.14)

is also the argument of the Hamiltonian optimality function in equation (6.13). Thus the

Hamiltonian optimality function finds the same descent direction.
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With a descent direction, we now introduce a line search algorithm to find a step size which

is similar to the method of Armijo [8]. Suppose trajectory x(µ0) is based on control process

µ0 in problem (6.7), and further suppose that δµ0 is the argument to θh
(
x(µ0), µ0

)
and δx(δµ0)

is its linearized system’s trajectory in problem (6.14). Let α, β ∈ (0, 1), and then the step

size for µ0 is chosen as βη(µ0) such that

η(µ0) = min{k ∈ N |Ψ
(
x(µ0+βkδµ0)(T )

)
−

−Ψ
(
x(µ0)(T )

)
≤ αβkθh

(
x(µ0), µ0

)
},

(6.16)

where x(µ0+βkδµ0) is the trajectory of the dynamics in the problem (6.7) with µ0 + βkδµ0.

Now we can show the numerical algorithm in the infinite dimensional continuous space as

algorithm 2 and its convergence.

Theorem 6.4. Let {µi}i∈N be a sequence of control processes generated by algorithm 2,

and let {x(µi)}i∈N be its corresponding sequence of trajectories in the dynamical system in

problem (6.7). Then

limi→∞ θh
(
x(µi), µi

)
→ 0.

Algorithm 2 Optimization algorithm to problem (6.7) in the infinite dimensional space

Require:
(
x(µ0), µ0

)
, α, β ∈ (0, 1).

1: k ← 0.
2: loop:
3: Compute θh

(
x(µk), µk

)
and δµk based on problem (6.13).

4: Compute η(µk) based on problem (6.16).
5: if θh

(
x(µk), µk

)
= 0 then return

(
x(µk), µk

)
.

6: µk+1 ← µk + βη(µk)δµk.
7: Update x(µk+1) based on µk+1 and dynamic system in problem (6.7).
8: k ← k + 1.

End loop.
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The proof is similar to [125, Theorem 5.12].

6.3 Synthesis of relaxed optimal inputs

Now that we have established a theoretical foundation for the equivalence between computing

relaxed optimal control inputs and the Pontryagin Minimum Principle, we focus our attention

on the development of numerical algorithms to synthesize approximated optimal control

inputs. As we show in this section, the use of relaxed inputs is beneficial not only from a

theoretical point of view, but also in our numerical algorithms, since the optimal control

problem becomes equivalent to solving a sequence of convex optimization problems, even

when the dynamical system is nonlinear.

6.3.1 Vector field representation

As we show in section 6.2.2, it is possible to formulate an iterative gradient descent method

using relaxed inputs that converges to Pontryagin-optimal points. This theoretical iterative

method revolves around computing the value of θh, as defined in equation (6.13), which aims

to find a new stochastic process that locally reduces the cost function of the problem in

equation (6.7).

Proposition 6.6. The optimization problem in equation (6.13) is convex.

We omit a detailed proof, but it can be shown that the feasible set and cost function of

problem (6.13) are both convex.
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We now focus our attention on methods to numerically represent the feasible set of the

problem in equation (6.13).

Proposition 6.7. Let x ∈ Rn. Then

{∫
Rm

f(x, u) dµ(u) | µ ∈M(Rm), supp(µ) ⊂ U

}
=

= co{f(x, u) | u ∈ U},
(6.17)

where co(S) is the convex hull of a set S ⊂ Rn.

We omit a detailed proof, but the result follows since the convex hull is clearly contained in

the left-hand side set of all possible expected values, and every expected value can be written

as the limit of a sequence of points in the convex hull since all Lebesgue-Stieltjes integrals

can be approximated using finite Riemann integrals [44].

The result in Proposition 7.5 suggests that to synthesize optimal inputs, we need only to be

able to compute the convex hull of the vector field at any given state x ∈ Rn. Now, some

points in the convex hull of the vector field have a particular input vector u ∈ U associated

with them, but others cannot be directly realized.

On the other hand, every point in the convex hull is, by definition, a convex combination of

a finite set of vectors in the vector field. Hence, we can approximate the convex hull of the

vector field at each x ∈ Rn with the convex hull of a finite collection of samples of the vector

field for a set {ûi}Ns

i=1. Moreover, as shown in [125] and [126], we can arbitrarily approximate

the trajectories resulting from any convex combination of vectors in a finite vector field by

using a projection operation that results in switching between those vectors. In the next

section we overview the main results of this method.
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6.3.2 Sampled-Based Synthesis

First we are going to show that by using samples we can obtain approximations of the convex

hull and the stochastic process. Given a control’s stochastic process, µ, and its trajectory

x(µ) for the system in problem (6.7) at time t ∈ [0, T ], the sampling points for the vector

field are
{
f
(
t, x(µ)(t), ui

)}Ns

i=1
, where {ui}Ns

i=1 ⊂ U . Each sampling point has a corresponding

weight, and the sequence of {wi(t)}Ns

i=1 satisfies

Ns∑
i

wi(t) = 1. (6.18)

wi(t) ≥ 0, ∀i ∈ {1, · · · , Ns}. (6.19)

We use these sampling points and their weights to represent the stochastic process. Asymp-

totically, the sampling and approximation converge to µ.

Proposition 6.8.

Ns∑
i=1

wi(t)f
(
t, x(µ)(t), ui

)
→
∫
Rm

f
(
t, x(µ)(t), u

)
dµt(u),

asymptotically as Ns →∞, for a. e. t ∈ [0, T ].

We omit a detailed proof, but the result is based on the Monte Carlo principle and particle

filtering [5, 9].

A similar result holds for approximating the stochastic process’s variance, δµ, with sampling

points in the vector field.
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Since numerically the number of sampling points is finite and, at each time step, the only dif-

ference between each samples is the control value in the vector field, we get a relaxed switched

system. At time t, the chance to perform control under value ui is its weight wi(t) ∈ [0, 1]. In

order to reconstruct a deterministic control, we need to project the weights {wi(t)}Ns

i=1 from

[0, 1]Ns into {0, 1}Ns , and at the same time, preserve the trajectory, x(µ), and the sum of wi(t)

to be 1. We use wavelet transformation and pulse-width modulation (PWM) to perform the

projection. After wavelet transformation, the weight, wi(t), becomes a piecewise constant in

energy spectrum space, and by using the PWM operator, we project the weight back into

time space with only 0/1 values. Details about reconstructing a deterministic control from

a relaxed switch system can be found in section 4.4 [125].

Now we present the numerical version of algorithm 2. In the algorithm, the sampling values

for the control are fixed as {ui}Ns

i=1 ⊂ U . At each iteration, the control’s stochastic process,

µk, and its vector field at time t are approximated by the samples’ weights, {wk,i(t)}Ns

i=1. Also,

we define the approximated weights to δµk from equation (6.13) as {ŵk,j(t)}Nk
j=1. {ŵk,j(t)}Nk

j=1

are derived from the discrete version of equation (6.13) with a regularity term formulated

by taking the l1 norm of the weights,

θh
(
x(µk), {wk,i}Ns

i=1

)
=

= min
ŵk,i(t)∈R

∫ T

t=0

p0(t)′
( Ns∑
i=1

f
(
t, x(µk)(t), ui

)
ŵk,i(t)

)
dt+

+ ηw

∫ T

t=0

‖ŵk,i(t)‖1 dt,

subject to: for a. e. t ∈ [0, T ],

wk,i(t) + ŵk,i(t) ≥ 0, ∀i ∈ {1, · · · , Ns},

and
Ns∑
i=1

ŵk,i(t) = 0.

(6.20)
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We add a regularity term ‖ŵk,j(t)‖1 in equation (6.20) and ηw > 0 is the weight. The addition

of the regularity term is due to numerical computation and the following proposition

Proposition 6.9. For a signed measure ν ∈M(Rm), if we define its norm as ‖ν‖, then the

θh in equation (6.13) with a regularity term is still an optimality function of problem (6.7),

and it does not lose its convergence property. We write this new optimality function as

θn
(
x(µ0), µ0

)
=

= min
δµ : [0,T ]→M(Rm)

∫ T

0

p0(t)′
(∫

Rm

f
(
t, x(µ0)(t), u

)
dδµt(u)+

+‖δµt‖
)

dt,

subject to: supp(δµt + µ0,t) ⊂ U,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(6.21)

We give a sketch of proposition 6.9 here. First, by construction we can show θn in equa-

tion (6.21) is always non-positive. Second, when θh reaches zero, θn is also zero. Hence, θn

is an optimality function as well, and adding a regularity term does not change the critical

points indicated by the optimality function, and therefore the convergence holds.

Now we can show the numerical implementation of algorithm 2 as follows:

6.4 Simulation results

In this section, we show two preliminary simulations to validate the performance of our

numerical algorithm 3.
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Algorithm 3 Numerical implementation to the optimization algorithm of problem (6.7)

Require: {ui}Ns

i=1, {w0,i(t)}Ns

i=1, x(µ0), and α, β ∈ (0, 1).
1: k ← 0.
2: loop:
3: Compute θh and {ŵk,i(t)}Ns

i=1 based on problem (6.20).
4: if θh = 0 then Follow the section 4.4 [125] to use wavelet and PWM to reconstruct

the optimal uo(t) from {wk,i(t)}Ns

i=1. return x(µk), µk and uo(t).

5: Compute η(µk,t) based on problem (6.16).

6: wk+1,i(t)← wk,i(t) + βη(µk,t)ŵk,i(t), ∀i ∈ {1, · · · , Ns}.
7: Update x(µk+1) based on {ui}Ns

i=1 and {wk+1,i(t)}Ns

i=1 and dynamic system in prob-
lem (6.7).

8: k ← k + 1.
End loop.

6.4.1 Constrained LQR

The first simulation is a constrained LQR problem and can be transformed into a form

like problem (6.1). The time horizen is T = 2, and the system has seven states as x ∈

L2([0, 2],R7), two controls as u ∈ L2([0, 2],R2), the initial states are ξ = 0 and the problems’

final cost function is Ψ
(
x(T )

)
= x7(2). The dynamic of the problem ẋ = f(t, x(t), u(t)) is

ẋ1(t) = x4(t),

ẋ2(t) = x5(t),

ẋ3(t) = x6(t),

ẋ4(t) = −γx3(t)− d

m
x4(t) +

1

m
u1(t),

ẋ5(t) = − d

m
x5(t) +

1

m
u2(t),

ẋ6(t) = −mg l

J
x3(t) +

r

J
u1(t),

ẋ7(t) = (x1(t)− c1)2 + (x2(t)− c2)2 + x2
3(t)+

+ η u′(t)u(t).
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Figure 6.1: Trajectory of states x1,2,3 under optimal control in section 6.4.1. The states start
from the origin (blue dot) to the end (blue triangle), which is (-0.29, -0.56, -0.06).

Here x4,5,6, are the time derivatives of x1,2,3 respectively. The controls, u1,2, are applied to

x4,5,6. The last state, x7, is related to the optimal control problem’s cost. It measures the

difference between the current states of x1,2,3 and the target, (c1, c2, 0), and balances the total

energy applied to the system. The parameters are given as J = 0.0475, m = 1.5, r = 0.25,

g = 9.8, γ = 0.51, d = 0.2, l = 0.05, η = 0.05, and c1 = −0.3, c2 = −0.5. We use 81

points to sample the vector field, whose {ui}81
i=1 are evenly distributed in the control’s space

U = [−1, 1]2.

The result validates our algorithm’s performance and convergence. Figure 7.1a shows the

trajectory of the first three states of the system as they move from the origin to the target.

Figure 6.2b shows the corresponding controls after wavelet and PWM reconstruction. Since
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(b) The optimal controls reconstructed by PWM, top
is u1 and bottom is u2. When time t ≥ 0.5, the
controls, u1,2, are zero.

Figure 6.2: Results of the simulation in section 6.4.1, a contrained LQR problem.
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the problem’s cost accounts for the difference between the target and current states during

the whole time horizon, the algorithm prefers to add huge energy at the very beginning to

modify x1,2,3. Figure 6.2a shows the optimality function’s absolute value at each iteration,

and we can see the absolute value of θh decreases to lower than 10−5 after 62 iterations,

which shows the convergence of our algorithm.

6.4.2 Quadrotor helicopter

Now, we consider an application to control a quadrotor helicopter in 3-dimensional space

using a nonlinear model described in [105].

The optimal control problem also can be rewritten in to the form of the problem in equa-

tion (6.7). The problem’s time horizen is T = 2[s], it has 13 states, x ∈ L2([0, 2],R13), 4 con-

trols, u ∈ L2([0, 2],R4), which are inside U = [0, 2]4, and the cost function Ψ(x(T )) = x13(2).
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The helicopter’s initial states are ξ = 0, and its dynamic system ẋ(t) = f
(
t, x(t), u(t)

)
is

ẋ1(t) = x4(t),

ẋ2(t) = x5(t),

ẋ3(t) = x6(t),

ẋ4(t) =
−b
m
x1(t) +

1

m
sinx8(t)K~1′u(t),

ẋ5(t) =
−b
m
x2(t) +

1

m
sinx7(t) cosx8(t)K~1′u(t),

ẋ6(t) =
−b
m
x3(t)− g +

1

m
cosx7(t) cosx8(t)K~1′u(t),

ẋ7(t) = x10(t),

ẋ8(t) = x11(t),

ẋ9(t) = x12(t),

ẋ10(t) = −x11(t)x12(t) +
L

Ix
K(u2(t)− u4(t)),

ẋ11(t) = x10(t)x12(t) +
L

Iy
K(u3(t)− u1(t)),

ẋ12(t) =
K

Ix + Iy

(
u1(t)− u2(t) + u3(t)− u4(t)

)
,

ẋ13(t) = (x1(t)− c1)2 + (x2(t)− c2)2 + (x3(t)− c3)2+

+ sin2(x7(t)) + sin2(x8(t)) + sin2(x9(t)) + η u′(t)u(t).

The first three states, x1,2,3, represent the helicopter’s position in x, y, z coordinations respec-

tively, and x4,5,6 are their related time derivatives. The states, x7,8,9, represent the angular

displacement of the quadrotor body axes, and x10,11,12 are their time derivatives. The final

state, x13, is related to the problem’s cost, and it measures the difference between helicopter’s

current and target position, c1,2,3, and balances the energy usage be the four motors, u1,2,3,4.
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Here, we have simulate the helicopter moving down to (−1.2,−1.0,−1.0) and up to (1.2, 1.0, 1.0).

At the same time, we also keep the helicopter’s axes displacement as tiny as possible and

balance the energy usage. The parameters for the helicopter are m = 1.3 [kg], Ix,y =

0.0605 [kg ·m2], g = 9.8[m/s2], b = 0.1 and K = 1.0, η = 0.05.

We use 625 sampling points and the convergence threshold is θh ≤ 10−4. The trajectories of

the positions, x1,2,3, and the body axes displacement, x7,8,9, under optimal controls are shown

in figures 6.3 and 6.4. Simulation results show our algorithm gives the optimal solutions to

move the helicopter to the target positions and maintain a small body axes displacement at

the same time.

6.5 Chapter conclusion

In this paper we present a theoretical formulation, and a corresponding numerical algorithm

that can find Pontryagin-optimal inputs for general dynamical systems by using a direct

method. The numerical implementation is based on a relaxed-control system and PWM

reconstruction. Preliminary results validate the algorithm’s performance. However, the

current sampling method is to fix the sampling controls in the vector field, so it does not

fully use the fact that the sampling points consist a convex hull in vector field space. When

the dimension of the control is high, in order to make the algorithm perform well, chances

are a large number of sampling points will be needed, which influence the memory usage and

computation efficiency. In the future, the algorithm’s improvement will focus on updating the

relaxed control process by using only the vertices of the convex hull, which are constructed

by the sampling points.
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Figure 6.3: The helicopter’s trajectory moves from the origin (blue dot) down to (-1.12, -
1.12, -0.98) (blue triangle) under the optimal control. Blue arrows are perpendicular vectors
to the helicopter’s plane, which are used to represent body axes.
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Figure 6.4: The helicopter’s trajectory climbs from the origin up to (1.23, 1.23, 1.18) (blue
triangle) under the optimal control. Blue arrows are perpendicular vectors to the helicopter’s
plane, which are used to represent body axes.
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Chapter 7

Numerical Sampling-based Method to

Pontryagin Optimal Control

Minimizers in State-constrained

Problems

7.1 Problem statement

In section 7.1.1, we are going to show the necessary mathematical notations and assumptions.

Then in subsection 7.1.2, we formulate the original nonlinear problem with state constraints

used in this paper and its corresponding relaxed problem.
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7.1.1 Preliminaries

Given n ∈ N and p ≥ 1, we denote the standard finite-dimensional p-norm by ‖·‖p, and

the induced matrix p-norm by ‖·‖i,p. We will denote by M(Rn) the set of Radon measures

defined over the Borel sets of Rn. Moreover, given a µ ∈ M(Rm) for m ∈ N, we say that

a function f : Rm → Rn is L2
µ-integrable, denoted f ∈ L2

µ(Rm,Rn), if there exists p ≥ 1

such that ‖f‖µ =
(∫

Rm‖f(x)‖2
p dµ(x)

) 1
2
< ∞. To simplify, we will denote by L2(Rm,Rn)

the space of Lebesgue square-integrable functions. Furthermore, we say that µ ∈ M(Rm)

is a probability measure if µ(Rm) = 1. We denote the set of all probability measures by

Mp(Rm). A stochastic process is a function µ : [0, T ]→Mp(Rm), and throughout the paper

we will simply write µt instead of µ(t).

Let µ1, µ2 ∈ M(Rm) be two Radon measures. Then the difference between µ1 and µ2, say

ν = µ1 − µ2, is a signed measure, and we define L2
ν(Rm,Rn) = L2

µ1
(Rm,Rn) ∩ L2

µ2
(Rm,Rn).

Given f ∈ L2
ν(Rm,Rn), its integral with respect to ν is defined by

∫
Rm

f(x) dν(x) =

∫
Rm

f(x) dµ1(x)−
∫
Rm

f(x) dµ2(x). (7.1)

For any function G : X → Rm, for ζ ∈ X in G’s domain, the directional derivative of G at

ζ, denoted as DG(ζ; )̇,is computed as

DG
(
ζ; ζ ′

)
= lim

λ→0

G(ζ + λζ ′)−G(ζ)

λ
,

when the limitation exists.
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7.1.2 Conceptual optimal control problem

We are interested in solving a mixed-constrained optimal control problem, formulated as

follows

min
x∈L2([0,T ],Rn)
u∈L2([0,T ],Rm)

Ψ
(
x(T )

)
,

subject to: x(0) = ξ,

ẋ(t) = f
(
t, x(t), u(t)

)
,

hi
(
t, x(t)

)
≤ 0, ∀i ∈ I, for a. e. t ∈ [0, T ],

u(t) ∈ U, for a. e. t ∈ [0, T ].

(7.2)

Where constraints hi : [0, T ]×Rn → R are a number of state constraints and I = {1, 2, · · · , ns},

U is a connected and compact subset of Rm, ξ ∈ Rn, and the functions f and Ψ are well-

defined, each with an appropriate domain and range. We will say that f is the vector field,

and Ψ the final cost, of the problem in equation (7.2). The optimal control problem in equa-

tion (7.2) is quite general, it contains constraints to both control inputs and states. Also

other standard formulations, such as those including running cost functions or minimum-

time cost functions, can be easily converted to the form in problem (7.2) (see Sec. 4.1.2

in [103] for a thorough exposition of this topic).

First we give the following assumption to guarantee the uniqueness of the trajectories, as

well as the convergence of our numerical method, in this paper.

Assumption 7.1. The functions f and Ψ are Lipschitz continuously differentiable. That

is, there exists L > 0 such that, for each t1, t2 ∈ [0, T ], x1, x2 ∈ Rn, u1, u2 ∈ U , and i ∈ I,

|Ψ(x1)−Ψ(x2)| ≤ L ‖x1 − x2‖2, (7.3)
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∥∥∥∥∂Ψ

∂x
(x1)− ∂Ψ

∂x
(x2)

∥∥∥∥
2

≤ L ‖x1 − x2‖2, (7.4)

‖f(t1, x1, u1)− f(t2, x2, u2)‖2 ≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
, (7.5)∥∥∥∥∂f∂x (t1, x1, u1)− ∂f

∂x
(t2, x2, u2)

∥∥∥∥
i,2

≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
, (7.6)∥∥∥∥∂f∂u (t1, x1, u1)− ∂f

∂u
(t2, x2, u2)

∥∥∥∥
i,2

≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2

)
, (7.7)

|hi(t1, x1)− hi(t2, x2)| ≤ L
(
|t1 − t2|+ ‖x1 − x2‖

)
, (7.8)∥∥∥∥∂hi∂x

(t1, x1)− ∂hi
∂x

(t2, x2)

∥∥∥∥
i,2

≤

≤ L
(
|t1 − t2|+ ‖x1 − x2‖2

)
. (7.9)

Then we relax the problem in equation (7.2) using the concept of relaxed inputs, as defined

by J. Warga [129, 130]. Consider the following relaxed optimal control problem

min
x∈L2([0,T ],Rn)

µ : [0,T ]→Mp(Rm)

Ψ
(
x(T )

)
,

subject to: x(0) = ξ,

ẋ(t) =

∫
Rm

f
(
t, x(t), u

)
dµt(u),

hi
(
t, x(t)

)
≤ 0, ∀i ∈ I, for a. e. t ∈ [0, T ]

supp(µt) ⊂ U, for a. e. t ∈ [0, T ].

(7.10)
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Where supp(µt) is the support of µt, i.e., the smallest set S such that µt(S) = 1. In other

words, instead of optimizing over the space of L2 functions, we optimize over the space of

stochastic processes defined on U .

According to [130, Theorem II.6.5], if the vector field f(t, x, u) satisfies assumption 7.1,

the relaxed system in problem (7.10) always has a solution. Given a fixed initial condition

x(0) = ξ, we will denote the unique trajectory resulting from the stochastic process µ by

x(µ). And for i ∈ I, we define the state constraint function, hi
(
t, xµ(t)

)
, governed by control

process µ as

ϕi,t(µ) = hi
(
t, xµ(t)

)
,

and at time t ∈ [0, T ], we define the maximum value of {ϕi}Ns

i=1 as

Φ(µ) = max
(i,t)∈I×[0,T ]

ϕi,t(µ).

For simplicity, we will also denote the unique trajectory resulting from an input u by x(u)

and corresponding state constraints as ϕi(t, u) and the max value as Φ(u).

Note that the problem in equation (7.2) is a particular case of the problem in equation (7.10).

Indeed, given an arbitrary input û ∈ L2([0, T ],Rm), the stochastic process defined by µt(S) =

1 whenever û(t) ∈ S, and µt(S) = 0 otherwise, produces exactly the same trajectory as û.

Colloquially this particular stochastic process is written using Dirac Delta functions, i.e.,

dµt(u) = δ
(
u − û(t)

)
du. This case implies that the feasible set of the relaxed problem is

strictly larger than that of the original problem, thus resulting in lower optimal values for

the relaxed problem. Yet, perhaps surprisingly, this is not the case, since both problems,

original and relaxed, result in the same optimal values. The equivalence between original
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and relaxed problems follows since every point in the feasible set of the relaxed problem can

be arbitrarily approximated using points in the feasible set of the original problem.

Theorem 7.1. Let f be a vector field satisfying assumption 7.1, and let µ : [0, T ]→Mp(Rm)

be a stochastic process. Then, for each ε > 0 there exists a control signal ũ(t) such that for

each t ∈ [0, T ],
∥∥x(µ)(t)− x(ũ)(t)

∥∥
2
< ε.

Nonetheless, this theorem is an extension of the Chattering Lemma [24, Theorem 4.1], taking

advantage of the fact that, for each time t, the relaxed trajectory defined in equation (7.10)

can be arbitrarily approximated using a finite number of vectors in U .

7.2 Optimality conditions for optimal control

As shown by Pontryagin et al. [104] in their Minimum Principle, it is possible to find a nec-

essary condition for optimal points that cannot be formulated using directional derivatives.

On the other hand, KKT [132] necessary conditions, widely used in finite dimensional opti-

mization problem, can be fully described using directional derivatives. Polak et al. [103, 114]

have shown that numerical methods for optimal control that rely on common explicit time

discretization methods converge to optimal points satisfying directional derivative-based nec-

essary conditions. While for the deterministic original problem (7.2), derivative-based opti-

mality functions are weaker than Pontryagin optimal functions, and lead to solutions which

have higher cost values [103, 78].

In this section, under the relaxed problem (7.10), we are going to show the equivalent con-

nection between its directional and Pontryagin optimality functions and derive a related

descent direction.
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7.2.1 Optimality functions

Definition 7.2 (Section 1.2 in [103]). Consider an optimization problem with feasible set X .

We say that θ : X → (−∞, 0] is an optimality function iff whenever x ∈ X is a minimizer,

then θ(x) = 0.

Optimality functions are useful in practice since θ(x) < 0 implies x is not a minimizer.

Hence, they can be used as numerical tests to check whether a minimizer has been reached.

First we define an optimality function for the relaxed problem in equation (7.10). Given

control’s stochastic process as µ0, and its trajectory x(µ0), at time t, the Hamiltonian to the

optimal control problem (7.10) is,

H
(
t, x(µ)(t), µt, p(t)

)
=

= p(t)′
∫
Rm

f
(
t, x(µ)(t), u

)
dµt(u). (7.11)

Where p(t) is the corresponding adjoint variable to the problem (7.10), such that

p(T ) =
∂Ψ

∂x

(
x(µ)
)
(T ),

ṗ(t) = −
∫
Rm

∂f

∂x

(
t, x(µ)(t), u

)′
dµt(u) p(t).

(7.12)

Then, the optimality function is defined as

θh
(
µ0

)
= min

δµ : [0,T ]→M(Rm)
ζh(µ0, δµ). (7.13)
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Where ζh(µ0, δµ) is

ζh(µ0, δµ) =

max{ max
(i,t)∈I×[0,T ]

Dψi,t(µ0; δµ)+

+ 1(Φ(µ0) ≤ 0)γ0Φ(µ0) + γ1‖δµ‖,

∆H(µ0; δµ)− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖}.

(7.14)

Where, 1(Φ(u0) ≤ 0) and 1(Φ(u0) < 0) are judgment functions, for example

1(Φ(u0) ≤ 0) =


1, if Φ(u0) ≤ 0,

0, otherwise.

Note that in the definition above, δµt is a signed measure in Rm. ∆H(µ0; δµ) follows

∆H(µ0; δµ) =

∫ T

0

p0(t)′
∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u)dt,

subject to: supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(7.15)
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Where costate p0(t) follows the dynamic in equation (7.12) under control stochastic µ0.

Dψi,t(µ0; δµ) follows

Dψi,t(µ0; δµ) =

∫ t

0

pi,t(s)
′
∫
Rm

f
(
s, x(µ0)(s), u

)
dδµs(u)ds,

subject to: supp(δµs + µ0,s) ⊂ U,

δµs + µ0,s ≥ 0,∫
Rm

dδµs(u) = 0 for a. e. s ∈ [0, T ].

(7.16)

Where pi,t(s) is the costate to constraint ψi,t(s) under µ0 at time t and it follows,

pi,t(t) =
∂ψi,t
∂x

(
x(µ)
)
(t),

ṗi,t(s) = −
∫
Rm

∂f

∂x

(
s, x(µ)(s), u

)′
dµs(u) p(s).

(7.17)

Similar to optimality functions for deterministic problem (7.2) [103, Theorem 5.6.8 and 5.6.9],

we have

Proposition 7.1. Let a stochastic process µ0, and its trajectory as x(µ0)(t) in problem (7.10).

Then, the function θh
(
x(µ0), µ0

)
, defined in equation (7.13), is an optimality function of

problem (7.10).

In the next subsection we are going to argue that this new optimality function in proposi-

tion 7.1 captures both directional derivatives and the Minimum Principle; hence, it is the

correct framework to use in numerical algorithms.
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7.2.2 Gradient descent methods for relaxed problems

First, we show the directional optimality function for problem (7.10). For the original prob-

lem (7.10), given the control’s stochastic process as µ0 and the system’s trajectory as x(µ0),

the directional optimality function is

θl
(
µ0

)
= min

δµ : [0,T ]→M(Rm)
ζl(µ0, δµ), (7.18)

where ζl(µ0, δµ) follows,

ζl(µ0, δµ) =

max{ max
(i,t)∈I×[0,T ]

Dψi,t(µ0; δµ)+

+ 1(Φ(µ0) ≤ 0)γ0Φ(µ0) + γ1‖δµ‖,

DΨ(µ0; δµ)− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖},

(7.19)

Dψi,t(µ0; δµ) follows equation (7.16), DΨ(µ0; δµ) is the directional derivative of Ψ(µ0) at µ0,

DΨ(µ0; δµ) =
∂Ψ

∂x

(
x(µ0)(T )

)′
δx(T )

subject to: ˙δx(t) =

∫
Rm

∂f

∂x

(
t, x(µ0)(t), u

)
dµ0,t(u)δx(t)+

+

∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u),

δx(0) = 0,

supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(7.20)
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Similar to [103, Theorem 5.6.8 and 5.6.9], we have

Proposition 7.2. For the relaxed problem (7.10), the function defined in equation (7.18) is

an optimality function.

Now we can show the connection between the directional and Pontryagin optimality func-

tions.

Theorem 7.3. The optimality functions for the relaxed control problem (7.10), θh(µ0) in

equation (7.13), and θl(µ0) in equation (7.18), are equivalent.

The proof of theorem 7.3 is in appendix D.

Since the optimality function θl(µ0) in equation (7.18) is also the first order Taylor extension

of problem (7.10), after relaxing the problem, we are able to find a descent direction to

the optimization problem (7.2) based on the Pontryagin principle. Before we show the

optimization algorithm and its convergence, first we show that the optimality functions

in equations (7.18) and (7.13) find a descent direction. Then we introduce a line search

algorithm here in the infinite-dimensional space which is similar to Armijo [8].

Proposition 7.3. Let µ0 be a stochastic process of the control in problem (7.10) and its

corresponding trajectory x(µ0) to the nonlinear dynamic system in problem (7.10). Suppose(
δx(δµ0), δµ0

)
is the argument to the optimality function (7.18), such that

δµ0 = arg min
δµ : [0,T ]→M(Rm)

θl(µ0), (7.21)

where θl(µ0) is the optimality function in equation (7.18).
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Then when Φ(µ0) ≤ 0, there exists λ ∈ (0, 1) such that µ0 + λδµ0 is a new control’s stochas-

tic process with its corresponding trajectory, x(µ0+λδµ0), in the nonlinear optimization prob-

lem (7.10). Moreover, for the cost function in problem (7.10)

Ψ
(
x(µ0+λδµ0)(T )

)
≤ Ψ

(
x(µ0)(T )

)
.

The proof is in appendix D.

According to theorem 7.3, the argument of the Banach optimality function in equation (7.18)

is also the argument of the Hamiltonian optimality function in equation (7.13). Thus the

Hamiltonian optimality function finds the same descent direction.

With a descent direction, we now introduce a line search algorithm to find a step size which

is similar to the method of Armijo [8]. Suppose trajectory x(µ0) is based on control process

µ0 in problem (7.10), and further suppose that δµ0 is the argument to θh(µ0) and δx(δµ0) is

its linearized system’s trajectory in problem (7.18). Let α, β ∈ (0, 1), and then the step size

for µ0 is chosen as βη(µ0) such that

η(µ0) =



min{k ∈ N |Ψ
(
x(µ0+βkδµ0)(T )

)
−

−Ψ
(
x(µ0)(T )

)
≤ αβkθh

(
x(µ0), µ0

)
,

Φ
(
x(µ0+βkδµ0)(T )

)
≤ αβkθh

(
x(µ0), µ0

)
},

if Φ(x(µ0)) ≤ 0;

min{k ∈ N |Φ
(
x(µ0+βkδµ0)(T )

)
−

−Φ
(
x(µ0)(T )

)
≤ αβkθh

(
x(µ0), µ0

)
},

if Φ(x(µ0)) > 0.

(7.22)
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Where x(µ0+βkδµ0) is the trajectory of the dynamics in the problem (7.10) with µ0 + βkδµ0.

Now we can show the numerical algorithm in the infinite dimensional continuous space as

algorithm 4 and its convergence. Based on [125, Theorem 5.12], we have

Theorem 7.4. Let {µi}i∈N be a sequence of control processes generated by algorithm 4,

and let {x(µi)}i∈N be its corresponding sequence of trajectories in the dynamical system in

problem (7.10). Then

limi→∞ θh
(
x(µi), µi

)
→ 0.

7.3 Synthesis of relaxed optimal inputs

Now that we have established a theoretical foundation for the equivalence between computing

relaxed optimal control inputs and the Pontryagin Minimum Principle, we focus our attention

on the development of numerical algorithms to synthesize approximated optimal control

inputs. As we show in this section, the use of relaxed inputs is beneficial not only from a

theoretical point of view, but also in our numerical algorithms, since the optimal control

Algorithm 4 Optimization algorithm to problem (7.10) in the infinite dimensional space

Require:
(
x(µ0), µ0

)
, α, β ∈ (0, 1).

1: k ← 0.
2: loop:
3: Compute θh

(
x(µk), µk

)
and δµk based on problem (7.13).

4: Compute η(µk) based on problem (7.22).
5: if θh

(
x(µk), µk

)
= 0 then return

(
x(µk), µk

)
.

6: µk+1 ← µk + βη(µk)δµk.
7: Update x(µk+1) based on µk+1 and dynamic system in problem (7.10).
8: k ← k + 1.

End loop.
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problem becomes equivalent to solving a sequence of convex optimization problems, even

when the dynamical system is nonlinear.

7.3.1 Vector field representation

As we show in section 7.2.2, it is possible to formulate an iterative gradient descent method

using relaxed inputs that converges to Pontryagin-optimal points. This theoretical iterative

method revolves around computing the value of θh, as defined in equation (7.13), which aims

to find a new stochastic process that locally reduces the cost function of the problem in

equation (7.10).

First, it is easy to show that

Proposition 7.4. The optimization problem in equation (7.13) is convex.

Based on proposition 7.4, we now focus our attention on methods to numerically represent

the feasible set of the problem in equation (7.13).

Proposition 7.5. Let x ∈ Rn. Then

{∫
Rm

f(x, u) dµ(u) | µ ∈M(Rm), supp(µ) ⊂ U

}
=

= co{f(x, u) | u ∈ U}, (7.23)

where co(S) is the convex hull of a set S ⊂ Rn.

We omit a detailed proof, but the result follows since the convex hull is clearly contained in

the left-hand side set of all possible expected values, and every expected value can be written
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as the limit of a sequence of points in the convex hull since all Lebesgue-Stieltjes integrals

can be approximated using finite Riemann integrals [44].

The result in Proposition 7.5 suggests that to synthesize optimal inputs, we need only to be

able to compute the convex hull of the vector field at any given state x ∈ Rn. Now, some

points in the convex hull of the vector field have a particular input vector u ∈ U associated

with them, but others cannot be directly realized.

On the other hand, every point in the convex hull is, by definition, a convex combination of

a finite set of vectors in the vector field. Hence, we can approximate the convex hull of the

vector field at each x ∈ Rn with the convex hull of a finite collection of samples of the vector

field for a set {ûi}Ns

i=1. Moreover, as shown in [125] and [126], we can arbitrarily approximate

the trajectories resulting from any convex combination of vectors in a finite vector field by

using a projection operation that results in switching between those vectors. In the next

section we overview the main results of this method.

7.3.2 Sampled-based synthesis

First we are going to show that by using samples we can obtain approximations of the convex

hull and the stochastic process. Given a control’s stochastic process, µ, and its trajectory

x(µ) for the system in problem (7.10) at time t ∈ [0, T ], the sampling points for the vector

field are
{
f
(
t, x(µ)(t), ui

)}Ns

i=1
, where {ui}Ns

i=1 ⊂ U . Each sampling point has a corresponding
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weight, and the sequence of {wi(t)}Ns

i=1 satisfies

Ns∑
i

wi(t) = 1,

wi(t) ≥ 0, ∀i ∈ {1, · · · , Ns}.
(7.24)

We use these sampling points and related discrete Borel measures to represent the stochastic

process at each time. The approximation converges based on the following proposition.

Proposition 7.6. If the probability space is a connect and bounded set in Rn, define the

approximation process with discrete Borel measure in equation (7.24) as µNs,

µNs,t → µt, for a. e. t ∈ [0, T ],

almost sure (weakly) Ns →∞.

The details of proposition 7.6 is in [42, Section 4] and [51, Chapter 11.4]. A similar result

holds for approximating the stochastic process’s variance, δµ, with sampling points in the

vector field.

Since numerically the number of sampling points is finite and, at each time step, the only dif-

ference between each samples is the control value in the vector field, we get a relaxed switched

system. At time t, the chance to perform control under value ui is its weight wi(t) ∈ [0, 1]. In

order to reconstruct a deterministic control, we need to project the weights {wi(t)}Ns

i=1 from

[0, 1]Ns into {0, 1}Ns , and at the same time, preserve the trajectory, x(µ), and the sum of wi(t)

to be 1. We use wavelet transformation and pulse-width modulation (PWM) to perform the

projection. After wavelet transformation, the weight, wi(t), becomes a piecewise constant in
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energy spectrum space, and by using the PWM operator, we project the weight back into

time space with only 0/1 values. Details about reconstructing a deterministic control from

a relaxed switch system can be found in section 4.4 [125].

Now we present the numerical version of algorithm 4. In the algorithm, the sampling values

for the control are fixed as {ui}Ns

i=1 ⊂ U . At each iteration, the control’s stochastic process,

µk, and its vector field at time t are approximated by the samples’ weights, {wk,i(t)}Ns

i=1.

Also, we define the approximated weights to δµk from equation (7.13) as {ŵk,j(t)}Nk
j=1, which

will be derived from the discrete version of equation (7.13).

Then, we are able to present the discrete versions of ζ in equation (7.14), and write the

discrete version of θh problem in equation (7.13). The regularity term ‖δµ‖ both is chosen

to be l1-regularity, then θ in equation (7.13) can be discretized into

θh({wk,j}Ns

j=1) =

= min
ŵk,i(t)∈R

ζh({wk,j}Ns

j=1; {ŵk,j}Ns

j=1),

subject to: for a. e. t ∈ [0, T ],

wk,i(t) + ŵk,i(t) ≥ 0, ∀i ∈ {1, · · · , Ns},

and
Ns∑
i=1

ŵk,i(t) = 0,

(7.25)
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where ζh is

ζh({wk,j}Ns

j=1; {ŵk,j}Ns

j=1) =

max{ max
(i,t)∈I×[0,T ]

Dψi,t({wk,j}Ns

j=1; {ŵk,j}Ns

j=1)+

+ γ0 1(Φ(µk) ≤ 0)Φ(µk) + γ1‖ŵk‖1,

∆H({wk,j}Ns

j=1; {ŵk,j}Ns

j=1)+

− 1(Φ(µk) > 0)Φ(µk) + γ1‖ŵk‖1}.

(7.26)

Dψi,t(µk; δµ) and ∆H(µk; δµ) are respectively,

Dψi,t({wk,j}Ns

j=1; {ŵk,j}Ns

j=1) =

=

∫ t

0

p′i,t(s)
( Ns∑
j=1

f
(
s, x(µk)(s), uj

)
ŵk,j(s)

)
ds, and,

(7.27)

∆H({wk,j}Ns

j=1; {ŵk,j}Ns

j=1) =

=

∫ T

0

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ŵk,j(t)

)
dt.

(7.28)

Now we can show the numerical implementation of algorithm 4 as follows:

Algorithm 5 Numerical implementation to the optimization algorithm of problem (7.10)

Require: {ui}Ns

i=1, {w0,i(t)}Ns

i=1, x(µ0), and α, β ∈ (0, 1).
1: k ← 0.
2: loop:
3: Compute θh and {ŵk,i(t)}Ns

i=1 based on problem (7.25).
4: if θh = 0 then Follow the section 4.4 [125] to use wavelet and PWM to reconstruct

the optimal uo(t) from {wk,i(t)}Ns

i=1. return x(µk), µk and uo(t).

5: Compute η(µk,t) based on problem (7.22).

6: wk+1,i(t)← wk,i(t) + βη(µk,t)ŵk,i(t), ∀i ∈ {1, · · · , Ns}.
7: Update x(µk+1) based on {ui}Ns

i=1 and {wk+1,i(t)}Ns

i=1 and dynamic system in prob-
lem (7.10).

8: k ← k + 1.
End loop.
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Now, we show that the discrete implementation is weakly consistent to the original problem.

Theorem 7.5. Define the discrete optimal control problem in equation (7.10) with N sam-

pling points in relaxed control space as PN and related discrete optimality function in equa-

tion (7.25) as θN . Also define the original optimal control problem in equation (7.10) as P

and related optimality function in equation (7.13) as θ. Then the discrete pair (PN , θN) is

weakly consistent to the original pair (P, θ), i.e.

1. PN →epi. P, as N →∞;

2. when µN → µ weakly, limN→∞ sup θN(µN) ≤ θ(µ).

The detail of the proof is in appendix D. Theorem 7.5 shows that as the number of sampling

points goes to infinity, our discrete implementation and algorithm 5 reaches the same optimal

point as the original continuous problem and algorithm 4, moreover, the optimal numerical

solution satisfies the Minimum principle.

7.3.3 Parallel computation

For each iteration in numerical algorithm 5, in order to further decrease the computation

scale and speed, we show the theoretical foundation to parallel compute θh in algorithm 5.

First, we show the min and max symbols in discrete optimality problem (7.25) can be flipped.

Proposition 7.7. The discrete optimality problem (7.25) is equivalent to the following prob-

lem,

θh({wk,j}Ns

j=1) =

= max {ζh,1({wk,j}Ns

j=1), ζh,2({wk,j}Ns

j=1), }
(7.29)
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where ζh,1 and ζh,2 are

ζh,1({wk,j}Ns

j=1) = min
ŵk,i(t)∈R

max
(i,t)∈I×[0,T ]

Dψi,t({wk,j}Ns

j=1; {ŵk,j}Ns

j=1)+

+ γ0 1(Φ(µk) ≤ 0)Φ(µk) + γ1‖ŵk‖1,

subject to: for a. e. t ∈ [0, T ],

wk,i(t) + ŵk,i(t) ≥ 0, ∀i ∈ {1, · · · , Ns},

and
Ns∑
i=1

ŵk,i(t) = 0; and,

(7.30)

ζh,2({wk,j}Ns

j=1) =

min
ŵk,i(t)∈R

∆H({wk,j}Ns

j=1; {ŵk,j}Ns

j=1)+

− 1(Φ(µk) > 0)Φ(µk) + γ1‖ŵk‖1,

subject to: for a. e. t ∈ [0, T ],

wk,i(t) + ŵk,i(t) ≥ 0, ∀i ∈ {1, · · · , Ns},

and
Ns∑
i=1

ŵk,i(t) = 0.

(7.31)

In problems (7.30) and (7.31), DΨi,t and ∆H are given as equations (7.16) and (7.15). The

proof of proposition 7.7 is in appendix D.

According to proposition 7.7, optimality problem (7.25) can be separated into two indepen-

dent smaller optimal problems, which are ζh,1 and ζh,2, then pick up the larger one. Moreover,

both optimal problems can be further parallelized. Take ζh,2 as an example.
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Proposition 7.8. The optimal problem (7.31) is equivalent to

∫ T

0

min
ŵk,i(t)∈R

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ŵk,j(t)

)
+

+ γ1‖ŵk(t)‖1 dt− 1(Φ(µk) < 0)Φ(µk),

subject to: for a. e. t ∈ [0, T ],

wk,i(t) + ŵk,i(t) ≥ 0, ∀i ∈ {1, · · · , Ns},

and
Ns∑
i=1

ŵk,i(t) = 0.

The proof of proposition 7.8 is in appendix D. Proposition 7.8 above implies that after dis-

cretizing the time, the optimization problem min ζh,2 can be separated into smaller problems,

which are dependent to different time slides. For example, if the time is evenly discretized

in to Nt slides, at time ti ∈ {ti}Nt

i=1, the separated optimization problem is

ζh,2({wk,j}Ns

j=1, ti) =

min
ŵk,j(ti)∈R

p0(ti)
′
( Ns∑
j=1

f
(
ti, x

(µk)(ti), uj
)
ŵk,j(ti)

)
+

+ γ1‖ŵk(ti)‖1,

subject to:

wk,j(ti) + ŵk,j(ti) ≥ 0, ∀j ∈ {1, · · · , Ns},

and
Ns∑
j=1

ŵk,j(ti) = 0.

(7.32)
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Then ζh,2 can be computed as

ζh,2({wk,j}Ns

j=1) =

= ∆t
Nt∑
i=1

ζh,2({wk,j}Ns

j=1, ti)− 1(Φ(µk) > 0)Φ(µk),
(7.33)

where ∆t is the time interval between two time steps.

Now we are able to parallelize the computation of ζh,2 as algorithm 6. And using the same

strategy, it is also possible to parallelize ζh,1, we do not draw a detailed procedure again.

Algorithm 6 Parallelizing the computation of ζh,2 in problem (7.29)

Require: {wk,i}Ns

i=1, x(µk), and p
(µk)
0 .

1: Distribute {ζh,2(ti)}Nt

i=1 in problem (7.32) to multi-processors.

2: Collect {ζh,2(ti)}Nt

i=1, compute ζh,2 as equation (7.33). return ζh,2.

7.4 Simulations

In this section, we apply the sample-based algorithm to solve to nonlinear optimal control

problems to validate its performance and way to balance between accuracy and computation

complexity.

7.4.1 Plan attack angle control

The initial disturbances in angle of attack of an F-8 in a level trim, the flight at Mach = 0.85

and an altitude of 9000 [m], for which the nonlinear equations of motion representing the
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dynamics of the aircraft become [61, 38],

ẋ1(t) = −0.877x1(t) + x3(t)− 0.088x1(t)x3(t)+

+ 0.47x2
1(t)− 0.019x2

2(t)− x2
1(t)x3(t) + 3.846x3

1(t)+

− 0.215u(t) + 0.28x2
1(t)u(t) + 0.47x1(t)u2(t)+

+ 0.63u3(t),

ẋ2(t) = x3(t),

ẋ3(t) = −0.4208x1(t)− 0.396x3(t)− 0.47x2
1(t)+

− 3.564x3
1(t)− 20.967u(t) + 6.265x2

1(t)u(t)+

+ 46x1(t)u2(t) + 61.4u3(t).

(7.34)

Where x1 is the angle of attack (unit: [rad]), x2 is the pitch angle (unit: [rad]), x3 is the

pitch rate (unit: [rad · s−1]) and u is the control input (manipulated variable) provided by

the tail deflection (or elevator) angle (unit: [rad]).

The dynamic system in equation (7.34) is highly nonlinear and non-affine, the corresponding

attack angle control problem is,

min
x∈L2([0,2],R3)
u∈L2([0,2],R)

∫ 2

t=0

( 3∑
i=1

x2
i (t) + 0.1u2(t)

)
dt+

3∑
i=1

x2
i (2),

subject to: nonlinear dynamic system in equation (7.34),

x(0) = ξ,

x1(2) ∈ [0.0, 0.01],

u(t) ∈ [−0.1, 0.1], for a. e. t ∈ [0, 2].

(7.35)
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Where ξ ∈ R3 is the value of initial states. The optimal control problem in equation (7.35)

tries to make the final attack angle, x1(2), in to the range [0.0, 0.01] under the elevator

control in the constraint range [−0.1, 0.1].

Due to the highly nonlinear property of the problem, usually in order to solve it in real

time inside a jet’s central control system, the problem (7.35) is approximated into a Linear

Quadratic Regularity (LQR) problem. However, the accuracy of simplified LQR problem

can be only guaranteed in a small range [38].

We apply our sample-based accelerate algorithm in this paper to solve the problem (7.35).

Since the dimension of this optimal control problem is 4, we solve its corresponding discritized

optimization problem in IPOPT [127]. We use the comparison results from the sample-

based algorithm and IPOPT to numerically show how to balance approximation accuracy

and computation speed.

Figure 7.1a shows one simulation result when the initial condition in problem (7.35) is ξ =

(0.56, 0, 0). The number of sampling points in this case is 100, the cost function value from

IPOPT and sample-based method are 0.168 and 0.171 respectively. Since in all simulation

cases, the cost value for IPOPT is lower, we use its solutions as standards to compare

the accuracy from sample-based algorithm’s results. Figure 7.1b and 7.1c are statistical

results based on 10 different initial conditions and 6 different numbers of sampling points.

Figure 7.1b shows the relative difference between cost value from IPOPT and sample-based

algorithm. Figure 7.1c shows the computation time with different number of sampling points.

The average time IPOPT used to solve the problem is 10.43 [sec]. As shown in figure 7.1b

and 7.1c, as the number of sampling points increases, the cost difference between two methods

decreases, while the computation time increases.
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Figure 7.1c also shows the speed performance for parallel computing, based on the slopes

of two lines, which represent the computation time for sample-based algorithm with and

without parallel computing method, the time computation complexities w.r.t. number of

sampling points are O(n1) and O(n0.67) respectively.. The time computation complexity

shows the potential to apply parallel computing method for further time acceleration.

According to figure 7.1b and 7.1c it is possible to balance approximation accuracy and

computation time of sample-based algorithm. For example, if the number of sampling point

chosen is 30, the sample-based algorithm will be faster than IPOPT and their approximation

difference is around 2%.

7.4.2 Indoor thermal comfort control

We apply the sample-based algorithm to solve the indoor thermal comfort optimal con-

trol problem. Define the indoor area as a bounded and connected subset Ω ⊂ R2, the

indoor climate consists flow’s temperature, Te : Ω × [0, T ] → R, velocity, u : Ω → R2, and

pressure, p : Ω → R. Given initial condition, time horizon [0, T ], the temperature control,

gTe : [0, T ]→ R and the velocity control, gu : Ω→ R2, the indoor climate follows the dynamic

system which can be represented by partial differential equations (PDE) in chapter 5, more-

over this PDE system is nonlinear. The thermal comfort is quantified by Predicted Mean Vote

(PMV) index and approximated by function as in chapter 5, pmv2(Te(x, t; gTe , gu), u(x; gu)).

Suppose the indoor resident is inside the target area Ωt ⊂ Ω, the corresponding optimal
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Figure 7.1: Simulation results for problem (7.35).
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control problem is shown as

min
gTe , gu

Jc(gTe , gu) =

=

∫ T

0

∫
Ωt

pmv2(Te(x, t; gTe , gu), u(x; gu),M, Icl)dxdt+

+ η′0 ‖gTe‖Ω×[0,T ] + η′1 ‖gu‖Ω,

subject to: the fluid dynamic model,

|
∫

Ωt

pmv(Te(x, T
′; gTe , gu), gu,M, Icl)dx|/‖Ωt‖ ≤ 0.5,

gTe ≤ gTe(t) ≤ gTe , for a.e. t ∈ [0, T ],

gu ≤ ‖gu‖ ≤ gu.

(7.36)

Where gTe , gTe , gu and gu are positive and controllers’ power limits. The problem (7.36) tries

to balance the thermal comfort inside the target area and total energy used by controllers.

Moreover, it has a final state constraint for PMV index to guarantee resident’s comfort.

After discretizing the PDE dynamic system in space by finite element method [67], the

problem (7.36) becomes a large-scale ordinary differential equation based problem with tens

of thousands variables in spatial. Previously, the problem is solved by derivative-based

algorithm and the computation time is one scale larger than the time horizon [38, 61]. In

this section, we apply sample-based algorithm to this optimal control problem and balance

between approximation accuracy and speed.

Figure 7.2a shows the final PMV index distribution inside apartment under sample-based

optimal solution. The apartment plan used for simulations is given by Washington University

in Saint Louis and locates in 749 Westgate, Saint Louis. According to figure 7.2a, the final

PMV index inside two target area is close to zero, which makes inside residents comfortable.
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Figure 7.2: Simulation results for problem (7.36).

Figure 7.2b shows the average time used to solve the optimal control problem (7.36), the

red dash line represents the results by derivative-based algorithm and the blue line is based

on sample-based algorithm without parallel computation. The statistical results are based

on ten different simulation cases, and the PDE solver used is FEniCS [93], which does not

support parallel computation in Python. Compare the computation speeds in figure 7.2b,

the sample-based algorithm is one scale faster than traditional derivative-based algorithm

and its computation time is close to the problem’s time horizon, which shows the potential to

use this approximation acceleration algorithm to solve large-scale nonlinear optimal control

problem in reality.
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7.5 Chapter conclusion

In this paper, we show a direct method to find Minimum Principle point for an optimal

control problem, its corresponding numerical implementation. We use sample-based approx-

imation to simplify the model to balance between the accuracy of the algorithm’s optimal

solution and its computation speed, moreover, we prove the consistence of this approxima-

tion implementation algorithm. The simulation results show its potential to solve large-scale

nonlinear optimal control problems in time. In future, the study will focus on the theoretical

analysis to relation between the approximation accuracy and number of sampling points for

general problems.
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Chapter 8

Conclusions

8.1 Summary and conclustions

In this dissertation, we study about algorithms to control HVAC system and estimate indoor

fluid dynamics and building configurations based on nonlinear PDE CFD models.

We first show how accurate a nonlinear PDE-based optimal control algorithm for HVAC

system to maintain indoor temperature. This result opens the door to a large number of

exiting opportunities to improve the energy efficiency of buildings. The result validates the

idea that an accurate distributed indoor climate model is able to improve the HVAC system’s

efficiency by focusing on local indoor target areas.

Next, we introduce an estimator which is based on our distributed PDE-based model. The

estimator is able to estimate the indoor fluid distribution and the doors configurations at the

same time, which in turn saves the sensor expense. Due to the application of a gradient-based

numerical direct algorithm with the CFD model’s co-states, the estimator’s corresponding

optimization problem is able to solve efficiently both in the aspect of time and memory

complexity.
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Then, we develop a MPC system to control the thermal comfort around indoor residents

based on distributed CFD model, instead of focusing on only temperature control. The

simulation results validate the performance of our MPC to adapt its control strategy based

on different cases, and reflect the importance of resident’s own influence to thermal comfort,

which is usually be ignored in control literature.

Finally, in order to make our PDE-based HVAC optimal control problems run in real time,

we present a theoretical formulation, and a corresponding numerical algorithm that can

find Pontryagin-optimal inputs for general dynamical systems by using a direct method.

Simulation results validate the algorithm’s performance and its potential fast speed to solve

large-scale nonlinear optimal control problems.

The studies in this dissertation validate the idea that by making small improvements to

existing HVAC units it is possible to dramatically increase the efficiency of HVAC units

without a decrease in human comfort.

8.2 Future directions

Based on this dissertation, there are several potential future research directions.

Online/Cloud control to HVAC system. An accurate CFD model based on physical

principle consists of Navier-Stokes equation and even turbulence property. This will generate

a large-scale nonlinear optimization problem, in order to solve it in real time to control the

HVAC system, it is possible to use parallel computing technology or even cloud server, i.g.

AWS, these days. Due to the development of computer engineering, the price of hardware

and cloud services these days are available for residents’ daily usage.
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Model reduction method to simplify CFD model. In order to further speed up

the control to HVAC system with distributed model, there is another potential solution

which is to reduce the dimension of the nonlinear model, for example proper orthogonal

decomposition [112]. Also for the sampling-based numerical algorithm in chapter 6, it is

possible to further speed the algorithm by simplifying the representation of the convex hull.

Smart housing system for residential buildings. In chapter 5, we use wearable devices

to monitor residents’ personal property and adapt the HVAC system to maintain thermal

comfort. Furthermore, it is possible to unify all the electrical devices in house to build a

smart housing system to help residents take of their home and life. For example, if we

connect our HVAC system with home security alerts, since our estimator is able to identify a

building’s configuration in real-time, it can potentially be applied to monitor an unexpected

break-in and inform home security directly.
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Appendix A

Proofs in Chapter 2

In this appendix, we are going to show the solution’s existence and uniqueness to the CFD

model containing equations (2.2), (2.3), (2.4), (2.5), (2.8), (2.6) and (2.7) in chapter 2.

According to [45] and [67, Theorem I.4.1], the solution’s existence and uniqueness of the

weak formulas in equations (2.9) and (2.10) with boundary condition (2.6) are equivalent to

the corresponding problem of the following weak formula,

〈αu, ϕ〉Ω +
1

Re
〈∇xu,∇xϕ〉Ω + 〈u · ∇xu, ϕ〉Ω =

= 〈gu, ϕ〉Ω ∀ϕ ∈ V0

(A.1)

The existence and uniqueness of the CFD system are given as the following,

Theorem A.1 (Equivelent theorem to theorem 2.1). Let Ω ⊂ R2 be bounded and locally

Lipschitz, there exists at least one tuple (Te, u, p) ∈ L2([t0, t
′
0];H1) × (H1(Ω)×H1(Ω)) ×

L2(Ω), such that

• Te satisfies the boundary and initial condition in equations (2.8) and (2.3), and ∀ξ ∈ H1
0

the equation (2.11) holds.
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• u ∈ V0 satisfies the boundary condition in equation (2.6), (2.7) and the equation (A.1).

• p satisfies the equation (2.4).

Theorem A.2. Let Ω ⊂ R2 be bounded and locally Lipschitz, define the area of Ω as |Ω|.

For the weak solution tuple (Te, u, p) in the theorem 2.1, if |u|1 =
(∫

Ω
|∇xu|2dx

)1/2

< 1
C·Re ,

where C = |Ω|1/2

2
, Then (Te, u, p) is the only weak solution to the CFD system.

Since the equation (2.2) is weakly coupled with the fluid’s flow equations (2.4) and (2.5).

In order to prove theorems A.1 and A.2, we study the weak solution’s property of the PDE

system with equations (2.4), (2.5) and boundary condition (2.6) first. Then when u is given,

equation (2.11) becomes a time-dependent parabolic partial differential equation and we

study its solution’s property. The technologies used in the proofs are similar to the previous

work [67] [45] and [85].

For each ε > 0, according to Hopf extension [67, Lemma I.4.2.3], there exists a function ū ∈

H1(Ω)×H1(Ω) s.t. ∇x · (ū)(x) = 0, ū|Γw = 0, ū|Γo = uo n̂(x), and, |〈(v · ∇x)ū, v〉Ω| ≤ ε|v|21,

∀v ∈ V0. Then any functions u ∈ H1(Ω) × H1(Ω) satisfying the boundary condition (2.6)

can be represented as u = w + ū, for some w ∈ V0.

The main technology to show the existence of the weak solution to the equation (A.1) is to

use the fix point theory. Firstly, given û = ŵ + ū, for fixed ŵ ∈ V0, we show the equation

〈α(x)w,ϕ〉Ω +
1

Re
〈∇xu,∇xϕ〉Ω + 〈û · ∇xw,ϕ〉Ω+

+〈u · ∇xū, ϕ〉Ω = 〈gu, ϕ〉Ω
(A.2)

∀ϕ ∈ V0, has unique solution. Define the mapping S, from the given û to u, the solution to

the equation (A.2), as S(û) = u, then the fixed point of the mapping S is one solution to
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the equation (A.1). Define bilinear operator σ0(w,ϕ) = 〈α(x)w,ϕ〉Ω + 1
Re
〈∇xu,∇xϕ〉Ω + 〈û ·

∇xw,ϕ〉Ω + 〈u · ∇xū, ϕ〉Ω, ∀w,ϕ ∈ V0.

Lemma A.1. σ0 is bounded.

Proof of lemma A.1. Holder’s inequality directly shows σ0 is bounded.

|σ0(w,ϕ)| ≤ |〈α(x)w,ϕ〉Ω|+ |
1

Re
〈∇xu,∇xϕ〉Ω|+

+|〈û · ∇xw,ϕ〉Ω|+ |〈w · ∇xū, ϕ〉Ω| ≤ ‖α(x)w‖0‖ϕ‖0+

+
1

Re
|w|1|v|1 + ‖û‖1|w|1‖ϕ‖1 + ‖w‖1|ū|1‖ϕ‖1.

Definition A.3. A bilinear form a : V × V → R is called coercive if there exists a constant

C > 0 such that, ∀x ∈ V , |a(x, x)| ≥ C‖x‖2
V .

Lemma A.2. σ0 is coercive.

Proof of lemma A.2. For arbitrary w ∈ V0. By Poincare-Friedrichs inequality (Lemma 3.1,

Chapter 1, [67]) there exists a constant C > 0 s.t. | 1
Re
〈∇xw,∇xw〉Ω| ≥ C‖w‖2

1. According to

Hopf’s extension, let C − ε ≥ 0, for instance, fix ε = 1
2
C, and pick up the corresponding ū,

s.t. |〈w ·∇xū, w〉Ω| ≤ ε|w|21 ≤ 1
2
C‖w‖2

1 Then, σ0(w,w) = 〈α(x)w,w〉Ω + 1
Re
〈∇xu,∇xw〉Ω +〈û ·

∇xw,w〉Ω + 〈u ·∇xū, w〉Ω ≥ 〈α(x)w,w〉Ω + 〈u ·∇xū, w〉Ω ≥ 1
2
C‖w‖2

1. Thus σ0 is coercive.

Lemma A.3. ∀ϕ ∈ V0, the equation (A.2) has unique weak solution u. And u can be

separated as u = w + ū, for some w ∈ V0.

Proof of lemma A.3. According to the Lemma A.1 and A.2, it follows from the Lax-Milgram

theorem [67, Chapter 1.2] that the equation, σ0(w,ϕ) = −〈α(x)ū, ϕ〉Ω − 〈 1
Re
∇xū, ϕ〉Ω − 〈ū ·
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∇xū, ϕ〉Ω + 〈gu, ϕ〉Ω has a unique solution w ∈ V0 for all ϕ ∈ V0. Since u = w + ū, the

equation (A.2) has unique solution u.

Lemma A.4. ∀û ∈ V0, the solution u = S(û) to equation (A.2) is always bounded.

Proof of lemma A.4. Set ϕ = w in equation (A.1), since u = w + ū, we get

〈α(x)w,w〉Ω + 〈α(x)ū, w〉Ω +
1

Re
〈w,w〉Ω +

1

Re
〈∇xū, w〉Ω+

+〈û · ∇xw,w〉Ω + 〈w · ∇xū, w〉Ω + 〈ū · ∇xū, w〉Ω = 0,

which is

〈α(x)w,w〉Ω +
1

Re
〈w,w〉Ω + 〈w · ∇xū, w〉Ω =

= −〈α(x)ū, w〉Ω −
1

Re
∇xū, w〉Ω − 〈ū · ∇xū, w〉Ω

(A.3)

Since α(x) ∈ L∞(Ω) and non-negative, define the upper bound of α(x) as ᾱ and lower bound

as α
¯

, the Left Half Side (LHS) of the equation (A.3) is

〈α(x)w,w〉Ω +
1

Re
〈w,w〉Ω + 〈w · ∇xū, w〉Ω ≥

≥ 1

Re
〈w,w〉Ω + 〈w · ∇xū, w〉Ω ≥

1

2
C‖w‖2

1

While according to Holder Inequality, the Right Half Side (RHS) of (A.3) is

−〈α(x)ū, w〉Ω −
1

Re
〈∇xū, w〉Ω − 〈ū · ∇xū, w〉Ω ≤

≤ |〈α(x)ū, w〉Ω|+ |
1

Re
∇xū, w〉Ω|+ |〈ū · ∇xū, w〉Ω| ≤

≤ ᾱ‖ū‖0‖w‖0 + |ū|1|w|1 + ‖ū‖1|ū|1|w|1 ≤

≤ ᾱ‖ū‖0‖w‖1 + |ū|1|w|1 + ‖ū‖1|ū|1|w|1
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According to Poincare-Friedrichs inequality, in V0 the norm | · |1 and the norm ‖ · ‖1 are

equivalent. There exists a constant C1 > 0 s.t. ∀w ∈ V0, |w|1 ≤ C1‖w‖1, then,

−〈α(x)ū, w〉Ω −
1

Re
〈∇xū, w〉Ω − 〈ū · ∇xū, w〉Ω ≤

≤ ᾱ‖ū‖0‖w‖1 + |ū|1|w|1 + ‖ū‖1|ū|1|w|1 ≤

≤ ᾱ‖ū‖0‖w‖1 + C1|ū|1‖w‖1 + C1‖ū‖1|ū|1‖w‖1

Thus, ‖w‖1 is bounded by ‖w‖1 ≤ 2
C

(ᾱ‖ū‖0 + C1|ū|1 + C1‖ū‖1|ū|1) Define this upper bound

as γ, let Σ be a closed convex subset of H1(Ω) as Σ = {u = w+ ū, w ∈ V0 satisfying ‖w‖1 ≤

γ} Thus the mapping S maps from Σ into Σ thus is bounded.

Lemma A.5. The mapping S : Σ→ Σ is compact.

proof of lemma A.5. A mapping between two norm spaces is said to be compact if it is

continuous and maps bounded sets into relatively compact sets. Since H1(Ω) is compactly

embedded in L4(Ω), and Σ is a closed and bounded subset in H1(Ω), it is compact. Thus it

is only left to show S is a continuous mapping.

If the sequence {ŵk} converges to ŵ in V0, then ‖ûk − û‖L4 → 0. Suppose the mapping

sequence {S(ûk)} = {uk} and S(û) = u. From the equation (A.1), we have

〈α(x)uk − u, ϕ〉Ω +
1

Re
〈∇xuk − u,∇xϕ〉Ω+

+〈uk − u · ∇xū, ϕ〉Ω + 〈ûk · ∇xuk − u, ϕ〉Ω+

+〈ûk − û · w,ϕ〉Ω = 0.
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Set ϕ = uk − u, we get

〈α(x)uk − u, uk − u〉Ω +
1

Re
〈∇xuk − u,∇xuk − u〉Ω+

+〈uk − u · ∇xū, uk − u〉Ω = −〈ûk − û · w, uk − u〉Ω
(A.4)

The LHS of (A.4) has LHS ≥ + 1
Re
〈∇xuk − u,∇xuk − u〉Ω + 〈uk − u · ∇xū, uk − u〉Ω ≥

1
2
C‖uk−u‖2

1. The RHS of (A.4) has RHS ≤ |w|1‖uk−u‖1‖ûk−û‖L4 . Thus as ‖ûk−û‖L4 → 0,

‖uk − u‖1 → 0.

Based on these lemmas, we can derive the existence of solution to problem (A.1).

Lemma A.6. There exists at least one fixed point for the mapping S. Thus u ∈ V0 + ū exists

as the solution to problem (A.1).

Proof of lemma A.6. According to Lemma A.5, the existence of the weak solution to equa-

tion (A.1) can be shown by the Theorem 1.J in [119].

In order to study the existence and uniqueness of weak solution of temperature, let us define

bilinear operator σ1 as σ1(Te, ξ) = 〈κ(x)∇xTe,∇xξ〉Ω + 〈u · ∇xTe, ξ〉Ω, ∀t ∈ [t0, t0 + T ].

Then at an arbitrary time t ∈ [t0, t0 + T ], equation (2.11) can be written as, ∀ξ ∈ V1,

〈Ṫe, ξ〉Ω + σ1(Te, ξ) = 〈gTe , ξ〉Ω.

Similarly, we prove that σ1 is bounded and coercive.

Lemma A.7. σ1 is bounded.

Since κ(x) and u(x) are bounded, by Holder inequality, we can show that σ1 is bounded

through a similar way as the proof of Lemma A.1
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Lemma A.8. σ1 is coercive.

Proof of lemma A.8. By Poincare-Friedrichs inequality, there exists C > 0, s.t. |σ1(Te, Te)| =

|〈κ(x)∇xTe,∇xTe〉Ω + 〈u · ∇xTe, Te〉Ω| = |〈κ(x)∇xTe,∇xTe〉Ω| ≥ C‖Te‖2
1.

Lemma A.9. There exists a unique solution, Te ∈ L2([t0, t
′
0];H1(Ω)), to the equation (2.11).

Proof of lemma A.9. According to Lemma A.7 and A.8 and [107, Theorem 11.1.1], the

lemma A.9 holds.

Now, we can prove the theorem A.1.

Proof of theorem A.1 (theorem 2.1). According to lemmas A.6 and A.9, the target theorem

holds.

Finally, we are going to study the uniqueness of the weak solution to CFD system. For the

uniqueness of the solution to equation (A.1), here we derive a sufficient condition.

Lemma A.10. Let Ω ⊂ R2 be bounded and locally Lipschitz, define the area of Ω as |Ω|, if

the solution u’s norm |u|1 < 1
C·Re , where C = |Ω|1/2

2
, the weak formula (A.1) has only one

solution.

Proof of lemma A.10. Given fixed α and boundary conditions, suppose u1 and u2 are two

different solutions to the equation (A.1). Let ũ = u1 − u2, we have ∀ϕ ∈ V0, 〈α(x)ũ, ϕ〉Ω +

1
Re
〈∇xũ,∇xϕ〉Ω + 〈u1 · ∇xũ, ϕ〉Ω + 〈ũ · ∇xu2, ϕ〉Ω = 0. Then set ϕ = ũ, we get 〈α(x)ũ, ũ〉Ω +
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1
Re
〈∇xũ,∇xũ〉Ω + 〈u1 · ∇xũ, ũ〉Ω + 〈ũ · ∇xu2, ũ〉Ω = 0. Thus we can bound the norm of ũ as

1

Re
〈∇xũ,∇xũ〉Ω = −〈α(x)ũ, ũ〉Ω − 〈ũ · ∇xu2, ũ〉Ω ≤

≤ |〈ũ · ∇xu2, ũ〉Ω| ≤ C|u2|1|ũ|21
(A.5)

Where C = |Ω|1/2

2
for Ω ⊂ R2 [60, Lemma 9.1.2].

Equation (A.5) derives
(

1
Re
− C|u2|1

)
|ũ|21 ≤ 0. Thus if 1

Re
− C|u2|1 ≥ 0, |ũ|1 = 0, then weak

formulation has unique solution u.

Proof of theorem A.2 (theorem 2.2). According to lemmas A.10 and A.9, the target theorem

holds.
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Appendix B

Derivations in Chapter 4

In this appendix, we give the derivativations of adjoint equations and Fréchet derivatives.

B.1 Derivation of adjoint equations

Consider the Lagrangian function in equation (4.3). For each set of functions (w, v, q) in the

respective dual space of the tuple (Te, u, p), we can write
〈
∂L
∂Te
, w
〉

Ω×[0,T ]
= 0 as follows:

〈 ∂L
∂Te

, w
〉

Ω×[0,T ]
=
〈 ∂J
∂Te

, w
〉

Ω×[0,T ]
+
〈
λ1,

∂w

∂t
−∇x·(κ∇xw) + u · ∇xw

〉
Ω×[0,T ]

+

+ 〈λ4, w〉∂Ω×[0,T ] + 〈λ6, w(0, ·)〉Ω = 0.

(B.1)

Similarly, we can write
〈
∂L
∂u
, v
〉

Ω
= 0 as

〈∂L
∂u

, v
〉

Ω
=
〈
λ1, v · ∇xTe

〉
Ω×[0,T ]

+

+
〈
λ2,−

1

Re
∆xv + (u · ∇x)v + (v · ∇x)u+ α v

〉
Ω

+

+ 〈λ3,∇x · v〉Ω + 〈λ5, v〉Γw
= 0,

(B.2)
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and we can write
〈
∂L
∂p
, q
〉

Ω
= 0 as

〈
λ2,∇xq

〉
Ω

= 0.

Applying integration by parts and Green’s formula, equations (B.1) and (B.2) become

〈 ∂J
∂Te

, w
〉

Ω×[0,T ]
−
〈∂λ1

∂t
+∇x·(κ∇xλ1) + u · ∇xλ1, w

〉
Ω×[0,T ]

+

+
〈
λ1(·, T ), w(·, T )

〉
Ω

+
〈
λ6 − λ1(·, 0), w(·, 0)

〉
Ω

+

+
〈
κ
∂λ1

∂~n
+ λ4 + ~n · uλ1, w

〉
∂Ω×[0,T ]

−
〈
κλ1,

∂w

∂~n

〉
∂Ω×[0,T ]

= 0,

(B.3)

〈
λ1, v · ∇xTe

〉
Ω×[0,T ]

+
〈
αλ2 −

1

Re
∆xλ2 +∇xu · λ2 − u · ∇xλ2 −∇xλ3, v

〉
Ω

+

− 1

Re

〈
λ2,

∂v

∂~n

〉
∂Ω

+
〈 1

Re

∂λ2

∂~n
+ λ3 ~n+ (u · ~n)λ2, v

〉
∂Ω

+
〈
λ5, v

〉
Γw

= 0. (B.4)

Where ~n is the vector normal to the boundary at x ∈ ∂Ω.

From the identities above it follows that, in order to make
〈
∂L
∂Te
, w
〉

Ω×[0,T ]
,
〈
∂L
∂u
, v
〉

Ω
, and〈

∂L
∂p
, q
〉

Ω
all equal to 0 for any set of functions (w, v, q), a sufficient condition for the dual

variables λ1,2,3,6 is to satisfy the differential equations (4.4) to (4.7) and their boundary

conditions.

B.2 Derivation of Fréchet derivatives

As explained in Section 4.2.1, if we take variations (δπ0, δθ) of our optimization variables,

they will induce variations δα, δκ, δTe, δu, and δp. Then, from equations (2.2), (2.4),
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and (2.5), it follows that the variations satisfy the following differential equations:

∂δTe
∂t
−∇x · (δκ∇xTe)−∇x · (κ∇xδTe) + δu · ∇xTe + u · ∇xδTe = 0, (B.5)

δα u+ α δu− 1

Re
∆xδu+ δu · ∇xu+ u · ∇xδu+∇δp = 0, (B.6)

∇x · δp = 0, (B.7)

with the following boundary and initial conditions: δTe(x, t) = 0 for each x ∈ ∂Ω and

t ∈ [0, T ], δTe(x, 0) = δπ0(x) for each x ∈ Ω, and δu(x) = 0 for each x ∈ Γw.

Now, using equations (4.2), (B.5), (B.6) and (B.7) and their boundary and initial conditions,

we get

J(θ + δθ, π0 + δπ0)− J(θ, π0) =
〈 ∂J
∂Te

, δTe

〉
Ω×[0,T ]

+
〈 ∂J
∂Te

, δπ0

〉
Ω

+

+
〈
λ1,

∂δTe
∂t
−∇x · (δκ∇xTe)−∇x · (κ∇xδTe) + δu · ∇xTe + u · ∇xδTe

〉
Ω×[0,T ]

+

+
〈
λ2, δα u+ α δu− 1

Re
∆xδu+ δu · ∇xu+ u · ∇xδu+∇xδp

〉
Ω

+
〈
λ3,∇x · δu

〉
Ω

+

+
〈
λ4, δTe

〉
∂Ω×[0,T ]

+
〈
λ5, δu

〉
Γw

+
〈
λ6, δTe(·, 0)− δπ0

〉
Ω
.

(B.8)

Where {λi}6
i=1 are the adjoint variables defined in Section 4.2.1. Then, applying integration

by parts and Green’s formula to equation (B.8), and after canceling terms using the identities

in equations (4.4) to (4.7), we can get

J(θ + δθ, π0 + δπ0)− J(θ, π0) =
〈
∇π0J − λ6, δπ0

〉
Ω

+

+
〈
∇xλ1 · ∇xTe, δκ

〉
Ω×[0,T ]

+
〈
λ2 · u, δα

〉
Ω
.

(B.9)

Which are equivalent to the directional derivatives in equations (4.8) and (4.9), as desired.
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Appendix C

Proofs in Chapter 5

In this appendix, we show the proofs to the theorems in chapter C.

C.1 Existence of Lagrange Multipliers

In this section, we are going to show the existence of Lagrange multipliers to our optimization

problems in equations (5.6) and (5.7).

First, we focus on the estimation problem in equation (5.6). Define the space for π0, κ, α

and θ as Ce = {(π0, θ) ∈ H1(Ω)× [0, 1]nd}. Define the space for weak solutions to the PDE

equations (2.2) to (2.6) as X = L2([t0, t
′
0];H1(Ω))×

(
H1
(
Ω
)
×H1

(
Ω
))
×L2

(
Ω
)

and the space

Z = {L2([t0, t
′
0];H1(Ω)) ×

(
H−1

(
Ω
)
×H−1

(
Ω
))
× L2

(
Ω
)
×H1

(
Ω
)
× L2

(
∂Ω
)
× L2

(
∂Γw

)
}.

Define the mapping Se : X × Ce → Z, such that for the tuple
(
Te, u, p, π0, θ

)
∈ X × Ce and
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Se
(
Te, u, p, π0, θ

)
=
(
v1, v2, v3, v4, v5, v6

)
∈ Z, we have the formulas,

〈∂Te(x, t)
∂t

, ξ(x)〉Ω − 〈∇x ·
(
κ(x, θ)∇T e(x, t)

)
, ξ(x)〉Ω+

+ 〈u(x) · ∇xTe(x, t), ξ(x)〉Ω − 〈gTe(x, t), ξ(x)〉Ω =

= 〈v1(x, t), ξ(x)〉Ω, ∀ξ(x) ∈ H1
0 (Ω),

(C.1)

〈α(x, θ)u(x), ϕ(x)〉Ω +
1

Re
〈∇xu(x),∇xϕ(x)〉Ω+

+ 〈u(x) · ∇xu(x), ϕ(x)〉Ω − 〈p(x),∇x · ϕ(x)〉Ω+

− 〈gu(x), ϕ(x)〉Ω = 〈v2(x), ϕ(x)〉Ω,

∀ϕ(x) ∈ H1
0 (Ω)×H1

0 (Ω),

(C.2)

〈∇x · u(x), ψ(x)〉Ω = 〈v3(x), ψ(x)〉Ω, ∀ψ(x) ∈ L2(Ω) (C.3)

Te(x, t0)− π0(x) = v4(x), for x ∈ Ω. (C.4)

Te(x)− TA = v5(x), for x ∈ ∂Ω, and (C.5)

u(x) = v6(x), for x ∈ Γw. (C.6)

Then the weak solutions to PDE equations (2.2) to (2.6) satisfy the equality, Se
(
Te, u, p, π0, θ

)
=

0 ∈ Z.

Suppose (T ?e , u
?, p?, π?0, θ

?) is the optimal point to the problem (5.6), define the first derivative

of Se w.r.t. X at the optimal point as S ′
e,x? : X → Z. For the point (wt, wu, wp) ∈ X,
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S ′
e,x?(wt, wu, wp) = (v1, v2, v3, v4, v5, v6) has the formula,

〈∂wt(x, t)
∂t

, ξ(x)〉Ω − 〈∇x ·
(
κ?(x, θ)∇wt(x, t)

)
, ξ(x)〉Ω+

+ 〈u?(x) · ∇xwt(x, t), ξ(x)〉Ω+

+ 〈wu(x) · ∇xT
?
e (x, t), ξ(x)〉Ω = 〈v1(x), ξ(x)〉Ω,

∀ξ(x) ∈ H1
0 (Ω),

(C.7)

〈α(x, θ)wu(x), ϕ(x)〉Ω+

+
1

Re
〈∇xwu(x),∇xϕ(x)〉Ω+

+ 〈wu(x) · ∇xu
?(x), ϕ(x)〉Ω+

+ 〈u?(x) · ∇xwu(x), ϕ(x)〉Ω − 〈wp(x),∇x · ϕ(x)〉Ω+

= 〈v2(x), ϕ(x)〉Ω, ∀ϕ(x) ∈ H1
0 (Ω)×H1

0 (Ω),

(C.8)

〈∇x · wu(x), ψ(x)〉Ω = 〈v3(x), ψ(x)〉Ω, ∀ψ(x) ∈ L2(Ω) (C.9)

wt(x, t0) = v4(x), for x ∈ Ω. (C.10)

wt(x) = v5(x), for x ∈ ∂Ω, and (C.11)

wu(x) = v6(x), for x ∈ Γw. (C.12)

Lemma C.1. S ′
e,x? : X → Z is a closed operator.

Proof to lemma C.1. Since S ′
e,x? is a linear operator w.r.t. (wt, wu, wp), it is sufficient to show

that, for arbitrary sequence in X, {(wt,i, wu,i, wp,i)}∞i=1 → 0 ∈ X, S ′
e,x?(wt,i, wu,i, wp,i)→ 0 ∈

Z. According to appendix A and Lax-Milgram theorem [67, Chapter 1.2], the only solution

to S ′
e,x? = 0 is (wt, wu, wp) = 0, thus operator S ′

e,x? is closed.
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Lemma C.2. Define the adjoint operator for S ′
e,x? as S ′,?

e,x? : Z? → X?. S ′,?
e,x? is surjective.

Proof to lemma C.2. Since S ′
e,x? is closed and its domain is the whole X, it is sufficient to

show the kernel of S ′
e,x? is {0}. According to the proof of Lemma C.1, the only solution to

S ′
e,x? = 0 is (wt, wu, wp) = 0.

Theorem C.1. If (T ?e , u
?, p?, π?0, θ

?) is the optimal point to the problem (5.6), then there

exist Lagrange multipliers, {λi}6
i=1, which are corresponding to PDE-constraints, such that

∀(w, v, q) ∈ L2
(
[t0, t

′
0];H1(Ω)

)
×
(
H1(Ω)×H1(Ω)

)
×L2(Ω), the Lagrange function’s variation

w.r.t. (w, v, q) is zero, and λ1,2,3,6 satisfy,

− ∂J

∂Te
+
∂λ1

∂t
(x, t) +∇x · (κ(x)∇xλ1(x, t))+

+ u(x) · ∇xλ1(x, t) = 0,

(C.13)

λ6(x) = λ1(x, 0), (C.14)∫ t′0

t0

λ1(x, t)∇xTe(x, t) dt+ α(x)λ2(x)− 1

Re
∆xλ2(x)+

− u(x) · ∇xλ2(x) + λ2(x) · ∇xu(x)−∇xλ3(x) = 0, and,

(C.15)

∇x · λ2(x) = 0, (C.16)

with boundary conditions λ1(x, t) = 0 and λ2(x) = 0 for each x ∈ ∂Ω and t ∈ [t0, t
′
0],

together with final condition λ1(x, T ) = 0 for each x ∈ Ω. The adjoint functions λ4 and

λ5 are irrelevant to our Fréchet derivative calculation, therefore we omit them from this

presentation.

If
(
T ?e , u

?, p?, g?Te , g
?
u

)
is the optimal point to the problem (5.7), its Lagrange multipliers,

λ1,2,3,6, also satisfy the above ajoint PDE system.
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Proof to theorem C.1. According to subsection C.2 below, (Te, u, p) are Gateaux differen-

tiable w.r.t. (θ, α, κ, π0). Furthermore, according to Lemma C.1 and C.2, S ′
e,x? is continuous

and S ′,?
e,x? is surjective, then the Lagrange multipliers exist. According to [76], the Lagrange

multipliers, {λi}i=1,2,3,6 satisfy equations (4.4), (4.5) and (4.7) hold [86, Theorem 1.17].

Similarly, we can prove the existence of Lagrange multipliers to the problem 5.7.

C.2 Proof of Fréchet Derivatives

In this section, we prove the directional derivatives in equations (5.17) (5.18) and (5.19) are

Fréchet derivatives. We are going to show these derivatives are Gateaux derivatives and then

extend to show they are Fréchet derivatives.

Theorem C.2. Given variables π0 ∈ H1(Ω), θ ∈ Rnd and α, κ ∈ L2(Ω) ∩ L∞(Ω). The

directional derivatives in equations (4.8) and (4.9) are Fréchet derivatives of cost function

Je to corresponding variables.

Lemma C.3. The solution to the CFD model in equations (2.2) to (2.6), (Te, u, p), has

a Gateaux derivative
(
wt[δκ], wu[δκ], wp[δκ]

)
in every direction δκ ∈ L∞(Ω) ∩ L2(Ω) w.r.t.

κ ∈ L∞(Ω) ∩ L2(Ω). Furthermore, the Gateaux Derivatives, wu[δκ] = 0, wp[δκ] = 0 and

wt[δκ] is the solution to the PDE:

∂wt[δκ]

∂t
(x, t)−∇x·

(
δκ∇xTe(x, t;κ)

)
+

−∇x·
(
κ∇xwt[δκ](x, t)

)
+ u(x) · ∇xwt[κ](x, t) = 0,

(C.17)

With initial condition,

wt[δκ](x, t0) = 0, for x ∈ Ω. (C.18)
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and boundary condition,

wt[δκ](x) ≡ 0, for x ∈ ∂Ω. (C.19)

Proof to lemma C.3. Since κ does not relate to Navier-Stokes equations (2.4), (2.5) and (2.8),

wu[δκ] = 0 and wp[δκ] = 0.

Define the weak solution to temperature with given κ as Te(x, t;κ). Define T̃e(x, t) =

Te(x, t;κ + sδκ) − Te(x, t;κ) − swt[t0, t′0], then for wt[δκ], it is sufficient to show for wt[δκ]

satisfying the following,

lim
s→0

(‖T̃e‖Ω×[t0,t′0]

|s|
)

= 0 (C.20)

Define T̂e = Te(κ+ sδκ)− Te(κ), then T̃e satisfies the following PDE

∂T̃e
∂t

(x, t) + u(x) · ∇xT̃e(x, t)−∇x·
(
κ∇xT̃e(x, t)

)
= s∇x·(δκ∇x(T̂e(x, t))),

(C.21)

with homogeneous zero initial and boundary conditions. T̂e satisfies the following PDE

∂T̂e
∂t

(x, t) + u(x) · ∇xT̂e(x, t)−∇x·
(
κ∇xT̂e(x, t)

)
=

= s∇x·
(
δκ∇xT e(x, t;κ+ sδκ)

)
,

(C.22)

also with homogeneous zero initial and boundary conditions. According to the energy esti-

mation inequality [107, Chapter 11.1], we can bound T̂e and T̃e,

∥∥∥T̂e∥∥∥
Ω×[t0,t′0]

≤ sC1‖Te(x, t;κ+ sδκ)‖Ω×[t0,t′0]
, (C.23)
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∥∥∥T̃e∥∥∥
Ω×[t0,t′0]

≤ sC2

∥∥∥T̂e∥∥∥
Ω×[t0,t′0]

≤

≤ s2C1C2‖Te(x, t;κ+ sδκ)‖Ω×[t0,t′0]
,

(C.24)

where C1,2 > 0 are two independent parameters. Thus equation (C.20) holds and wt[δκ] is

Te Gateaux derivative w.r.t. δκ.

Lemma C.4. The solution to the CFD model in equations (2.2) to (2.6), (Te, u, p) has a

Gateaux derivative in every direction δα ∈ L∞(Ω) ∩ L2(Ω) w.r.t. α ∈ L∞(Ω) ∩ L2(Ω).

Furthermore, the Gateaux Derivatives of Te and u, wt[δα] and wu[δα] are the solution to the

PDE:

∂wt[δα](x)

∂t
−∇x·(κ∇xwt[δα](x))+

+ u(x;α) · ∇xwt[δα](x)+

+ wu[δα](x) · ∇xTe(x;α) = 0,

(C.25)

αwu[δα](x) + δαu(x;α)+

− 1

Re
∆xwu[δα] + u(x;α) · ∇xwu[δα](x)+

+ wu[δα] · ∇xu(x;α) +∇xwp(x) = 0, and,

(C.26)

∇x · wu[δα](x) = 0, (C.27)

with homogeneous zero initial and boundary conditions.

Proof to lemma C.4. First, We prove wu[δα] above is the Gateaux derivative. Define ũ(x) =

u(x;α + sδα)− u(x;α)− swu[δα](x), then it is sufficient to show that,

lim
s→0

(‖ũ(x)‖1

|s|
)

= 0 (C.28)
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According to [71], ũ satisfies the PDE

αũ(x)− 1

Re
∆ũ(x) + u(x;α) · ∇ũ(x) + ũ(x) · ∇u(x;α) =

= −sδα
(
u(x;α + sδα)− u(x;α)

)
+ ku,

(C.29)

with zero homogeneous boundary condition, and ku is defined as

ku = −u(x;α + sδα) · ∇xu(x;α + sδα)+

+ u(x;α) · ∇xu(x;α + sδα)+

+ u(x;α + sδα) · ∇xu(x;α)− u(x;α) · ∇xu(x;α).

(C.30)

Multiply both sides of (C.29) with ũ and integrate in Ω, by the notations and calculations

from appendix A, we get

〈αũ, ũ〉Ω −
〈

1

Re
∆xũ, ũ

〉
Ω

+ 〈u(x;α) · ∇xũ, ũ〉Ω+

+ 〈ũ · ∇xu(x, α), ũ〉Ω = σ0(ũ, ũ) =

=
〈
−sδα

(
u(α + sδα)− u(α)

)
+ ku, ũ

〉
Ω

(C.31)

According to appendix A, σ0 is a coercive bilinear operator, thus there exists a positive real

number C1 s.t

0 ≤ ‖ũ‖2
1 ≤ C1σ0(ũ, ũ) =

= C1

〈
−sδα

(
u(x;α + sδα)− u(x;α)

)
+ ku, ũ

〉
Ω
≤

≤ C1|
〈
−sδα

(
u(x;α + sδα)− u(x;α)

)
, ũ
〉

Ω
|+

+ C1|〈ku, ũ〉Ω|.

(C.32)
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In order to prove the equation (C.28), it is sufficient to prove that the two terms,

|
〈
−sδα

(
u(x;α + sδα)− u(x;α)

)
, ũ
〉

Ω
|

and |〈ku, ũ〉Ω| are bounded by higher order of s. Define û = u(x;α + δα) − u(x;α), then

|〈ku, ũ〉Ω| can be bounded as,

〈ku, ũ〉Ω = | − 〈u(x;α + sδα) · ∇xu(x;α + sδα), ũ〉Ω+

+ 〈u(x;α) · ∇xu(x;α + sδα), ũ〉+

+ 〈u(x;α + sδα) · ∇xu(x;α), ũ〉Ω+

− 〈u(x;α) · ∇xu(x;α), ũ〉Ω| =

= | − 〈û · ∇xu(x;α + sδα), ũ〉Ω + 〈û · ∇xu(x;α), ũ〉Ω| =

= |〈û · ∇xû, ũ〉Ω| ≤

≤ C2|û|1‖û‖1‖ũ‖1 ≤ C3‖û‖2
1‖ũ‖1,

(C.33)

where C2,3 > 0 and independent of s. û is the solution to the PDE

αû(x) + sδαu(x;α + sδα)− 1

Re
∆xû(x)+

+ u(x;α) · ∇xû(x) + û(x) · ∇xu(x;α)+

+ û(x) · ∇xû(x) +∇xp̂(x) = 0, and,

(C.34)

∇x·û = 0. (C.35)

with zero homogeneous boundary condition.
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In order to bound û, we separate it into two values, û = û1 + û2, s.t.,

αû1(x)− 1

Re
∆xû1(x) +∇xp̂(x) = −sδαu(x;α + δα), (C.36)

∇x · û1(x) = 0, (C.37)

αû2(x)− 1

Re
∆xû2(x) + (u(x;α) + û1(x)) · ∇xû2(x)+

+ û2(x) · ∇x(u(x;α) + û1(x)) + û2(x) · ∇xû2(x) =

= −û1(x) · ∇xu(x;α)− u(x;α) · ∇xû1(x)+

− û1(x) · ∇xû1(x), and

(C.38)

∇ · û2 = 0. (C.39)

Both û1 and û2 are with zero homogeneous boundary conditions.

Similar to the strategy to bound ũ in equation (C.32), we can bound û1 by s and ‖u(x;α + sδα)‖

as ‖ũ1‖1 ≤ C4|sδα|‖u(x;α + sδα)‖1, where C4 > 0 is independent of s. Then for û2, we

can bound it by s as well, ‖ũ2‖1 ≤ C5‖−ũ1 · ∇u(x;α)− u(x;α) · ∇xũ1 − ũ1 · ∇xũ1‖1 ≤

C6|s|‖u(x;α)‖1, where C5,6 > 0 are independent to s.

Thus the limitation in equation (C.28) holds. Then we are going to talk about wt[δα], define

T̃e = Te(x, t;α + sδα)− Te(x, t;α)− swt, it is sufficient to show that

lim
s→0

(∥∥∥T̃e∥∥∥
L2(0,T ;H1(Ω))

|s|
)

= 0 (C.40)

153



T̃e follows

∂T̃e
∂t

(x, t)−∇x·
(
κ∇xT̃e(x, t)

)
+

− u(x;α) · ∇x(T̃e(x, t)) = kt,

(C.41)

with zero boundary and initial conditions, where kt = −ũ · ∇xTe(x, t;α + sδα) − swu[δα] ·(
∇xTe(x, t;α + sδα)− Te(x, t;α)

)
. Then according to [107, Theorem 11.1.1], we can bound∥∥∥T̃e∥∥∥

Ω×[t0,t′0]
by ‖kt‖Ω, it is sufficient to show that ‖kt‖Ω can be bounded by higher order of

|s|.

Define T̂e = Te(x, t;α + sδα)− Te(x, t;α), it follows the PDE

∂T̂e
∂t

(x, t)−∇x

(
κ∇xT̂e(x, t)

)
+

+ u(x;α + swu) · ∇xT̂e(x, t) = −û · ∇Te(α)

(C.42)

with zero homogeneous boundary and initial conditions. Since ‖û‖1 is bounded by |s|, so

does
∥∥∥T̂e∥∥∥

Ω×[t0,t′0]
. Thus the limitation in equation (C.40) holds as well.

Lemma C.5. The solution to the CFD model in equations (2.2) to (2.6), (Te, u, p) has a

Gateaux derivative in every direction δπ0 ∈ H1(Ω) w.r.t. π0 ∈ H1(Ω). Furthermore, the

Gateaux Derivatives of Te, wt[δπ0] is the solution to the PDE:

∂wt[δπ0]

∂t
(x, t)−∇x·(κ∇xwt[δπ0])(x, t)+

+ u(x; π0) · ∇xwt[δπ0](x, t) = 0

(C.43)

with homogeneous zero boundary conditions and initial condition,

wt[δπ0](x, t0) = δπ0, for x ∈ Ω. (C.44)
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The Gateaux Derivatives of u and p are zero.

Proof to lemma C.5. Since the equation (2.2) is weakly coupled with the fluid’s flow equa-

tions (2.4) and (2.5). The variation of initiation condition, π0, does not influence u and p.

Thus their related derivatives are zeros.

Then we study wt[δα], Define T̃e(x, t) = Te(x, t; π0 + sδπ0) − Te(x, t; π0) − swt(x, t), it is

sufficient to show that

lim
s→0

(∥∥∥T̃e∥∥∥
L2(0,T ;H1(Ω))

|s|
)

= 0 (C.45)

T̃e satisfies

∂T̃e
∂t

(x, t)−∇x·(κ∇xT̃e)(x, t) +

− u(x;α) · ∇x(T̃e(x, t)) = 0

(C.46)

with zero boundary and initial conditions.

Since T̃e is the solution to the parabolic PDE equation (C.46) with zero boundary and initial

conditions, then according to Lemma A.7 and A.8 and Theorem 11.1.1 in [107], the only

solution, T̃e, is zero. Thus the limitation in equation (C.46) holds, and wt[δπ0] is the target

Gateaux Derivative.
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Proof of theorem C.2. As a result of lemma C.3, according to the chain rule we have the

Gateaux derivative of cost function, Je, w.r.t. κ in direction δκ as,

〈
DκJe, δκ

〉
Ω

=

〈
∂Je
∂Te

, wt[δκ]

〉
Ω×[t0,t′0]

+

+

〈
∂Je
∂u

, wu[δκ]

〉
Ω

+

+

〈
∂Je
∂p

, wp[δκ]

〉
Ω

=

〈
∂Je
∂Te

, wt[δκ]

〉
Ω×[t0,t′0]

+

+ 〈λ1,
∂wt[δκ]

∂t
−∇x·

(
δκ∇xTe

)
+

−∇x·
(
κ∇xwt[δκ]

)
+ u(x) · ∇xwt[κ]〉Ω×[t0,t′0]

+

+ 〈λ4, wt[κ]〉∂Ω×[t0,t′0]
+ 〈λ6, wt[κ](x, 0)〉Ω =

=

∫ t′0

t0

〈
∇xλ1 · ∇xTe, δκ

〉
Ω

dt,

(C.47)

where λ1,4,6 are adjoint variables with equations (4.4) to (4.7).

Then similar to the equation (C.47), based on lemmas C.4 and C.5, with the help with

adjoint variables, the Gateaux derivative of cost function, Je, w.r.t. α in direction δα can be

derived as shown in equation (4.8), also the Gateaux derivative of cost function, Je, w.r.t.

π0 in direction δπ0 can be derived as shown in equation (4.9). Then by the chain rule, the

Gateaux derivatives of Je w.r.t. θ in direction δθ is as shown in equation (4.9).

Then we extend the derivatives above to Fréchet derivatives. It is sufficient to show they are

linear and bounded.

Since ajoint variables are not related to variations, the derivatives in equation (4.8) and (4.9)

are linear w.r.t. variations.
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Then in order to show the derivatives are bounded, it is sufficient to show all the adjoint

variables are bounded. Since the adjoint variables satisfies the linear PDE system of equa-

tions (4.4) to (4.7) and related boundary initial conditions in section 4.2.1, according to the

energy study for linear PDEs on the Theory 7.4.1 [107], the adjoint variables are bounded.

Thus the derivatives in equation (4.8) and (4.9) are Fréchet derivatives.

Theorem C.3. Given variables, gTe ∈ L2([t0, t
′
0]× Ω) and gu ∈ L2(Ω) × L2(Ω), the direc-

tional derivatives in equation (5.19) are Fréchet derivatives of cost function Jc to correspond-

ing variables.

The process to prove the theorem C.3 is similar to the proof of the theorem C.2, thus we

skip it in this appendix.

C.3 Convergence of the Algorithm

In this section we are going to show the convergence of the algorithms 1 in section 5.2.3.

Theorem C.4. Suppose the cost functions in problem (5.6) and (5.7) are bounded from be-

low, and βe, βc ∈ (0, 1) in algorithm 1 and 5.6 satisfy respectively, when Ve(θ, π0), Vc(gTe , gu) <

0, a ∈ (0, 1)

Je(θ + βeδθ, π0 + βeδπ0)− Je(θ, π0) ≤ a βeVe(θ, π0), (C.48)

Jc(gTe + βcδgTe , gu + βcδgu)− Jc(gTe , gu) ≤

≤ a βcVc(gTe , gu).

(C.49)
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where (δθ, δπ0) are derived from problem (5.20), (δgTe , δgu) are derived from problem (5.21).

Then for arbitrary sequence generated by the algorithm 1 or 5.6, its accumulate point satisfies

Ve(π0, θ) = 0 or Vc(gTe , gu) = 0.

Proof to theorem C.4. It is trivial to show that Ve(π0, θ) and Vc(gTe , gu) are optimality func-

tions. And under the assumption in equations (C.48) and (C.49), the updating step satisfies

the uniform sufficient descent property. Thus using the same contradiction strategy in [125,

Theorem 5.12], the accumulate point of every sequence generated by algorithm 1 and 5.6

satisfies Ve(π0, θ) = 0 and Vc(gTe , gu) = 0 respectively.

C.4 Finite Element Approximation

The finite element discretization of a partial derivative is defined as follows. Define a dis-

critized and finite dimensional subspace for a space, S(Ω), as Sh(Ω). Define L2
0(Ω) = {q ∈

L2(Ω);
∫

Ω
q = 0}. These subspaces are parameterized by a parameter, h, which represents

the average size of all discritized elements. The subspaces usually can be chosen arbitrar-

ily, while there are some standard discretization assumptions, especially for Navier-Stokes

equations.

First, the discrete subspaces should satisfy the assumptions, there exist an integer k and

a constant C, which are independent of each element in the space, such that, for integer

m ∈ [1, k],

inf
th∈Hm+1,h(Ω)

‖t− th‖1 ≤ Chm‖t‖m+1, ∀t ∈ Hm+1(Ω), (C.50)
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inf
vh∈Hm+1,h(Ω)×Hm+1,h(Ω)

‖v − vh‖1 ≤ Chm‖v‖m+1,

∀v ∈ Hm+1(Ω)×Hm+1(Ω),

(C.51)

inf
qh∈Hm,h(Ω)∩L2,h

0 (Ω)

‖q − qh‖0 ≤ Chm‖q‖m,

∀q ∈ Hm(Ω) ∩ L2
0(Ω),

(C.52)

Next, we assume the Ladyzhenskaya-Babuska-Brezzi (LBB) condition holds, such that there

exists a constant C, independent of h, such that for non-zero qh ∈ Hm,h(Ω) ∩ L2,h
0 (Ω), and

non-zero vh ∈ Hm+1,h(Ω)×Hm+1,h(Ω)

inf
qh

sup
vh

b(vh, qh)

‖vh‖1‖qh‖0

≥ C (C.53)

Once we have those assumptions, we can discretize the system. For the heat transfer equa-

tion, we discretize the temperature in space first, then it becomes a series of ODEs. Here we

only estimate the finite element approximation error, and the time discretized error is not

studied. The discritized system satisfies the discritized weak formulas,

〈∂T
h
e (x, t)

∂t
, ξh(x)〉Ω − 〈∇x ·

(
κ∇T he (x, t)

)
, ξh(x)〉Ω+

+ 〈uh(x) · ∇xTe
h(x, t), ξh(x)〉Ω − 〈gTe(x, t), ξh(x)〉Ω =

= 0, ∀ξh(x) ∈ H1,h(Ω),

(C.54)

〈αuh(x), ϕh(x)〉Ω +
1

Re
〈∇xu

h(x),∇xϕ
h(x)〉Ω+

+ 〈uh(x) · ∇xu
h(x), ϕh(x)〉Ω − 〈ph(x),∇x · ϕh(x)〉Ω+

− 〈gu(x), ϕh(x)〉Ω = 0, ∀ϕh(x) ∈ H1,h(Ω)×H1,h(Ω),

(C.55)
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〈∇x · uh(x), ψh(x)〉Ω = 0, ∀ψh(x) ∈ L2,h(Ω) (C.56)

with boundary and initial conditions in equations (2.8), (2.6) and (2.3).

Theorem C.5. Suppose (Te(x, t), u(x), p(x)) is the solution to the weak form of CFD sys-

tem with equations (2.2) to (2.6) in chapter 2, during the time period t ∈ [t0, t
′
0]. Assume

that the finite element spaces H1,h(Ω), H1,h(Ω) × H1,h(Ω) and L2,h(Ω) satisfy the condi-

tions (C.50) to (C.53). Then, for h small enough, there exists a tuple
(
T he (x, t), uh(x), ph(x)

)
such that T he (x, t) ∈ L2

(
[t0, t

′
0], H1,h(Ω)

)
, uh(x) ∈ H1,h(Ω) × H1,h(Ω), ph(x) ∈ L2,h(Ω) and(

T he (x, t), uh(x), ph(x)
)

are the solutions to the discrete system (C.54) to (C.55) with corre-

sponding initial and boundary conditions.

Moreover, as h→ 0,

∫ t′0

t0

‖Te(·, t)− T he (·, t)‖1dt→ 0,

‖u(x)− uh(x)‖1 → 0, and

‖p(x)− ph(x)‖0 → 0.

(C.57)

If, in addition, the solution tuple (Te(x, t), u(x), p(x)) satisfies,

u(x) ∈ Hm+1(Ω)×Hm+1(Ω)

p(x) ∈ L2(Ω) ∩Hm(Ω)
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then there exists constants C1,2,3, which are independent of h, such that

∫ t′0

t0

‖Te(·, t)− T he (·, t)‖1dt ≤ C1 max
(
hm, h2

)
,

‖u(x)− uh(x)‖1 ≤ C2h
m, and

‖p(x)− ph(x)‖0 ≤ C3h
m.

(C.58)

Proof to theorem C.5. Since the temperature and Navier-stokes are weakly coupled, the dis-

cretization algorithm works as, first, we solved the approximated Navier-stokes equation, uh

and ph. Then, substitute the uh into heat transfer equation and get the discrete temperature,

T he . As the strategy above, we first estimate the discrete Navier-Stokes. The error estimation

results can be derived directly from [72] and [31], concerning the approximation of a class of

stationary nonlinear problems.

Then we are going to bound the approximation for Te. Substitute uh into the weak formula

for equation (2.2), we get

〈∂Te(x, t)
∂t

, ξ(x)〉Ω − 〈∇x ·
(
κ∇xT e(x, t)

)
, ξ(x)〉Ω+

+ 〈uh(x) · ∇xTe(x, t), ξ(x)〉Ω − 〈gTe(x, t), ξ(x)〉Ω =

= 0, ∀ξ ∈ H1(Ω).

(C.59)
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with initial and boundary condition (2.3) and (2.8). According to theorem A.1, there exists

a solution to the equation (C.59), define as T h̃e . Then ∀t ∈ (0, T ),

‖Te(·, t)− T he (·, t)‖1 ≤

‖Te(·, t)− T h̃e (·, t)‖1 + ‖T h̃e (·, t)− T he (·, t)‖1

Define et,h̃(x, t) = Te(x, t)− T h̃e (x, t), Substract the weak formula to the equation (2.2) with

the equation (C.59), ∀ξ ∈ H1(Ω),

〈
∂et,h̃(x, t)

∂t
, ξ(x)〉Ω − 〈∇x ·

(
κ∇et,h̃(x, t)

)
, ξ(x)〉Ω+

+ u(x) · ∇xet,h̃(x, t) =

− 〈
(
u(x)− uh̃(x)

)
· ∇xTe(x, t)

h̃, ξ(x)〉Ω,

(C.60)

with zero boundary and initial condition.

According to linear PDE’s energy estimation in [107, Theorem 11.1.1],

‖et,h̃(·, t)‖1 → 0. (C.61)

And if the system satisfies the additional assumptions in theorem C.5, there exist constants

C, which is independent of h, such that,

‖et,h̃(·, t)‖1 ≤ Chm(t)(‖u‖m+1), (C.62)
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For ∀t ∈ [t0, t
′
0], in order to study the error ‖T h̃e (·, t)−T he (·, t)‖1, define et,h(x, t) = T h̃e (x, t)−

T he (x, t). Substract equation (C.59) with (C.54),

〈∂et,h(x, t)
∂t

, ξh(x)〉Ω − 〈∇x ·
(
κ∇et,h(x, t)

)
, ξh(x)〉Ω+

+ 〈uh̃(x) · ∇xet,h(x, t), ξ
h(x)〉Ω = 0, ∀ξh(x) ∈ H1,h(Ω),

(C.63)

With zero boundary and initial conditions.

For et,h(x, t), choose ξh(x) = T he (x, t)−wh(x), wh(x) ∈ T h, then ξh(x) =
(
T h̃e (x, t)− wh(x)

)
−

et,h(x, t), separate the equation (C.63) and according to Schwartz inequality,

〈∂et,h(x, t)
∂t

, et,h(x, t)〉Ω − 〈∇x ·
(
κ∇et,h(x, t)

)
, et,h(x, t)〉Ω+

+ 〈uh̃(x) · ∇xet,h(x, t), et,h(x, t)〉Ω =

〈∂et,h(x, t)
∂t

, et,h(x, t)〉Ω − 〈∇x ·
(
κ∇xet,h(x, t)

)
,

et,h(x, t)〉Ω = −〈∂et,h(x, t)
∂t

, T h̃e (x, t)− wh(x)〉Ω+

+ 〈∇x ·
(
κ∇xet,h(x, t)

)
, T h̃e (x, t)− wh(x)〉Ω+

− 〈uh̃(x) · ∇xet,h(x, t), T
h̃
e (x, t)− wh(x)〉Ω ≤

≤ ‖∂et,h(x, t)
∂t

‖0‖T h̃e (x, t)− wh(x)‖0+

+ λ1‖et,h(x, t)‖1‖T h̃e (x, t)− wh(x)‖1+

+ λ2‖uh̃(x)‖∞‖et,h(x, t)‖1‖T h̃e (x, t)− wh(x)‖1 ≤

≤ ‖∂et,h(x, t)
∂t

‖0‖T h̃e (x, t)− wh(x)‖0+

+ λ‖et,h(x, t)‖1‖T h̃e (t)− wh(x)‖1 ≤

≤ ‖∂et,h(x, t)
∂t

‖0‖T h̃e (x, t)− wh(x)‖0+

+
λ2

4ε
‖et,h(x, t)‖2

1 + ε‖T h̃e (x, t)− wh(x)‖2
1

(C.64)
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where λ is independent from h, and ∀ε > 0.

According to lemma A.8, there exists a constant k, independent of h, s.t,

− 〈∇x ·
(
κ∇xet,h(x, t)

)
, et,h(x, t)〉Ω =

= 〈κ∇xet,h(x, t),∇xet,h(x, t)〉Ω ≥

≥ k‖et,h(·, t)‖2
1

According to [107, Corollary 11.1.1], it follows that T h̃e , wt ∈ L2([t0, t
′
0];H2(Ω)). Hence,

choosing for almost any t ∈ [t0, t
′
0] wh = πh(T h̃e (t)), the projection of T h̃e (x, t) into H1,h(Ω),

then,

‖T h̃e (·, t)− wh‖2
0 ≤ Cπ,1h

2‖T h̃e (·, t)‖2
2

‖T h̃e (·, t)− wh‖2
1 ≤ Cπ,2h

2‖T h̃e (·, t)‖2
2

The initial estimation is zero, i.e., ‖et,h(·, 0)‖2
0 = 0. Choose ε = k/(2λ2), integrate (C.64)

from t0 to t′0, there exists a constant, C̃3, independent of h,

k

∫ t′0

t0

‖et,h(·, τ)‖2
1 ≤ ‖et,h(·, t)‖2

0 + k

∫ t′0

t0

‖et,h(·, τ)‖2
1 ≤

≤ C̃3h
2

∫ t′0

t0

(‖∂T
h̃
e

∂t
(·, τ)‖2

0 + ‖∂Te
h

∂t
(·, τ)‖2

0)+

+ ‖T h̃e (·, τ)‖2
2)dτ
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By [107, Proposition 11.1.1], ‖∂Th
e

∂t
(·, t)‖2

0 is bounded, thus, there exists a constant, C3, which

is independent of h, such that,

∫ t′0

t0

‖et,h(·, τ)‖2
1 ≤ C3h

2 (C.65)

Thus, if the system satisfies the additional assumptions in the theorem C.5,

∫ t′0

t0

‖Te(·, t)− T he (·, t)‖1dt ≤ C max
(
h̃m, h2

)
(C.66)
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Appendix D

Proofs in Chapter 7

In this appendix, we give the detailed proofs of propositions and theorems mentioned in

sections 7.2 and 7.3.

Proof to theorem 7.3. Compare problems (7.13) and (7.18), it is sufficient to show the fol-

lowing two optimal problems are equivalent,

min
δµ : [0,T ]→M(Rm)

DΨ(µ0; δµ)+

− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖

subject to:

˙δx(t) =

∫
Rm

∂f

∂x

(
t, x(µ0)(t), u

)
dµ0,t(u)δx(t)+

+

∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u),

δx(0) = 0,

supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ];

(D.1)
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and,

min
δµ : [0,T ]→M(Rm)

∆H(µ0; δµ)− 1(Φ(µ0) > 0)Φ(µ0)+

+ γ1‖δµ‖

subject to:

supp(δµt + µ0,t) ⊂ U,

δµt + µ0,t ≥ 0,∫
Rm

dδµt(u) = 0 for a. e. t ∈ [0, T ].

(D.2)

For the linear system in problem (D.1), define its transition matrix as Φµ0 , then δx(t) follows

δx(t) =

∫ t

0

Φµ0(t, τ)

∫
Rm

f
(
τ, x(µ0)(τ), u

)
dδµτ (u)dτ. (D.3)

Transition matrix Φµ0(t, τ) follows

∂Φµ0

∂t
(t, τ) =

∫
Rm

∂f

∂x

(
t, x(µ0)(t), u

)
dµ0,t(u)Φµ0(t, τ),

Φµ0(τ, τ) = I, ∀t, τ ∈ [0, T ].

(D.4)

Thus the cost function in problem (D.1) can be rewritten as,

DΨ(µ0; δµ)− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖ =

=
∂Ψ

∂x
(xµ0(T ))′∫ T

0

Φµ0(T, τ)

∫
Rm

f
(
τ, x(µ0)(τ), u

)
dδµτ (u)dτ.

(D.5)
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On the other hand, for problem in equation (D.2), with the help of Φµ0(t, τ) in equation (D.4),

first we are going to show the adjoint variable, p0(t), can be written as

p0(t) = Φ′µ0
(T, t)p0(T ). (D.6)

Since ∀t, τ ∈ [0, T ], the transition matrix has Φµ0(t, τ)Φµ0(τ, t) = I, thus,

∂Φµ0

∂τ
(t, τ)Φµ0(τ, t) + Φµ0(t, τ)

∂Φµ0

∂τ
(τ, t) = 0.

Then,
∂Φµ0

∂τ
(t, τ) = −Φµ0(t, τ)

∂Φ

∂τ
(τ, t)Φ−1

µ0
(t, τ) =

= −Φµ0(t, τ)

∫
Rm

∂f

∂x

(
τ, x(µ0)(τ), u

)
dµ0,τ (u)

Consider equation (D.6),

ṗ0(t) =
∂Φ′µ0

∂t
(T, t)p0(T ) =

= −
∫
Rm

∂f ′

∂x

(
t, x(µ0)(t), u

)
dµ0,t(u)(t)p0(t),

p0(T ) =
∂Ψ

∂x

(
x(µ0)

)
(T ).

Since it shares the same dynamic and end point value with p(t) in the equation (7.12), p0(t)

in equation (D.6) is the solution to adjoint variable p(t).

Thus the cost function of problem (D.2) can be rewritten as

∆H(µ0; δµ)− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖ =

=

∫ T

0

p′0(T )Φµ0(T, t)

∫
Rm

f
(
t, x(µ0)(t), u

)
dδµt(u)dt+

− 1(Φ(µ0) > 0)Φ(µ0) + γ1‖δµ‖

(D.7)
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Based on the rewritten cost functions in equations (D.5) and (D.7), the two optimality

functions are equivalent.

Proof of proposition 7.3. It is sufficient to show when Φ(xµ0) ≤ 0, there exists λ ∈ [0, 1],

such that

Ψ
(
xµ0+λδµ0(T )

)
−Ψ(xµ0(T )) ≤ 0,

which is equivalent to show

Ψ
(
xµ0+λδµ0(T )

)
−Ψ

(
xµ0(T ) + λδxδµ0(T )

)
+

+ Ψ
(
xµ0(T ) + λδxδµ0(T )

)
−Ψ(xµ0(T )) ≤ 0.

(D.8)

According to the assumption 7.1, the Lipschitz constant of the system is L, then according

to the difference between xµ0+λδµ0(t) and xµ0(t) + λδxδµ0(t) in equation (D.8),

Ψ
(
xµ0+λδµ0(T )

)
−Ψ

(
xµ0(T ) + λδxδµ0(T )

)
≤

≤ L
∣∣xµ0+λδµ0(T )− xµ0(T )− λδxδµ0(T )

∣∣ ≤
≤ λ2eLTL2 T

∥∥δxδµ0
∥∥2

2
.

(D.9)

According to the mean value theorem, ∃s ∈ [0, 1] such that

Ψ
(
xµ0(T ) + λδxδµ0(T )

)
−Ψ(xµ0(T )) =

= λ
∂Ψ

∂x
(xµ0(T ))′δxδµ0(T )+

+ λ2δxδµ0(T )′
∂2Ψ

∂x2

(
xµ0(T ) + sλδxδµ0(T )

)
δxδµ0(T ) ≤

≤ λθl(µ0) + λ2Cp
∥∥δxδµ0(T )

∥∥2
.

(D.10)
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Where we assume the cost function’s second derivative is bounded by Cp uniformly. Also we

define

Cf = λ2eLTL2 T
∥∥δxδµ0

∥∥2

2
,

according to equation (D.9) and (D.10), the difference between Ψ
(
xµ0+λδµ0(T )

)
and Ψ(xµ0(T ))

is

Ψ
(
xµ0+λδµ0(T )

)
−Ψ(xµ0(T )) ≤

≤ λθ(µ0) + λ2
(
Cf + Cp

∥∥δxδµ0(T )
∥∥2
)
.

(D.11)

Since θ(µ0) ≤ 0, if

λ ≤ |θ(µ0)|
Cf + Cp‖δxδµ0(T )‖2 ,

Ψ
(
xµ0+λδµ0(T )

)
−Ψ(xµ0(T )) ≤ 0.

Proof to proposition 7.7. In the cost function of the discrete optimality problem (7.25), the

two terms inside the min and max symbols are both convex, according to Slater’s condition,

we are able to flip the order of min and max. Then we are able to derive the two separate

min-problems (7.30) and (7.31), finally compare and pick the larger one as the result to

problem (7.25).

Proof to proposition 7.8. First, it is easy to show that

∫ T

0

min
ŵk,i(t)∈R

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ŵk,j(t)

)
+

+ γ1‖ŵk(t)‖1 dt− 1(Φ(µk) < 0)Φ(µk) ≤

min
ŵk,i(t)∈R

∫ T

0

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ŵk,j(t)

)
+

+ γ1‖ŵk(t)‖1 dt− 1(Φ(µk) < 0)Φ(µk).
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Suppose the inequality holds strictly, define the optimal solution in proposition 7.8 as ŵ and

the optimal process in problem (7.31) as ω̂. Then these exists a non-zero measurable set

S ⊂ [0, T ], such that

∫
t∈S

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ŵk,j(t)

)
+

+ γ1‖ŵk(t)‖1 dt− 1(Φ(µk) < 0)Φ(µk) <∫
t∈S

p0(t)′
( Ns∑
j=1

f
(
t, x(µk)(t), uj

)
ω̂k,j(t)

)
+

+ γ1‖ω̂k(t)‖1 dt− 1(Φ(µk) < 0)Φ(µk).

Then substitute ω̂ with ŵ when t ∈ S make a new feasible candidate to problem (7.31),

moreover the cost function of the new candidate is strictly smaller than the cost under ω̂.

Which comes to a contradiction. Thus the
∫

and min in problem (7.31) can be flipped.

Proof to theorem 7.5. We are going to separate the proof into two lemmas and prove those

lemmas.

Lemma D.1. Follow the notation in theorem 7.5, PN →epi. P, as N → ∞, i.e. if µN →

µ weakly as N →∞, the cost, Ψ(xµN (T ))→ Ψ(xµ(T )).

Proof. According to the Lipschitz assumption 7.1,

|Ψ(xµN (T ))−Ψ(xµ(T ))| ≤ L‖xµN (T )− xµ(T )‖ ≤

≤ L T Cf ‖µN − µ‖1,

where Cf = supu∈U,t∈[0,T ]f(t, xu(t), u), since control and time is bounded and vector field f

is Lipschitz, Cf <∞. According to proposition 7.6, ‖µN − µ‖1 → 0 as N →∞.
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Lemma D.2. Follow the notation in theorem 7.5, if µN → µ weakly, limN→∞ sup θN(µN) ≤

θ(µ).

Proof. Define the cost function of discrete problem (7.25) as ζN(µN ; δµ), and δµN = arg min ζN(µN ; δµ).

Also for the original optimality function in problem (7.13), define δµ = arg min ζ(µN ; δµ).

Define the discrete representation of δµ with N samples as SN(δµ).

According to problems (7.13) and (7.25), define

Cζ = max
u∈U,s∈[0,T ]

{ max
(i,t)∈I×[0,T ]

p′i,t(s)f(s, xµ(s), u),

p′0(s)f(s, xµ(s), u)},

similarly define CN,ζ as

CN,ζ = max
u∈U,s∈[0,T ]

{ max
(i,t)∈I×[0,T ]

p′i,t(s)f(s, xµN (s), u),

p′0(s)f(s, xµN (s), u)},

Since the system is Lipschitz with bounded control and time series, Cζ and CN,ζ are bounded,

Then for the difference between ζN(µN ; δµN) and ζ(µN ; δµ) is

ζN(µN ; δµN)− ζ(µN ; δµ) ≤

≤ ζN(µN ;SN(δµ))− ζ(µN ; δµ) ≤

≤ ζN(µN ;SN(δµ))− ζ(µN ;SN(δµ))+

+ ζ(µN ;SN(δµ))− ζ(µN ; δµ) ≤

≤ ζ(µN ;SN(δµ))− ζ(µN ; δµ) ≤

≤ (maxCζ , CN,ζ + γ1)‖SN(δµ)− δµ‖1.

172



According to theorem (7.6), as N →∞, ‖SN(δµ)− δµ‖ → 0.

Similarly, we can show as N →∞,

θ(µN)− θ(µ)→ 0.

If µN → µ as N →∞, limN→∞ θN(µN) = θ(µ).

Based on the above two lemmas, theorem 7.5 holds.
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