10 research outputs found

    Spatio-Temporal Decision Fusion for Quickest Fault Detection Within Industrial Plants: The Oil and Gas Scenario

    Get PDF
    In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.acceptedVersio

    Distributed Detection in Wireless Sensor Networks under Multiplicative Fading via Generalized Score-tests

    Get PDF
    In this paper, we address the problem of distributed detection of a non-cooperative (unknown emitted signal) target with a Wireless Sensor Network (WSN). When the target is present, sensors observe an (unknown) deterministic signal with attenuation depending on the unknown distance between the sensor and the target, multiplicative fading, and additive Gaussian noise. To model energy-constrained operations within Internet of Things (IoT), one-bit sensor measurement quantization is employed and two strategies for quantization are investigated. The Fusion Center (FC) receives sensor bits via noisy Binary Symmetric Channels (BSCs) and provides a more accurate global inference. Such a model leads to a test with nuisances (i.e. the target position xT) observable only under H1 hypothesis. Davies framework is exploited herein to design the generalized forms of Rao and Locally-Optimum Detection (LOD) tests. For our generalized Rao and LOD approaches, a heuristic approach for threshold-optimization is also proposed. Simulation results confirm the promising performance of our proposed approaches.acceptedVersio

    Fusion Rules for Distributed Detection in Clustered Wireless Sensor Networks with Imperfect Channels

    Get PDF
    In this paper we investigate fusion rules for distributed detection in large random clustered-wireless sensor networks (WSNs) with a three-tier hierarchy; the sensor nodes (SNs), the cluster heads (CHs) and the fusion center (FC). The CHs collect the SNs' local decisions and relay them to the FC that then fuses them to reach the ultimate decision. The SN-CH and the CH-FC channels suffer from additive white Gaussian noise (AWGN). In this context, we derive the optimal log-likelihood ratio (LLR) fusion rule, which turns out to be intractable. So, we develop a sub-optimal linear fusion rule (LFR) that weighs the cluster's data according to both its local detection performance and the quality of the communication channels. In order to implement it, we propose an approximate maximum likelihood based LFR (LFR-aML), which estimates the required parameters for the LFR. We also derive Gaussian-tail upper bounds for the detection and false alarms probabilities for the LFR. Furthermore, an optimal CH transmission power allocation strategy is developed by solving the Karush-Kuhn-Tucker (KKT) conditions for the related optimization problem. Extensive simulations show that the LFR attains a detection performance near to that of the optimal LLR and confirms the validity of the proposed upper bounds. Moreover, when compared to equal power allocation, simulations show that our proposed power allocation strategy achieves a significant power saving at the expense of a small reduction in the detection performance

    Distributed detection of a non-cooperative target via generalized locally-optimum approaches

    No full text
    In this paper we tackle distributed detection of a non-cooperative target with a Wireless Sensor Network (WSN). When the target is present, sensors observe an unknown random signal with amplitude attenuation depending on the distance between the sensor and the target (unknown) positions, embedded in white Gaussian noise. The Fusion Center (FC) receives sensors decisions through error-prone Binary Symmetric Channels (BSCs) and is in charge of performing a (potentially) more-accurate global decision. The resulting problem is a one-sided testing with nuisance parameters present only under the target-present hypothesis. We first focus on fusion rules based on Generalized Likelihood Ratio Test (GLRT), Bayesian and hybrid approaches. Then, aimed at reducing the computational complexity, we develop fusion rules based on generalizations of the well-known Locally-Optimum Detection (LOD) framework. Finally, all the proposed rules are compared in terms of performance and complexity.Comment: Accepted in Elsevier Information Fusion, Special Issue on Event-Based Distributed Information Fusion Over Sensor Networks (invited paper
    corecore