113,305 research outputs found

    High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework

    Get PDF
    High-accuracy distributed information exploitation plays an important role in sensor networks. This dissertation describes a mobile-agent-based framework for target detection and classification in sensor networks. Specifically, we tackle the challenging problems of multiple- target detection, high-fidelity target classification, and unknown-target identification. In this dissertation, we present a progressive multiple-target detection approach to estimate the number of targets sequentially and implement it using a mobile-agent framework. To further improve the performance, we present a cluster-based distributed approach where the estimated results from different clusters are fused. Experimental results show that the distributed scheme with the Bayesian fusion method have better performance in the sense that they have the highest detection probability and the most stable performance. In addition, the progressive intra-cluster estimation can reduce data transmission by 83.22% and conserve energy by 81.64% compared to the centralized scheme. For collaborative target classification, we develop a general purpose multi-modality, multi-sensor fusion hierarchy for information integration in sensor networks. The hierarchy is com- posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi-modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also takes into account energy efficiency. Experimental results based on two field demos show constant improvement of classification accuracy over different levels of the hierarchy. Unknown target identification in sensor networks corresponds to the capability of detecting targets without any a priori information, and of modifying the knowledge base dynamically. In this dissertation, we present a collaborative method to solve this problem among multiple sensors. When applied to the military vehicles data set collected in a field demo, about 80% unknown target samples can be recognized correctly, while the known target classification ac- curacy stays above 95%

    FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods

    A performance study of anomaly detection using entropy method

    Full text link
    An experiment to study the entropy method for an anomaly detection system has been performed. The study has been conducted using real data generated from the distributed sensor networks at the Intel Berkeley Research Laboratory. The experimental results were compared with the elliptical method and has been analyzed in two dimensional data sets acquired from temperature and humidity sensors across 52 micro controllers. Using the binary classification to determine the upper and lower boundaries for each series of sensors, it has been shown that the entropy method are able to detect more number of out ranging sensor nodes than the elliptical methods. It can be argued that the better result was mainly due to the lack of elliptical approach which is requiring certain correlation between two sensor series, while in the entropy approach each sensor series is treated independently. This is very important in the current case where both sensor series are not correlated each other.Comment: Proceeding of the International Conference on Computer, Control, Informatics and its Applications (2017) pp. 137-14

    Distributed Variational Inference for Online Supervised Learning

    Full text link
    Developing efficient solutions for inference problems in intelligent sensor networks is crucial for the next generation of location, tracking, and mapping services. This paper develops a scalable distributed probabilistic inference algorithm that applies to continuous variables, intractable posteriors and large-scale real-time data in sensor networks. In a centralized setting, variational inference is a fundamental technique for performing approximate Bayesian estimation, in which an intractable posterior density is approximated with a parametric density. Our key contribution lies in the derivation of a separable lower bound on the centralized estimation objective, which enables distributed variational inference with one-hop communication in a sensor network. Our distributed evidence lower bound (DELBO) consists of a weighted sum of observation likelihood and divergence to prior densities, and its gap to the measurement evidence is due to consensus and modeling errors. To solve binary classification and regression problems while handling streaming data, we design an online distributed algorithm that maximizes DELBO, and specialize it to Gaussian variational densities with non-linear likelihoods. The resulting distributed Gaussian variational inference (DGVI) efficiently inverts a 11-rank correction to the covariance matrix. Finally, we derive a diagonalized version for online distributed inference in high-dimensional models, and apply it to multi-robot probabilistic mapping using indoor LiDAR data

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    A game theory approach for cooperative control to improve data quality and false data detection in WSN

    Get PDF
    [EN] New solutions are required for the management of heterogeneous distributed sensor networks in order to address the problem of data quality and false data detection in wireless sensor networks (WSNs). In this paper, we present a nonlinear cooperative control algorithm based on game theory. Here, a new model is proposed for the automatic processing and management of information in heterogeneous distributed WSNs. We apply our algorithm to a case study with the aim of improving the quality of temperature data collected from indoor surfaces by a WSN. Unlike the classic unsupervised methods, in the proposed algorithm, it is not necessary to define the number of clusters beforehand. Once the game reaches the game equilibrium, the resulting number of clusters can be used as input for the unsupervised classification analysis. Anomalous temperature values are corrected according to their neighborhood, without modifying the temperature clusters

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9

    Intelligent signal classification in industrial distributed wireless sensor networks-based IIoT

    Get PDF
    In industrial sensor networks, complex industrial environments may be encountered leading to a mix of signals of different types. Complicated interference caused by mixed signals on industrial equipments may significantly degrade the classification rate of signals, which may result in a long training time in order to extract features. In addition, with limited channel resources, it is difficult to make the global optimal decision in industrial distributed wireless sensor networks (IDWSN). To address this problem, a signal classification method using feature fusion is proposed for industrial Internet of things (IIoT) in this paper. In the proposed method, the received signals of nodes are processed by frequency reduction and sampling pretreatment, based on which intelligent representations of signals are obtained. Using federated learning, the data samples are trained with the feature fusion network. Moreover, the trained deep learning network is used on each sensor node to classify signals, the results of which will be transmitted to aggregation center. In the aggregation center, the improved evidence theory method is used to aggregate the recognition results of each sensor node to achieve the final classification. Simulation shows that the proposed method has excellent classification performances. Notably, it is not required for the proposed method to transmit signals from nodes to the aggregation center, which could effectively protect the privacy of industrial information
    corecore