1,179 research outputs found

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Optimizing TCP Performance in Multi-AP Residential Broadband Connections via Minislot Access

    Get PDF
    The high bandwidth demand of Internet applications has recently driven the need of increasing the residential download speed. A practical solution to the problem has been proposed aggregating the bandwidth of 802.11 Access Points (APs) backhauls in range via 802.11 connections. Since 802.11 devices are usually single-radio, the communication to multiple APs on different radio-channels requires the introduction of a time-division multiple access (TDMA) policy at the client station. Current investigation in this area supposes that there is a sufficient number of TCP flows to saturate the Asymmetric Digital Subscriber Line (ADSL) behind the APs. However, this may be not guaranteed according to the user traffic pattern. As a consequence, a TDMA policy introduces additional delays in the end-to-end transmissions that will cause degradation of the TCP throughput and an under-utilization of the AP backhauls. In this paper, we first perform an in-depth experimental analysis with a customized 802.11 driver of how the usage of multi-AP TDMA affects the observed Round-Trip-Time (RTT) of TCP flows. Then, we introduce a simple analytical model that accurately predicts the TCP RTT when accessing the wireless medium with a Multi-AP TDMA policy. Based on this model, we propose a resource allocation algorithm that runs locally at the station and it greatly reduces the observed TCP RTT with a very low computational cost. Our proposed scheme can improve up to 1:5 times the aggregate throughput observed by the station compared to state-of-the-art multi-AP TDMA allocations. We also show that the throughput performance of the algorithm is very close to the theoretical upper-bound in key simulation scenarios

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Tactical communication systems based on civil standards: Modeling in the MiXiM framework

    Full text link
    In this paper, new work is presented belonging to an ongoing study, which evaluates civil communication standards as potential candidates for the future military Wide Band Waveforms (WBWFs). After an evaluation process of possible candidates presented in [2], the selection process in [1] showed that the IEEE 802.11n OFDM could be a possible military WBWF candidate, but it should be further investigated first in order to enhance or even replace critical modules. According to this, some critical modules of the physical layer has been further analyzed in [3] regarding the susceptibility of the OFDM signal under jammer influences. However, the critical modules of the MAC layer (e.g., probabilistic medium access CSMA/CA) have not been analysed. In fact, it was only suggested in [2] to replace this medium access by the better suited Unified Slot Allocation Protocol - Multiple Access (USAP-MA) [4]. In this regard, the present contribution describes the design paradigms of the new MAC layer and explains how the proposed WBWF candidate has been modelled within the MiXiM Framework of the OMNeT++ simulator.Comment: Published in: A. F\"orster, C. Sommer, T. Steinbach, M. W\"ahlisch (Eds.), Proc. of 1st OMNeT++ Community Summit, Hamburg, Germany, September 2, 2014, arXiv:1409.0093, 201

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore