12 research outputs found

    Pengendalian Lampu Lalu Lintas Cerdas di Persimpangan Empat Ruas yang Kompleks Menggunakan Algoritma Adaptive Neuro Fuzzy Inference System

    Get PDF
    Masalah transportasi masih sering dihadapkan pada fenomena kemacetan arus lalu lintas yang berdampak pada kecelakaan lalu lintas, polusi, dan kerugian ekonomi. Salah satu cara untuk meminimalisir fenomena tersebut melalui pengendalian sistem lampu lalu lintas yang baik terhadap arus lalu lintas jangka pendek di persimpangan jalan. Pengendalian lampu lalu lintas secara statis terbukti belum optimal dalam meminimalisir kemacetan arus lalu lintas, salah satu penyebabnya karena kondisi arus lalu lintas yang bervariasi sehingga tidak mudah diprediksi. Fuzzy Inference System (FIS) sering terbukti mampu menunjukkan hasil yang lebih baik daripada pengendalian lampu lalu lintas secara statis. Namun FIS tidak dapat diterapkan pada kondisi arus lalu lintas yang bervariasi atau di persimpangan jalan yang berbeda karena metode tersebut tidak mampu mempelajari kondisi arus lalu lintas secara real time. Agar FIS mampu melakukan pembelajaran, maka pendekatan machine learning dapat diterapkan pada FIS. Salah satu pengembangannya adalah Adaptive Neuro Fuzzy Inference System (ANFIS) yang dapat mengendalikan lampu lalu lintas cerdas secara dinamis dengan hasil yang lebih baik daripada FIS. Namun umumnya ANFIS diuji coba pada persimpangan jalan yang normal. Bagaimana jika di persimpangan yang kompleks? Persimpangan yang memiliki beberapa ruas/jalur utama yang besar (jalur poros), sementara ruas laiinya kecil, bahkan terdapat ruas yang tidak berpotongan, sehingga ada prioritas untuk setiap ruasnya. Hasilnya, penerapan ANFIS (3 GaussMf) untuk pengendalian lampu lalu lintas cerdas/dinamis di persimpangan empat ruas yang kompleks mampu mereduksi Average Waiting Times (AWT) rata-rata sebesar 3,4071E-05 detik dengan 2,7156 RMSE rata-rata, menggunakan variabel Queues Quantity dan Priority Degree. Sedangkan jika menggunakan variabel Arrival Times, Transportation Type, dan Goal Junction, ANFIS (4 TrapMf) mampu mereduksi AWT sebesar 0,0779 detik dengan 19,7646 RMSE

    Backpressure based traffic signal control considering capacity of downstream links

    Get PDF
    Congestion is a kind of expression of instability of traffic network. Traffic signal control keeping traffic network stable can reduce the congestion of urban traffic. In order to improve the efficiency of urban traffic network, this study proposes a decentralized traffic signal control strategy based on backpressure algorithm used in Wi-Fi mesh networks for packets routing. Backpressure based traffic signal control algorithm can stabilize urban traffic network and achieve maximum throughput. Based on original backpressure algorithm, the variant parameter and penalty function are considered to balance the queue differential and capacity of downstream links in urban traffic network. For each traffic phase of intersections, phase weight is computed using queue differential and capacity of downstream links, which fixed the deficiency of infinite queue capacity in original backpressure algorithm. It is proved that the extended backpressure traffic signal control algorithm can maintain stability of urban traffic network, and also can prevent queue spillback, so as to improve performance of whole traffic network. Simulations are carried out in Vissim using Vissim COM programming interface and Visual Studio development tools. Evaluation results illuminate that it can get better performance than the backpressure algorithm just based on queue length differential in average queue length and delay of traffic network

    Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm

    Get PDF
    This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9× when compared with the sequential version. Keywords: Bus Rapid Transit, Traffic lights synchronization, Evolutionary algorithm Document type: Articl

    Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm

    Get PDF
    This article presents a parallel evolutionary algorithm for public transport optimization by synchronizing traffic lights in the context of Bus Rapid Transit systems. The related optimization problem is NP-hard, so exact computational methods are not useful to solve real-world instances. Our research introduces a parallel evolutionary algorithm to efficiently configure and synchronize traffic lights and improve the average speed of buses and other vehicles. The Bus Rapid Transit on Garzón Avenue (Montevideo, Uruguay) is used as a case study. This is an interesting complex urban scenario due to the number of crossings, streets, and traffic lights in the zone. The experimental analysis compares the numerical results computed by the parallel evolutionary algorithm with a scenario that models the current reality. The results show that the proposed evolutionary algorithm achieves better quality of service when compared with the current reality, improving up to 15.3% the average bus speed and 24.8% the average speed of other vehicles. A multiobjective optimization analysis also demonstrates that additional improvements can be achieved by assigning different priorities to buses and other vehicles. In addition, further improvements can be achieved on a modified scenario simply by deleting a few bus stops and changing some traffic lights rules. The benefits of using a parallel solver are also highlighted, as the parallel version is able to accelerate the execution times up to 26.9x when compared with the sequential version

    Development of an Integrated Incident and Transit Priority Management Control System

    Get PDF
    The aim of this thesis is to develop a distributed adaptive control system which can work standalone for a single intersection to handle various boundary conditions of recurrent, non-recurrent congestion, transit signal priority and downstream blockage to improve the overall network in terms of productivity and efficiency. The control system uses link detectors’ data to determine the boundary conditions of all incoming and exit links. Four processes or modules are deployed. The traffic regime state module estimates the congestion status of the link. The incident status module determines the likelihood of an incident on the link. The transit priority module estimates if the link is flagged for transit priority based on the transit vehicle location and type. Finally, the downstream blockage module scans all downstream links and determines their recurrent blockage conditions. Three different urban incident detection models (General Regression Model, Neuro-Fuzzy Model and Binary Logit Model) were developed in order to be adopted for the incident status module. Among these, the Binary Logit Model was selected and integrated with the signal control logic. The developed Binary Logit Model is relatively stable and performs effectively under various traffic conditions, as compared to other algorithms reported in the literature. The developed signal control logic has been interfaced with CORSIM micro-simulation for rigorous evaluations with different types of signal phase settings. The proposed system operates in a manner similar to a typical pre-timed signal (with split or protected phase settings) or a fully actuated signal (with splitphase arrangement, protected phase, or dual ring phase settings). The control decisions of this developed control logic produced significant enhancement to productivity (in terms of Person Trips and Vehicle Trips) compared with the existing signal control systems in medium to heavily congested traffic demand conditions for different types of networks. Also, more efficient outcomes (in terms of Average Trip Time/Person and delay in seconds/vehicle) is achieved for relatively low to heavy traffic demand conditions with this control logic (using Split Pre-timed). The newly developed signal control logic yields greater productivity than the existing signal control systems in a typical congested urban network or closely spaced intersections, where traffic demand could be similarly high on both sides at peak periods. It is promising to see how well this signal control logic performs in a network with a high number of junctions. Such performance was rarely reported in the existing literature. The best performing phase settings of the newly developed signal control were thoroughly investigated. The signal control logic has also been extended with the logic of pre-timed styled signal phase settings for the possibility of enhancing productivity in heavily congested scenarios under a closely spaced urban network. The performance of the developed pre-timed signal control signal is quite impressive. The activation of the incident status module under the signal control logic yields an acceptable performance in most of the experimental cases, yet the control logic itself works better without the incident status module with the Split Pre-timed and Dual Actuated phase settings. The Protected Pre-timed phase setting exhibits benefits by activating the incident status module in some medium congested demand
    corecore